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ABSTRACT

Large Vision-Language Models (LVLMs) have demonstrated capabilities in mul-
timodal understanding, yet their vulnerability to adversarial attacks raises signif-
icant concerns. To achieve practical attacking, this paper aims at efficient and
transferable untargeted attacks under limited perturbation sizes. Considering this
objective, white-box attacks require full-model gradients and task-specific labels,
making costs scale with tasks, while black-box attacks rely on proxy models, typ-
ically requiring large perturbation sizes and elaborate transfer strategies. Given
the centrality and widespread reuse of the vision encoder in LVLMs, we adopt a
gray-box setting that targets the vision encoder alone for efficient but effective at-
tacking. We theoretically establish the feasibility of vision-encoder-only attacks,
laying the foundation for our gray-box setting. Based on this analysis, we propose
perturbing patch tokens rather than the class token, informed by both theoreti-
cal and empirical insights. We generate adversarial examples by minimizing the
cosine similarity between clean and perturbed visual features, without accessing
the subsequent models, tasks, or labels. This significantly reduces computational
overhead while eliminating the task and label dependence. VEAttack has achieved
a performance degradation of 94.5% on image caption task and 75.7% on visual
question answering task. We also reveal some key observations to provide insights
into LVLM attack/defense: 1) hidden layer variations of LLM, 2) token attention
differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack steps.
The code is available at https://github.com/hefeimei06/VEAttack-LVLM.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) (Liu et al., 2023; Zhu et al., 2023; Bai et al., 2023; Team
et al., 2023) have revolutionized multimodal AI by unifying pre-trained vision encoders (Radford
et al., 2021; Li et al., 2022) with large language models (LLMs) (Touvron et al., 2023; Achiam
et al., 2023), enabling seamless integration of visual and textual understanding for tasks including
visual question answering, image captioning, etc. However, their reliance on vision inputs inherits
adversarial vulnerabilities well studied in computer vision (Madry et al., 2018; Szegedy et al., 2014),
where imperceptible perturbations can mislead model predictions. As LVLMs increasingly deploy in
real-world systems, their robustness against such attacks becomes critical, especially since adversar-
ial perturbations to vision inputs can propagate through cross-modal alignment, causing catastrophic
failures in downstream text generation (Zhao et al., 2023; Cui et al., 2024; Li et al., 2025).

We explore the vulnerability of LVLMs under untargeted attacks with small perturbation sizes,
which follows the standard attack setting (Madry et al., 2018). However, since LVLM targets dif-
ferent tasks with high computational cost, we aim at efficient attacks that can transfer across models
and tasks to ensure practical attacks, which existing attacks can hardly achieve. Specifically, white-
box attacks (Schlarmann & Hein, 2023; Bhagwatkar et al., 2024) normally optimize perturbations
for a single task with specific labels (e.g., captioning), making the cost proportional to the number
of tasks. Although transferring adversarial examples to other tasks could be a naive solution, the
nature of white-box attacks, i.e., task and label specificity, makes them ineffective when transferred
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Figure 1: The illustration of different attack paradigms where the white modules are accessible to the
attacker, while dark modules are inaccessible during the attack with 2/255 as perturbation budgets.

to other tasks (e.g., VQA) according to our empirical evidence in Fig. 2. Black-box attacks (Zhang
et al., 2024; Jia et al., 2025) typically manipulate LVLMs to output specified targets with proxy
known vision encoders (e.g., CLIP-ViT-B/16) and substantial perturbation budgets. As shown in
Fig. 10 and Fig.2 (b), when confronted with minimal perturbations, these methods often struggle
to achieve effective attacks. One potential solution is the gray-box setting in Fig. 1, where partial
model parameters are accessible, which reduces the attacking cost compared to white-box while
enhancing attacking capability compared to black-box. However, it is difficult for existing gray-box
attacks (Wang et al., 2024c) to achieve better satisfactory performance, even with text modality in-
formation and additional text encoders. Drawing from traditional vision tasks, where strong vision
backbones boost downstream performance (Lin et al., 2017; Liu et al., 2021), and the pivotal role of
vision encoders in LVLMs (Jain et al., 2024; Tong et al., 2024), we argue that the attacking capa-
bility of the vision encoder has not been fully explored and propose to investigate the feasibility of
leveraging the vision encoder solely to achieve efficient and transferable attacks on LVLMs.

In this paper, we attribute this objective to explore the attack potential of the vision encoder and
ensure the effectiveness of perturbation propagation to downstream LLMs, so that vision-encoder-
only attack could improve generalization across multiple tasks and decrease computational costs,
while maintaining effective adversarial perturbations. Specifically, we theoretically analyze the
lower bound of perturbation in the multimodal aligned features for LLMs when perturbing solely on
vision encoders, which provides a feasibility foundation for our attack context and gray-box attacks.
Through proposing naive solutions to our question drawn from black-box attack (Zhao et al., 2023)
and adversarial finetuning work (Schlarmann et al., 2024), our theoretical findings show that such
perturbations have a reduced impact on class token features compared to directly targeting patch
token features. Thus, we optimize perturbations of vision encoders by minimizing the cosine simi-
larity between clean and perturbed patch token features for stronger attack effects. Through focusing
merely on the vision encoder, VEAttack reduces the parameter space for attack, achieving an 8-fold
reduction in time costs compared to ensemble attack (Schlarmann & Hein, 2023). It also enables
downstream-agnostic generalization across diverse tasks, achieving a performance degradation of
94.5% on the image caption task and 75.7% on the visual question answering (VQA) task.

Furthermore, drawing upon extensive experiments and empirical analyses employing VEAttack, we
reveal four observations to provide insights into LVLM attack or defense: 1) hidden layer variations
of LLM, 2) token attention differential, 3) Möbius band in transfer attack, 4) low sensitivity to attack
steps. For example, VEAttack reveals strong cross-model transferability, where perturbations crafted
for one vision encoder (e.g., CLIP (Radford et al., 2021)) compromise others (e.g., Qwen-VL (Bai
et al., 2023)) with a Möbius band phenomenon: enhancing vision encoder robustness bolsters LVLM
robustness, yet paradoxically, adversarial samples targeting such robust encoders exhibit greater
attack transferability across diverse LVLMs. The insights from VEAttack will inspire the research
community to deepen exploration of LVLM vulnerabilities, fostering advancements in both attack
and defense mechanisms to enhance the robustness and security of multimodal AI systems.

2 RELATED WORK

Adversarial robustness of LVLMs. Adversarial training (AT) (Rice et al., 2020; Dong & Xu, 2023;
Lin et al., 2024; Mei et al., 2025) has proven effective in enhancing model robustness against adver-
sarial attacks, typically in image classification tasks. With the advent of vision-language models like
CLIP (Radford et al., 2021), research has shifted toward ensuring robustness and generalization in
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these multimodal systems (Mao et al., 2023; Wang et al., 2024b). FARE (Schlarmann et al., 2024)
improves the robustness of downstream LVLMs through an unsupervised adversarial fine-tuning
scheme on the vision encoder. Recent studies (Hossain & Imteaj, 2024; Malik et al., 2025) further
advance LVLM robustness by optimizing adversarial fine-tuning strategies and scaling up the vision
encoder. These works reveal the critical role of a robust vision encoder in LVLM security.

Adversarial attacks on LVLMs. Adversarial attacks on LVLMs are normally divided into white-
box, black-box, and gray-box attacks. White-box attacks (Schlarmann & Hein, 2023; Cui et al.,
2024) can adapt traditional attack methods (Madry et al., 2018; Croce & Hein, 2020) to effectively
target LVLMs, achieving high attack success rates. However, their task-specific strategies could lead
to low generalization for multi-task system LVLMs. CroPA (Luo et al., 2024) proposes learnable
prompts to effectively mislead VLMs across diverse textual inputs, but requires calculating gradients
through the massive LLM. Black-box attacks (Zhao et al., 2023; Zhang et al., 2024; Li et al., 2025;
Jia et al., 2025; Yang et al., 2025) leverage self-supervised learning, diffusion models, or other
transfer strategies to craft effective attacks with relatively larger perturbations. Doubly-UAP (Kim
et al., 2024) introduced universal perturbations trained on large-scale datasets to achieve cross-image
transferability with significant pre-training costs. Gray-box attacks (Wang et al., 2024c;a; Zhang
et al., 2025; Wang et al., 2023) relieve the attack objective to the visual features in LVLMs, but still
introduce text information and the additional text encoder for better performance. Different from the
gray-box context above, our work aims to explore using only the vision encoder and image modality
to achieve a more effective and efficient attack.

3 PRELIMINARY

An LVLM generally comprises a pre-trained vision encoder (e.g., CLIP (Radford et al., 2021)), a
large language model (LLM) (Brown et al., 2020; Touvron et al., 2023; Achiam et al., 2023), and
a cross-modal alignment mechanism to achieve joint understanding of images and text. As for the
vision encoder CLIP fCLIP , it typically generates two outputs, which are class token embedding
zcls ∈ R1×dcls and patch tokens zv ∈ Rnv×dv . Formally, LVLMs process an image-text pair
((v, t) ∈ V×T ) to generate outputs conditioned on multimodal representations, where V represents
the visual input space and T denotes the textual input space. In the process of prediction by LVLMs,
we denote the vision encoder as fV , which follows the relationship as fCLIP = {zcls; fV (v)},
fV (v) = zv ∈ Rnv×dv , where nv is the number of patch tokens and dv is the dimension of each
token. Then, the cross-modal alignment mechanism fA : Rnv×dv → Rnv×dm aligns visual features
zv with the input space of the language model, resulting in zm. This feature will be combined with
the textual tokens zt ∈ Rnt×dt from the tokenizer to form a unified input sequence. Finally, the
LLM processes the input autoregressively to generate an output sequence, modeled as:

p(y|zm; zt; θ) =

N∏
i=1

p(yi|y<i, zm; zt; θ), (1)

where i is the index of the current token position, zm = fA(zv) = fA(fV (v)), zt = tokenizer(t).
In the traditional white-box adversarial attack (Croce & Hein, 2020), the objective is to maximize
the cross-entropy loss of the model on the adversarial input, which can be formalized as:

max
∥δ∥≤ϵ

L (v + δ, t; θ) = max
∥δ∥≤ϵ

− log p (y | fA (fV (v + δ)) ; tokenizer(t); θ) , (2)

where δ denotes a small perturbation and ϵ is the perturbation budget.

4 METHODOLOGY

In this section, we explore the gray-box attack on LVLMs in a vision-encoder-only context. Specifi-
cally, we first analyze the challenges associated with existing white-box and black-box attacks under
our gray-box settings, while ensuring a lower-bound perturbation for aligned features in LVLMs as
a feasibility basis. With a theoretical analysis of naive solutions within our framework, we redirect
the attack target and achieve an effective VEAttack.

4.1 REDEFINE ADVERSARIAL OBJECTIVE

To clarify our redefined adversarial objective, which shifts from full access attacks on LVLMs to tar-
geting the vision encoder, we first establish definitions for different attacks. In traditional white-box
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attacks, attackers have full access to the LVLM’s architecture, including input image v, correspond-
ing textual construction t, and model weights θ = {θV , θA, θLLM}, where the items in θ represent
model weights for vision encoder fCLIP , multimodal alignment mechanism fA and LLM fLLM .
In our VEAttack, we relieve the reliance on the white-box setting, which transforms the full model
attack into a vision encoder fCLIP , where only model weights θV and input images v are accessi-
ble. For an image v with multi-task T = {T 1, · · · , Tm}, the corresponding constructions can be
tT = {tT 1

, · · · , tTm}. Following Eq. (2), the objective of the traditional white-box for multi-task
can be formulated as:

max
∥δTi∥≤ϵ

L
(
ṽT

i

, tT
i

; θ
)
= max

∥δTi∥≤ϵ
− log p

(
yT

i

| fA
(
fV (ṽ

T i

)
)
; tokenizer(tT

i

); θ
)
, (3)

where ṽ = v + δ is the adversarial image, i = {1, · · · ,m} denotes the task index. It can be seen
that for each task T i, the traditional white-box attacks need to generate a corresponding adversarial
sample ṽT

i

. In the context of LVLMs, which are designed for a wide range of downstream tasks,
this task-specific framework could be ineffective when confronted with task transfer.

(b) Performance degradation ratio after VEAttack, APGD and FOA-Attack.

(a) Time consumption of VEAttack, APGD and FOA-Attack.

Figure 2: Transfer capability and time con-
sumption of white-box APGD, black-box
FOA-Attack, and our gray-box VEAttack.

Although white-box attacks demonstrate potential
adversarial capabilities (Schlarmann & Hein, 2023;
Cui et al., 2024) on a specific task T i, it’s hard
to maintain strong adversarial effectiveness when
transferring attacks across different tasks. Black-
box attacks (Li et al., 2025; Jia et al., 2025) could
effectively enhance the generalization but need
time-consuming transfer strategies and larger per-
turbations as shown in Fig. 10. In Fig. 2 (b), we
conduct a transfer attack on two tasks {T 1, T 2},
which are image captioning and visual question an-
swering with perturbation budget ϵ = 4/255. For
white-box APGD (Croce & Hein, 2020) and black-
box FOA-Attack (Jia et al., 2025), the performance
degradation of adversarial sample ṽT

i

on task T j

is not obvious, where i, j ∈ {1, 2}, i ̸= j. Even
in task-specific scenarios, white-box and black-box
attacks typically entail higher computational costs
as shown in Fig. 2 (a). Facing the above challenges,
we propose targeting the vision encoder to craft ad-
versarial perturbations ṽ that exploit its shared representations across tasks T i, leveraging its critical
role in LVLMs (Shen et al., 2021; Tong et al., 2024) and insights from vision backbones in traditional
tasks (Lin et al., 2017; Liu et al., 2021).

Proposition 1 For LLaVa (Liu et al., 2023) with a linear alignment layer, let ∆zv = z̃v − zv
denote the difference between the patch tokens output by the vision encoder CLIP before and after
the perturbation, ∥∆zv∥F ≥ ∆, Wa is the weight of projection layer, σmin denotes the minimum
singular value of Wa. Assume σmin(Wa) > 0, then the difference between aligned features zm =
fA(zv) and z̃m = fA(z̃v) for downstream LLMs will satisfy ∥∆zm∥F ≥ σmin(Wa)∆ > 0.

Proof. See Appendix B.
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Figure 3: The feature difference before and
after VEAttack with different budgets.

The Proposition 1 gives a lower bound of perturbations
on the aligned feature zm when attacking on zv of the
vision encoder, so the perturbations from the VEAt-
tack on zv can reliably influence downstream fLLM ,
ensuring the feasibility of VEAttack. When attacking
the vision encoder of LVLMs, the perturbed feature z̃v
will be represented as a fundamental feature to affect
any downstream tasks and LLMs. In Fig. 3, we empir-
ically show that perturbations in the features z̃v prop-
agate to the aligned features z̃m, with increasing per-
turbation amplitude amplifying the feature differences
in both ∆zv and ∆zm. Following the importance of
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the vision encoder and theoretical analysis of the propagability of perturbations, we redefine the
adversarial objective to the vision encoder and reformulate the attack objective in Eq. (3) as follows:

max
∥δTi∥≤ϵ

L
(
vT

i

+ δT
i

, tT
i

; θ
)
−→ max

∥δ∥≤ϵ
L(v + δ; θV ) = max

∥δ∥≤ϵ
L(fCLIP (v + δ)), (4)

where θV is the weight of vision encoder, fCLIP = {zcls; fV (v)}. Through Eq. (4), it can be
seen that task-specific adversarial sample ṽT

i

in all tasks T could be represented by an adversarial
sample ṽ = v + δ in our VEAttack. Based on the redefined objective, we need to explore a suitable
optimization function L(fCLIP (·)) for VEAttack.

4.2 VISION ENCODER ATTACK

Given the VEAttack framework in Section 4.1, we can treat the attacks in adversarial training algo-
rithms proposed by robust CLIP work (Schlarmann et al., 2024) and black-box attack (Zhao et al.,
2023) as naive solutions to tackle Eq. (4). These vanilla attacks can be formulated as:

AttackVLM-ii : ṽ = argmax
∥δ∥≤ϵ

− cos (z̃cls, zcls) L2 Attack : ṽ = argmax
∥δ∥≤ϵ

∥z̃cls − zcls∥22, (5)

The proposed naive solutions are all classification-centric and target at class token embedding zcls
within the CLIP vision encoder fCLIP = {zcls; fV (v)}. Unlike classification tasks, LVLMs typi-
cally rely on the patch token features zv = fV (v) during inference, so the naive attacks need to result
in a perturbed image ṽ first and then indirectly affect the visual feature z̃v . This indirect perturbation
may limit the effectiveness of attacks on LVLMs, which we will analyze theoretically.

Proposition 2 Consider two kinds of attack targets: 1) If the perturbation is introduced to the single

class token zcls and propagates through zcls
backward−−−−−−→ v

forward−−−−−→ zv . Let ∆zcls(zcls), ∆zv(zcls),
∆zm(zcls) denote the perturbations on features zcls, zv and zm through the first attack, respectively.
2) If the perturbation is directly introduced to the patch token features zv , let ∆zm(zv) denote the
perturbation on the aligned feature zm through the second attack. Assume the same degree of
perturbation on zcls and zv during the two attacks, then the ratio of the effect is given by:

∥∆zm(zcls)∥F
∥∆zm(zv)∥F

=
∥∆zv(zcls)∥F
∥∆zcls(zcls)∥2

≤ 3 + ϵV√
nv

, ϵV ≪ 1. (6)

Proof. See Appendix C.

From Proposition 2, we infer that perturbations on the class token zcls have a reduced impact on
the patch token features zv , as the ratio (3 + ϵV )/

√
nv is typically smaller than 1 (e.g.,

√
nv = 16

in CLIP-ViT-L/14). Consequently, this diminished effect propagates to the aligned features zm,
weakening the adversarial impact on downstream tasks compared to directly targeting zv . In Fig. 3,
we empirically demonstrate that under various perturbation budgets, the perturbations ∥∆zv∥F and
∥∆zm∥F induced by attacking zcls are significantly smaller than those from directly attacking zv ,
further validating the superior effectiveness of targeting zv . Therefore, we reformulate the objective
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function from Eq. (4) to directly target zv , expressed as max∥δ∥≤ϵ L(fV (v + δ)). As illustrated in
Fig. 4, VEAttack targets the patch token features zv of the vision encoder in a downstream-agnostic
context. We adopt cosine similarity as the loss metric for fV (·), as ℓ2 loss may concentrate pertur-
bations on specific dimensions, with limited impact on zm if the alignment layer is less sensitive
to those dimensions. In contrast, cosine similarity holistically perturbs the semantic direction of
features zv , effectively propagating to zm. Thus, with cosine similarity as the optimization metric,
the generated examples in our VEAttack can be formulated as:

ṽ = argmax
∥δ∥≤ϵ

− cos (fV (v + δ), fV (v)) = argmax
∥δ∥≤ϵ

− cos(zv + δ, zv). (7)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Gray-box attack setup. We evaluate the attack performance of our method and baseline methods on
pre-trained LVLMs and conduct PGD attack (Madry et al., 2018) on the vision encoder CLIP-ViT-
L/141. Following the white-box attack settings (Schlarmann et al., 2024), the perturbation budgets
are set as ϵ = 2/255 and ϵ = 4/255, attack stepsize α = 1/255, attack steps are t = 100 iterations.
The attack steps of gray-box methods MIX.Attack (Tu et al., 2023) and VT-Attack (Wang et al.,
2024c) are t = 1000. A subset of 500 randomly chosen images is used for adversarial evaluations,
with all samples adopted for clean evaluations. The performance degradation ratio after the attack
is utilized to assess the attack effect. All experiments were conducted on a NVIDIA-A6000 GPU.

Pre-trained models and tasks. Experiments are conducted on diverse LVLMs where LLaVa1.5-
7B (Liu et al., 2023), LLaVa1.5-13B (Liu et al., 2023) and OpenFlamingo-9B (OF-9B) (Awadalla
et al., 2023) are evaluated against VEAttack. In addition to them, we adopt miniGPT4 (Zhu et al.,
2023), mPLUG-Owl2 (Ye et al., 2024), and Qwen-VL (Bai et al., 2023) for transfer attack of VEAt-
tack. For the image caption task, we evaluate the performance on COCO (Lin et al., 2014) and
Flickr30k (Plummer et al., 2015) datasets. For the VQA task, our experiments are conducted on
TextVQA (Singh et al., 2019) and VQAv2 (Goyal et al., 2017). All image caption tasks are evaluated
using CIDEr (Vedantam et al., 2015) score, while VQA tasks are measured by VQA accuracy (An-
tol et al., 2015). Beyond these tasks, we additionally evaluate our VEAttack on a hallucination
benchmark called POPE (Li et al., 2023b), and its evaluation metric is F1-score.

Transfer attack setting. The source models contain variants of the CLIP-ViT-L/14 model, which
are pre-trained from OpenAI1, TeCoA (Mao et al., 2023) and FARE (Schlarmann et al., 2024). Both
TeCoA and FARE employ adversarial training with a perturbation budget of ϵ = 4/255. The target
models encompass these three CLIP variants as well as LVLMs from the pre-trained model settings,
which utilize vision encoders other than CLIP. Following the setting of transfer attack (Wei et al.,
2022; Chen et al., 2023), we assess transfer attacks across different CLIP models with ϵ = 8/255 and
transfer attacks between CLIP and non-CLIP vision encoders with ϵ = 16/255, α = 16/(255× 5).
All transfer attacks are conducted with t = 100 iteration steps.

5.2 VEATTACK ON LVLMS

We compare VEAttack with gray-box attacks in Table 1 across diverse LVLMs and tasks. For the
image caption task, VEAttack demonstrates a highly effective attack, reducing the average CIDEr
score on COCO by 94.5% under a perturbation of ϵ = 4/255. In the VQA task, our proposed VEAt-
tack method also exhibits competitive performance, reducing the average accuracy on the TextVQA
dataset by 75.7% under a perturbation of ϵ = 4/255. Conversely, other attacks exhibit lower attack
effectiveness compared to our method in the vision encoder setting. On the POPE with F1-score
metric, values below 50% on balanced datasets indicate poor performance. VEAttack significantly
degrades performance under a perturbation of ϵ = 4/255, achieving a 38.0% reduction in F1-score
and driving it below 50%, indicating the VEAttack could increase hallucination in LVLMs.

Observation 1 Even though the LLMs and tasks are downstream-agnostic, an attack on the output
of the vision encoder can lead to variations in the hidden layer features of the LLM.

1https://github.com/openai/CLIP
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Table 1: Comparison of VEAttack with different gary-box attacks across different LVLMs and tasks.

Task LVLMs OpenFlamingo-9B LLaVa1.5-7B LLaVa1.5-13B Average
Attack ϵ = 2/255ϵ = 4/255ϵ = 2/255ϵ = 4/255ϵ = 2/255ϵ = 4/255 ϵ = 2/255 ϵ = 4/255

COCO

Clean 79.7 115.5 119.2 104.8(↓0.0%)
MIX.Attack Tu et al. (2023) 45.9 25.4 67.5 55.4 73.8 60.1 62.4(↓40.5) 47.0(↓55.1)

VT-Attack Wang et al. (2024c) 38.9 21.6 50.8 12.2 58.2 20.1 49.3(↓52.9) 18.0(↓82.8)
AttackVLM-ii Zhao et al. (2023) 24.4 10.3 40.9 25.8 42.7 27.5 36.0(↓65.6) 21.2(↓79.8)

VEAttack 7.5 3.7 10.8 7.1 11.2 6.5 9.8(↓90.6) 5.8(↓94.5)

Flickr30k

Clean 60.1 77.5 77.1 71.6
MIX.Attack Tu et al. (2023) 33.7 18.0 42.1 35.9 41.0 32.2 38.9(↓45.7) 28.7(↓59.9)

VT-Attack Wang et al. (2024c) 27.7 13.8 35.1 12.3 34.0 14.6 32.3(↓54.9) 13.6(↓81.0)
AttackVLM-ii Zhao et al. (2023) 18.1 9.9 29.9 19.8 29.7 21.6 25.9(↓63.8) 17.1(↓76.1)

VEAttack 8.7 3.2 10.7 6.3 9.1 5.7 9.5(↓86.7) 5.1(↓92.9)

TextVQA

Clean 23.8 37.1 39.0 33.3
MIX.Attack Tu et al. (2023) 13.4 8.8 24.6 19.1 22.8 19.7 20.3(↓39.0) 15.9(↓52.3)

VT-Attack Wang et al. (2024c) 15.3 10.5 23.7 10.0 24.9 10.0 21.3(↓36.0) 10.2(↓69.4)
AttackVLM-ii Zhao et al. (2023) 12.1 7.6 19.7 11.9 19.8 14.2 17.2(↓48.3) 11.2(↓66.4)

VEAttack 12.5 5.7 13.8 10.1 12.4 8.6 12.9(↓61.3) 8.1(↓75.7)

VQAv2

Clean 48.5 74.5 75.6 66.2
MIX.Attack Tu et al. (2023) 39.8 36.0 59.4 57.9 59.8 58.0 53.0(↓19.9) 50.6(↓23.6)

VT-Attack Wang et al. (2024c) 38.5 37.0 53.6 21.4 55.2 21.0 49.1(↓25.8) 26.5(↓59.9)
AttackVLM-ii Zhao et al. (2023) 37.5 35.8 54.1 49.7 56.2 49.6 49.3(↓25.5) 45.0(↓32.0)

VEAttack 34.0 32.8 42.9 38.4 41.5 37.6 39.5(↓40.3) 36.3(↓45.2)

POPE

Clean 65.7 84.5 84.1 78.1
MIX.Attack Tu et al. (2023) 59.0 53.3 72.0 69.1 74.2 68.2 68.4(↓12.4) 63.5(↓18.7)

VT-Attack Wang et al. (2024c) 63.6 63.5 64.0 60.1 65.5 66.4 64.4(↓17.5) 63.3(↓18.9)
AttackVLM-ii Zhao et al. (2023) 53.3 48.1 69.0 61.6 63.8 57.8 49.3(↓36.9) 45.0(↓42.4)

VEAttack 60.6 59.6 47.5 42.8 47.6 44.7 51.9(↓33.5) 49.0(↓37.3)

(a) t-SNE of the hidden layers when 

the input is a clean image

(b) t-SNE of the hidden layers when the 

input is an adversarial image

Figure 5: t-SNE visualization of the features across hid-
den layers in LLM for clean and adversarial inputs.

We visualize the first visual token fea-
tures of an LLM’s hidden layers using
t-SNE in Fig. 5 for clean and adversar-
ial samples. To more effectively demon-
strate the relative positions of the fea-
tures in each layer, we denote the po-
sitions of the 0th, 16th, and 32nd fea-
tures. For clean inputs in (a), features
show distinct clustering across layers,
with progressive spread from Layer 0 to
32. For adversarial inputs in (b), fea-
tures scatter widely, and the relative re-
lationships between features are more
biased. This confirms that attacking the vision encoder induces notable variations in the LLM’s
hidden layer representations, despite being in a downstream-agnostic context, validating the effec-
tiveness of our vision-encoder-only attack.

Observation 2 LVLMs will pay more attention to image tokens in the image caption task. Con-
versely, LVLMs focus more on user instruction tokens in the VQA task.

As shown in Table 1, following an identical attack on the vision encoder, the performance degra-
dation in the VQA task is slightly less than that observed in the image caption task. Consequently,
we speculate that the VQA task may not pay as much attention to the image tokens as the image
caption task. To this end, Fig. 6 shows the attention map between the output tokens and the system
tokens, image tokens, and instruction tokens within the shallow Layer1, the middle Layer16, and
the output Layer32. In the COCO caption task, we observe higher attention scores between output
tokens and image tokens, with an average attention value of 0.10 compared to 0.08 in the VQA task.
Conversely, in the VQA task, output tokens exhibit stronger attention to instruction tokens, with
an average attention value of 0.47, compared to 0.35 in the COCO caption task. This supports our
hypothesis that instruction tokens play a more critical role in VQA, while image tokens are more
pivotal for image captioning in LVLMs. We hope this observation of differential reliance on image

7



Published as a conference paper at ICLR 2026

4 4

4 4

sys insimg sys insimg sys insimg

sys insimg sys insimg sys insimg

o
u

t

o
u

t

o
u

t

o
u
t

o
u
t

o
u
t

0.19 0.19 0.20 0.20 0.23 0.260.41 0.55

0.15 0.17 0.17 0.17 0.19 0.240.37 0.58

0.04 0.02 0.05 0.03 0.05 0.073.02 0.22

0.00 0.05 0.06 0.03 0.03 0.023.02 0.53

0.07 0.04 0.05 0.04 0.04 0.051.45 0.29

0.04 0.03 0.04 0.03 0.08 0.061.59 0.31

(a) The attention score between output token and different tokens when the task is COCO caption.  

(b) The attention score between output token and different tokens when the task is VQAv2.  

Layer 1 Layer 16 Layer 32

0 0

Figure 6: Illustration of attention maps across different layers of the language model for two tasks.
The attention scores shown represent the relationship between the output token and three input token
types (out: output tokens, sys: system tokens, img: image tokens, ins: instruction tokens).

and instruction tokens could guide future researchers in optimizing performance of LVLMs (Zhang
et al., 2021; Xiong et al., 2024; Chen et al., 2024).

5.3 TRANSFER ATTACK ON LVLMS

Observation 3 The transfer attack on LVLMs normally resembles a Möbius band, where robustness
and vulnerability of LVLMs intertwine as a single, twisted continuum. For defenders, using a more
robust vision encoder can enhance the ability of LVLM to resist attacks. Conversely, for attackers,
adversarial samples obtained by attacking a more robust vision encoder usually have higher attack
transferability on diverse LVLMs.

We first observe transfer attacks using CLIP with varying robustness, as shown in the diagonal per-
formance matrix of Table 2. Employing a more robust CLIP vision encoder significantly enhances
LVLM resilience against VEAttack. Specifically, FARE improves average performance by 42.9 over
the CLIP of OpenAI, while TeCoA yields a 39.3 improvement. Analyzing the off-diagonal elements
of the performance matrix, we observe that adversarial samples crafted against more robust vision
encoders exhibit stronger transferability. For instance, attacking FARE reduces the average perfor-
mance of LVLMs using CLIP as the vision encoder by 58.5%, whereas attacking CLIP exhibits
limited transferability to other robust vision encoders. Extending our analysis to non-CLIP vision
encoders, we find the Möbius band of VEAttack: Strengthening defenses paradoxically fuels more
potent attacks, perpetuating a cyclical interplay. Notably, attacking the robust trained vision encoder
FARE reduces the performance of miniGPT4 by 90.8% and the performance of mPLUG-Owl2 by
33.5%. We hope that these findings highlight the critical need for future research to prioritize the
security of vision encoders in LVLMs to mitigate adversarial vulnerabilities.

Table 2: Transfer Attack of original CLIP and robust CLIP after adversarial training on the COCO
dataset. Bold indicates the best attack performance, while underlined indicates the second best.

Source
Target LLaVa1.5-7B OpenFlamingo-9B MiniGPT-4 mPLUG-Owl2 Qwen-VL

CLIP TeCoA FARE CLIP TeCoA FARE BLIP-2 MplugOwl CLIP-bigG

clean 115.5 88.3 102.4 79.7 66.9 74.1 96.7 132.3 138.5
CLIP Radford et al. (2021) 3.7 92.2 100.4 3.6 70.7 78.1 55.2 124.9 131.2
TeCoA Mao et al. (2023) 22.1 25.3 25.1 17.7 20.8 22.6 11.0 96.4 102.7

FARE Schlarmann et al. (2024) 38.7 54.5 48.6 26.3 42.7 36.4 8.9 88.0 101.4

To provide a mechanistic explanation for the ”Möbius Band” effect (Observation 3), we visualize
the dynamics of feature deviation during the attack process. Specifically, we track the difference
between the adversarial patch token values and the clean token values across 100 attack steps. We
compare three scenarios under a unified metric scale, as shown in Figure 7, which are 1) Attack
CLIP, Evaluate on CLIP; 2) Attack FARE, Evaluate on CLIP; 3) Attack CLIP, Evaluate on FARE.
When attacking the robust FARE model, the heatmap shows the deepest blue color, appearing early
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Figure 7: Feature deviation heatmaps of tokens across attack steps under different transfer settings.

in the attack steps. This indicates that because FARE is resistant to small, high-frequency noise,
the optimization process is forced to induce large deviations in the semantic feature space to suc-
cessfully fool it. When these strong perturbations are transferred to the standard CLIP model, they
cause catastrophic feature distortion, explaining the high transfer success rate. In contrast, when
attacking CLIP and transferring to FARE, the heatmap remains consistently light. This suggests that
the perturbations optimized on CLIP are relatively superficial, which may sufficient to fool CLIP’s
decision boundary, but fail to penetrate the robustness of FARE. The robust encoder effectively fil-
ters out these specific, lower-magnitude perturbations, resulting in minimal feature deviation and
attack failure. In summary, Möbius paradox shows that robust models force the attacker to learn
universally destructive features, whereas standard models allow for model-specific fragile features.

5.4 ABLATION STUDYS

Observation 4 Reducing attack steps does not significantly impair the effectiveness of VEAttack,
while increasing the perturbation budget beyond a threshold within an imperceptible range does not
continuously degrade the performance of LVLMs significantly.
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TextVQA vs. steps(eps=8/255)
COCO vs. eps(step=100)
TextVQA vs. eps(step=100)

2 4 6 8 10 12 14 16
Attack eps (*/255)

Figure 8: VEAttack performance under
different steps and budgets on COCO and
TextVQA datasets (top x-axis: perturba-
tion budget, bottom x-axis: attack steps).

To further optimize the efficiency of VEAttack, we
conducted ablation studies on the attack iteration t and
perturbation budget ϵ. Despite aligning with white-
box attack settings at t = 100, a setting of t = 10
still achieves a performance reduction of 84.4%, and
t = 50 suffices to attain competitive performance.
For the perturbation budget, performance degradation
plateaus at ϵ = 8/255, with further increases yielding
relatively minor effects. We hypothesize this satura-
tion stems from a gap between the output of the vision
encoder zv and the aligned features zm. By adopting
a lower t and an optimized ϵ, we enhance attack effi-
ciency, enabling complete testing on datasets, which is
typically challenging in traditional white-box attacks.

Following the above observation, we evaluate VEAt-
tack with t = 50 and ϵ = 8/255 on full datasets, comparing the performance and efficiency with
white-box and gray-box attacks. The time costs for traditional white-box methods are estimated
based on their evaluated subset size relative to the full dataset, and the Flops count the computation
of forward once. VEAttack surpasses APGD in the image caption task and shows competitive per-
formance in the VQA task. Crucially, compared to the comparison in Fig. 2(a), VEAttack further
improved attack efficiency, reducing time costs by about 8-fold compared to white-box Ensemble
attack, and about 13-fold compared to gray-box VT-Attack with 1000 iterations. We hope this ef-
ficient implementation demonstrates the potential for practical and scalable adversarial attacks on
LVLMs, providing valuable insights for future evaluations.
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Table 3: Comparison of the effectiveness and efficiency between VEAttack and other white-box and
gray-box attacks. Flops count the computation of forward once.

Attack Version Flops COCO Time (h) Flickr30k Time (h) TextVQA Time (h)

clean None 99.3G 115.5 1.33 77.5 0.3 37.1 0.42
APGD Croce & Hein (2020) White-box 9.93T 13.1 25.5 9.5 5.2 8.1 22.7

Ensemble Schlarmann & Hein (2023) White-box 9.93T 3.1 41.9 1.2 14.3 0.0 37.8
VT-Attack Wang et al. (2024c) Gray-box 3.04T 12.2 65.0 12.3 13.3 10.0 64.8

VEAttack (ϵ = 4/255, t = 100) Gray-box 2.59T 7.1 8.5 6.3 1.7 10.1 6.7
VEAttack (ϵ = 8/255, t = 50) Gray-box 2.59T 5.5 5.3 4.5 1.1 9.4 4.1

Table 4: Ablation of VEAttack targets on diverse
tasks with cosine similarity as the loss metric.
Objective COCO (ϵ)↓ VQAv2 (ϵ)↓ POPE (ϵ)↓
zv zcls 2/255 4/255 2/255 4/255 2/255 4/255

✗ ✓ 43.6 25.5 56.0 50.0 69.4 59.1
✓ ✓ 22.0 10.5 46.4 42.0 59.2 46.0
✓ ✗ 10.8 7.1 42.9 38.4 47.5 42.8

Impact of different attack targets. Table 4
shows the results of using different tokens as
attack targets on LLaVa1.5-7B, specifically
class token embedding zcls and patch token
features zv . We observe that solely perturbing
zcls results in relatively minor attack perfor-
mance across all datasets, indicating its lim-
ited ability to effectively disrupt LVLMs. In
contrast, simultaneously attacking both zcls
and zv leads to more noticeable attack perfor-
mance, demonstrating the superior effectiveness of zv over zcls. Notably, the greatest attack per-
formance is achieved when attacking only zv , indicating that zv can sufficiently represent visual
information. These results are consistent with our theoretical analysis in Section 4.2, confirming
that perturbations on zv propagate more effectively to the downstream, resulting in effective attacks.

Table 5: Ablation of loss metrics in attack objective.

Measurement COCO (ϵ)↓ VQAv2 (ϵ)↓ POPE (ϵ)↓
2/255 4/255 2/255 4/255 2/255 4/255

Euclidean 46.9 39.6 56.1 53.6 62.1 64.3
K-L divergence 70.0 34.3 59.4 33.2 70.0 60.5

Cosine similarity 10.8 7.1 42.9 38.4 47.5 42.8

Choice of loss metrics. We compare Eu-
clidean distance, Kullback-Leibler (K-L)
divergence, and cosine similarity as the
loss metrics of the objective for attacking
LLaVa1.5-7B in Table 5. Experimental
results show that across all benchmark
datasets and perturbation budgets, using
cosine similarity consistently leads to the
most significant attack performance, in-
dicating its superior effectiveness in adversarial attacks. This finding further validates the superior
effectiveness of cosine similarity, confirming its ability to more effectively capture semantic differ-
ences between clean and adversarial samples in the feature space.

6 CONCLUSION

We propose VEAttack, a novel gray-box attack targeting solely the vision encoder of LVLMs, bal-
ancing reliance on task-specific gradients to overcome the task-specificity and high computational
costs. By minimizing cosine similarity between clean and perturbed visual features under limited
perturbation sizes, VEAttack ensures the generalization across tasks like image captioning and vi-
sual question answering, achieving performance degradation of 94.5% and 75.7%, respectively. It
reduces computational overhead 8-fold compared to white-box Ensemble attack and 13-fold com-
pared to gray-box VT-Attack. Our experiments reveal key LVLM vulnerabilities, including hidden
layer variations, token attention differentials, Möbius band in transfer attack, and low sensitivity to
attack steps. We believe the insights of VEAttack will drive further research into LVLM robustness,
fostering advanced defense mechanisms for secure multimodal AI systems.

Limitations. A limitation of this work is that we have not yet investigated defense mechanisms to
counter VEAttack. Although more robust vision encoders may improve LVLM defenses, significant
performance degradation persists under gray-box conditions of the vision encoder. And mitigat-
ing transfer attacks from adversarial samples targeting such robust vision encoders is unresolved.
Addressing these issues is crucial for ensuring the secure deployment of LVLMs.

10



Published as a conference paper at ICLR 2026

ACKNOWLEDGMENTS

This work was supported in part by Young Scientist Fund (No. 62406265) of NSFC, Start-up Grant
(No. 9610680) of the City University of Hong Kong, and the Australian Research Council under
Projects DP240101848 and FT230100549.

REPRODUCIBILITY STATEMENT

We aim to make VEAttack fully reproducible. The algorithmic specification and assumptions are
given in Section 4.1 to Section 4.2) (including Eqs. (4)–(7)), with the overall pipeline summarized
in Fig. 4, while formal guarantees and complete proofs appear in Appendix B and C. Experimental
settings, including model variants, datasets, evaluation metrics, and the gray-box attack settings,
are introduced in Section 5.1, while primary results and ablations are reported in Section 5.2 to
Section 5.4 (experimental results are shown in Tables 1 to Table 5 and Figs. 2 to 8). Additional
materials that aid verification include multi-task transfer results (Appendix D, Table 6), effects and
costs of joint LLM (Appendix E, Table 7), extended captioning metrics (Appendix F, Table 8),
Image-Text Retrieval task (Appendix G, Table 10), transfer attack from larger specific vision en-
coders (Appendix I, Table 13), classification evaluations (Appendix J, Table 14), and qualitative
analyses (Appendix K, Figs. 10 to 13). To facilitate replication, our supplementary materials con-
tain an anonymous code file that implements VEAttack, along with a README and run scripts that
regenerate all our results.

ETHICS STATEMENT

We affirm adherence to the Code of Ethics throughout this work. Our study investigates adversar-
ial robustness of LVLMs in a research-only setting and involves no human-subjects experiments,
user studies, or collection of personal data. All experiments use publicly available datasets and pre-
trained models (e.g., COCO, Flickr30k, TextVQA, VQAv2, LLaVA, OpenFlamingo, miniGPT-4,
mPLUG-Owl2, Qwen-VL, and CLIP), following their licenses and prescribed evaluation protocols,
and all sources are cited in the paper. We recognize the dual-use risk inherent in security-oriented
research on adversarial attacks. We intend to expose vulnerabilities to improve robustness: we
study an untargeted, vision-encoder–only attack under small perturbation budgets, report results
transparently, and release any accompanying code solely to support reproducibility and robustness
evaluation, not real-world misuse.
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A ETHICAL STATEMENT AND RESPONSIBLE DISCLOSURE

As Large Vision-Language Models (LVLMs) are increasingly deployed in safety-critical applica-
tions, investigating their adversarial vulnerabilities is essential for building resilient systems. This
work introduces VEAttack, a method designed to expose inherent weaknesses in the vision encoder
component of LVLMs. While our research demonstrates effective attack capabilities, our primary
motivation is to advance the community’s understanding of multimodal robustness and to facilitate
the development of stronger defense mechanisms.

Responsible Release. To mitigate potential misuse, we adhere to responsible disclosure principles.
We will release the source code and generated adversarial examples strictly for research purposes
under a restrictive license that prohibits malicious use. Furthermore, we have consciously excluded
any functionality that targets specific harmful or offensive content generation, focusing solely on
benign benchmarks to demonstrate technical vulnerabilities without generating toxic outputs.

Safety Implications and Mitigation. The Möbius Band phenomenon identified in this study high-
lights a critical safety paradox: robust vision encoders can inadvertently serve as potent sources
for transfer attacks. This finding underscores the urgent need for holistic defense strategies that go
beyond standard adversarial training. We advocate for future research to focus on: 1) developing
transfer-resistant vision encoders that decouple robustness from attack transferability, and 2) imple-
menting multi-stage verification protocols in LVLM pipelines to detect and filter adversarial visual
tokens before they propagate to the language model.

By publicly documenting these vulnerabilities and their mechanistic underpinnings, we aim to pro-
vide the necessary groundwork for the research community to preemptively secure future multi-
modal systems against emerging gray-box threats.

B PROOF OF PROPOSITION 1

The cross-modal alignment mechanism fA : Rnv×dv → Rnv×dm is a linear projection layer with
weight Wa, where zv ∈ Rnv×dv is the output of vision encoder. After our visual tokens attack on
vision encoder CLIP, the difference of output features during attack will have a lower bound, which
can be denoted as ∆zv = z̃v − zv and ∥∆zv∥F ≥ ∆, where z̃v is the output of vision encoder after
adversarial attack. So the aligned feature can be formulated as:

zm = fA(zv) = zvWa, z̃m = fA(z̃v) = z̃vWa, (8)

where zm, z̃m ∈ Rnv×dm is the aligned features of the clean and adversarial samples for LLM. The
difference between them can be formulated as:

z̃m − zm = z̃vWa − zvWa = (z̃v − zv)Wa = ∆zvWa (9)

Here, we need to analyse the lower bound of ∥∆zvWa∥F . For the convenience of derivation, we
vectorize the Frobenius norm as ∥∆zvWa∥F = ∥ vec(∆zvWa)∥2, where vec(·) flattens the ma-
trix into a vector. The vector in the above norm can be further expanded as vec (∆zvWa) =(
WT

a ⊗ Inv

)
vec (∆zv), where ⊗ is Kronecker product, Inv is a nv × nv identity matrix. For

matrix WT
a ⊗ Inv

, its singular values are the products of all possible singular values of σ(WT
a ) and

σ(Inv
), so its smallest singular value is:

σmin(W
T
a ⊗ Inv ) = σmin

(
WT

a

)
· σmin (Inv ) = σmin (Wa) · 1 = σmin (Wa) (10)

For any matrix A and vector x, The ℓ2 norm transformation satisfies ∥Ax∥2 ≥ σmin(A)∥x∥2. In our
derivation, x = vec(∆zv), A = WT

a ⊗ Inv , so we can get the following inequality relationship:∥∥WT
a ⊗ Inv vec (∆zv)

∥∥
2
≥ σmin(W

T
a ⊗ Inv ) ∥vec (∆zv)∥2 = σmin (Wa) ∥∆zv∥F (11)

As ∥∆zvWa∥F = ∥ vec(∆zvWa)∥2 =
∥∥WT

a ⊗ Inv
vec (∆zv)

∥∥
2
, we can get:

∥z̃m − zm∥F = ∥∆zvWa∥F ≥ σmin (Wa) ∥∆zv∥F ≥ σmin (Wa)∆ (12)

So we can get the lower bound of aligned features as σmin (Wa)∆. In the context of the LLaVA
model, the alignment layer fA maps the output of the visual encoder (e.g., CLIP ViT-L/14, with
dimension dv = 1024) to the language model embedding space (e.g., Vicuna, with dimension dm =
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4096), where the weight matrix Wa ∈ Rdv×dm satisfies dm > dv . In LLaVA, the projection
layer is typically trained to align visual and language features effectively, which encourages Wa to
achieve full rank (i.e., rank(Wa) = dv) to maximize the expressiveness of the mapping. Empirical
experiments on the LLaVa1.5-7B model reveal that the minimum singular value of the projection
layer is approximately 0.597, corroborating the theoretical expectation of a positive lower bound.
Under this condition, σmin(Wa) > 0, ensuring the existence of the lower bound σmin(Wa) ·∆ > 0.

C PROOF OF PROPOSITION 2

The vision encoder CLIP-ViT processes an input image by dividing it into nv patch tokens zv and a
class embedding zcls. In Layer 0, the initial token can be denoted as T0 = [z0cls; z

0,1
v ; . . . ; z0,nv

v ] ∈
R(nv+1)×dv , where z0,iv represents the embedding of the i-th patch. The ViT comprises L layers,
applying a self-attention mechanism followed by a residual connection:

Tl+1 = Attention(Tl) + Tl, l = 0, . . . , L− 1,

where the attention operation is defined as:

Attention(Tl) = Adv×dv
V = softmax

(
QKT

√
d

)
V,

with Q = TlWQ, K = TlWK , and V = TlWV where the three weights are learned projection
matrices. The final layer output TL = [zLcls; z

L
v ] provides the token representations, where zLv is

aligned to the language model input via zm = Waz
L
v , Wa ∈ Rdm×(nv·d), with dm as the target

dimension of zm.

Now, we derive the perturbation effects of zcls analytically to prove Proposition 2. For simplicity
of derivation, we consider a single-layer attention operation. Let ∆z1cls be the perturbation applied

to z1cls, and propagates through z1cls
backward−−−−−−→ T0

forward−−−−−→ z1v . To propagate this perturbation
backward, we use the loss function of ℓ2 norm and get ∂L/∂z1

cls = z1cls. Following the forward com-
putation of z1cls =

∑nv

j=0 A0,j(T0[j]WV ) + z0cls, the gradients with respect to T0 can be formulated
as:

∂z1cls
∂z0cls

= A0,0WV + I,
∂z1cls
∂z0,jv

= A0,jWV , (13)

where I is the identity matrix from the residual connection. Assume ∆zcls aligns with the gradient
direction during the back propagation of the attack, the perturbation to T0 can be:

∆z0cls = −η

(
∂z1cls
∂z0cls

)T
∂L

∂z1cls
= −η(A0,0WV + I)T∆z1cls,

∆z0,jv = −η

(
∂z1cls
∂z0,jv

)T
∂L

∂z1cls
= −η(A0,jWV )

T∆z1cls,

(14)

where η > 0 controls the magnitude of the perturbation when propagating. To compute the per-
turbation norms rigorously, we model the attention weights and the projection matrix. Assume the
attention weights A0,j are approximately uniform due to similar query-key similarities in pretrained
CLIP-ViT models, with A0,j =

1
nv+1 + ϵj ,

∑nv

j=0 ϵj = 0, |ϵj | ≤ δA/ (nv + 1), where δA is a small
constant bounding the deviation from uniformity. Assume the projection matrix WV has bounded
spectral norm, ∥WV ∥2 ≤ σV , where σV is a constant close to 1. Empirically, we compute the norm
of the value projection matrix WV from the last layer of the vision encoder, yielding a value of 1.23
based on extensive experiments with the LLaVa1.5-7B model. To ensure amplitude equivalence,
compute the total perturbation norm at Layer 0:

∥∆T0∥2F = ∥∆z0cls∥22 +
nv∑
j=1

∥∆z0,jv ∥22

= η ·

∥∥∥(A0,0WV + I)
T
∆z1cls

∥∥∥
2
+

nv∑
j=1

∥∥∥(A0,jWV )
T
∆z1cls

∥∥∥
2

 (15)
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Compute the first term in Eq. (15) as:∥∥∥(A0,0WV + I)
T
∆z1cls

∥∥∥
2
=

∥∥∥∥(( 1

nv + 1
+ ϵ0

)
WT

V + I

)
∆z1cls

∥∥∥∥
2

≤
∥∥∥∥( 1

nv + 1
+ ϵ0

)
WT

V ∆z1cls

∥∥∥∥
2

+
∥∥∆z1cls

∥∥
2

≤
(

1

nv + 1
+

δA
nv + 1

)
σV

∥∥∆z1cls
∥∥
2
+
∥∥∆z1cls

∥∥
2

=

(
1 +

(1 + δA)σV

nv + 1

)∥∥∆z1cls
∥∥
2

Similarly, compute each norm of second term in Eq. (15) as:∥∥∥(A0,jWV )
T
∆z1cls

∥∥∥
2
=

∥∥∥∥( 1

nv + 1
+ ϵ0

)
WT

V ∆z1cls

∥∥∥∥
2

≤
(

1

nv + 1
+

δA
nv + 1

)
σV

∥∥∆z1cls
∥∥
2
=

1 + δA
nv + 1

σV

∥∥∆z1cls
∥∥
2

By combining the two terms, we can derive the equation of ∥∆T0∥F as:

∥∆T0∥F ≤ η ·
∥∥∆z1cls

∥∥
2

√(
1 +

(1 + δA)σV

nv + 1

)2

+ nv

(
(1 + δA)σV

nv + 1

)2

For large nv and small constant δA, σV , the dominant term is the first as:

∥∆T0∥F ≤ η ·
∥∥∆z1cls

∥∥
2

√
1 +

2(1 + δA)σV + (1 + δA)2σ2
V

nv + 1
= η ·

∥∥∆z1cls
∥∥
2
+ ϵT ,

where ϵT is a small constant related to δA and σV . So we can set η = 1 to match the magnitude of
∥∆z1cls∥2. The perturbation to T0 in Eq. (14) can be reformulated as:

∆z0cls = −(A0,0WV + I)T∆z1cls, ∆z0,jv = −(A0,jWV )
T∆z1cls (16)

Then, the forward propagation to z1v with the perturbed T̃0 = [z0cls + ∆z0cls; z
0
v + ∆z0v ] can be

formulated as:

∆z1,iv =

nv∑
j=0

Ai,j(∆T0[j]WV ) + ∆T0[i] = Ai,0(∆z0clsWV ) +

nv∑
j=1

Ai,j(∆z0,jv WV ) + ∆z0,iv ,

where z1,iv denotes the embedding of i-th token in Layer 1, while z0,iv denotes the embedding of i-th
token in Layer 0. Now we plug in the expressions of Eq. (16) and get the perturbation as:

∆z1,iv = −Ai,0

[
(A0,0WV + I)T∆z1clsWV

]
−

nv∑
j=1

Ai,j [(A0,jWV )
T∆z1clsWV ]− (A0,iWV )

T∆z1cls

= −

Ai,0(A0,0WV + I)TWV +

nv∑
j=1

Ai,j(A0,jWV )
TWV + (A0,iWV )

T

∆z1cls

(17)

Define Mi = Ai,0(A0,0WV + I)TWV +
∑nv

j=1 Ai,j(A0,jWV )
TWV + (A0,iWV )

T , then we can
simplify the perturbation as ∆z1,iv = −Mi∆z1cls. For all patch tokens, we can aggregate as:

∆z1v = [∆z1,1v ; · · · ; ∆z1,nv
v ] = −

M1

...
Mnv

∆z1cls

Now, we need to analyze the perturbation magnitude relationship between ∆z1v and ∆z1cls by calcu-
lating the coefficient Mi. Compute the first term of ∥Mi∥2 as:

∥Ai,0(A0,0WV + I)TWV ∥2 ≤ |Ai,0| · ∥(A0,0WV + I)TWV ∥2
≤ |Ai,0| ·

(
∥(A0,0WV )

T ∥2 + ∥I∥2
)
· ∥WV ∥2

≤ 1 + δA
nv + 1

·
(
1 +

(1 + δA)σV

nv + 1

)
σV
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Compute each term in the summation of the second term of ∥Mi∥2 as:

∥Ai,j(A0,jWV )
TWV ∥2 ≤ |Ai,j | · |A0,0| · ∥WT

V ∥2∥WV ∥2 ≤
(
1 + δA
nv + 1

)2

· σ2
V

Compute the third terms of ∥Mi∥2 as:∥∥∥(A0,iWV )
T
∥∥∥
2
=
∥∥WT

V A0,i

∥∥
2
≤
∥∥WT

V

∥∥
2
· |A0,i| ≤ σV · 1 + δA

nv + 1
Combine the three terms to get the norm of Mi and simplify for large nv as:

∥Mi∥2 ≤ 1 + δA
nv + 1

·
(
1 +

(1 + δA)σV

nv + 1

)
σV +

nv (1 + δA)
2
σ2
V

(nv + 1)
2 +

1 + δA
nv + 1

σV

=
(1 + δA)σV

nv + 1
·
(
1 +

(1 + δA)σV

nv + 1
+ 1

)
+

(1 + δA)
2
σ2
V

nv + 1

=
2 (1 + δA)σV + (1 + δA)

2
σ2
V

nv + 1

(18)

Substituting the Eq. (18) into Eq. (17), the norm of ∆z1,iv can be:∥∥∆z1,iv

∥∥
2
=
∥∥Mi∆z1cls

∥∥
2
≤ ∥Mi∥2 ·

∥∥∆z1cls
∥∥
2
≤ 2 (1 + δA)σV + (1 + δA)

2
σ2
V

nv + 1
·
∥∥∆z1cls

∥∥
2

Thus the Frobenius norm of ∆z1v is:

∥∥∆z1v
∥∥
F
=

√√√√ nv∑
i=1

∥∥∥∆z1,iv

∥∥∥2
2
≤

√√√√ nv∑
i=1

(
2 (1 + δA)σV + (1 + δA)

2
σ2
V

nv + 1
· ∥∆z1cls∥2

)2

=
√
nv ·

2 (1 + δA)σV + (1 + δA)
2
σ2
V

nv + 1
·
∥∥∆z1cls

∥∥
2

=
2 (1 + δA)σV + (1 + δA)

2
σ2
V√

nv
·
∥∥∆z1cls

∥∥
2

(19)

As δA is a small constant bounding the deviation from uniformity, σV is a bounded spectral norm of
∥WV ∥2 and close to 1, we can simplify the coefficients in Eq. (19) as 3+ϵV√

nv
, where ϵV ≪ 1 and is

related to the value of δA and σV . Then the ratio of amplitude through z1cls
backward−−−−−−→ T0

forward−−−−−→
z1v can be bounded as: ∥∥∆z1v

∥∥
F

∥∆z1cls∥2
≤ 3 + ϵV√

nv
, ϵV ≪ 1 (20)

This matches the first claim of Proposition 2. Now, we prove the second view. For the same degree
of perturbation on zcls or zv , we can assume ∥∆z1cls∥2 = ∆ and ∥∆z1v∥F = ∆. Then we will
compare the effect of adding perturbation ∆zcls or ∆zv .

If the feature of attack objective is zcls, following the derivation in Section B, we have:
σmin (Wa) ∥∆zv(zcls)∥F ≤ ∥∆zm(zcls)∥F ≤ σmax (Wa) ∥∆zv(zcls)∥F (21)

If the feature of attack objective is zv , the bound of zm in this context can also be:
σmin (Wa) ∥∆zv(zv)∥F ≤ ∥∆zm(zv)∥F ≤ σmax (Wa) ∥∆zv(zv)∥F (22)

Combining Eq. (21) and (22), as well as conditions in Eq. (20), we can obtain that under the same
degree of perturbation, the ratio of the lower bound of ∆zm is:

∥∆zm(zcls)∥F
∥∆zm(zv)∥F

=
σmin (Wa) ∥∆zv(zcls)∥F
σmin (Wa) ∥∆zv(zv)∥F

≤
(
(3 + ϵV )/

√
nv

)
· ∥z1cls∥2

∥∆z1v∥F
=

3 + ϵV√
nv

This matches the second claim of Proposition 2. When extended to L-layer CLIP, the above proof
occurs between L and L − 1 layers, where the propagation is in the form of [zLcls + ∆zLcls; z

L
v ] →

[zL−1
cls +∆zL−1

cls ; zL−1
v +∆zL−1

v ] → [zLcls; z
L
v +∆zLv ]. Before L− 1 layer, the propagation follows

the [zicls +∆zicls; z
i
v +∆ziv] → [zi−1

cls +∆zi−1
cls ; zi−1

v +∆zi−1
v ] propagation method. Since we have

assumed the amplitude equivalence before and after the propagation, we simplify the propagation of
the first L− 1 layer as having the same amplitude. Therefore, our conclusion still holds.
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D MORE RESULTS ON MULTI-TASK TRANSFER ATTACK

In Fig. 2(b) of the main text, we initially demonstrated the transfer attack between COCO Cap-
tion and VQAv2 datasets, representing two distinct downstream tasks, and confirmed that VEAttack
effectively achieves downstream-agnostic attacks across these tasks. Table 6 provides a more de-
tailed and comprehensive analysis of multi-task transfer attack performance. We use ”Anytask”
to denote that VEAttack targets any task, such as COCO Caption or VQA, as it solely attacks the
vision encoder, enabling downstream-agnostic performance that remains consistent across different
tasks. For APGD, we underline the performance of transfer attacks between tasks, revealing that
these reductions (e.g., 49.4% for VQAv2 to COCO Caption, and 29.2% for VQAv2 to OK VQA)
are consistently less severe than those achieved by VEAttack (e.g., 93.9% for COCO Caption, and
62.8% for OK VQA). This highlights the limitations of traditional white-box attacks like APGD in
multi-task LVLM scenarios, while further validating the effectiveness and robustness of VEAttack
in achieving significant performance degradation across diverse tasks.

Table 6: Transfer Attack Performance of APGD and VEAttack Between Captioning and VQA Tasks.
The underlined values in APGD represent transfer attack results, and diagonal values indicate direct
white-box attack performance.

Attack Source
Target COCO Caption VQAv2 OK VQA

Clean 115.5 74.5 58.9

APGD
COCO Caption 13.1 45.9 25.7

VQAv2 58.5 25.3 41.7
OK VQA 43.8 53.3 14.6

VEAttack Anytask 7.1 38.4 21.9

E EFFECTS AND COST OF VEATTACK WITH LLM

To further demonstrate whether the effect of attacking the vision encoder is sufficient, we add a
joint attack on LLM to the current VEAttack, where we supervised all the hidden states of LLM
outputs. The results in the Table 7 demonstrate a further enhancement in attack effectiveness on
the Flickr30k dataset when attacking jointly the vision encoder and LLM, with a performance gain
of 0.6. However, this improvement comes at a significant computational cost, increasing runtime
by 278%. Through this observation, LLM shows a limited effect in the attack but highly increases
the computational cost, further validating the necessity of focusing on vision encoder attacks as
proposed in our framework.

Table 7: Comparison of VEAttack and VEAttack+LLM backbone attack on LLaVa1.5-7B.

Method Dataset LLaVa1.5-7B Time
ϵ = 2/255 ϵ = 4/255

VEAttack COCO 10.8 7.1 51min38s
Flickr30k 10.7 6.3 49min59s

VEAttack+LLM COCO 12.3 7.3 3h11min7s
Flickr30k 10.1 5.4 3h8min58s

F MORE EVALUATION MODELS AND METRICS ON IMAGE CAPTIONING

Table 8 presents a comprehensive evaluation of the VEAttack method on image captioning across the
COCO and Flickr30k datasets using the LLaVa1.5-7B model. Based on Eq. 5, we incorporate attacks
from adversarial training algorithms (Mao et al., 2023) as proposed in the robust CLIP framework, as
a baseline method to enable a more comprehensive comparison. The formulation can be expressed
as Lcls : ṽ = argmax∥δ∥≤ϵ −Ej

[
cos
(
z̃cls, z

j
text

)]
, where text features zjtext is extracted from
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user instructions. Compared to the clean baselines, VEAttack consistently demonstrates the most
significant performance degradation on COCO captioning across all evaluation metrics. Specifically,
BLEU@4, which focuses on measuring caption precision, shows a substantial drop of 86.7% on the
COCO dataset, indicating the highly effective nature of our VEAttack. ROUGE L, which evaluates
recall and sequence overlap, declines moderately 45.8%, suggesting that while the attack disrupts
overall performance, some structural coherence in the captions remains. SPICE, focusing on se-
mantic propositional content, drops 87.1%, indicating a broad degradation in meaningful content
representation, reinforcing the effectiveness of VEAttack.

Table 8: More evaluation metrics for image captioning across datasets and attack methods.
Datasets Attack BLUE@4 METEOR ROUGE L CIDEr SPICE

COCO

Clean 33.0 28.3 56.6 115.5 22.4
Lcls Mao et al. (2023) 14.8 17.5 40.6 41.8 9.9

L2 Schlarmann et al. (2024) 10.6 15.0 36.7 25.2 7.3
QAVA Zhang et al. (2025) 22.3 24.7 49.2 79.9 17.8

VEAttack 4.4 10.9 30.7 7.1 2.9

Flickr30k

Clean 29.6 25.2 52.6 77.5 18.2
Lcls Mao et al. (2023) 15.5 17.0 39.5 29.9 9.8

L2 Schlarmann et al. (2024) 12.9 14.8 36.3 20.6 7.8
VEAttack 6.6 10.6 30.6 6.3 4.2

To demonstrate the broad applicability of VEAttack beyond CLIP-based architectures, we extend
our evaluation to LVLMs utilizing diverse vision encoders. Specifically, we test MiniGPT-4 (Zhu
et al., 2023), which employs the BLIP-2 (Li et al., 2023a) as a vision encoder, and mPLUG-Owl2 (Ye
et al., 2024), which uses a distinct visual backbone, MplugOwl. We compare VEAttack against two
gray-box methods, AttackVLM-ii (Zhao et al., 2023) and VT-Attack (Wang et al., 2024c). Following
the setting of VT-Attack, we set the perturbation budget ϵ = 8/255, step size α = 1/255, and
attack iterations t = 100. As shown in Table 9, VEAttack consistently outperforms the baselines,
achieving the most significant performance degradation on both models. On MiniGPT-4, VEAttack
reduces the CIDEr score to 13.7, compared to 24.8 for VT-Attack. Similarly, on mPLUG-Owl2, our
method achieves a CIDEr score of 65.1, significantly lower than the other gray-box methods. These
results confirm that VEAttack effectively disrupts the visual semantic representation regardless of
the underlying vision encoder architecture, validating its architecture-agnostic nature.

Table 9: Attack performance comparison on COCO Captioning against more LVLMs.
Models Attack BLUE@4 METEOR ROUGE L CIDEr SPICE

MiniGPT-4

Clean 25.0 27.9 53.1 94.0 21.3
AttackVLM-ii Zhao et al. (2023) 5.8 13.5 30.0 5.4 5.4
VT-Attack Wang et al. (2024c) 16.3 21.9 44.5 54.9 14.2

VEAttack 5.1 12.3 30.5 10.0 4.5

mPLUG-Owl2

Clean 38.6 30.2 59.5 139.2 24.3
AttackVLM-ii Zhao et al. (2023) 20.6 21.0 46.8 71.6 13.8
VT-Attack Wang et al. (2024c) 17.7 19.2 43.9 59.8 12.5

VEAttack 12.5 15.8 38.8 40.4 8.3

G ATTACK PERFORMANCE ON IMAGE-TEXT RETRIEVAL TASK

G.1 ATTACK PERFORMANCE UNDER WHITE-BOX OF VISION ENCODER

We evaluate VEAttack on image–text retrieval using CLIP-ViT and compare against SGA (Lu et al.,
2023) and DRA (Gao et al., 2024) on Flickr30k in Table 10. Following prior work, we use Attack
Success Rate (ASR) as the primary measure of transferability. In this setting, we report R@1 and
R@10 for both Text Retrieval (TR) and Image Retrieval (IR), where each R@k is interpreted as
ASR@k, the fraction of adversarial queries whose ground-truth counterpart does not appear among
the top-k retrieved results. As shown in the table, VEAttack attains competitive ASR, while being
substantially more efficient, reducing time to 10min38s and memory to 3.13 GB. These results
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indicate that our vision-encoder–only optimization delivers strong retrieval-level attack efficacy with
markedly lower computational cost.

Table 10: Comparison of SGA, DRA and VEAttack on the Image-Text Retrieval task.
Method TR R@1 TR R@10 IR R@1 IR R@10 Time Memory

SGA Lu et al. (2023) 100 99.9 100 99.98 14min17s 9.14GB
DRA Gao et al. (2024) 100 99.9 100 99.96 26min31s 10.31GB

VEAttack 99.88 99.19 99.81 98.54 10min38s 3.13GB

G.2 TRANSFER ATTACK PERFORMANCE OF VISION ENCODERS

We additionally evaluate the transfer attack performance following the transfer-attack methods,
SGA (Lu et al., 2023) and DRA (Gao et al., 2024). We conduct transfer attacks using CLIP-ViT as
the source model to attack ALBEF and CLIP-CNN. As shown in Table 11, while SGA and DRA are
specifically designed with complex augmentation strategies to maximize transferability, VEAttack
achieves competitive performance with fewer computational memory costs. Crucially, leveraging
our Möbius Band in Observation 3, we replace the standard CLIP-ViT source with the robust FARE
encoder. This simple substitution dramatically boosts VEAttack’s transferability, requiring no com-
plex algorithm changes but achieving an R@1 of 35.35% on ALBEF (Text Retrieval) and 48.78%
(Image Retrieval). This performance rivals the sophisticated DRA method while consuming only
10.52GB of memory. This demonstrates that utilizing robust vision encoders is a highly efficient
and effective strategy for transfer attacks, offering a superior trade-off between performance and
resource consumption.

Table 11: Comparison of transfer attack with SGA and DRA on the Image-Text Retrieval task.
Method Source ALBEF (TR R@1) ALBEF (IR R@1) CLIP-CNN (TR R@1) CLIP-CNN (IR R@1) Memory

SGA CLIP-ViT 22.42 34.59 53.26 61.1 16.63GB
DRA CLIP-ViT 27.84 42.84 64.88 69.50 16.71GB

VEAttack CLIP-ViT 16.58 32.23 44.06 53.55 6.75GB
FARE 35.35 48.78 55.17 63.05 10.52GB

H ATTACK PERFORMANCE ON VISUAL GROUNDING TASK

Table 12: Attack performance after difference methods on Visual
Grounding task.

Method RefCOCO RefCOCO+
TestA TestB Val TestA TestB Val

Clean 49.0 53.9 48.2 50.8 49.1 47.3
AttackVLM-ii 27.6 33.5 28.9 28.5 27.9 29.1

VT-Attack 35.4 40.7 34.5 34.7 37.9 35.7
VEAttack 23.1 32.1 27.1 24.6 29.6 27.4

To verify the generalizability of
VEAttack, we extended our eval-
uation to visual grounding task
and select ReCLIP (Subrama-
nian et al., 2022), a popular zero-
shot baseline for visual ground-
ing that relies on the CLIP vi-
sion encoder to localize objects.
We evaluated the attack perfor-
mance on the RefCOCO and Re-
fCOCO+ datasets (Yu et al., 2016). For the attack settings, we maintain consistency across all
comparison methods by setting the perturbation budget to ϵ = 2/255 and the number of iterations
to t = 100. As shown in Table 12, VEAttack exhibits effectiveness in disrupting the spatial rea-
soning capabilities. On the RefCOCO validation set, VEAttack degrades the performance to 27.1,
significantly outperforming the baselines. This demonstrates that our vision-encoder-only attack ef-
fectively propagates to spatial localization tasks, further validating its downstream-agnostic nature.

I TRANSFER ATTACK FROM LARGER SPECIFIC VISION ENCODERS

We conducted transfer attacks using the vision encoders of mPLUG-Owl2 and Qwen-VL as source
models on 1000 random images of COCO dataset with the CIDEr metric of the captioning task in
Table 13 with ϵ = 16/255, α = 16/(255 × 5). Surprisingly, we found that for both VEAttack and
VT-Attack, when using the vision encoders of mPLUG-Owl2 and Qwen-VL as source models for
transfer attacks, it is challenging to achieve successful attacks on other models. One potential reason
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could be that models tend to develop more specialized feature representations tailored to the specific
LVLM architecture and training distribution as the scale of training data and network complexity
increases. It might reduce the transferability of adversarial perturbations across diverse model ar-
chitectures. In addition, the generated adversarial perturbations from these large vision encoders are
concentrated in high-dimensional feature spaces. When transferred to smaller models such as CLIP,
these perturbations may fail to effectively decouple or disrupt downstream task performance, as the
limited capacity of smaller models may hinder their ability to process or adapt to such complex dis-
turbances. This finding provides an empirical explanation for the community’s current practice of
using an ensemble of foundational vision encoders like CLIP for attacks (Zhao et al., 2023; Zhang
et al., 2024; Li et al., 2025; Jia et al., 2025).

Table 13: Transfer attack on COCO captioning from mPLUG-Owl2 and Qwen-VL to other models.

Method Source Target CIDEr Source Target CIDEr

VEAttack mPLUG-Owl2

mPLUG-Owl2 9.1

Qwen-VL

Qwen-VL 19.3
Qwen-VL 131.8 mPLUG-Owl2 128.3

LLaVa1.5-7B 114.5 LLaVa1.5-7B 119.4
OpenFlamingo-9B 84.5 OpenFlamingo-9B 86.0

VT-Attack mPLUG-Owl2

mPLUG-Owl2 30.1

Qwen-VL

Qwen-VL 55.3
Qwen-VL 132.1 mPLUG-Owl2 130.8

LLaVa1.5-7B 119.6 LLaVa1.5-7B 121.5
OpenFlamingo-9B 91.6 OpenFlamingo-9B 96.3

30 20 10 0 10 20
tsne-1

20

10

0

10

20

30

ts
ne

-2

LLaVa1.5 (CLIP-L)
mPLUG-Owl2 (MplugOwl)
Qwen-VL (CLIP-bigG)

Figure 9: t-SNE visualization of visual fea-
ture distributions across different LVLMs.

Analysis on feature representation. To delve deeper
into the underlying causes of the limited transferabil-
ity observed in Table 13, we visualize the feature
distributions of different vision encoders. Specifi-
cally, we randomly sample 100 patch tokens from the
COCO validation set encoded by the vision encoders
of LLaVa1.5-7B (CLIP-ViT-L), mPLUG-Owl2 (Mplu-
gOwl), and Qwen-VL (CLIP-ViT-bigG). As illustrated
in Fig. 9, the t-SNE visualization reveals significant
distributional discrepancies among these models. The
feature spaces of these encoders form distinct, isolated
clusters with large margins, indicating that the specific
vision encoders used in large-scale LVLMs undergo
substantial specific adaptation or fine-tuning, leading
to a severe feature shift compared to standard foundation models like CLIP. Consequently, adversar-
ial perturbations optimized on the specific manifold of one large encoder (e.g., Qwen-VL) are likely
orthogonal or irrelevant to the feature space of other models (e.g., LLaVa).

J EVALUATION ON IMAGE CLASSIFICATION DATASETS

Since the CLIP can also function as a classifier, we assess the impact of VEAttack across diverse
classification datasets, including Tiny-ImageNet (Deng et al., 2009), CIFAR-10 (Krizhevsky et al.,
2009), CIFAR-100 (Krizhevsky et al., 2009), FOOD101 (Bossard et al., 2014), Flowers102 (Nils-
back & Zisserman, 2008), DTD (Cimpoi et al., 2014), EuroSAT (Helber et al., 2019), FGVC-
Aircraft (Maji et al., 2013), Caltech-256 (Griffin et al., 2007), StanfordCars (Krause et al., 2013),
ImageNet (Deng et al., 2009) and SUN397 (Xiao et al., 2010). Table 14 presents the evaluation
of VEAttack on image classification datasets using the CLIP-B/32 model. The results show that
Lcls, which optimizes the cross-entropy loss between classification and text features, achieves the
most significant performance degradation of 97.8%, as its objective aligns closely with the classi-
fication task. Compared with the L2 attack, which uses the ℓ2 loss of class token embedding as
the attack objective, VEAttack achieves a more substantial reduction in mean accuracy of 93.0%,
demonstrating its superior efficacy in disrupting classification performance. This improvement also
highlights the advantage of perturbing patch tokens over class tokens, underscoring its effectiveness
over traditional methods.
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Table 14: Performance evaluation of image classification datasets under different attacks.
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Clean 57.9 88.1 60.5 83.8 65.7 40.1 38.2 20.2 82.0 52.1 59.1 57.7 58.8

L2 Schlarmann et al. (2024) ϵ = 4/255 4.9 17.3 5.1 12.2 16.8 11.5 15.4 4.1 25.5 9.9 12.1 12.6 12.3
ϵ = 8/255 1.6 12.7 3.0 2.8 5.3 6.4 13.1 1.6 10.8 1.9 3.8 4.1 5.6

VEAttack ϵ = 4/255 2.6 15.3 3.2 5.9 8.8 10.6 13.2 2.0 11.9 5.8 4.7 3.4 7.3
ϵ = 8/255 1.0 13.8 2.2 1.5 2.9 7.0 13.3 1.2 3.9 0.8 1.1 0.7 4.1

Lcls Mao et al. (2023) ϵ = 4/255 0.5 2.1 0.1 5.4 0.4 0.0 0.0 0.0 6.8 0.1 0.4 0.3 1.3

Clean Target AnyAttack FOA-Attack VEAttack (ours)

Figure 10: Comparison with perturbation of targeted black-box attacks AnyAttack (Zhang et al.,
2024) and FOA-Attack (Jia et al., 2025).

K QUALITATIVE RESULTS OF VEATTACK

K.1 COMPARISON WITH PERTURBATION OF BLACK BOX ATTACKS

Fig. 10 shows the adversarial images generated by our VEAttack, and two targeted black-box at-
tacks, AnyAttack (Zhang et al., 2024) and FOA-Attack (Jia et al., 2025). Visual inspection shows
that VEAttack yields substantially higher imperceptibility. For example, in the second row, the
adversarial results of AnyAttack and FOA-Attack imprint recognizable fruit contours from the tar-
get image onto the green leaf, making the manipulation conspicuous, whereas the VEAttack image
remains nearly indistinguishable from the clean input. To make this contrast explicit, we also vi-
sualize the perturbations. VEAttack achieves effective LVLM degradation with low-magnitude,
semantically unstructured noise, indicating that VEAttack could attain stronger perceptual stealth.

K.2 MORE COMPARISONS OF ADVERSARIAL IMAGES

To demonstrate the superior imperceptibility of VEAttack, we conduct a detailed qualitative and
quantitative comparison with the black-box M-Attack (Li et al., 2025), as shown in Figure 11. Our
goal regarding imperceptibility is to achieve effective attacks using significantly smaller perturba-
tions compared to black-box methods, which often require heavy noise to ensure transferability.
Visually, M-Attack introduces conspicuous texture distortions. Notably, it tends to generate pertur-
bations containing semantic information; for instance, in the fourth column of the first row, word-
shaped artifacts are clearly visible in the sky. In contrast, VEAttack generates perturbations that are
texture-agnostic and devoid of semantic artifacts, making them much harder for human observers to
detect. Quantitatively, we evaluated 500 randomly sampled adversarial images. VEAttack achieves
an average L2 distance of 4.3883 between the adversarial and clean images, whereas M-Attack
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Figure 11: Visual comparison of adversarial examples generated by the black-box M-Attack (Li
et al., 2025) and our gray-box VEAttack.

yields a much higher distance of 15.3403. Furthermore, we calculate the cosine similarity (CLIP
Score) between the CLIP-L/14 features of the clean and adversarial images. VEAttack achieves a
score of 0.4443, compared to 0.5493 for M-Attack. This indicates that VEAttack successfully pushes
the visual features further away from the original semantics, while maintaining a much lower visual
perturbation budget than the black-box attacks.

K.3 QUALITATIVE RESULTS ON IMAGE CAPTIONING

We visualize the outputs of clean samples, those attacked by the traditional white-box APGD
method (Croce & Hein, 2020), and our proposed VEAttack, as shown in Fig. 12. Both attack
methods cause errors in the image captioning outputs of LVLMs. However, an interesting observa-
tion emerges: the traditional white-box attack, which targets output tokens as its objective, tends to
generate errors that still revolve around the original sentence structure or subject, such as ”in the wa-
ter” in the first image, ”running” in the second, and ”spraying water” in the third. In contrast, since
VEAttack operates in a downstream-agnostic context, it directly disrupts the semantic information
in visual features of the vision encoder, leading to outputs that completely deviate from the clean
captions, for example, ”table, bear” in the first image, ”food” in the second, and ”game controller”
in the third. While recent work (Schlarmann & Hein, 2023) mitigates such issues through targeted
attacks to improve effectiveness, our non-targeted VEAttack approach successfully achieves a com-
plete semantic deviation under non-targeted conditions.

K.4 QUALITATIVE RESULTS ON VISUAL QUESTION ANSWERING

We visualize the outputs of LVLMs on the visual question answering task under clean, APGD, and
VEAttack conditions, as shown in Fig. 13. Notably, VEAttack, despite operating in a downstream-
agnostic context without instruction-specific guidance, effectively disrupts visual features, leading
to erroneous responses from the model in most cases. This highlights its robust attack capability.
We also present a failure case in the last column, where VEAttack does not specifically alter the
semantic information related to the brand monitor. Overall, VEAttack demonstrates exceptional
attack effectiveness in a downstream-agnostic manner.
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A dog catching a 
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Figure 12: Quantitative results on image captioning of clean samples, traditional white-box APGD
attack, and VEAttack on LLaVa1.5-7B. The green background indicates correct outputs for clean
samples, the yellow background represents APGD attack outputs with green text highlighting se-
mantically consistent content, and the red background denotes VEAttack outputs with significantly
altered semantics.
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Figure 13: Quantitative results on visual question answering of clean samples, traditional white-box
APGD attack, and VEAttack on LLaVa1.5-7B. The top row of each image presents the instructions
posed to the LVLMs, with a green background indicating a correct answer and a red background
indicating an incorrect answer.
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L THE USE OF LARGE LANGUAGE MODELS

In accordance with the policies on LLM usage, we used a large language model as a
language-refinement assistant during manuscript preparation. The use of the LLM was confined
strictly to editorial support and did not contribute to the conceptual or experimental aspects of this
research. Specifically, the LLM was employed for:

• Rephrase sentences and paragraphs to improve clarity, concision, and academic tone when
describing our gray-box, vision-encoder-only attack, its objectives, and empirical observa-
tions (e.g., the shift from class-token to patch-token perturbations and the cosine-similarity
objective)

• Standardize terminology and notation across sections (e.g., downstream-agnostic, untar-
geted, limited perturbation budget, and the symbols in Eqs. (4)–(7))

• Smooth local transitions (e.g., from the redefined objective in Section 4.1 to the loss design
in Section 4.2) and polish captions for clarity.

Our research ideas, technical methods, proofs, experiments, figures, and conclusions are entirely the
work of the human authors. All LLM-suggested text was reviewed line-by-line and edited by the
authors. Any technical statements, equations, or quantitative claims appearing in the paper were
verified against our experiments and, where appropriate, cross-checked with the paper’s own tables
and figures.
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