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ABSTRACT

Mixed-integer linear programming (MILP) is an essential task for operation re-
search, especially for combinatorial optimization problems. Apart from the classic
non-learning solvers that often resort to heuristics, recent machine learning-based
models have been actively studied, and graph neural networks (GNNs) have been
dominantly adopted. However, recent literature has shown that the GNNs based
on message passing mechanism suffer fundamental expressiveness limitations in
MILP instance representation, in the sense that two different MILP instances could
be eventually embedded into exactly the same feature. In this paper, we resort to
the quantum mechanism and develop a tailored quantum counterpart of GNNs,
called equivariant quantum GNN (EQGNN), which can overcome the fundamental
limitation of traditional GNNs, i.e., it can distinguish two MILPs that cannot be
distinguished by GNNs. Specifically, EQGNN is designed to be the structure of
permutation equivariance, which is key to learning the graph-structure data because
the solution of an MILP should be reordered consistently with the permutation
on the variables. While maintaining equivariance, EQGNN presents a multi-qubit
encoding mechanism for encoding features and a parameter-sharing mechanism
for graph information interaction. To enhance the expressivity power of the model,
EQGNN also introduces an auxiliary layer with an optional number of auxiliary
qubits. Experimental results demonstrate the effectiveness of the method in solving
MILP problems and the trainability of the model with increasing system scale.
Compared with traditional GNNs, EQGNN can achieve better separation power
and generalization performance with fewer parameters. The source code will be
made publicly available.

1 INTRODUCTION

Quantum machine learning (QML) emerges as a promising field which harnesses the principles of
quantum mechanics and the power of machine learning (Biamonte et al., 2017; Cerezo et al., 2022).
In particular, quantum neural networks (QNN) (Abbas et al., 2021) can be embodied as parameterized
quantum circuits (PQC) (Benedetti et al., 2019) executed on current Noisy Intermediate-Scale
Quantum (NISQ) devices (Bharti et al., 2022) in a variational training manner using classical (e.g.
gradient-based) optimizers. It is still an important and active field to explore the potential advantage
of QNNs over their classical counterparts given training data (Yu et al., 2022).

In general, QNNs can be categorized into problem-agnostic and problem-inspired architectures.
Problem-agnostic ansatzes, e.g. hardware-efficient ansatz (Kandala et al., 2017), do not depend
on problem information and thus usually need strong expressibility (Du et al., 2020). Meanwhile,
they are also often more likely to exhibit trainability issues (Holmes et al., 2022), e.g. the barren
plateau phenomenon (McClean et al., 2018). In contrast, problem-inspired ansatzes can be designed
by prior about the data and problem, which can confine the design space. In particular, to address
graph-structured data as commonly encountered in real-world problems, e.g. molecular property
prediction (Ryu et al., 2023) and combinatorial optimization (Ye et al., 2023), a number of QNNs
(Verdon et al., 2019; Zheng et al., 2021; Ai et al., 2022; Mernyei et al., 2022) have been proposed.

To enable quantum graph learning, Verdon et al. (2019) introduce a class of quantum GNNs using
Hamiltonian based on graph structure, while the model is constrained by the specific form of the
Hamiltonian. Zheng et al. (2021) and Ai et al. (2022) propose specific quantum circuits and consider
the encoding of the high-dimensional features, but neither of their networks ensures the permutation
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invariance w.r.t input nodes, which is a vital property for graph tasks. In terms of geometric quantum
machine learning (GQML), Schatzki et al. (2022) show incorporating geometric priors via Sn-
equivariance into QML can heavily restrict the model’s search space, mitigating the barren plateau
issue and can generalize well with small data. Recently, a theoretical recipe for building equivariant
and invariant quantum graph circuits is given by Mernyei et al. (2022), but they do not provide the
specific circuit implementation nor consider the edge features of graph in their model design. We
leave a detailed discussion on related works in Appendix A including a Table 3 as summary. In
fact, there remains an unexplored direction in designing explicitly equivariant and invariant quantum
networks for tackling graph problems with multi-dimensional node features and edge weights.

In this paper, we consider a general form that can cover various combinatorial optimization (CO)
problems, i.e. mixed-integer linear programming (MILP). The instances can be represented by
weighted bipartite graphs with node features (Gasse et al., 2019; Chen et al., 2023a) (see more details
in the later preliminary section). Due to the nice properties of permutation invariance of GNNs, it
is considered a suitable backbone in various stages of MILP solving processes (Khalil et al., 2022;
Gupta et al., 2022; Wang et al., 2023). However, the recent work (Chen et al., 2023b) shows a
fundamental limitation in using GNNs to express arbitrary MILP instances: there exists a set of
feasible and infeasible MILP instances treated as identical by the GNNs, rendering the GNN incapable
of distinguishing their feasibility, as shown in Fig. 2. They called these MILP instances that cannot
be distinguished by GNNs as foldable MILPs, while MILPs that can be distinguished by GNNs
are named as unfoldable MILPs. To predict MILP feasibility, optimal values and solutions, GNNs
can only restrict the MILP instances to be unfoldable or add random features for foldable MILPs.
However, discerning foldable and unfoldable MILPs inherently requires the extra preprocessing
techniques.

To this end, we propose a so-called Equivariant Quantum Graph Neural Network (EQGNN) to
overcome the fundamental limitation of traditional GNNs, i.e., GNNs based on the message-passing
mechanism cannot distinguish pairs of foldable MILP instances. Around 1/4 of the problems in
MIPLIB 2017 (Gleixner et al., 2021) involve foldable MILPs. It means that practitioners using GNNs
cannot benefit from that if there are foldable MILPs in the dataset of interest (Chen et al., 2023b).
In contrast, EQGNN can distinguish graphs that cannot be distinguished by GNNs, such that it is
capable of representing general MILP instances. Moreover, EQGNN can be regarded as a QML
model that introduces strong relational inductive bias by designing a symmetry-preserving ansatz,
and it can used for learning any graph-structure data. The contributions of this work are:

1) We propose a novel equivariant quantum GNN, which consists of the feature encoding layer,
graph message interaction layer, and optional auxiliary layer. The permutation equivariance of the
model is key to learning graph-structure data, e.g., the predicted solution of an MILP should be
reordered consistently with the permutation on the variables. To ensure the permutation equivariance,
EQGNN designs a parameter-sharing mechanism and carefully chooses parametric gates for learning
graph information interaction. To encode edge and node features, EQGNN presents a multi-qubit
encoding mechanism and repeated encoding mechanism. Moreover, we introduce the auxiliary layer
to enhance the expressive power of EQGNN. Experiments show the good trainability of our EQGNN
with increasing system scale.

2) We show the separation power of EQGNN can surpass that of GNNs in terms of representing
MILP graphs. EQGNN can distinguish MILP graphs that cannot be recognized by GNNs using the
unique properties of quantum circuits, thereby accurately predicting the feasibility of the general
MILPs. Moreover, extensive numerical experiments have shown that our EQGNN achieves faster
convergence, utilizes fewer parameters, and attains better generalization with less data compared
to GNNs. Based on this, EQGNN holds the potential to advance the field of leveraging quantum
computing to assist in the classical methods for MILP solving.

2 PRELIMINARIES

MILP as a weighted bipartite graph with node features. A general MILP problem can be defined
as follows, where A ∈ Rp×q , b ∈ Rp, c ∈ Rq:

min
x∈Rq

c⊤x, s.t. Ax ◦ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I, (1)

where l and u represent the upper and lower bounds on variables, where l ∈ (R ∪ {−∞})q,
u ∈ (R∪{+∞})q and ◦ ∈ {≤,=,≥}p. I ⊆ {1, · · · , q} represents the index set of integer variables.
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Figure 1: An example of a weighted bipartite
graph of an MILP instance. Here vi represents
the variable node associated with feature fV

i and
sj indicates the constraint node associated with
feature fS

j . The edge between vi and sj means
that the j-th constraint involves the i-th variable.
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Figure 2: An example of foldable MILP in-
stances that cannot be distinguished by the
1-WL test and GNNs. The only difference be-
tween these two graphs lies in the connectivity
of the edges, resulting in (a) being feasible
and (b) being infeasible.

qq

The feasible solution is defined as the set Xfea = {x ∈ Rq | Ax ◦ b, l ≤ x ≤ u, xi ∈ Z, ∀i ∈ I},
while Xfea = ∅ means the MILP problem is infeasible. Feasible MILPs has optimal objective value
yobj = inf{c⊤x | x ∈ Xfea}. If there exists x̂ so that c⊤x̂ ≤ c⊤x, ∀x ∈ Xfea, then x̂ is an optimal
solution. Following the protocol in (Gasse et al., 2019) and (Chen et al., 2023b), we formulate MILP
as a weighted bipartite graph to interpret variable-constraint relationships, as illustrated in Fig. 1.
The vertex set of such graph is V ∪ S, where V = {v0, · · · , vi, · · · , vq−1} with vi representing the
i-th variable and S = {s0, · · · , sj , · · · , sp−1} with sj representing the j-th constraint. The edge
connected vi and sj has weight Ai,j . Based on the Eq. (1), the vertex vi ∈ V is associated with a
feature vector fV

i = (ci, li, ui, ϵi), where ϵi represents whether variable vi takes integer value. The
vertex sj is equipped with a two-dimension vector fS

j = (bj , ◦j). There is no edge between vertices
in the same vertex set (V or S). The weighted bipartite graph with node features is named as an
MILP-induced graph or MILP graph.

Foldable MILP instances. (Chen et al., 2023b) categorizes MILP instances into foldable if GNNs
cannot distinguish them (i.e., GNN learns two different MILP instances to be the same representation),
and the rest of MILPs that can be distinguished by GNNs as unfoldable MILP instances. Fig. 1
shows an example of a pair of MILPs in the foldable dataset. Assume that fV

i = (1, 0, 1, 1), for all
vi ∈ V and fS

j = (1,=), for all sj ∈ S and all edge weights are equal to 1, which means that the
only difference between the two bipartite graphs lies in the connectivity of edges. However, these
two MILP instances have different feasibility. Fig. 2 (a) is feasible such as x = (0, 1, 0, 1, 0, 1) is a
feasible solution, while Fig. 2 (b) is infeasible because there are no integer decision variables that
can satisfy the equality constraints 2(x0 + x1 + x2) = 3. Moreover, these pair of graphs cannot be
distinguished by 1-dimensional Weisfeiler-Lehman (1-WL) algorithm (Weisfeiler & Leman, 1968),
because each node has two neighbors with the same features and all edge weights also are equal.
Since the expressive power of GNNs based on message passing mechanism is upper bounded by the
1-WL algorithm for graph isomorphism testing (Xu et al., 2018; Morris et al., 2019), these pair of
1-WL indistinguishable graphs will cause the GNNs to learn the same representations and yielding
the same prediction. Thus directly applying GNNs to represent MILPs may fail on general datasets.
See Appendix B for proof.

3 EQUIVARIANT QUANTUM GRAPH NEURAL NETWORK
3.1 APPROACH OVERVIEW

Fig. 3 shows our Equivariant Quantum Graph Neural Network (EQGNN), with the feature encoding
layer, graph message interaction layer, and auxiliary layer. The three layers form a block, iterated
repeatedly in the circuit. All the layers in EQGNN adhere to the principle of equivariance, detailed in
Sec. 3.6. We study whether EQGNN can map an MILP to its feasibility, optimal objective value, and
optimal solution. Predicting feasibility and optimal objective values is a graph-level problem that
maps an MILP graph to a value, and predicting the optimal solution is a node-level problem that maps
an MILP to a solution vector. The three tasks can use the same structure of EQGNN, except that the
graph-level problem requires a permutation-invariant aggregation for the output of the equivariant
model. Fig. 10 shows the properties and invariant and equivariant models for MILP graphs.
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Figure 3: Architecture of our EQGNN for representing MILPs. The feature encoding layer encodes
node information into the quantum circuit, and the graph message interaction layer contains variable
update layer and constraint update layer. Auxiliary layer is optional and used for enhancing the
capacity of the model. All layers are designed to preserve the equivariance of the node permutation.
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Figure 4: Features are encoded into the circuit by
angle encoding, and each feature is associated with
a trainable parameter. For permutation equivariance,
each feature shares an identical trainable parameter.

Recall that an MILP can be encoded into a bipar-
tite graph. The node representing variables has
four features (c, l, u, ϵ), and the constraint node
has two features (b, ◦). In our feature encoding
layer, we use an angle encoding scheme, which
takes the features as the parameters of gates. More-
over, we adopt an alternating encoding involving
features and trainable parameters, associating a
trainable parameter with each individual feature,
thereby harnessing the information of the nodes.
We set a multi-qubit encoding mechanism that
requires each qubit can only encode at most ω fea-
tures. The choice of ω is directly associated with
the circuit width. The smaller the value of ω, the
larger the number of qubits required for the quan-
tum circuit, the more expressive the circuit. Fig. 4
shows an example of the feature encoding circuit
under the case of two variables (v0 and v1) and
two constraints (s0 and s1). ω is set to 2, so the
features of variables are encoded by two qubits. To ensure the node permutation invariance, variables
share one common set of parameters, while constraints share another set of parameters. As shown in
Fig. 4, dashed boxes of the same color indicate the same trainable parameters. The unitary matrix of
feature encoding layer is denoted as U t

x(G,H,αt) = Ux1
(c, u, b) · Ux2

(αt) · Ux3
(l, ϵ, ◦) · Ux4

(αt).
See the Equation 11 in the Appendix C for their unitary matrix.

3.3 QUANTUM GRAPH MESSAGE INTERACTION LAYER

After the feature encoding layer, the quantum graph message interaction layer is used to update the
information of qubits representing variables and constraints by acting the two-qubit gate on the qubits
connected by an edge. As illustrated in Fig. 5, we show an example of the graph message interaction
layer for the MILP graph in the legend (a) in the case of ω = 2. The unitary of the t-th graph message
interaction layer can be represented by U t

g(G, βt) = U t
gv(G, βt) · U t

gs(G, βt), where βt is the set
of trainable parameters. U t

gv(G, βt) denotes the variable update layer, and U t
gs(G, βt) denotes the

constraint update layer. We define

Ug1(G, β) = exp(−i(
∑

(i,j)∈E

(Ai,j + β)Z2iZ2q+j)), Ug2(G, β) = exp(−i(
∑

(i,j)∈E

(Ai,j + β)Z2i+1Z2q+j)),

(2)
which indicates that the circuit uses RZZ(β) gates with learnable parameters to act on two qubits
representing two nodes connected by the edge. Ug1 denotes the information interaction between the
qubit representing the constraint node and the first qubit representing the variable node. Ug2 denotes
the information interaction of the second qubit representing the variable node. Then, the variable
update layer is defined as

U t
gv(G, β) = Ug1(G, βt,1) · Ug2(G, βt,2) · Ug3(βt,3), Ug3(βt,3) =

q−1⊗
i=0

CRy(βt,3)⊗
p−1⊗
j=0

I. (3)
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Figure 5: Quantum graph message interaction layer consists of a variable update layer and a constraint
update layer. For the bipartite graph in (a) (left top), we present a circuit structure of the layer. The Rzz
gate acts on the vi and sj with Ai,j , and the trainable parameter βt serving as its rotation parameters.
In (b) (left bottom), the dashed box indicates that the gates inside the box share a trainable parameter.

Similarly, the constraint update layer is defined as

U t
gs(G, β) = Ug1(G, βt,4) · Ug2(G, βt,5) · Ug4(βt,6), Ug4(βt,6) = exp(−i(βt,6Y2q+j)). (4)

Each sublayer in the U t
g shares a trainable parameter to maintain the equivariance of our model, which

will be further explained in Sec. 3.6.

3.4 AUXILIARY LAYER
To further enhance the expressive capacity of the model, we introduce an auxiliary layer, which is
optional for different tasks. By adding the auxiliary qubits, we can increase the Hilbert space of
the model and further facilitate the interaction of information within the graph. Specifically, each
auxiliary qubit is connected to all other nodes through Rzz gates. For the two qubits representing
variables, trainable parameters γt,1 and γt,2 are assigned, while parameter γt,3 is assigned to the qubit
representing constraints. Following the application of the two-qubit gates, single-qubit gates Ry(γt,3)
and Rz(γt,4) are applied to the auxiliary qubits. We can choose a varying number of auxiliary qubits.

3.5 MEASUREMENT LAYER AND OPTIMIZATION

The feature encoding layer, graph message interaction layer, and auxiliary layer form a block. After
this block is iteratively repeated T times, Pauli-Z measurement is required to act on the prescribed
qubits. If the number of qubits representing nodes is more than 1, such as the node v1 in Fig. 5,
we will add the control gate at the end of the node update layer, such as the controlled Ry gate in
Fig. 5. Then, at the end of the circuit, we only measure the first qubit representing the node. The
measurements corresponding to Fig. 5 are shown at the end of the overall architecture diagram in
Fig. 3. As we can see, the measurement operation of the model acts on q + p qubits, and we can
obtain q + p output values, where q and p are the numbers of decision variable nodes and constraint
nodes, respectively.

We can represent the MILP graph as G = (V ∪ S,A) and Gq,p as the collection of all such weighted
bipartite graphs whose two vertex groups have size q and p, respectively. All the vertex features are
stacked together as H = (fV

1 , ...,fV
q ,fS

1 , ...,f
S
p ) ∈ HV

q × HS
p . Thereby, the weighted bipartite

graph with vertex features (G,H) ∈ Gq,p × HV
q × HS

p contains all information in the MILP
problem. The proposed model can be described as a mapping Φ : Gq,p ×HV

q ×HS
p → Rq+p, i.e.,

Φ(G,H) = {⟨0|U†
θ(G,H)|Oi|Uθ(G,H)|0⟩}q+p−1

i=0 , where θ denotes the set of trainable parameters
(α,β,γ), and Uθ(G,H) is the unitary matrix of the proposed model. Oi represents i-th measurement,
e.g., when ω is equal to 2, O0 = Z0⊗I1⊗...⊗I2q+p−1 indicates that Pauli-Z measurement is acted on
the qubit representing the first variable, and O1 = I0⊗I1⊗Z2⊗ ...⊗I2q+p−1 for the second variable
node, and Oq+p−1 = I0 ⊗ I1 ⊗ ...⊗ Z2q+p−1 for the last constraint node. The output of EQGNN
is defined as {Φ(G,H)i}p+q−1

i=0 . For predicting feasibility, optimal value and optimal solution, we
defined ϕsol(G,H) = {Φ(G,H)i}q−1

i=0 , and ϕfea(G,H) = ϕobj(G,H) =
∑q+p−1

i=0 Φ(G,H)i. As
we can see, the three tasks use the same structure of EQGNN and the same measurements, but use
different ways to utilize the information obtained by measurements.

For predicting the feasibility, ŷfea = ϕfea(G,H), we utilize the negative log-likelihood as the loss
function to train EQGNN. In the testing, we set an indicator function
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Iŷfea>1/2 =

{
0, ŷfea ≤ 1/2

1, ŷfea > 1/2
(5)

to calculate rate of errors, i.e., 1
M (

∑M−1
m=0 ymfea · Imŷfea>1/2), which is used to evaluate the number of

correct predictions for feasibility, where M indicates the number of tested MILP instances.

For predicting the optimal solutions, ŷsol = λϕsol(G,H), where λ is the maximum range of
variables of training sample, i.e., max{{{abs(lni ), abs(un

i )}
q−1
i=0 }

N−1
n=0 }. We use the mean square

error as the training and testing metric, i.e., 1
Mq

∑M−1
m=0 ∥ysol − ŷsol∥22, where ysol is the groundtruth.

For predicting the optimal values, ŷobj = δλϕobj(G,H), where δ = max{{{cni }
q−1
i=0 }

N−1
n=0 } is the

maximum range of coefficients of training sample. We also use the mean square error to train or
evaluate, i.e., 1

M

∑M−1
m=0 (y

m
obj − ŷmobj)

2.

3.6 EQUIVARIANCE AND INVARIANCE OF THE PROPOSED MODEL

Definition 1. Equivariance. The function ϕ is permutation equivariant if ϕ(σ(G,H)) = σ(ϕ(G,H))
for any σ ∈ Sn, where Sn is the group contains all permutations on the nodes of G, and σ(G,H)
denotes the reordered graph with permutations σ.

Definition 2. Invariance. ϕ is permutation invariant if ϕ(σ(G,H)) = ϕ(G,H) for any σ ∈ Sn.

Theorem 1. (Invariance from equivariance) If a function ϕ1 is permutation equivariant, there exists
a permutation-invariance operation ϕ2, such that ϕ2(ϕ1(G,H)) is permutation invariant.

Given (a1, a2, ..., an) as the output of ϕ1(G,H), and the permutation-invariance operation is sum-
mation. ϕ2(ϕ1(G,H)) =

∑n−1
i=0 ai, and ϕ1(ϕ2(σ(G,H))) =

∑n−1
i=0 aσ(i). Since

∑n−1
i=0 aσ(i) =∑n−1

i=0 ai, ϕ2(ϕ1(G,H)) = ϕ2(ϕ1(σ(G,H))) indicates ϕ2(ϕ1(G,H)) is permutation invariant.

Definition 3. A T -layered QNN (Uθ =
∏T−1

t=0 U t
θ) is permutation equivariant iff each layer is

permutation equivariant. The layer U t
θ of a QNN is permutation equivariant iff U t

θ(σ(G,H)) =
R(σ)U t

θ(G,H), where R is the unitary representation of σ on quantum states.

It means that we can decompose the QNN into multiple sublayers to prove the equivariance.
EQGNN has T identical blocks with respective trainable parameters, and each block con-
sists of three layers. Moreover, each layer has sublayers, such as the feature encoding layer
U t
x(G,H,αt) = Ux1(c, u, b) · Ux2(αt) · Ux3(l, ϵ, ◦) · Ux4(αt), and the message interaction layer

U t
g(G, β) = Ug1(G, βt,1)·Ug2(G, βt,2)·Ug3(βt,3)·Ug1(G, βt,4)·Ug2(G, βt,5)·Ug4(βt,6). The whole

model conforms to permutation equivariance by ensuring that each layer conforms to equivariance.
Definition 4. There are two types of layers in Uθ(G,H), one is independent of the order of nodes,
and the other is related to the order of nodes. We define the layer independent of the node order as
U t(θ) and the layer related to node order as U t(G,H,θ).

For different permutation of input nodes, the layer U t(θ) is identical. In the proposed EQGNN,
Ux2(αt), Ux4(αt), Ug3(βt,3), Ug4(βt,6) and auxiliary layer are the layers that are independent of
the permutation of input, which is implemented by sharing a single trainable parameter over all
qubits representing variables or constraints, making the order of variables and constraints unimpor-
tant. This shows the importance of the proposed parameter-sharing mechanism. Therefore, we
only need to prove the equivariance of the layer U t(G,H,θ) in the proposed EQGNN, including
Ux1

(c, u, b), Ux3
(l, ϵ, ◦), Ug1(G, βt), Ug2(G, βt).

Theorem 2. Ux1
(c, u, b) and Ux3

(l, ϵ, ◦) are equivariant w.r.t. the permutations σv ∈ Sq and
σs ∈ Sp, where Sq is defined as the group contains all permutations on the variables of MILP and
Sp is defined as the group contains all permutations on the constraints.

Ux1(c, u, b) and Ux3(l, ϵ, ◦) can be regarded as the first and third layers in Figure 4, and we can see
Appendix F for the proof.
Theorem 3. Ug1(G, βt) and Ug2(G, βt) are equivariant w.r.t. the permutations σv and σs.

Proof. The difference with Ux1 and Ux3
is that Ug1 and Ug2 involve the topology of the graph.

σvσs(G) = (σv(V ) ∪ σs(S), A
′), where A′ = PσvAPT

σs
, and Pσv and Pσs are the permutation
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matrix of σv and σs, respectively. We can obtain A′
σv(i),σs(j)

= Ai,j . The original edge (i, j) ∈ E ,
and the transformed edges (σv(i), σs(j)) ∈ E ′. According to Ug1(G, βt) in Eq. 2,

Ug1(σvσs(G), βt) = exp(−i(
∑

(σv(i),σs(j))∈E′

(A′
σv(i),σs(j)

+ βt)Z2σv(i)Z2q+σv(j))). (6)

Based on the unitary representation of permutation R(σv) and R(σs), we can obtain

(R(σv)⊗R(σs))(Ug1(G, βt)) = exp(−i(
∑

(i,j)∈E

(Ai,j + βt)Z2σv(i)Z2q+σv(j))). (7)

Although Ai,j = A′
σv(i),σs(j)

, the order of edges in E and E ′ may be different. Therefore, we need to
guarantee the permutation invariance of edges. For example, it should satisfy

exp (−i(Ai1,j1Z2i1Z2q+j1 +Ai2,j2Z2i2Z2q+j2)) = exp(−i(Ai2,j2Z2i2Z2q+j2 +Ai1,j1Z2i1Z2q+j1)). (8)

Since exp(−iAi,jZiZj) is diagonal, and all diagonal matrices commute, the equation holds. Thus,
Eq. 6 and Eq. 7 can be proven to be equal. Note that Rzz gate is not the only option to preserve the
permutation invariant of edges, and the two-qubit gates that can commute in the circuit, such as Ryy
and Rxx, are able to be used to learn the graph information interaction. In a similar way Ug2(G, βt)
can also be proven to be permutation equivariant w.r.t. σv and σs.

By Theorem 2 and 3, we can obtain the layers related to the input order are permutation equivariance.
Then, by Definition 3 and 4, we can obtain the permutation equivariance of our EQGNN.

4 EXPERIMENTS
We first compare the separation power and expressive power of our EQGNN and the GNN used
in (Chen et al., 2023b) on the foldable and unfoldable MILP datasets, respectively. Then, the
performances of different schemes of quantum neural network are compared on the MILP tasks.
We also conduct an ablation study for EQGNN and analyze the trainability of EQGNN. All the
experiments are performed on a single machine with 4 physical CPUs with 224 cores Intel(R)
Xeon(R) Platinum 8276 CPU @ 2.20GHz, and a GPU (NVIDIA A100). Source code is written using
TorchQauntum (Wang et al., 2022a), which is a Pytorch-based library for quantum computing.

4.1 EXPERIMENTAL DETAIL

A classical optimizer Adam (Kingma & Ba, 2014) with an initial learning rate of 0.1 is used to find
the optimal parameters of quantum circuits, including α,β, and γ and batch size is set at 32. The
proposed model has a hyperparameter to control the number of parameters, i.e., the number of blocks
T . The number of our parameters in predicting feasibility is 12T . The GNN (Chen et al., 2023b)
also has one hyperparameter that controls the number of parameters, i.e., the embedding size d. Take
predicting feasibility as an example, the number of their parameters is 30d2+30d. Therefore, we vary
these two hyperparameters separately to compare their performance results. In all our experiments,
we first gradually increase the embedding size/blocks to test the performance of the models and then
find d∗ or T ∗ corresponding to the best performance. Then, we select the values near d∗ or T ∗ and
show their corresponding results.

4.2 DISTINGUISH FOLDABLE INSTANCES
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Figure 6: Comparison on foldable MILPs. “GNN
+ rand”: GNN is applied with random features.

The MILP graphs can be divided into unfoldable and
foldable (Chen et al., 2023b), where foldable MILPs
contain many pairs of 1-WL indistinguishable graphs,
such as an example in Fig. 2. In this section, we ran-
domly generate 2000 foldable MILPs with 12 vari-
ables and 6 constraints, and there are 1000 feasible
MILPs while the others are infeasible. Each train-
ing set or testing set containing 500 feasible MILPs
and 500 infeasible MILPs. Then, we compare the
performance of predicting the feasibility of foldable
MILPs between our EQGNN and the GNN used in
(Chen et al., 2023b) with different numbers of param-
eters. We set the embedding sizes of GNN as 4, 8,
16, 32, respectively. The number of blocks are set to
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Figure 7: Performance comparison of EQGNN and GNN in predicting feasibility and optimal value
of MILPs. GNN exhibits poor generalization performance compared to EQGNN.

2, 4, 6, 8. Fig. 6 shows that GNN fails to distinguish the feasibility of foldable MILPs, regardless of
the size of GNN. To handle the foldable MILPs, Chen et al. (2023b) proposed to append random
features to the MILP-induced graphs, and we also compare the performance of GNN in this case, as
shown in orange lines of the figure. Although GNN with random feature can improve the performance,
it achieves the best when the embedding size is 32, which will cost 30, 565 parameters. In contrast,
EQGNN can achieve accurate test results with just 48 parameters, i.e., 4 blocks. The results verify
the superiority of EQGNN in both accuracy and the number of model parameters for foldable MILPs.

4.3 EXPERIMENTS ON UNFOLDABLE MILP
Although GNN cannot distinguish foldable MILPs, it is still capable of distinguishing and representing
unfoldable MILPs (Chen et al., 2023b). Therefore, we compare the ability of EQGNN and GNN
to predict feasibility, objective and solution on unfoldable instances. We randomly generate 8, 290
unfoldable MILPs with 4 variables and 4 constraints, where feasible MILPs and infeasible MILPs
account for one-half, respectively. The dataset is then equally divided into the train set and test set.

Feasibility and Optimal value. As shown in Fig. 7, the performance of predicting the feasibility and
objective of unfoldable MILPs is compared between EQGNN and GNN with different parameter
counts. For predicting feasibility, the embedding size of the GNN is set as 2, 4, 6, 8, and the number
of blocks of EQGNN is set as 2, 4, 6, 8. Moreover, since the problem of predicting the optimal value
is more complicated, the embedding size of the GNN is set as 4, 8, 16, 32, and the number of blocks
of EQGNN is set as 4, 6, 8, 12. From the result, we can see that although GNN has better train error
as the number of parameters increases, the generalization error increases gradually, such that almost
all of the results on the test set are worse than our EQGNN. This means that EQGNN can utilize
fewer parameters to achieve better test results and generalization performance.

Optimal solution. Considering the large gap between GNN’s train and test results, we then compare
the ability to approximate optimal solutions by drawing the loss function curve, as illustrated in
Fig. 8. For the sake of clarity in the diagram, we only select two hyperparameters of each model for
comparison. We trained EQGNN with the number of blocks at 6, 10, and the number of parameters is
88 and 148. The embedding size of GNN is chosen as 8 and 16 with the number of parameters at 2,096
and 7,904. We observe that the train performance of GNN increases as the number of parameters
increases, but the generalization performance decreases. The train performance of GNN with d = 8
is worse than that of EQGNN, and the train performance of GNN with d = 16 is better than that of
EQGNN. Therefore, we choose the GNNs with these two hyperparameters for comparison. The figure
demonstrates that EQGNN has a faster convergence rate and a better generalization performance.

4.4 COMPARISON WITH OTHER QUANTUM MODELS

Recall Table 3 that most quantum graph neural networks do not consider the feature of the edges.
However, the edge features are vital for solving MILP, so we only compare with the QGNN that
considered edge features, i.e., quantum graph convolutional neural network (QGCN) (Zheng et al.,
2021). In addition, to compare the performance of the problem-agnostic and problem-inspired model,
the hardware-efficient ansatz (HEA) (Kandala et al., 2017) is employed. Table 1 reports the rates of
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HEA
(Kandala et al., 2017)

QGCN
(Zheng et al., 2021)

EQGNN
(ours)

Train 0.4613 0.3419 0.1086
Test 0.4665 0.3475 0.1127

Table 1: Comparison between different quantum mod-
els on predicting the feasibility of MILPs, where HEA is
problem-agnostic ansatz and QGCN is a quantum graph
neural network considering the edge features.

# Aux. qubits 0 1 2 3

Train 0.6580 0.6166 0.5861 0.6299
Test 0.6853 0.6410 0.6141 0.6554

Table 2: Performance change of EQGNN as the
number of auxiliary qubits increases on the task
of approximating optimal solution of MILPs.

error on predicting the feasibility with different quantum models on an MILP dataset with 3 variables
and 3 constraints, which is already close to the limit of our machine simulation QGCN algorithm due
to the required number of qubits used by QGCN. In this MILP dataset, QGCN needs 18 qubits while
our EQGNN only requires 9 qubits. Moreover, we set the number of parameters of all quantum models
as 96 to compare their performance. The result shows that problem-agnostic ansatz cannot effectively
learn the separability of samples from graph data. Although QGCN is a problem-inspired ansatz and
design equivariant graph convolution layer, their pooling layers break permutation invariance, leading
to performance degradation in predicting feasibility of MILP instances. By contrast, our EQGNN
can ensure the permutation invariance of the model to achieve better results.

4.5 SCALABILITY AND TRAINABLITY
We now study the effect of width of the circuit increased, i.e., using more the number of qubits to solve
larger scale problems. A larger circuit width means a larger Hilbert space for the model. However,
to maintain equivariance, our model sets the parameter-sharing mechanism, which means that the
parameter count within a single block does not increase with the size of the problem. Therefore,
to obtain better expressivity for larger problems, a direct way is to increase the number of blocks.
In addition, the auxiliary layer in our model is also designed to enhance model expressiveness.
By utilizing auxiliary qubits, we can increase both the model’s parameters and its capacity while
preserving equivariance. Table 2 shows the performance variation of EQGNN in approximating the
optimal solution with an increasing number of auxiliary qubits.

When the number of qubits increases, the trainability becomes an issue. It has been shown that
generic QNNs suffer from massive local minima (Bittel & Kliesch, 2021) or are prone to barren
plateau (McClean et al., 2018), i.e., the loss gradients vanish exponentially with the problem size.
Fig. 9 shows the variance of our cost function partial derivatives for a parameter in the middle of
the EQGNN. We can see that the variance only decreases polynomially with the system size, which
shows the potential of EQGNN to handle larger scale problems.

5 CONCLUSION AND OUTLOOK

In this paper, we have presented an Equivariant Quantum Graph Neural Network (EQGNN) approach
for solving the MILP problems, to our best knowledge, which has not been devised in literature before.
Numerical experiments show that the EQGNN can resolve graphs that GNN cannot distinguish.
Moreover, compared with GNN, EQGNN also shows better generalization performance, faster
convergence speed, and fewer parameters. The MILP problem can be converted to a weighted
bipartite graph with node features, and then predicting feasibility and optimal solution can be
regarded as graph classification and regression tasks, which also suggests its broad use as a general
quantum neural network for solving more classification and regression problems.
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A RELATED WORK

Quantum Graph Neural Networks Various quantum graph neural networks have been presented.
(Verdon et al., 2019) proposed a class of graph neural networks by defining operations in terms of
Hamiltonians based on the graph structure. However, their models are restricted to Hamiltonians of
specific forms, thereby cannot flexibly and efficiently encode classical high-dimensional node or edge
features of the graphs to solve some classical tasks. (Zheng et al., 2021) designed a specific quantum
graph convolutional neural network (QGCN), which uses amplitude encoding method to encode node
and edge features and employs qubits representing edges as control qubits to apply unitaries to the
two qubits representing nodes connected by that edge. Nevertheless, the usage of edge qubits will
lead to the number of qubits of the model scales quadratically with the number of nodes. Moreover,
the pooling layer and measurement operator of QGCN will indeed result in the loss of permutation
invariance of the entire model. (Ai et al., 2022) presented an ego-graph based Quantum Graph Neural
Network (egoQGNN), which decomposes the input graph into smaller-scale subgraphs and feeds
them into the circuit. However, due to the use of entanglement layers within the model, it still does
not possess permutation invariance.

Equivariant Quantum Neural Networks Recently, a nascent field named geometric quantum
machine learning (GQML) (Larocca et al., 2022; Nguyen et al., 2022) has been developed, which
leverages the machinery of group and representation theory (Ragone et al., 2022) to build quantum
architectures that encode symmetry information about the problem. Schatzki et al. (2022) provide
an analytical study of Sn-equivariant QNNs and prove that they do not suffer from barren plateaus,
quickly reach overparametrization, and can generalize well from small amounts of data. The
equivariant QNNs can used to learn various problems with permutation symmetries abound, such
as molecular systems, condensed matter systems, and distributed quantum sensors (Peruzzo et al.,
2014; Guo et al., 2020), namely, they are also not specifically designed to solve classical graph tasks.
(Mernyei et al., 2022) first proposed a theoretical recipe for building permutation equivariant quantum
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Method Quantum Circuit
Embodied

Permutation
Invariance Attribute Layer Readout Application

QGNN
(Verdon et al., 2019)

% ! Q Tomography Learning Hamiltonian Dynamics
& Graph Isomorphism Classification

QGCN
(Zheng et al., 2021)

! % Node & Edge Q Estimation Image Classification

egoQGNN
(Ai et al., 2022)

! % Node Q & C Tomography Graph Classification

EQGC
(Mernyei et al., 2022)

% ! Node Q & C Estimation Synthetic Cycle Graph Classification

Ours ! ! Node & Edge Q Estimation Graph Classification & Regression

Table 3: Comparison of different quantum graph neural networks including our method on whether
the models provide explicit circuits, exhibit permutation invariance, consider multi-dimensional
node or edge features, utilize quantum (Q) layers or classical (C) layers, and the readout manner
(tomography or estimation), where the tomography may require an exponentially large number of
measurements. Our proposed model shows sound properties many aspects and can be applied to
graph classification and regression tasks on real graph problems as also verified in our experiments.

graph circuits (EQGC) and aggregated the output of the quantum circuit by classical functions to
ensure permutation invariance of the model. Nevertheless, the EQGC does not provide the specific
circuit implementation and does not consider the case of weighted graphs in their model. In addition,
another QNN with permutation equivariance (Ye et al., 2023) is proposed, which is specially designed
for solving quadratic assignment problems, but their model only encodes the graph information and
then employs the shared problem-agnostic ansatz to learn the representation of each node. Thus, their
model does not contain the learnable graph message interaction layer.

Quantum Algorithms for MILP Mixed-Integer Linear Programming (MILP) is a mathematical
optimization approach that aims to find the best solution to a linear objective function while imposing
constraints on some or all of the variables to be integers. MILP is widely used in various practical
applications such as process scheduling (Floudas & Lin, 2005), transportation (Richards & How,
2002), and network design (Fortz & Poss, 2009). Recently, researchers are endeavoring to employ
quantum computing to assist in solving the MILP. (Zhao et al., 2022) proposed a hybrid quantum-
classical Benders’ decomposition algorithm, which decomposes an MILP problem into a Quadratic
unconstrained binary optimization (QUBO) problem solved by quantum computer and a subproblem
easily tackled by classical computers. (Ossorio-Castillo & Pena-Brage, 2022) described a algorithm
based on Dantzig–Wolfe decomposition. Different from (Zhao et al., 2022), the algorithm then solve
several either continuous or binary subproblems instead of a mixed one. (Wang et al., 2022b) pointed
out that quantum-inspired Ising machines can be used to solve MILPs by reducing them into Ising
models. However, the above algorithms are based on unconstrained Ising models, while MILPs
subject to complex constraints. Their common solution is to introduce a penalty to the algorithm. A
proper penalty is of great importance because an extremely large penalty may cause quantum annealer
malfunctioning since it will explode the coefficients while a soft penalty may make quantum annealer
ignore the corresponding constraints (Zhao et al., 2022). However, there is no instruction on how to
tune the penalty and it may even be different to various MILP problems. In contrast, our approach
leverages QML to represent MILP problems, thereby pioneering a novel direction for harnessing
quantum computing in aiding MILP solutions, there is promising for witnessing the emergence of
new paradigms that combine quantum and classical methods for MILP solving.

Remark. Equivariant Graph Neural Networks have garnered significant attention, especially in their
applications for handling molecular systems within 3D spaces (Liu et al., 2022; Hoogeboom et al.,
2022). Within the domain of computational biology, the concept of equivariance, as related to the
inherent symmetries of molecular systems, postulates the following: when spatial transformations,
such as rotations or translations, are applied to the input atomic coordinates, the output coordinates
produced by the network should also manifest these transformations in a congruent manner (Satorras
et al., 2021; Gasteiger et al., 2021). However, in the context of this paper, our definition of equivariance
is specifically oriented towards the notion that the output of the graph neural network maintains an
equivariant relationship with respect to the sequential arrangement of nodes in the input graph.

B EQGNN CAN DISTINGUISH GNN INDISTINGUISHABLE MILP GRAPHS

The separation power of GNN is measured by whether it can distinguish two non-isomorphic graphs
(Chen et al., 2023b) and it has been shown that GNN has the same separation power with the WL
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Figure 10: Diagram of the properties of equivariant (a) and invariant (b) models. For equivariant
models, when the input node has a permutation σ, the output is equivalent to the original one with the
same permutation σ. For invariant models, the permutation of input nodes will not affect output Y .

Algorithm 1: WL test for MILP-Graphs

Input: A graph instance (G,H) ∈ Gq,p ×HV
q ×HS

p , and iteration limit L > 0.
1 Initialize with c0v = hash(fV ) for all v ∈ V , c0s = hash(fS) for all s ∈ S.
2 foreach l = 1, 2, ...L do
3 clvi

= hash(cl−1
vi ,

∑p−1
j=0 Ai,jhash(c

l−1
sj )), for all v ∈ V

4 clsj = hash(cl−1
sj ,

∑q−1
i=0 Ai,jhash(c

l−1
vi )), for all s ∈ S

5 end
Result: The multisets containing all colors {{clv : v ∈ V, cls : s ∈ S}}

test (Xu et al., 2018). Therefore, we first demonstrate why 1-WL test and GNNs fail to distinguish
between some non-isomorphic graphs (i.e., components of the foldable dataset), and then demonstrate
how our EQGNN distinguishes between them, and thus show that EGNN can surpass the separation
power of GNNs. We present a variant of WL test specially modified for MILP that follows the same
lines as in Chen et al. (2023b).

In the algorithm, hash() is a function that maps its input feature to a color in C. The algorithm flow
can be seen as follows. First, all nodes in V supS are assigned to an initial color c0v and c0s according
to their node features. Then, for each vi ∈ V , hash function maps the previous color cl−1

vi
and

aggregates the color of the neighbors of {cl−1
sj }sj∈N (vi). Similarly, hash function maps the previous

color cl−1
sj and aggregates the color of the neighbors of {cl−1

vi }vi∈N (sj). This process is repeated until
L reaches the maximum iteration number. Finally, a histogram hG of the node colors can be obtained
according to {{clv : v ∈ V, cls : s ∈ S}}, which can be used as a canonical graph representation. The
notation {{·}} denotes a multiset, which is a generalisation of the concept of set in which elements
may appear multiple times: an unordered sequence of elements. That is, the 1-WL test transforms a
graph into a canonical representation, and then if the canonical representation of two graphs is equal,
1-WL test will consider them isomorphic.

Next, we show a case where the 1-WL test fails. Taking Fig. 2 as an example, we feed (a) and (b) from
Fig. 2 into this algorithm separately and compare the differences at each step. Initially, each variable
vertex has the same color c0v , and each constraint vertex has the same color c0s, because their features
are the same. This step is the same for Fig. 2(a) and Fig. 2(b). Then, each vertex iteratively updates
its color, based on its own color and information from its neighbors. Since each vi is connected
to two sj1 , sj2 in both (a) and (n), they will also obtain the consistent clv and cls at this step. That
is, (a) and (b) will get the same representation by the algorithm, and they cannot be distinguished
by 1-WL test GNNs. Moreover, Xu et al. (2018) show that GNNs are at most as powerful as the
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1-WL test in distinguishing graph structures. Therefore, a pair of 1-WL indistinguishable graphs are
indistinguishable by GNNs.

For EQGNN, the subfigure (a) and (b) of Fig. 2 can be clearly distinguished. Since the two graphs
differ only in the connectivity of edges, we only consider the modules associated with edges in
EQGNN, i.e., Ug1 and Ug2. In subfigure (a) node v3 is connected to s3 and s4, while in subfigure
(b) node v3 is connected to s3 and s1. Therefore, the difference between Ug1(Ga, β) and Ug1(Gb, β)
includes exp(−i((A3,4 + β)Z2∗3Z2∗6+4)) and exp(−i((A3,1 + β)Z2∗3Z2∗6+1)). Since the edge
weights and the parameter β are equal, we can just compare exp(−i(Z6Z13)) and exp(−i(Z6Z16)).
These two values are obviously not equal, so Ug1(Ga, β) ̸= Ug1(Gb, β) and the overall model
U(Ga, H) ̸= U(Gb, H). Thereby, EQGNN can distinguish such graphs that the 1-WL test and
GNNs cannot.

C THE SEPARATION POWER OF EQGNN

Theorem 4. EQGNN can encode the two different graphs to different representation.

Suppose there are two graphs G1 = (G1, H1) = (V1 ∪ S1, A1, H1) and G2 = (G2, H2) = (V2 ∪
S2, A2, H2), and the differences between the two graphs may appear in three places, i.e., the features
of nodes, the weight and connectivity of edges. As we mentioned in Definition 4, there are two types
of layers in Uθ(G,H), one is independent of input graph (G,H), and the other is related to input
graph (G,H). In the proposed EQGNN, only Ux1

(c, u, b) and Ux3
(l, ϵ, ◦) are related to the features

of nodes. And Ug1(G, βt) and Ug2(G, βt) are related to the weight and connectivity of edges.

For A1 = A2, H1 ̸= H2, the only difference between two quantum circuits is Ux1
(c, u, b) and

Ux2(l, ϵ, ◦). Taking Ux1(c, u, b) for example, Ux1(c, u, b) = exp(−i(
∑q−1

i=0 (ciX2i + uiX2i+1) +∑p−1
j=0 bjX2q+j)). If any feature changes, Ux1

will change, causing Uθ(G1, H1) and Uθ(G2, H2) to
be different.

For A1 ̸= A2, H1 = H2, there are two cases where the connections of the edges are different or the
weights of the edges are different. We have already demonstrated the former in Appendix B, and now
we focus on the latter. Ug1(G, β) = exp(−i(

∑
(i,j)∈E(Ai,j + β)Z2iZ2q+j)). The change of Ai,j

will lead the change of Ug1(G, β), causing Uθ(G1, H1) and Uθ(G2, H2) to be different.

The discussion on A1 ̸= A2, H1 ̸= H2 as follows. As we can see, in the feature encoding layer, we use
the exp(−if(X)) gate to encode features, and the graph information interaction uses exp(−ib(ZiZj)),
where f ∈ H denotes features and b ∈ A denotes edge weights. We specially use different Pauli
gates (X and Z) as the bases of the two layers, so as to ensure that as long as one of the layers
changes, the whole unitary changes.

D DATASET GENERATION

Foldable dataset is constructed by many pairs of 1-WL indistinguishable graphs, and Fig. 2 in our
paper is a foldable example, which is a pair of non-isomorphic graphs that cannot be distinguished by
WL-test or by GNNs, while unfoldable dataset refers to other MILP instances that do not have 1-WL
indistinguishable graphs.

In section 4.2, we randomly generate 2000 foldable MILPs with 12 variables and 6 constraints, and
there are 1000 feasible MILPs with attachable optimal solution while the others are infeasible. We
construct the (2k − 1)-th and 2k-th problems via following approach (1 ≤ k ≤ 500).

• Sample J = {j1, j2, ..., j6} as a random subset of {1, 2, ..., 12} with 6 elements. 1. For
j ∈ J , xj ∈ {0, 1}, i.e., xj is a binary integer variable. 2. For j /∈ J , xj is a continuous
variable with bounds lj ∼ U(0, π), uj ∼ U(0, π). If lj > uj , then switch lj and uj .

• c1 = ... = c12 = 0.01.

• The constraints for the (2k − 1)-th problem (feasible) is xj1 + xj2 = 1, xj2 + xj3 = 1,
xj3+xj4 = 1, xj4+xj5 = 1, xj5+xj6 = 1, xj6+xj1 = 1. For example, x = (0, 1, 0, 1, 0, 1)
is a feasible solution.
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• The constraints for the 2k-th problem (infeasible) is xj1 + xj2 = 1, xj2 + xj3 = 1,
xj3 + xj1 = 1, xj4 + xj5 = 1, xj5 + xj6 = 1, xj6 + xj4 = 1. An explanation for why it
is infeasible: we add the first three formulas together to get 2(xj1 + xj2 + xj3) = 3, but
xj ∈ {0, 1} for j ∈ J , so there will be no solution that satisfies this equation and the MILP
problem must be infeasible.

For unfoldable MILPs, we first set the number of variables and constraints to m and n.

• For each variable, cj ∼ N (0, 0.01), lj , uj ∼ N (0, π). If lj > uj , then switch lj and uj .
The probability that xj is an integer variable is 0.5.

• For each constraint, ◦i ∼ U(≤,=,≥) and bi ∼ U(−1, 1).
• After randomly generating all the MILP samples, we use the 1-WL test algorithm to

calculate their graph representation for each instance, ensuring that there are no duplicate
graph representations in the dataset, so that we can determine that this dataset does not
contain 1-WL indistinguishable pairs of MILP instances.

E THE EFFECTIVE DIMENSION OF EQGNN

Abbas et al. (2021) introduce the effective dimension as a useful indicator of how well a particular
model will be able to perform on the dataset. And we use the presented tool to quantify the
expressiveness of our model. In particular, this algorithm follows 4 main steps:

1) Monte Carlo Simulation: the forward and backward passes (gradients) of the neural network are
computed for each pair of input and weight samples.

2) Fisher Matrix Computation: these outputs and gradients are used to compute the Fisher Information
Matrix.

F̃k(θ) =
1

k

k∑
j=1

∂

∂θ
log p(xj , yj ; θ)

∂

∂θ
log p(xj , yj ; θ)

T,

where (xj , yj)
k
j = 1 are i.i.d. drawn from the distribution p(x, y; θ).

3) Fisher Matrix Normalization: averaging over all input samples and dividing by the matrix trace.

4) Effective Dimension Calculation: according to the formula

dγ,n(MΘ) := 2

log

(
1
VΘ

∫
Θ

√
det

(
idd +

γn
2π logn F̂ (θ)

)
dθ

)
log

(
γn

2π logn

) ,

where MΘ is a statistical model with γ ∈ (0, 1], Θ ∈ Rd and data samples n ∈ N. VΘ :=
∫
Θ
dθ ∈

R+ is the volume of the parameter space. F̂ij ∈ Rd×d is the normalised Fisher information matrix
defined as

F̂ij(θ) := d
VΘ∫

Θ
tr(F (θ))dθ

Fij(θ).

We test the proposed model with two blocks on the MILP dataset and use the random weight to
evaluate the normalized effective dimension. As shown in Fig. 11, with the increase in the number of
data, the normalized effective dimension of the proposed model can converge to near 0.75, which
shows that our model can achieve good expressiveness even with two blocks.

F PROOF OF THEOREM 2

Proof. Ux1(c, u, b) =
⊗q−1

i=0 [Rx(ci)⊗ Rx(ui)] ⊗ [
⊗p−1

j=0 Rx(bj)], where c and u are the features
of variables, and b is the feature of constraints. After the order of the input nodes is changed,
Ux1(σv(c, u), σs(b)) =

⊗q−1
i=0

[
Rx(cσv(i))⊗ Rx(uσv(i))

]
⊗ [

⊗p−1
j=0 Rx(bσs(j))]. The representation

R(σv) can be implemented by a sequence of SWAP gates, swapping the 2i-th qubit for the 2σv(i)-th
qubit and swapping the (2i+ 1)-th qubit for the (2σv(i) + 1)-th qubit. The representation R(σs) can
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Figure 11: The effective dimension of EQGNN. With the increase in the number of data, the
normalized effective dimension of the proposed model can converge to near 0.75.

also be implemented by a sequence of SWAP gates, swapping the j-th qubit for the σs(j)-th qubit.
Such that (R(σv)⊗R(σs))Ux1

(c, u, b) =
⊗q−1

i=0

[
Rx(cσv(i))⊗ Rx(uσv(i))

]
⊗ [

⊗p−1
j=0 Rx(bσs(j))] =

Ux1
(σv(c, u), σs(b)). Thereby, Ux1

(c, u, b) is equivariant w.r.t. the permutations σv and σs.
Ux3(l, ϵ, ◦) =

⊗q−1
i=0 [Rz(li)⊗ Rz(ϵi)] ⊗ [

⊗p−1
j=0 Rz(◦j)], which has a similar structure and can

be similarly proven to be equivariant.

G FORMULAS

Quantum circuits comprise quantum gates. Some commonly used single-qubit gates include the
Pauli-X gate, the Pauli-Y gate, and the Pauli-Z gate, which correspond to rotations of π around the x,
y, and z axes on the Bloch sphere, respectively. Parametric quantum circuits (PQCs) mean the used
quantum gates are usually parameterized, namely, the gates contain learnable parameters, e.g., Rx(θ),
Ry(θ), Rz(θ), Rzz(θ). We can use classical optimizers to minimize a cost function by adjusting the
parameters of quantum gates. The cost is evaluated by applying the PQC to a set of input states and
measuring the output probabilities and is typically chosen to be related to the objective function of
the optimization task. The common parametric quantum gates include

Rx(θ) =

[
cos

(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos

(
θ
2

) ]
Ry(θ) =

[
cos

(
θ
2

)
− sin

(
θ
2

)
sin

(
θ
2

)
cos

(
θ
2

) ]
(9)

Rz(θ) =

[
e−i θ

2 0

0 ei
θ
2

]
Rzz(θ) =


e−i θ

2 0 0 0

0 ei
θ
2 0 0

0 0 ei
θ
2 0

0 0 0 e−i θ
2

 . (10)
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Embedding
size (d) 1 2 3 4 5 6 7 8 9 10 11 12

# Param. 36 104 204 336 500 696 924 1184 1476 1800 2156 2544
Train err 0.5 0.1216 0.0882 0.0787 0.0627 0.0635 0.0534 0.0436 0.0235 0.008 0.007 0.003
Test err 0.5 0.1285 0.1062 0.1057 0.0924 0.0991 0.0983 0.1133 0.0950 0.0821 0.0897 0.0888

Generalization
error 0 0.0069 0.0180 0.0270 0.0297 0.0356 0.0449 0.0697 0.0715 0.0741 0.0827 0.0858

Table 4: Performance of GNNs with 1 layer at different embedding sizes on the predicting feasibility
on the unfoldable dataset.

# Blocks (T ) 1 2 3 4 5 6 7 8 9 10

# Param. 12 24 36 48 60 72 84 96 108 120
Train err 0.0988 0.091 0.0868 0.0822 0.0757 0.0733 0.0707 0.0655 0.0632 0.0618
Test err 0.1001 0.096 0.0913 0.0834 0.0768 0.0745 0.0721 0.0674 0.0655 0.0634

Generalization
error 0.0013 0.005 0.045 0.0012 0.0011 0.0012 0.0014 0.0019 0.0021 0.0016

Table 5: Performance of EQGNN with different numbers of blocks on the predicting feasibility on
the unfoldable dataset.

The feature encoding layer can be seen as being made of four layers, i.e., U t
x(G,H,αt) =

Ux1
(c, u, b) · Ux2

(αt) · Ux3
(l, ϵ, ◦) · Ux4

(αt), where:

Ux1
(c, u, b) =exp

−i

q−1∑
i=0

(ciX2i + uiX2i+1) +

p−1∑
j=0

bjX2q+j


Ux2

(αt) =exp

−i

(

q−1∑
i=0

(αt,1X2i + αt,2X2i+1) +

p−1∑
j=0

αt,5X2q+j


Ux3

(l, ϵ, ◦) =exp

−i

q−1∑
i=0

(liX2i + ϵiX2i+1) +

p−1∑
j=0

◦jX2q+j


Ux4

(αt) =exp

−i

q−1∑
i=0

(αt,3X2i + αt,4X2i+1) +

p−1∑
j=0

αt,6X2q+j

 .

(11)

H NUMERICAL EXPERIMENTS

In this section, we provide more numerical experiments to show the performance change of GNN
and EQGNN as the number of parameters increases. As shown in Table 4, the train errors of GNN
decrease as the parameter counts increase, but the generalization errors increase as the number of
parameters increases. Moreover, the test errors of GNN stay stable at around 0.09. In contrast, the
test and train errors of EQGNN can decrease as the parameter counts increase, and the generalization
errors are always small, such that EQGNN can achieve better results than GNN on the unfoldable
dataset. In addition, we can compare the GNN with d = 1 with EQGNN with T = 3, because they
have the same number of parameters. In this case, EQGNN can achieve better results than GNN in
both training and testing. Similarly, comparing GNN with d = 2 with EQGNN with T = 9, we can
obtain similar results. Furthermore, as we can see, only when GNN has more than 696 parameters
does its train performance exceed EQGNN with 120 parameters. However, GNN with 696 parameters
has poor generalization performance, such that the test performance of GNN is much lower than that
of EQGNN.
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