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Abstract

Artificial neural networks for motor control usually adopt generic architectures
like fully connected MLPs. While general, these tabula rasa architectures rely on
large amounts of experience to learn, are not easily transferable to new bodies, and
have internal dynamics that are difficult to interpret. In nature, animals are born
with highly structured connectivity in their nervous systems shaped by evolution;
this innate circuitry acts synergistically with learning mechanisms to provide
inductive biases that enable most animals to function well soon after birth and learn
efficiently. Convolutional networks inspired by visual circuitry have encoded useful
biases for vision. However, it is unknown the extent to which ANN architectures
inspired by neural circuitry can yield useful biases for other Al domains. In
this work, we ask what advantages biologically inspired ANN architecture can
provide in the domain of motor control. Specifically, we translate C. elegans
locomotion circuits into an ANN model controlling a simulated Swimmer agent.
On a locomotion task, our architecture achieves good initial performance and
asymptotic performance comparable with MLPs, while dramatically improving data
efficiency and requiring orders of magnitude fewer parameters. Our architecture is
interpretable and transfers to new body designs. An ablation analysis shows that
constrained excitation/inhibition is crucial for learning, while weight initialization
contributes to good initial performance. Our work demonstrates several advantages
of biologically inspired ANN architecture and encourages future work in more
complex embodied control.

1 Introduction

Artificial neural networks (ANNs) for motor control usually adopt generic architectures like fully
connected multi-layered perceptrons (MLPs) [[Pierson and Gashler, 2017, Levine et al.| 2016/ Bin Peng
et al., [2020, Heess et al.,|2016]. While general, these fabula rasa architectures rely on large amounts
of experience to learn. Data efficiency is especially desirable because, unlike computer vision and
natural language processing which have benefited greatly from available large datasets [Bommasani
et al.| 2021]], motor control requires interacting with an environment to gather experience, which is
time-consuming, laborious, and possibly unsafe [Kroemer et al.,[2020]. Transfer is also a challenge,
as experience is usually body-specific, and an ANN trained to control one body is not easily adapted
to new bodies. In addition, architectures like MLPs are difficult to interpret, as their internal dynamics
are distributed across units and non-trivial to relate to agent behavior [Merel et al., 2019a].

In nature, animals are born with highly structured connectivity in their brains and nervous systems
that has been shaped over millennia by evolution [Zador, |2019]]. In some cases, this innate circuitry
confers abilities with little or no learning; in others, it guides the learning process by providing
strong inductive biases [Lake et al.,|2017]. These innate and learning mechanisms act synergistically,
enabling most animals to function well soon after birth, while continuing to acquire and improve skills
efficiently, e.g. a horse learning to walk with only a couple hours of experience. Moreover, despite
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species-specific variations, there is a significant amount of shared architecture (e.g. cerebellum, basal
ganglia) and design principles (e.g. hierarchical modularity, partial autonomy) even between distantly
related species [Merel et al., 2019b]]. The connectivity of neural circuits is often highly structured
and sparse [Luo, [2021]], in sharp contrast to the all-to-all connectivity of MLPs. Moreover, evolution
has progressively built more advanced abilities on lower-level circuits, leveraging modular structure
to transfer existing working designs to new animal bodies [Cisek} 2019} Merel et al., 2019b]. Taken
together, these findings from neuroscience suggest that structured neural circuits in animals instantiate
efficient, transferable, and modular solutions for high-dimensional embodied control.

Capturing some of this structure in model architecture may enable ANNs to narrow the gap between
artificial and natural systems. For example, convolutional networks were inspired by biological visual
circuitry, and the inductive biases of spatial locality and weight sharing that they encode have yielded
substantial improvements in performance, data efficiency, and parameter efficiency for vision tasks
[Lindsay, 2021]]. However, it is unknown the extent to which ANN architectures inspired by neural
circuitry can yield useful inductive biases for other Al domains.

In this work, we ask what advantages biologically inspired ANN architecture can provide in the
domain of motor control. Specifically, we translate C. elegans locomotion circuits into an ANN
model controlling a simulated Swimmer agent selected from a standard Al benchmark [Tassa et al.|
2020[]. Our architecture is an instance of what we call a “Neural Circuit Architectural Prior” (NCAP),
to denote an ANN architecture that encodes prior structure inspired by biological neural circuits.

On a locomotion task, our architecture achieves good initial performance and asymptotic perfor-
mance comparable with MLPs, while dramatically improving data efficiency and requiring orders of
magnitude fewer parameters. Our architecture is interpretable and transfers to new body designs. An
ablation analysis shows that constrained excitation/inhibition is crucial for learning, while weight
initialization contributes to good initial performance. Our work demonstrates several advantages
of biologically inspired ANN architecture and encourages future work in more complex embodied
control.

In summary, the primary contributions of this work are:

1. An ANN architecture inspired by C. elegans locomotion circuits that combines the discrete-
time ANN formalism that is standard in machine learning with features from computational
neuroscience like constraints on synapse sign (i.e. excitation vs. inhibition) and special cell types
(i.e. intrinsic oscillators);

2. An evaluation of our model’s initial performance, asymptotic performance, data efficiency,
parameter efficiency, interpretability, and transfer compared to standard MLP architectures; and

3. An ablation analysis of the effects of weight sharing, sign constraints, initialization, and sparse
connectivity on performance and learning.

Code and videos are available at: https://sites.google.com/view/ncap-swimmer

2 Related Work

Movement Priors A motor controller ultimately generates joint-space torques 7 to apply at each
actuator. While a learning-based controller can directly generate torques [Levine et al.,[2016]] or world-
space positions x or accelerations & that are transformed into torques [Khatibl |I987]], movement priors
are often adopted to introduce abstraction, incorporate prior knowledge, and improve performance
and learning speed [Kroemer et al.,|2020]. Movement priors can be usefully grouped into 3 categories:

(1) Trajectory Priors encode desired movement through analytic equations of motion, e.g. Dynamic
Movement Primitives use parameterized differential equations to implement stable attractor dynam-
ical systems expressing different motion shapes [Schaall |2006, [Pastor et al., 2009]], and Policies
Modulating Trajectory Generators augment hand-engineered trajectories with learned residual terms
to enhance robustness and flexibility [Iscen et al.l 2019]. Generally, trajectory priors are interpretable
and work well when desired movement is adequately captured by analytic primitives (e.g. sinusoids,
splines); however, they can require much time and manual effort to design robustly.

(2) Behavioral Imitation Priors encode desired movement by training parameterized functions
like ANNs to imitate reference motions generated from motion capture or manual keyframing,
e.g. [Bin Peng et al|[2020] train expert policies to imitate animal motion capture, and Neural
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Probabilistic Motor Primitives compress expert policies trained to imitate human motion capture into
a common, reusable embedding space [Merel et al.| 2019c|]. Generally, behavioral imitation priors
have reproduced diverse movements and trade the time/effort of designing equations with that of
compiling reference motions from humans/animals and retargeting the motions to agent bodies.

(3) Architectural Priors encode desired movement indirectly through specialized ANN architectures
that establish inductive biases, e.g. [Heess et al.|[2016] decompose an agent into a loosely neuro-
inspired hierarchy consisting of a high-level “cortical network”™ with access to exteroceptive signals
and a low-level “spinal network” with access to only proprioceptive signals, and |[Heess et al.| [2017]
extend this architecture to more challenging locomotion tasks. Generally, architectural priors can
significantly improve performance and data efficiency over generic/monolithic architectures; however,
architectural priors still represent an under-explored space in the Al motor control literature, and
much existing work has only specified high-level architectural structure while retaining generic
low-level connectivity, e.g. the above-referenced “cortical” and “spinal” networks both use dense
MLP connectivity, rather than connectivity that resembles biological cortical and spinal circuitry.

In this work, we investigate the potential of architectural priors that more closely resemble neural
circuitry. In doing so, we demonstrate one path for how prior knowledge can be encoded in Al agents
and how neuroscience can inspire more naturalistic Al [Hassabis et al., 2017].

Central Pattern Generators In bio-inspired motor control, an extensive literature has built upon
models of Central Pattern Generators (CPGs), which are neural circuits found across animal species
that produce rhythmic activity in the absence of rhythmic inputs and sensory feedback. These circuits
underlie fundamental rhythmic movements, including breathing, chewing, digesting, swimming,
walking, and running. Computational models of CPGs have been successfully applied to diverse
robotic bodies. For a review, refer to [[jspeert [2008]] and [Yu et al.| [2014].

While our concept of a Neural Circuit Architectural Prior (NCAP) is related to CPGs, it differs
in modeling constraints and formalization: (1) Neural-circuit-inspired connectivity can generate
movement that includes, but is not limited to, rhythmic movement. In animals, of course, discrete
movements (e.g. reflexes, reaching, sitting, jumping) are generated by neural circuits too. This work
highlights the case study of swimming because C. elegans locomotion circuits are simple to explain,
but related works have also explored circuits for reflexes [Liu et al., [2018]], reaching [Schaal and
Schweighofer,2005]], and decision making [Lechner et al.,[2019, Hasani et al.,|2020]. (2) CPG models
vary significantly, with some based on neural networks (i.e. architectural priors) and many based on
other formalisms including systems of coupled oscillators, vector maps, and finite-state machines
[Ispeert, 2008]. Neural-network-based CPGs further vary between the biophysically detailed, spiking,
rate-coded, and population-level [Torres and Varonal 2012 Bing et al.,2018| Ijspeert, 2008]]. This
work adopts a discrete-time ANN formalism that is familiar to the broader AI community. In addition
to pedagogical benefits, our formalism produces models that are fully differentiable, enabling us to
tune parameters with the same reinforcement learning (RL) and evolution strategies (ES) algorithms
commonly used in Al motor control. Further, our Swimmer NCAP architecture has the special
property of being embeddable within a standard MLP of certain dimensions (Appendix B), enabling
a direct, rigorous, and novel investigation of low-level connectivity in ANNS.

Neuromechanical Models In computational neuroscience, models of neural circuits have been
increasingly combined with models of biomechanics to study brain-body-environment interactions
[Ausborn et al., |2021, Rybak et al., |2015] |Danner et al., 2017]]. Our work builds upon the rich
insights gained from neuromechanical modeling, in particular of C. elegans swimming and steering
circuits [Boyle et al.,[2012} [Demin and Vityaev, 2014, |[zquierdo and Beer, 2015, |Sarma et al., 2018].
However, while neuromechanical work primarily aims to elucidate biological principles and explain
neural/behavioral data, our work has the distinct goal of translating insights to Al To this end, we
adopt the discrete-time ANN formalism as described above, and we also target a body from a standard
Al benchmark: the DeepMind Control Suite [Tassa et al.,[2020]] built on the MuJoCo physics simulator
[Todorov et al.l 2012]. In contrast, the above-mentioned C. elegans works use biophysically realistic
bodies and muscles. Our Swimmer body is significantly different from C. elegans in mechanics,
degrees of freedom, and actuators; it is not obvious that C. elegans circuits would be useful, and our
findings may encourage future work for other MuJoCo bodies as well. Ultimately, we hope our work
can strengthen the bridge between the neuromechanical modeling and AI communities.
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Figure 1: Nematode. (A) The nematode achieves forward locomotion through dorsal-ventral muscle
contraction waves propagating down the body. (B) Muscle wave propagation, oscillation, steering,
and speed control are coordinated by a highly stereotyped, modular, and repeated microcircuit.
B neurons sense bending in the previous module and excite ipsilateral muscles, while inhibiting
contralateral muscles via D neurons. Intrinsic oscillations in B neurons initiate waves. SMB neurons
bias head/neck muscles for steering. AVB attenuates all B neurons via gap junctions for speed control.

3 Model

We translate nematode (C. elegans) locomotion circuits into an ANN model controlling a simulated
Swimmer agent. In[Section 3.1] we provide an overview of the nematode body and the neural circuitry
underlying locomotion. In we describe the integrator and oscillator units that serve as
building blocks for our NCAP architecture. In we formalize the observation and action
space of the Swimmer agent, and we propose our NCAP architecture inspired by nematode circuits.

3.1 Nematode

The nematode C. elegans has served as a useful model organism within neuroscience because it is
one of the simplest organisms with a nervous system. Moreover, it is unique in that its connectome,
i.e. wiring diagram, has been completely mapped [Hall and Altun, [2008]].

Nematode Body The nematode body is a 1 mm long, 50 um diameter tapered cylinder (Figure T)A).
It is made up of 959 somatic cells, of which 302 are neurons comprising the nervous system, of
which 75 are motor neurons that innervate the 95 body wall muscles distributed along the body.
Forward and backward thrust is produced via alternating dorsal-ventral muscle contraction waves
propagating down the body in the direction opposite to the direction of motion. Steering is produced
by differential activation of the 20 anterior muscles in the head and neck [Gjorgjieva et al., 2014].

Nematode Neural Circuits The nematode forward locomotion circuit is summarized below (Fig]
[ure TB). For an in-depth treatment, refer to|Gjorgjieva et al.| [2014] and[Wen et al,| [2018].

Muscle wave propagation is coordinated by 2 classes of neurons that innervate dorsal (D-) and ventral
(V-) muscles. B neurons (DB and VB) act as both sensory and motor neurons, expressing stretch
receptors in their dendrites to sense bending 200 um anterior to their somas, and sending excitatory
output (via ACh) to the muscles and to D neurons. D neurons (DD and VD) send inhibitory output
(via GABA) to the muscles. This microcircuit is highly stereotyped, modular, and repeated down
the length of the body, and its logic is interpretable. For a particular module, body bending in the
previous module is sensed by B neurons, which then initiate bending on the same side (ipsilateral)
while simultaneously inhibiting bending on the opposite side (contralateral) through D neurons.

Muscle wave initiation is generated by intrinsic oscillators. While proprioception-only circuits (with
oscillators ablated) are capable of producing small waves on its own, oscillators are used initiate and
entrain larger waves [Gjorgjieva et al., [2014]]. These oscillators were long believed to only reside in
the head and neck, but recently work has shown them to in fact also be present in the body as there is
intrinsic oscillatory activity within the B neurons themselves [[Wen et al., 2018]].
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Figure 2: Architectural Components. (A) An integrator unit models a simple neuron. The graded
input signals are multiplied by weights that represent synaptic efficacy and that are constrained to
be either positive (excitatory, green boxes) or negative (inhibitory, red boxes). The graded output
signal is produced by an activation function. (B) An oscillator unit produces driving signals much
like intrinsic pacemaker cells and network-based oscillators. The graded output signal is generated
by periodic functions, e.g. square waves and sine waves.

Steering is generated by the differential activation of SMB neurons biasing the head and neck muscles
to bend dorsally or ventrally [[zquierdo and Beer, [2015].

Speed control is coordinated by the AVB command neuron, which is connected through gap junc-
tions with all B neurons. When AVB is low, the resting membrane potentials of B neurons are
hyperpolarized to prevent activation; when AVB is high, B neurons are free to activate.

3.2 Architectural Components

Our NCAP architecture is built from components that combine the discrete-time ANN formalism
that is standard in machine learning with features from computational neuroscience like constraints
on synapse sign (i.e. excitation vs. inhibition) and special cell types (i.e. intrinsic oscillator). The
components are fully differentiable and therefore compatible with backpropagation-based learning
algorithms, though not restricted to them.

Integrator Units Signals in biological neural circuits are processed and integrated by neurons.
The integrator unilﬂ in is similar to the standard ANN model. The graded inputs z;
are multiplied by synaptic weights w; to produce the membrane potential z, given the resting
membrane potential b. A nonlinear activation function f(z) produces the graded output y based on
the membrane potential. Unlike the standard ANN model, however, we constrain synaptic weights
by a sign constraint function ¢(w). This is done to reflect that in biological circuits a primary
characteristic of a synapse is whether it is excitatory or inhibitory. In the standard model, synapses
are initialized with random signs and are free to change during learning. We argue that constrained
excitation/inhibition is fundamental for interpreting and modeling the logic of neural circuits, and we
show in the ablation analysis that they are critical for learning in our architecture (Section 4.5).

Oscillator Units Neural circuits often feature components with specialized dynamics, with oscilla-
tors being a prominent example [|Grillner and El Maniral 2020]. An oscillator can be implemented
through coupled activity between neurons or within a single neuron, similar to pacemaker cells in the
heart [Bucher et al., 2015]]. Oscillators serve as internal drivers of activity, exemplifying the fact (less
appreciated within the ML community) that neural circuits are not exclusively driven by external
inputs from the environment. The oscillator unit in[Figure 2B uses a periodic function f(t) to produce
the graded output y. Example periodic functions include square wave and sine wave generators.

3.3 Swimmer

The Swimmer is an agent body in widely adopted Al motor control benchmarks, e.g. DeepMind
Control Suite [Tassa et al., 2020] and OpenAl Gym [Brockman et al.,[2016]. We target this standard
body rather than a biorealistic body like previous work [Sarma et al.| [2018|, [zquierdo and Beer, 2015]]

'Simple neurons are often approximated as a single integrator units [Torres and Varona) [2012]]. However,
sometimes neurons have multiple sites of integration, i.e. dendritic integration across multiple compartments.
We prefer “integrator unit” to“neural unit” as a complex neuron may require multiple integrator units to model.
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Figure 3: Swimmer. (A) The Swimmer has an articulated body with N joints connecting N + 1
links (N = 5 shown). Its observation space is normalized joint positions g, and its action space
is normalized joint accelerations g. (B) Our network architecture closely conforms to the modular
microcircuit of the nematode. Each module 7 senses bending in the previous module ¢;_; and drives
B neurons b; and muscles m;, which are combined to create joint accelerations ¢;.

in order to investigate the potential of biologically inspired network architecture in agents used by the
broader Al community and to inspire future work in other MuJoCo bodies as well.

Swimmer Body The Swimmer agent has an articulated body with NV joints connecting N + 1 links
(Figure 3]A). Its movement is entirely within the xy-plane. Thrust is generated by the links pushing
against the surrounding fluid, e.g. simulated via a high-Reynolds fluid drag model
. The observation space consists of normalized joint positions ¢ € [—1,1]" between joint
limits. The action space consists of normalized joint accelerations ¢ € [—1, 1] between maximum
acceleration counterclockwise and clockwise, respectively.

Swimmer Network Architecture Our NCAP architecture is best explained visually (Figure 3B).

For muscle wave propagation, signals are integrated in B neurons and muscles; D neurons mainly
serve to convert opposite-side B neuron signals from excitatory to inhibitory, and their role can be
replicated directly in the muscle integrator units. We model N modules to control each of the N
joints. For a particular module 1 < ¢ < N, the previous module joint position ¢;_1 is split into dorsal
¢}, € [0,1] and ventral ¢{_; € [0, 1] components, in order to mirror signals from proprioceptive
stretch receptors that are sensitive to bending on one side. B neurons are modeled as integrator
units with outputs b¢ and b, which receive same-side excitatory proprioceptive inputs. Muscles are
modeled as integrator units with outputs m¢ and m}, which receive same-side (ipsilateral) excitatory
B neuron input as well as opposite-side (contralateral) inhibitory B neuron input. Finally, the joint
acceleration ¢; is calculated from dorsal and ventral muscle outputs, which act antagonistically.

For muscle wave initiation, the first module B neurons b$ and bY receive inputs from oscillators o4

and oY, respectively, instead of proprioception. We use square wave generators acting in anti-phase.

For steering, SMB outputs are modeled as a right turn signal » € [0, 1] and a left turn signal [ € [0, 1],
which serve as additional excitatory inputs to first module B neurons b and bY, respectively.

For speed control, AVB outputs are modeled as a speed signal s € [0, 1]. To approximate the effect
of gap junctions, such that s = 0 represents stopping and s = 1 represents maximum speed, 1 — s
serves as an additional inhibitory input to all B neurons.



The complete architecture for module ¢ is therefore:
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We use weight sharing such that weights with the same name are shared across modules as well as
within each module across sides. We initialize all weights with the correct signs and magnitudes of 1.

4 Experiments

Learning Formalization We consider an agent formalized as a policy function 7g(a:|s;) that
maps states s; to actions a;, and which is represented by an ANN parameterized by weights 8 with
our architecture described in We consider the standard agent-environment interaction
model formalized as a Markov Decision Process (MDP). At every timestep ¢, the agent in state s;
takes an action according to its policy a; ~ mg(a¢|s:), receives a reward r, and transitions to a new

state s;11. Policy parameters 6 are optimized to maximize the discounted return ZtT:O ~tre, where
T is the horizon of the episode, and 0 < v < 1 is the discount factor.

Learning Setup We implement the Swimmer using the standard N = 5 body in the DeepMind
Control Suite [[Tassa et al.,|2020]] built upon the MuJoCo physics simulator [Todorov et al.,[2012].
We train the agent to swim using shaped rewards proportional to swimming speed (Appendix A.I).

Learning Algorithms We compare backpropagation-based RL algorithms (PPO, DDPG) and a
derivative-free ES algorithm (OpenAI-ES) for tuning parameters in the architecture (Appendix A.2).

4.1 Performance and Data Efficiency

How well and data efficiently does learning occur in NCAP vs. MLP architectures?

A each architecture: different algorithms B each algorithm: different architectures
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Figure 4: Performance and Data Efficiency. (A) Comparison across architectures, using different
algorithms. Our architecture starts with high reward and improves with learning, achieving signifi-
cantly better data efficiency and comparable performance. (B) Comparison across algorithms, using
different architectures. Our architecture with 4 parameters overperforms small MLPs (e.g. MLP(2,2)
has 74 parameters) and is comparable to large MLPs (e.g. MLP(256, 256) has 73,226 parameters).
Therefore, structured connectivity (not simply parameter count) matters for performance. Plots show
averages over 10 random seeds (solid lines) and 95% bootstrap confidence intervals (shaded areas).



First, we compare different learning algorithms for either MLP or NCAP architectures (Figure 4A).
We use an MLP with 2 hidden layers of dimensions (256, 256) and ReLU nonlinearities. We find
that our NCAP architecture achieves substantially higher initial performance than MLPs as well as
comparable asymptotic performance with MLPs, demonstrating the effectiveness of prior knowledge
encoded in network architecture. Our NCAP architecture shows reduced variance during learning
between trials with different random seeds, as well as reduced differences in asymptotic performance
between algorithms. For both MLP and NCAP, ES requires roughly an order of magnitude more
data to achieve comparable performance with the RL algorithms, consistent with previous work
[Salimans et al.,2017]. Qualitatively, both MLP and NCAP architectures yield reasonable swimming
movement (Videos 1A-B), though NCAP produces waves with large amplitudes resembling C.
elegans movement, while MLP produces waves with small amplitudes more resembling tadpoles.
This different movement shape explains the slightly lower asymptotic performance for NCAP because
the body’s direction of travel is less correlated with the head orientation, which is relevant for how
rewards are calculated Videos 1C). We note that we simplified our design from actual
C. elegans circuits for pedagogical reasons (Section 4.3)), and our goal is not to solve this swimming
task per se but rather to investigate the advantages of biologically inspired network architecture more
generally. C. elegans circuits are not optimized for fast swimming with few segments (Section 4.4));
future work may propose architectures better for this specific task, e.g. using larval zebrafish circuits.

Second, we compare different architectures for each learning algorithm (Figure 4B). We use MLPs
with 2 hidden layers of varying dimension sizes and ReLU nonlinearities. We find that performance
deteriorates across all algorithms for MLPs as hidden dimensions become smaller, with some
algorithms like DDPG deteriorating dramatically. However, our NCAP architecture with 4 parameters
overperforms small MLPs and is comparable to large MLPs. This is especially notable as the smallest
MLP(2,2) has 74 parameters (1 order of magnitude more than NCAP) and the largest MLP(256,256)
has 73,226 parameters (2 orders of magnitude more than NCAP). This suggests that the relatively
simple structure of our NCAP architecture provides highly effective inductive biases.

4.2 Parameter Efﬁciency parameter count & efficiency
model arams loge ( reward
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We visualize network unit dynamics during a task (Videos 2). MLPs of all tested sizes.

Since our NCAP architecture is a sparsely connected, modular

4.3 Interpretability

How interpretable are unit dynamics in our NCAP architecture?
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Figure 7: Ablations. (A) Ablations of weight sharing, sign constraints, and initialization in different
combinations. Sign constraints are crucial for learning. Weight initialization contributes to good
initial performance. Weight sharing yields a small gain. (B) Ablation of sparse connectivity yields an
equivalently sized MLP (Appendix B)). Learning is restored without sparse connectivity.

4.5 Ablations

What are the effects of various features of our NCAP architecture on performance and learning?

First, we investigate the role of weight sharing, sign constraints, and weight initialization (Figure 7).
Without weight sharing, weights across modules and across sides are separate parameters, increasing
the total number of parameters from 4 to 30. Without sign constraints, the identity function is applied
to weights instead of the constraint function. Without typical weight initialization, weight magnitudes
are initialized through a uniform random distribution within [0, 1], rather than at 1. If using sign
constraints, weights are always initialized with the appropriate sign; otherwise, signs are chosen
randomly with equal probability. We find that sign constraints are crucial for learning. Without
appropriate sign constraints, our NCAP architecture fails to learn during the allotted timesteps, for
both RL and ES algorithms. With appropriate sign constraints, even if the weights magnitudes are
not initialized large, our NCAP architecture will learn. Weight initialization is responsible for good
initial performance. Weight sharing has a smaller, but identifiable, contribution to data efficiency.

Second, we investigate the role of sparse connectivity that arises from the natural structure of neural
circuits (Figure 7B). Our Swimmer architecture has the special property that it can be completely
embedded within an MLP with 3 hidden layers of dimensions (12, 10, 10) and ReLU nonlinearities
(Appendix B)). Specifically, after ablating sign constraints and weight sharing, our architecture is
identical to this MLP with highly pruned connectivity (mostly weights of 0). We remove this sparsity
and find that the MLP can learn the task with similar asymptotic performance as our NCAP.

Taken together, our results suggest that constrained excitation/inhibition is an important consideration
in small, sparse architectures like our NCAP, but less important in MLPs. This may be related to
the “Lottery Ticket Hypothesis” [Frankle and Carbin, |[2019]], which suggests that, upon initialization,
the MLPs already contain subnetworks with initial weights and signs that do most of the work for
learning, i.e. they are “winning tickets”; imposing sparsity eliminates these overlapping subnetworks.

5 Discussion

We asked what advantages biologically inspired ANN architecture can provide in the domain of
motor control. Through our case study translating C. elegans locomotion circuits into an ANN
model, we found that biologically inspired ANN architecture can achieve comparable asymptotic
performance to MLPs with significantly improved initial performance, data efficiency, parameter
efficiency, interpretability, and transfer. Therefore, while tabula rasa architectures are general,
Neural Circuit Architectural Priors (NCAP) can provide useful inductive biases for motor control.

Nevertheless, our case study here was limited: it focused on a relatively simple body and circuit,
and it prioritized pedagogical simplicity over performance optimization and behavioral complexity.
Future work should explore additional bodies, movement types, and circuit modalities:

(1) Bodies. Many animals generate movement through highly structured pattern generator circuits,
including quadrupeds (e.g. mice, cats, dogs, horses) and bipeds (e.g. birds, humans) [Ijspeert, 2008].



In particular, quadrupeds are commonly studied in both neuroscience and robotics [Rybak et al.|
2015 |Danner et al.,[2017} [Iscen et al.,2019]]. Quadruped locomotion circuits are located primarily
within the spinal cord and produce robust gaits (e.g. walk, bound, gallop) even when top-down
connections from the brain are lesioned [Buschmann et al., |2015]]. Insights from these circuits could
be translated to Al motor control bodies, and a Quadruped NCAP architecture may use similar
integrators, oscillators, and constrained connections as our Swimmer NCAP.

(2) Movement Types. Neural circuits coordinate diverse animal movements, both rhythmic (e.g.
breathing, chewing, swimming, walking) and discrete (e.g. reflexes, reaching, sitting, jumping).
Therefore, NCAP architectures that closely resemble neural circuit mechanisms could in principle be
applied to a variety of additional movement types.

(3) Circuit Modalities. Biologically inspired ANN architecture may also provide useful inductive
biases for upstream tasks involving perception and decision making. In animals, lower-level pattern
generator circuits are modulated by higher-level control circuits. For instance, locomotion speed and
direction are modulated by orientation and escape circuits in response to visual, auditory, and tactile
stimuli. Such higher-level circuits could inspire NCAP architectures for additional modalities.

Ultimately, our work suggests a way of advancing Al and robotics research inspired by systems
neuroscience and encourages future work in more complex embodied control.
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A Experimental Details

A.1 Tasks

The swim task aims to test the agent’s ability to swim forwards at a desired speed. It returns a smooth
reward that is O when stopped or moving backwards, and rises linearly to and saturates at 1 when
swimming at the desired speed.

A.2 Learning Algorithms

Proximal Policy Optimization (PPO) [Schulman et al.,[2017]] A model-free, on-policy, policy
gradient RL method. It uses a clipped surrogate objective to limit the size of policy change at each
step, thereby improving stability. Since it assumes stochastic policies, we perturb the deterministic
actions with Gaussian noise ¢; ~ N(0, 02).

Deep Deterministic Policy Gradient (DDPG) [Lillicrap et al.,[2019] A model-free, off-policy,
policy gradient RL method. It uses off-policy data and the Bellman equation to learn the Q-function,
which is iteratively used to improve the policy.

Evolution Strategies (ES) [Salimans et al.,[2017]] An evolutionary black-box optimization method.
It creates a population of policy parameter variants through perturbations with Gaussian noise, then
combines them through averaging, weighted by the return collected across episodes.

A.3 Implementation

Libraries Neural networks were implemented in PyTorch (BSD license) [Paszke et al.,2019|]. The
RL algorithms were implemented using Tonic (MIT license) [Pardol |2021]]. The ES algorithm was
implemented using ES Torch (MIT license) [Karakaslil 2020].

Computational Resources Training was performed on a high performance computing cluster
running the Linux Ubuntu operating system. RL algorithm training runs were parallelized over 8
cores, while ES algorithm runs were parallelized over 32 cores.

A.4 Hyperparameters

RL Algorithms Standard hyperparameters for PPO and DDPG in Tonic [[Pardo} 2021] at commit
48a7b72; timesteps, Se6.

ES Algorithm Population size, 256; noise standard deviation o, 0.02; L2 weight decay, 0.005;
optimized, Adam; learning rate, 0.01; timesteps, 5e7.

NCAP Swimmer Oscillator, square wave, period 60 timesteps, width 30 timesteps.
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B Swimmer Architecture Details

Our NCAP architecture has the special property that it can be completely embedded within a fully
connected MLP of 3 hidden layers and ReLU nonlinearities. This enables us to “interpolate” between
our NCAP architecture and the MLP architecture, conducting a rigorous analysis of how various
features of our architectural prior contribute to performance and learning.

By rearranging terms in the Swimmer network architecture diagram (Figure 3B), we arrive at the
following network (N = 5 shown):

weights: turn (t), speed (s)

task module
motor module

weights: osc (o), prop (p),
ipsi (i), contra (c)
(to all b)
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By removing weight sharing, sign constraints, and sparse connectivity, we arrive at a fully connected
MLP of 3 hidden layers (/N = 2 shown):
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For N = 5, the resulting MLP has hidden layers of dimensions (12, 10, 10).
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