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Abstract

We present LMFusion, a framework for empowering pretrained text-only large
language models (LLMs) with multimodal generative capabilities, enabling them
to understand and generate both text and images in arbitrary sequences. LMFusion
leverages existing Llama-3’s weights for processing texts autoregressively while
introducing additional and parallel transformer modules for processing images
with diffusion. During training, the data from each modality is routed to its dedi-
cated modules: modality-specific feedforward layers, query-key-value projections,
and normalization layers process each modality independently, while the shared
self-attention layers allow interactions across text and image features. By freezing
the text-specific modules and only training the image-specific modules, LMFusion
preserves the language capabilities of text-only LLMs while developing strong
visual understanding and generation abilities. Compared to methods that pretrain
multimodal generative models from scratch, our experiments demonstrate that LM-
Fusion improves image understanding by 20% and image generation by 3.6% while
maintaining Llama-3’s language capabilities. We also show that this framework
can adapt existing vision-language models with multimodal generation ability.

1 Introduction

Over the past few years, we have seen significant progress in multimodal generative models capable
of understanding and generating interleaved text and images in arbitrary sequences [, 2, [3]. Models
like Transfusion [4], Chameleon [5]], and Unified-IO [6l [7] demonstrate the potential of unified
architectures that seamlessly handle both image and text modalities. However, these models typically
train from scratch, demanding significant computational resources to achieve proficiency across all
modalities. The computational cost of mastering even a single modality is substantial—training a
state-of-the-art text-only large language models (LLMs) like Llama-3 [§]] requires training over 15
trillion tokens.

Given these computational demands, we investigate an alternative paradigm that reuses and adapts
existing pretrained LLMs [9, (10, [11]. We address a fundamental research question: How to preserve
the text-only performance of pretrained LLMs while equipping them with visual understanding and
generation abilities? Our experiments show that naive finetuning of text-only LLMs on multimodal
data leads to significant degradation of their language processing capabilities.

To address this challenge, we introduce LMFusion, a framework that enhances a pretrained text-only
LLM, Llama-3 [8] with multimodal capabilities by building upon the recipe of Transfusion [4].
Drawing from recent and parallel work on modality separation [12} 13} [14}|15], LMFusion integrates
the original Llama modules pretrained for language processing while introducing additional dedicated
transformer modules for visual understanding and generation tasks. As shown in we
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Figure 1: Overview of LMFusion. It uses modality-specific FFNs and QKV projections to process
text and image data separately: the text “A cat with secrets to keep” goes to the text module , while

the image patches of the cat goes to the image module. In the self-attention layer, text and image

representations can attend to all previous contexts across the modality boundaries. Both modules
are initialized from Llama-3, with the text module frozen to preserve language capabilities while the
image module trained on image data. Layer normalization and residual connections are folded into
the QKV and FFN modules. A special BOI token separates different modalities.

employ modality-specific query-key-value (QKV) projections and feed-forward networks (FFNs) to
process text and image data separately while still allowing for cross-modal interactions in the joint
self-attention layer. By freezing the text modules while finetuning the image modules, we preserve
the language-only capabilities of pretrained LLMs while giving a head start to the learning of visual
understanding and generation. Compared to pretraining multimodal generative models from scratch,
this approach avoids the need to include text-only data in the training process, significantly reducing
the computational demands.

To evaluate the effectiveness of our approach, we conduct comprehensive experiments comparing
LMFusion with Transfusion in controlled settings. Specifically, we initialize our LMFusion archi-
tecture with a pretrained Llama-3 8B model [8]] and continue training on the same image data as
in Transfusion [4]]. Compared to Transfusion, LMFusion achieves a 20% improvement in image
understanding and 3.6% improvement in image generation. It also preserves Llama-3’s text-only per-
formance that outperforms Transfusion by 11.6%. [Figure 2|presents images generated by LMFusion.
Additionally, we further demonstrate that this framework can adapt existing vision-language models
(e.g., LLaVA) with multimodal generation ability.

Through ablation studies, we analyze the key architectural decision for LMFusion: separating both
self-attention and FFNs for different modality data while freezing weights for the pretrained language
modality. We show that naive finetuning of the dense pretrained LLMs on multimodal data (no
separation) leads to a catastrophic forgetting of their original language capabilities. Furthermore,
deep separation proves to be more effective than shallow separation (using modality-specific FFNs
only), with both approaches outperforming models with no separation.

2 Background: Transfusion

Transfusion [4] is a single unified multimodal model that is capable of text generation, image
understanding, and image generation tasks, by jointly predicting next tokens in language and diffusing
image representations. Given a multimodal input (2™, ™$), Transfusion jointly learns to do
language modeling (§2.1) on =™ and image diffusion ( on x¢_ Its architecture is same as a
standard Transformer [16] with an additional U-Net [17]] that projects image representations down
and up before and after diffusion.
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Figure 2: Generated images from LMFusion fine-tuned on aesthetically appealing images for im-
proved quality.

2.1 Language Modeling

Given a sequence of discrete language tokens =™ = 277, ... 2\, a language model 6 represents its

joint probability by P(x™) = Hfil Py(«f | ;). This formulation sets up an autoregressive task,
where each token x5 is predicted based on its preceding tokens x”;. The language model is learned
by minimizing the cross-entropy between P, and the observed data distribution, which is commonly
referred to as the LM loss:

Lim = Egu[—log Py(af" | 2, ™)) M

Optionally, if there exists image data preceding the language tokens (e.g., image-caption data),
Transfusion adds the representation of ¢ as additional condition to the objective. More details of
representing "¢ are presented below.

2.2 Image Diffusion

Given a raw image, Transfusion first encodes the image into a sequence of continuous latent represen-
tation ¢ with a pretrained and frozen VAE tokenizer [18]. It then employs Denoising Diffusion
Probabilistic Models (i.e., DDPM) to learn to reverse a gradual noise-addition process added in
the forward process [19]. In the forward diffusion process, a Gaussian noise € ~ N (0, 1) is added
to the image representation "¢ over T steps, creating a sequence of noisy image representations
xo, x1,..., 7. Specifically, at each step ¢, the noisy image representation is given by:

2" = Vo™ + /1= ae @
Here a; follows a common cosine schedule [20]. In the reverse process, the diffusion model €4(-)

with parameters 6 learns to predict the added noise € given the noisy data a:img at timestep ¢ and a
context ™ that can include text prompts such as captions to the image diffusion:

Lopem = Egime g e[||€ — €a(x)", ¢, 2™)|3] 3)

The Transfusion architecture contains U-Net downsampler and upsampler to reduce the dimension
of 8. The U-Net downsampler transforms the image into fewer patches before the main Trans-
former modules while the upsampler projects them back to the original dimension of 8 after the
Transformer.

ISimilar to 2, this context can also include image representations ™ under an image editing setup. We omit

it in the notation for simplicity.



2.3 Training Objective

During training, Transfusion is optimized to predict both the LM loss on the text input ' and the
diffusion loss on the image input "8, These two losses are combined using a hyperparameter \:

Lranstusion = LM + A - Lpppm 4
3 LMFusion

One notable feature of Transfusion is that it has the same architecture as mainstream LLMs (e.g.,
Llama [21]]) while being capable of text generation, image understanding, and image generation
together, through an end-to-end training (Equation 4). [4] trains Transfusion from scratch using
language-only and image-caption data. However, such training from scratch requires substantial
computational resources, and its performance on language-only tasks still lags behind the pretrained,
text-only LLMs. In this work, we aim to effectively adapt pretrained, text-only LLMs to handle image
understanding and generation tasks. Specifically, we build on an open-weight LLM, Llama-3 [§]], and
continue training it with the Transfusion objectives to handle both modalities. Since Transfusion uses
shared parameters for its language modeling and image diffusion objectives, the key challenge is to
prevent Llama-3’s strong text-only performance from dropping while optimizing for its new image
capabilities.

3.1 Model Architecture

In response to the challenge above, we propose LMFusion, a framework that combines a pretrained,
text-only Llama model with a dedicated image transformer for visual generation and understanding,
enabling each modality to be processed through independent weights. By freezing the text modules
while finetuning the visual modules, we preserve its language-only capabilities while giving the
learning of visual understanding and generation a boost start.

LMFusion is a decoder-only model consisting of N transformer layers. As shown in
central to the design are the modality-specific attention layer and Feed-Forward Network (FFN)
each handling only data from its corresponding modality. Without loss of generality, we describe
LMFusion below in a configuration with a single transformer layer, folding residual connections and
layer normalization directly into the self-attention and FFN. The inputs to the model are text tokens

™ and noisy image representations a:'mg = Ja;x™s + /T — &se. We use blue for text-specific
modules and red for image-specific modules.

Input projection The input text tokens ™ are projected by a linear embedding layer to a sequence

of text hidden states k.. The noisy image mimg are projected to a sequence of image representations
h;'¢ via a U-Net downsampler.

hﬁi’ = Projtext (mm) Q)
h"™ = UNet-Downinmg (2}, t) (6)

Then the text hidden states h{\ or image hidden states h'mg are fed into the following attention layer.

Modality-specific self-attention We create separate attention matrices for each modality. Specif-
ically, the text hidden states hj; and image hidden states h;® are converted into their respective
queries, keys, and values via separate 0, K, V' matrices. The pre-attention layer normalization is also
modality-specific and is folded into the QKV functions.

§ i, By = QKV gy (hE) )
hég”g,hi;”g,hz"g =QKVipg (Rip”) ®)
We enable cross-modal attention by concatenating the queries, keys, and values from both image and

text modalities into unified sequences. The attention-weighted values at text and image tokens are
then projected back into the hidden state dimension using separate O weights for each modality.

h' Ry o KT + M
vd

hoE Ry o hy®]T + M
Vd

&F = Oyext (softmax(

) [hzmg hixt] ) (9)

h{8 = Qg (softmax( )[R o hE)) (10)



where o denotes concatenation. M represents a hybrid attention mask same as in Transfusion [4] with
a causal mask applied to text tokens and a bi-directional mask applied to image tokens. This design
allows for self-attention within and across modalities, encouraging cross-modality integrations.

Modality-specific feed-forward network After the attention layer, we employ modality-specific
FFNs to process text and image data separately. The pre-FFN layer normalization is also modality-
specific and is folded in the FFN functions.

pin = FFNeext (hg) (11)
hixs =FFNing (h3*) (12)

Output projection Finally, after NV layers of self-attention and FFNSs, the resulting hidden states
are projected either to logits in text via language model’s output layer, or to predicted noise in image
via a U-Net upsampler.

Piogits = LM-Headiext (hipy) (13)
€pred = UNet'Upimg (h;;%’\]a t, hizlg) (14)

Same as Transfusion, the output p,,.;; and €peq are passed through the language modeling loss
and DDPM loss respectively. All parameters in the text modules along
with self-attention and FFN parameters in the image modules are initialized from the pretrained
Llama model. During optimization, we decouple the learning rates for the text and image parameter
groups: a text learning rate, 7ex, is used for { Proj ., QKV x> Otexts FFNiexi, LM-Headex } , and an

image learning rate, 7img, for { UNet-Downimg, QK Vg, Oimg, FFNimg, UNet-Up;,,, } . To preserve the

model’s performance on text-only benchmarks, we use nexs = 0 (freezing text modules) for our main
experiments and explore different configurations in §3]

4 Experiments

4.1 Training Setup

Data Following Transfusion [4], we use the same collection of 380M Shutterstock image-caption
data, where each image is center-cropped and resized to 256 x 256 pixels. We order the captions
before images (i.e., emphasizing image generation conditioned on texts) 80% of the time, and order
the images before captions for the rest.

Model Details For image tokenization, we use the same VAE encode as Transfusion to compress
an image of 256 x 256 pixels into a 32 x 32 x § tensor. These tensors are then passed into a 2-block
U-Net downsampler [17]] to further reduce dimensions, resulting in a sequence of 256 patches (tokens).
Both text-specific and image-specific Transformer modules are initialized from the pretrained Llama-
3 8B model [8]]. The U-Net downsampler and a corresponding U-Net upsampler, totaling 0.27 billion
parameters [4], are trained from scratch. Like Transfusion, LMFusion uses a maximum context
length of 4096 tokens.

Optimization In our main experiments, to preserve the language-only performance, we freeze
the text modules (7.x; = 0) while training only the image modules using an AdamW optimizer
By = 0.9, B = 0.95, ¢ = 1 x 10~8) with a learning rate Mimage = 1 X 10~%. The learning rate
follows a cosine decay schedule with a 4000-step warmup period before gradually decreasing to
1.5 x 10~°. The model is trained using 128 H100 GPUs over 4 days.

4.2 Evaluation Setup

We compare our model with both the original Transfusion 7B model trained from scratch [4] and the
Transfusion model initialized from the same LLaMA model. E] The original Transfusion was trained
for 250K steps on 0.25T language-only tokens (text data) and 0.25T image-captions tokens (image
data). Since we freeze and reuse the text module from existing text-only models during training, we
can exclude text data from our training process while maintaining language capabilities. In the first

*https://huggingface.co/stabilityai/sd-vae-ft-mse
3Transfusion 7B and Llama-3 8B have the same Transformer sizes. The size difference is due to the different
vocabularies, which affects input and output embedding layers.
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Language-only Image Image Generation

Evaluation Understanding (without | with CFG)
Model HellaSwag?  SIQAT  WinoGrande?t CIDEr 1 FID | CLIP 1
Llama 3 60.0 48.1 72.8 - - -
Transfusion 51.0 42.3 64.3 32.0 1441870 22.1]244
LMFusion (o.5x FLops) 60.0 48.1 72.8 38.3 1391875 22.0|244
LMFusion (1.0x FLoPs) 60.0 48.1 72.8 384 14.0]8.61 22.1]244

Table 1: Results across text-only benchmarks, image understanding and image generation.
LMFusion preserves Llama-3’s text performance while adding strong image understanding and
generation capabilities. Image generation results are obtained without classifier-free guidance or with
a CFG factor of 1.55. Additionally, we show detailed analyses of our full LMFusion recipe vs.
the vanilla Transfusion recipe initialized from Llama-3 in[Figure 4/and [Figure 3|

configuration, we use the amount of 0.25T image data in Transfusion while leaving out the text data
(approximately half the total FLOPs of Transfusion), while in the second configuration, we match
Transfusion’s total FLOPs. Following Transfusion, we evaluate LMFusion on language-only, image
understanding, and image generation tasks.

Language-only: We evaluate the model’s language abilities using four tasks from the standard Llama
evaluation suite [8]], including Hellaswag [22], PIQA [23]], SIQA [24], and WinoGrande [25]. We
report accuracy on these benchmarks. Image Generation: For evaluating image generation, we use
the MS-COCO benchmark [26]. We generate images for 30K randomly selected prompts from the
validation set and measure the Frechet Inception Distance (FID) [27] and CLIP scores [28]. Our
image generation results include versions obtained without classifier-free guidance and with a CFG
coefficient of 1.55 or 1.6. Image Understanding: We evaluate the models’ ability to generate image
descriptions using the test split of MS-COCO [26], reporting CIDEr scores [[29].

4.3 Results

Table 1|compares two variants of LMFusion against Transfusion. On language-only benchmarks,
LMFusion keeps the strong performance of Llama-3 since we freeze all text modules. For image
understanding, LMFusion substantially surpasses Transfusion, with a 20% improvement. In image
generation tasks, LMFusion also shows superior results in both FID and CLIP scores. Furthermore,
in §5] we show from that LMFusion outperforms Transfusion initialized from Llama-3
(i.e., dense model with no separation) during the training process. In m, we benchmark
the performance of LMFusion and Transfusion throughout the training [/ We observe a consistent
advantage of LMFusion over Transfusion during the entire training, for image captioning and
generation. These results suggest that LMFusion effectively leverages the pretrained language
modules from Llama while developing strong image abilities. Although LMFusion has twice as
many parameters as Transfusion, it uses same training FLOPs since only half of the parameters are
activated for each input token from an arbitrary modality.

5 Analysis

Central to LMFusion is our modality separation techniques, which employs the design of modality-
specific modules and decoupled learning rates for language and image modules. Our architectural
ablation (§5.1) demonstrates the importance of the design for maintaining model performance
across both modalities. We further showcase that this recipe could be used for adapting pretrained
vision-language models.

5.1 Architecture Ablations

5.1.1 Experimental Design

To evaluate different design choices, we conduct ablation studies using small-scale variants of
LMFusion. Our analysis focuses on the impact of modality separation by comparing three designs:

“For the image generation results plotted throughout the training, we use a smaller subset of 5K prompts and
without classifier-free guidance.



Image Und. Image Gen.

Model Base LLM MMMU 1  ChartQA 1  RealWorldQA +  MME-P 1 FID |
EMU-3 - 31.6 51.8 57.4 - 12.8
Show-O Phil-1.5 1.3B 27.4 - - 1435.7 9.2
Janus DeepSeek 1.3B 30.5 - - 1338.0 8.5
Chameleon - 28.4 0.0 19.6 - 26.7
MetaMorph LLaMA-3.1 8B 41.8 37.1 58.3 - 11.8
Transfusion - - - - - 8.7
LLaVAFusion LLaVA-Next 8B 41.7 69.5 60.0 1603.7 8.2

Table 2: Comparison of multimodal models across image understanding and generation capa-
bilities. Models are evaluated on various image understanding benchmarks and image generation
quality (FID). The models without base LLM are pretrained from scratch.

CIDEr CLIP FID

22 50 X
B ——— LMPFusion
35 ’ 10 Transfusion
3

HellaSwag WinoGrande PIQA

Performance

50 100 150 200 250 50 100 150 200 250 T 50 100 150 200 250
Steps (K)
Figure 3: Evaluation of LMFusion and Transfusion during training. LMFusion keeps the
text performance of Llama throughout training, while achieving better image understanding ability
(CIDEr) and image generation quality (CLIP, FID).

(1) no separation (a single dense model), (2) shallow separation (using modality-specific FFNs only),
and (3) deep separation (using both modality-specific FFNs and attention mechanisms, our final
LMFusion).

No separation (dense model) We begin our experiments with the dense Llama-3 8B model trained
using the Transfusion recipe. This dense model maintains a unified structure where most components
are shared across modalities (a single set of QKV, O and FFN process both texts and images), with
the exception of U-Net upsampler and downsampler. For training, we use a text learning rate (7ex;)
for the components initialized from the text-only LLM { Projix, QKV, O, FEN, LM-Head,ex },

and an image learning rate 7jing for { UNet-Downing, UNet-Upy,,, }. To investigate the impact of
learning rate decoupling, we experiment with various learning rate ratios 77’7‘—‘ € {0,0.1, 1}, with

a constant image learning rate 7jpage = 1 X 104, the same as the main experiments. A ratio of 1
represents standard continual pretraining where all components share the same learning rate, while a
ratio of 0 indicates a complete freezing of text-related components.

Shallow separation (modality-specific FFNs only) We explore a simplified variant of LMFusion
that separates only FFNs into text-specific and image-specific modules—a common approach in
mixture-of-experts architectures [3}|30]]. In this setup, we use a single shared attention mechanism
(QKV , O) for processing both image and text data. For training, we employ separate learning
rates: Tyex for text-related components { Proj,,, QKV, O, FFNiex, LM-Headex } and 7im for

image-related components { Unet-Downiyg, FFNipg, Unet-Up,,,, }. We experiment with various
learning rate ratios ;2= € {0,0.1,1}.

Deep separation (modality-specific FFNs and attention) Our LMFusion, as described in[section 3]
represents a deep separation design where both FFNs and attention mechanisms are modality-specific.
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Figure 4: Performance of naive Llama-3 finetuning (no separation) with varying Ir ratio n";—:;
When directly finetuning the Llama-3 model for multimodal generation, using the same learning rate
for both text and image components (Ir ratio = 1) substantially reduces its text-only performance.
Lowering the learning rate for the text component relative to the image component (Ir ratio < 1) helps
preserve language performance but slows down the acquisition of multimodal abilities.
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Figure 5: Performance of no separation (dense model), shallow separation (modality-specific
FFNs only), and deep separation (modality-specific FFNs and attention) when text modules are
frozen. Deep modality separation outperforms shallow separation and no separation.

While our primary configuration freezes text modules during training, we also analyze the impact of
different learning dynamics by varying the learning rate ratio -2 across {0, 0.1, 1}.

Timags

In the ablation study, all models are trained for 250K training steps with a sequence length of 4,096
tokens and a batch size of 250K tokens. The training data comprised 0.03T text-only tokens and
0.03T image-caption tokens. All other hyperparameters remained consistent with those employed in
our main experiments.

5.1.2 Results

Naive finetuning of dense pretrained LLMs for multimodal generation compromises their
original language capabilities. When directly finetuning Llama-8B (no separation) using the
Transfusion recipe, we observe significant performance trade-offs between image and text capabilities
. With equal learning rates for text and image components (-2t = 1), the model shows

Mimage -
continuous improvement in image understanding and generation. However, this comes at a substantial
cost to language capabilities, with performance on HellaSwag dropping by 15% initially. While
language performance improves during training, it never recovers to the original Llama-3 model’s
level, maintaining a persistent 7% gap.
To mitigate this issue, we explore setting 2=~ < 1, which allows us to train image-specific modules

Timage

(U-Nets) with a regular learning rate while preserving text abilities using a smaller learning rate
for the general Transformer components. shows this improves language-only benchmark
performance, reducing the gap from 7% to 2% when the ratio is 0.1. However, for dense models, this
improvement comes at the cost of consistently reduced image capabilities. Overall, while learning
rate decoupling offers some mitigation to the text performance drop, training dense pretrained LLMs
without modality separation remains suboptimal.

Deep Modality Separation Outperforms Shallow Separation. In we compare three
architectures: no separation (dense), shallow separation (modality-specific FFNs only), and deep

separation (modality-specific FFNs and attention). We set 7/"‘—“‘ = 0 (freezing the text module)
image

across all models to maintain Llama-3’s text performance. Both separation approaches significantly
outperform the dense model on all image benchmarks. While shallow separation performs slightly
worse on image understanding, the performance gap widens notably in image generation tasks.

Additionally, deep separation with n"‘—“ = 0 has the same amount of tunable parameters as no
image

separation with n"‘—“ = 1. Despite the intrinsic advantage of modality separation for text-only tasks,



for image understanding and generation, we still observe that deep separation (blue curve in[Figure 5)
are better than no separation (blue curve in|Figure 4). These results show that modality separation is
crucial for adapting pretrained language-only LLMs for multimodal generation.

5.2 LLaVAFusion: extending LMFusion to vision-language models

LMFusion continues training the language-only pretrained LLM Llama with the Transfusion recipe.
Can this recipe be extended to on vision-language models (VLMs) such as LLaVA [31} 32] and
Qwen-VL [33]] as well? In this section, we extend the recipe of LMFusion to VLMs, preserving their
multimodal understanding capabilities while introducing image generation abilities. Specifically,
we build on LLaVA-NeXT [32], freezing its transformer parameters and integrating a dedicated,
image-specific transformer module trained in parallel. We use the same data and model settings as
LMFusion. We refer to this new model as LLaVAFusion and demonstrate its image understanding
performance on MMMU [34], MME-Perception [35], ChartQA [36], and RealWorldQA [37], as
well as its image generation results. For baselines, we compare LLaVAFusion against EMU-3 [38],
Show-O [39]], Janus [40]], Chameleon [41], MetaMorph [42], and Transfusion [4]. As shown in
LLaVAFusion LLaVAFusion demonstrates strong performance in both image understanding
and generation when compared to other unified multimodal LMs. This demonstrates that LMFusion
is promising as an extension not only to language-only LLMs but also to VLMs, enhancing the
multimodal generation capabilities in both cases.

6 Related Work

Unified Models for Multimodal Generation: Recent work has extensively explored unified frame-
works for multimodal generation, including text generation, image understanding, and image gen-
eration. While texts are commonly represented as discrete tokens across models, approaches to
representing images—especially for image generation—vary significantly. For instance, methods
in [6, 43} [7, 15} 44} [11]], represents images using vector-quantized discrete tokens [45) 46} 47]. An
alternative method, adopted by [48! 49], employs continuous embeddings that require a separate
diffusion model for decoding. In this work, we build upon Transfusion [4], which integrates au-
toregressive generation for texts with diffusion for images within a single model. Model Sparsity:
Model sparsity through Mixture of Experts (MoE) [50, 30, 51} I52]] has proven highly effective
in improving LLM training efficiency. This approach has recently been extended to multimodal
models [12,153} 154, 55]], particularly to address potential conflicts between different modalities. For
example, recent efforts [[13| 3 [56| 157 replace standard Transformer FFNs with modality-specific
experts, enabling separate processing paths for different modalities. Our work takes this concept
further by using modality-specific attention mechanisms. Concurrent work [15/[14]] demonstrates the
effectiveness of this deeper separation in multimodal pretraining and image generation. Reuse of
LLMs in Multimodal Training: Based on the strong language capabilities of LLMs, some recent
models on multimodal generation initializes their models from pretrained, language-only LLMs. For
example, [9} 10, (1} 44, [11} 58] continued training upon the weights of language-only LLMs [21]] or
vision LLMs without visual generation capabilities [33]]. The main focus of our work is to effectively
reuse pretrained LLMs for multimodal generation, particularly with the Transfusion recipe, without
any compromise on the LLMs’ existing text-only capabilities

7 Conclusion

We present LMFusion, a framework designed to equip LLMs with multimodal generative capabilities.
By using Llama-3 for text generation and integrating parallel transformer modules for image diffusion,
LMFusion efficiently reuses compute of pretrained LLMs. LMFusion’s modular design enables
independent developments of language and vision modules, de-risking the complexities associated
with a large-scale, joint-modality pretraining. In this work, we reuse only the pretrained language
components, which still requires substantial compute to train the image generation module from
scratch. Future work could explore reusing pretrained image generation components as well.

>Concurrent to our work, [13] tackles multimodal generation via a joint attention mechanism between a DiT
structure [59]] for images and a frozen Llama-3 [8] for texts.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The abstract and introduction accurately describe our core contributions.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to the Conclusion section (§7).
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

» The authors are encouraged to create a separate “Limitations” section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No formal results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code will be open-sourced and we describe all model experiments in
detail.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Data and code will be open-sourced with instructions
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See hyperparameter in
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: NA
Guidelines: We show the model performance with multiple checkpoints in

» The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, we report computer resources in detail in
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss these in
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: Yes, we describe safeguards in
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Yes, we describe licenses in §4.1]
Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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15.

16.

Answer: [Yes]
Justification: Yes, documentation is provided throughout the text.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: There are no crowdsourcing experiments nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: There are no crowdsourcing experiments nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

19



Justification: The core method development in this research does not involve LLMs in
non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

20


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background: Transfusion
	Language Modeling
	Image Diffusion
	Training Objective

	LMFusion
	Model Architecture

	Experiments
	Training Setup
	Evaluation Setup
	Results

	Analysis
	Architecture Ablations
	Experimental Design
	Results

	LLaVAFusion: extending LMFusion to vision-language models

	Related Work
	Conclusion

