Under review as a conference paper at ICLR 2025

SOLVING DIVERSE COMBINATORIAL OPTIMIZATION
PROBLEMS WITH A UNIFIED MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization (CO) covers a wide range of problems that exist in
many real-world scenarios, while solving them using learning based methods has
drawn great attention. Developing a unified deep model to solve diverse CO prob-
lems has many benefits, including a reduction in the need for hand-crafted designs
for individual problems and enhanced flexibility for few-shot learning in unseen
problem types. Meanwhile, a unified model with a single architecture and param-
eter set for diverse CO problems remains absent. To the best of our knowledge, we
are the first to formally investigate and develop such a unified model. Motivated
by the success of the next-token-prediction concept, we formulate each solution
into an Markov Decision Process, and train the model with transformer backbone
using tokenized data collected from problem solution trajectories. However, di-
rectly training the unified model is challenging due to the long token length of the
trajectories, which arises from the complex observation space of CO problems,
resulting from their NP-hard nature. Furthermore, using the same model to si-
multaneously predict observations and actions—distinct types of elements within
a trajectory—further increases training difficulty. To address these challenges,
we introduce two key designs. First, to reduce token length, we implement a
CO-prefix design that aggregates the static features of the problems. Second, to
account for the heterogeneity of state and action tokens within the MDP, we adopt
a two-stage self-supervised learning scheme. In the first stage, a dynamic predic-
tion model is learned, which then serves as a pre-trained model for subsequent
policy generation. Experiments across a set of nine problems demonstrate the ro-
bust problem-solving capabilities of our unified model, along with its few-shot
and even zero-shot generalization abilities. We believe our framework provides
a valuable complement to existing neural CO methods that focus on achieving
optimal performance for individual CO problems.

1 INTRODUCTION

Combinatorial optimization (CO) problems are crucial in a wide range of real-world scenarios, such
as logistics, industrial management, etc (Singh & Rizwanullahl 2022). To solve these generally NP-
hard problems, traditional integer programming and heuristics have been widely studied to obtain
either exact or near optimal solutions in the past decades. With the rapid growth of deep learn-
ing, solving CO problems using learning based methods has drawn increasing attention and led to
the rising field of Neural Combinatorial Optimization (NCO) (Kim et al.| 2022} |Drakulic et al.,
2024). Depending on the solution generation scheme, NCO methods can be generally classified into
auto-regressive ones and the non-autoregressive ones, where the former are more favored in recent
literature (Bello et al., 2016; Kool et al., 2018; [Kwon et al., 2020; Kim et al., 2022)). The auto-
regressive methods incrementally construct solutions, where the complete problem-solving process
can be naturally viewed as a Markov Decision Process (MDP). These end-to-end methods offer sig-
nificant computational efficiency and are more flexible in generating feasible solutions, as they can
easily avoid constraint-violating actions within the MDP framework (Kim et al., 2022).

However, a significant limitation still remains: models from existing literature can only deal with
specific problem types, lacking the capability to handle diverse problems simultaneously. There
are significant benefits to use one unified model across diverse problems. First, it reduces the need
of hand-crafted designs of each individual domain. Second, it can be utilized to unseen problem

Under review as a conference paper at ICLR 2025

s . T\ DiverseCO - i - A
/ Previous Frameworks \ Probl / Our Framework with One Unified Model \
¢ .| Problems

 —

i O-cRaBal. S s — (v
| — . 888 =
Oaxegals w 2S5 e = O
|

s———— [l00omgn @ VA i

P E————

- = 71 |. ¥ . Knapsack . |_L
i -
|
| Individual Individual Problem — Tokenized One Transformer Individual /
\, Solutions Models Data 000000 Data Model Solutions
~ -~ ~ ~

Figure 2: The difference between previous frameworks and ours to solve diverse CO problems.
While previous frameworks require individual models with specific designs to adapt to different
problems, our framework only utilizes one unified model.

types much easier and faster than specific models trained from scratch, due to its potential few-shot
ability. Even though some literature claimed to propose generic frameworks, they only use the same
general architecture across different problems with specific model structures and different learning
parameters, which leads to the loss of generality, as shown in Figure [J] The development of these
NCO methods aligns with the famous No Free Lunch Theorem (NFLT) (Wolpert & Macready,
1997), which states that the only way one strategy, i.e. a deep model in NCO, can outperform
another if it is specialized to the specific problem structures under considerations. Most literature
avoids the challenge of achieving generality across different problems, and focuses on improving
performances on individual ones, illustrated as Model A and Model B in Figure[I] Thus we directly
explore such a challenge where few tackled in NCO, and a new research problem emerges: Can
we develop a unified model with one neural architecture and parameter set that solves diverse CO
problems simultaneously, with strong few-shot capability?

Recently, the concept of next-token-prediction has

marked a new era in general artificial intelligence, Model B
excelling in processing data across multiple sce- N

narios, domains, and even modalities. The most © K ’ ’.’ l‘.‘ o
successful examples are the large language mod- & ModelA . ,/ |\ A Unified
els (LLMs) and multimodal large languange mod- PN ‘,,f\;_q/ t / '.‘ CO Model
els (MLLMs) (Achiam et al 2023} Dubey et all, &/ - T i

2024)), which can generalize across various natu- E ," \ ! \

ral language process (NLP) and computer vision & ;o .
(CV) scenarios and excel in few-shot learning tasks. FEE K ', Simple
Furthermore, the concept has also been applied to ,,\,,.,\«,’»\,ai\:&-,\,,;{,\,_}i‘j','ﬁy

decision-making tasks directly (Chen et al., 2021).
For instance, |Reed et al.| (2022) developed a general-
ist agent to handle different control environments si-
multaneously, such as Atari games and robot bench-
marks. Motivated by these breakthroughs, we ex-
plore whether a unified model can be designed to tackle diverse CO problems under the same next-
token-prediction framework.

CO Problem Type

Figure 1: The No Free Lunch Theorem of
optimization.

Generally, we collect solutions of raw problem instances generated by state-of-the-art solvers from
a mix of problem sources. Following the commonly adopted auto-regressive MDP formulation of
existing literature, we generate optimization trajectories where actions are iteratively selected to
based on temporary partial solutions. These trajectories are serialized into flat token sequences,
which are trained using a single transformer backbone, as shown in Figure [2] However, directly
applying existing training schemes to CO problems is often inefficient. Since most CO problems
are NP-hard, the observation space can be vast, leading to long token sequences and low training
efficiency. Additionally, a full trajectory consists of different types of elements, such as observations
and actions. Predicting all elements without considering their individual roles further increases the
overall training difficulty.

Under review as a conference paper at ICLR 2025

To tackle these challenges, we introduce two approaches to improve generic training performances
considering the common characteristics of CO problems. First, we propose a non-causal, decoder-
only architecture that incorporates a CO-prefix to reduce the overall token length. Unlike other
environments where observations in an MDP can be fully dynamic, most information in a CO prob-
lem comes from its static description data. For instance, in a Traveling Salesman Problem (TSP),
the distances between node pairs remain unchanged regardless of the visiting order. Therefore, we
utilize a CO-prefix to aggregate the problems’ static features, while the subsequent main trajectory
handles dynamic observations. This reduces token length and improves training efficiency. Second,
we decompose the entire token generation process into two self-supervised learning stages to reduce
training difficulty. In the first stage, the model focuses solely on learning to predict forward dy-
namics, which then serves as the pre-trained model for the subsequent policy generation. These two
stages are designed to handle the heterogeneous elements within the trajectory, thereby reducing the
overall training difficulty.

We should point out that even though one recent literature declared to achieve multi-task learning
with cross-problem generalization for vehicle routing problems (VRP), it cannot be further general-
ized to a unified model that we aim to develop (Liu et al., [2024). They formulate VRPs as different
combinations of shared attributes, including capacity, backhauls, time windows, duration limit and
open route. The single model designed to solve VRPs within the attribute combinations still heavily
relies on human-crafted designs, and fails in generalizing to problems beyond these specific combi-
nations. In contrast, the framework we propose can be applied to any CO problems where a feasible
solution can be formulated as an MDP.

To summarize, our key contributions are:

* To the best of our knowledge, we are the first to thoroughly investigate solving diverse CO prob-
lems using a single unified model and to present a corresponding framework. We believe that
our framework provides a valuable complement to existing NCO methods that focus on achieving
optimal performance for individual CO problems.

* To address the challenges of directly applying existing next-token prediction concepts to CO prob-
lems, we introduce a CO-prefix design and a two-stage self-supervised learning scheme to reduce
token length and training difficulty.

* We establish a comprehensive testbed featuring nine CO problems to evaluate the generic
problem-solving ability of our unified CO model. Experiments demonstrate that the model
achieves strong generic problem-solving capabilities with only a slight reduction in performance.
Additionally, we showcase its few-shot and even zero-shot generalization abilities when tackling
new problems.

2 RELATED WORKS

2.1 LEARNING BASED METHODS FOR CO PROBLEMS

Research on NCO can be broadly divided into two categories: non-autoregressive and autoregressive
approaches.

Regarding non-autoregressive approaches, many methods directly train reinforcement learning (RL)
models to guide operators in refining feasible solutions. This scheme involves selecting an op-
erator from a candidate pool (Lu et al) [2019) or determining where an operator should be ap-
plied (Chen & Tian, 2019; Ma et al., 2021; Wu et al., [2021). These methods aim to imitate and
improve upon traditional heuristic search strategies through a data-driven approach. Another trend
in non-autoregressive methods is to learn an intermediate problem representation, which is then
used to guide the solution search. For example, a heatmap can be trained to predict the adjacency
matrix for TSP problems based on expert solutions, followed by a search to find the final solu-
tion (Joshi et al.,[2019; |Fu et al.||2021). In addition to using deep neural networks to directly predict
the adjacency matrix, diffusion models and probabilistic methods can also generate intermediate
representations (Sun & Yang] 2023}; Karalias & Loukas| [2020). These approaches are particularly
effective in adapting to larger problem scales. However, these methods are often limited on specifc
problem types since they lack flexibility in handling complex problem constraints.

Under review as a conference paper at ICLR 2025

As for autoregressive methods, they aim to incrementally build a solution by selecting new nodes
step by step, ultimately constructing a complete feasible solution. The pioneering work in this
area was the Pointer Network, which was first tested on the TSP(Vinyals et al., 2015). Subsequent
research combined the idea with reinforcement learning (RL), demonstrating its effectiveness across
a wider range of CO problems(Bello et al., |2016). Routing problems, a significant subclass of CO
problems, have been extensively studied within this autoregressive framework using RL (Kool et al.,
2018 [Kwon et al., |2020). To account for both node- and edge-level features, a matrix-encoding
framework was later developed (Kwon et al.| [2021). These methods are particularly advantageous
due to their fast inference speed, as the computational complexity during testing remains low. The
are also much more flexible in generating feasible actions handling various problem constraints.

A recent trend in the field is the exploration of algorithm generalization capabilities. Existing meth-
ods focus on generalizing across different data distributions (Zhou et al., 2023} Bi et al.| 2022)) and
problem scales (Zong et al., 2022} |Li et al., [2021). Regarding generalization to multiple tasks, one
study attempts to solve various VRPs by decomposing them into several elementary tasks (Liu et al.,
2024). However, this decomposition heavily relies on human-designed rules, limiting its generaliza-
tion potential. As far as we know, there is no architecture for a truly general-purpose unified model
capable of addressing diverse CO problems.

2.2 NEXT-TOKEN-PREDICTION IN DECISION-MAKING

Besides the significant success of the next-token-prediction in both LLMs and MLLMs, researchers
have also investigated how to incorporate it with decision-making problems directly.

Chen et al.|(2021) first studied using Transformer (Vaswani,|2017) as an effective backbone to handle
various control environments in an offline RL manner, including Atari, Open Al Gym, etc. They
train a single policy model to generate actions at each decision step. [Janner et al|(2021) further
proposed the trajectory transformer that predicts all elements within a trajectory. Besides offline
RL, the similar architecture has also been incorporated with imitation learning (Reed et al., 2022;
Shafiullah et al.l 2022} Brohan et al.| [2022} [Zhou et al., 2022). One notable application following
this line of research is the Generalist Agent, known as GATO (Reed et al.|[2022), which successfully
extended its capabilities to multiple control environments using a unified model. [Wen et al.| (2022)
further implemented the GATO structure, referred to as DB1, and extended it to solve TSP problems.
Building on these successes, it is natural to consider transformers as the backbone for a unified model
capable of addressing diverse CO problems.

However, we found that |Wen et al.| (2022) employed an individual pretrained GCN model (Kipf
& Welling, 2016)) specialized to TSP, which was used to generate TSP state embeddings. These
embeddings were then used to train the unified model, rather than using the original TSP data. We
believe this approach contradicts the original concept of a unified model, which relies solely on a
single architecture and parameter set. Nevertheless, we adopt the unified model structure proposed
by GATO and re-implemented in DB1 as an important baseline for comparison, where only the
original trajectory data is processed.

3 METHODOLOGY

3.1 PRELIMINARIES
3.1.1 AUTO-REGRESSIVE MDP FORMULATION FOR CO

We first formulate the sequential construction process of a CO problem solution as an MDP. Sug-
gested by existing auto-regressive NCO methods (Zhang et al., 2023), a complete solution can be
constructed by incrementally constructed via multiple decision steps.

Let S denote the entire state space with states s; € S and A C S x S with actions a; € A as the
action space. All states are assumed to be reachable from the original state s;. Since a CO problem
is fully observed and deterministic, the transition from a state s; to s, is fully determined by the
action a;. Each state s; is represented as a set of actions taken before. A policy on the MDP refers to
a distribution P(s’|s) over the states s’ reachable from s via a single action. A feasible CO problem

Under review as a conference paper at ICLR 2025

. T7)
O
O

a0

O

L TL, o T1)

000

00

O

Decoder
(71, 77, -
00Ca
00000
00ao
0
O
O
Decoder
Z (T1, T1,
000000
~1 000000

000000

00

J

T
(T_lv 1'-_11 = ﬁ) (Tlr Ty o TT)

Decoder Decoder

(a) Causal decoder-only architecture (b) Non-causal decoder-only architec-
without CO prefix. ture with CO-prefix.

Figure 3: Two architecture designs for the unified model. a) Causal decoder-only architecture with-
out CO prefix, where each token is only conditioned on the past tokens and only trajectory data is
processed, adopted in [Reed et al.| (2022)). The entire token length is large. b) Non-causal decoder-
only architecture with CO-prefix, where tokens in the CO-prefix shares richer representations condi-
tioned on both prior and past tokens. The trajectory no longer process duplicated static information.

solution represented as a complete trajectory 7 can be further induced by the policy over 1" steps via
T
[Ti=1 P(sesalse).

We note that most CO problems exhibit a common property of tail recursion: after applying a series
of construction steps to an instance, the remaining tail subproblem itself becomes an instance of the
original CO problem, as discussed in Drakulic et al.[(2024). Any problem with this tail-recursion
property can be formulated as the aforementioned MDP. In this paper, we focus on CO problems
with such a property.

3.1.2 TRAIJECTORY DATASETS

To prepare the trajectory datasets for training, we first obtain the final optimized solutions from
state-of-the-art solvers for various problem types. We then trace their complete optimization MDPs,
7= (71,72, ..., 1), considering states and actions, where 7; = (s¢, a).

To jointly handle diverse features from different problems and distributions, we then tokenize all
trajectory elements within the trajectory data via one same tokenizer. Specifically, discrete values,
such as the node indexes, are flattened into sequences of integers within the range of [Ming, Maxy).
Continuous values, such as demands and positions, are first encoded to [Min., M az.] if not already
in the range, and then discretized to Ny;,, uniform bins. The final trajectory token sequence 7 is
formulated with observation tokens followed by an action spliter token /,, then action tokens, as
shown in Figure [}

T = (7,72, 77), WhereT; = (5, 1o, az) (1)
Note that the length of a fully tokenized sequence can sometimes be excessively long. To address
this, we use selected contiguous segments from the full trajectory. Furthermore, we only preserve
dynamic observations in the intermediate progress within s;. The static information of the raw
problem instances is aggregated within a CO-prefix design, as introduced in the following.

3.2 NON-CAUSAL TRANSFORMER WITH CO-PREFIX

Due to the NP-hard complexity of most CO problems, the observation space and dimensionality can
be substantial, leading to long token sequences and reduced training efficiency.

To tackle this challenge, we first decompose the original state representation into static and dynamic
ones, since most information in a CO problem comes from its static description data. For instance,
static information of a given TSP instance includes the positions of each individual city, which
remains unchanged through an optimization MDP. While the dynamics only include the current po-
sition. We further employ a CO-prefix design to capture static information, which is prepended to

Under review as a conference paper at ICLR 2025

I I e |-

D DNon Causal D D DNon-CausaI
Transformer ‘ Transformer
000 ejelsls
i

=

700

— - -
Q0004 QOQ0O00A--- 000G---1 MARORAQL--
\1/ N —_— s vV N\
CO-Prefix §t a, CO-Prefix 5 I, a;
(a) The dynamics forward stage. (b) The policy generation stage.

Figure 4: Two-stage self-supervised learning to train the unified CO model.

the beginning of the token trajectory. The subsequent sequence then focuses solely on dynamic ob-
servations. This approach allows us to avoid duplicating observation representations by tokenizing
only the current dynamic state instead of the entire sequence, as done in previous literature. Such
a design greatly reduce token length and improves training efficiency. Let Z and Z denote raw and
tokenized CO-prefix, the final token sequence fed into the model is (Z; Ip,F), where I, denotes a
spliter token in between.

Although the sequential nature of Markov Decision Processes (MDPs) with time-dependent order-
ing makes the causal transformer architecture a natural choice due to its simple and effective one-
directional design as suggested in previous sequential decision-making literature (Chen et al., 2021}
Reed et al.l2022), as shown in Figure @ it has certain limitations. In particular, the CO-prefix Z
is time-invariant since it only contains static representations, where each token within Z should be
fully visible and processed with each other in a bi-directional manner.

To address this, we adopt a non-causal transformer architecture where the CO-prefix tokens are
processed bi-directionally, ensuring comprehensive context integration, while the remainder of the
sequence is still handled in a one-directional manner, as shown in Figure [3(a)] Tokens in the CO-
prefix shares richer representations conditioned on both prior and past tokens and thus improves the
overall performances.

Action and CO-prefix Mask To ensure that each action selected by the unified model is fea-
sible during inference, the output policy must be masked to filter out actions that violate problem
constraints, using the action mask provided by the problem environment.

It’s important to note that during the generation of trajectory data, action masks are collected along-
side the trajectory data at each step. During training, the action mask is transformed into the CO-
prefix mask, with each token corresponding to infeasible actions being masked in the attention mod-
ule. For example, in the Traveling Salesman Problem (TSP), the CO-prefix mask encompasses all
coordinates of already visited cities. In the case of the Flexible Flow Shop Problem (FFSP), it refers
to the job duration entries of completed tasks. This design enables the model to focus on more
relevant tokens for feasible actions without increasing the overall token length.”

3.3 TwO-STAGE SELF-SUPERVISED LEARNING

Since a complete trajectory consists of different types of elements, such as observations and actions,
predicting them without distinguishing their individual roles further increases the training difficulty.

To tackle the challenge above, we decompose the entire token generation process into two stages in
a self-supervised learning manner, including a dynamics forward stage and a policy generation stage
as follows.

Under review as a conference paper at ICLR 2025

* Dynamics forward stage. In the first stage, we pre-train the model to predict the next observation
given the current action. The training loss for a training batch B is defined as follows:

|B| 1° o

L(0,B) == logps(sy (2%, I, 7}, 75, ... 7)),)

b=1t=1

where T is the amount of trajectory units in the current token length. Since MDP transitions
are deterministic in CO problems, ths dynamics model can be accurately trained with the same
amount of data.

* Policy generation stage. In the second stage, we fine-tune the model to generate actions based
on the pretrained model in advance. The training loss for a training batch 55 is defined as follows:

|B| T®

L(0,8) == logpe(al, [(Z°, I, 70,78, 0 7h, sby 1 1) 3)
b=1 t=1

This two-stage decomposition simplifies the learning process by decomposing the overall process
into two sub-tasks, allowing the model to first understand intermediate dynamics and then generate
qualified policy. This leads to faster and more effective convergence during training.

Table 1: The summary of the evaluated CO problems, along with individual expert solver to collect
trajectories, the token length in the CO-prefix and the token length in observation per step. N
denotes either node, item or job amounts. M denotes for machine amount in FFSP.

Problem Expert Solver Prefix-Token | Obs-Token
TSP LKH3 (Helsgaunl [2017) 2N N +2
VRP LKH3 (Helsgaun, [2017) 3N +2 N +3
OP Gurobi (Gurobi Optimization, 2018)) 3N +2 N +4

PCTSP ILS 4N 42 N +3

SPCTSP re-opt with ILS AN +2 N +3

Knapsack dynamic programming 2N N+1
ATSP LKH3 (Helsgaun, 2017) N x N N
MIS Kamis|Lamm et al.|(2017) N x N N
FESP MatNet (Kwon et al.l [2021) N x M M+1

4 PERFORMANCE EVALUATION

4.1 EVALUATION PROTOCOLS

4.1.1 PROBLEM AND EXPERT SELECTION

To evaluate the generic problem solving ability of our proposed framework, we construct a problem
set from 9 diverse domains for evaluation.

We first select four common routing problems that were deeply investigated in recent literature (Kool
et al, 2018; Kim et al., [2022), including Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP), Orienteering Problem (OP) and Prize Collecting TSP (PCTSP). Stochastic PCTSP
(SPCTSP) is further added to show how our model deals with uncertainty, suggested by (Kool et al.,
2018). We also consider the Asymmetric TSP (ATSP), where the problem is defined on adjacency
matrix without Cartesian coordinates (Kwon et al.,2021)). Beyond routing problems, we first evalu-
ate our model on the Knapsack problem, following previous literature Bello et al.|(2016)); Grinsztajn
et al.| (2023). Maximum Independent Set (MIS) is adopted as a representation problem that mainly
leverages features from graph structure Sun & Yang| (2023), in which information carried by each
token is extremely sparse. Finally, we evaluate our model on the flexible flow shop problem (Kwon
et al., [2020).

For each problem, the trajectories are collected from individual expert solver, shown in Table [T}
We set the problem scale as N = 20, either for node, item or job amounts. We align the instance

Under review as a conference paper at ICLR 2025

Table 2: The overall performance comparison on nine problems.

TSP CVRP
Method Ob;. Gap Score Time Ob;. Gap Score Time
Random 10.47 - 0.00% Os 13.25 - 0.00% 29s

Expert 384 0.00% 100.00% 2h 6.11 0.00% 100.00% 5h
GATO/DB1 | 399 3.80% 97.68% 1h 6.63 851% 92.72% 2h
Ours-DR 3.88 1.04% 99.40% 8m 6.75 1047% 91.04% 15m

Ours 387 0.78% 99.55% 9m 6.66 9.00% 92.30% 16m
PCTSP OoP
Method Ob;. Gap Score Time Ob;. Gap Score Time
Random 9.25 - 0.00% 20s 1.93 - 0.00% 8s

Expert 3.16 0.00% 100.00% 2h 538 0.00% 100.00% 1h
GATO/DB1 | 327 3.48% 98.19% 1h 491 887% 85.46% 53m
Ours-DR 327 3.48% 98.19% 13m 500 7.06% 88.99% 8m

Ours 320 127% 99.34% 13m 506 595% 90.72% 8m
SPCTSP Knapsack
Method Ob;. Gap Score Time Ob;. Gap Score Time
Random 9.24 - 0.00% 20s 38.14 - 0.00% 6s

Expert 331 0.00% 100.00% 2h 63.89 0.00% 100.00% 10m
GATO/DB1 | 330 0.30% 100.17% 1h 62.19 2.66% 93.40% 35m
Ours-DR 328 -0.09% 100.51% I3m | 61.78 3.30% 91.81% 4m

Ours 326 -151% 100.84% 13m | 6199 297% 92.62% 4m
ATSP MIS
Method Ob;. Gap Score Time Ob;. Gap Score Time
Random 10.49 - 0.00% 10s 9.11 - 0.00% 7m

Expert 3.85 0.00% 100.00% 2h 1044 0.00% 100.00% 7m

GATO/DBI | - - - - - - -
Ours-DR | 438 13.76% 91.87% 9m | 1035 0.86% 93.23% 1lm

Ours 422 961% 94.43% 10m | 1035 0.86% 93.23% 10m
FFSP
Method Ob;. Gap Score Time
Random 45.00 - 0.00% 12min
Expert 2731 0.00% 100.00% Sm
GATO/DBI1 -

Ours-DR | 29.20 6.92% 89.32% 29min
Ours 29.10 6.55% 89.88% 27min

generation scheme with previous literature for each problem, and the details can be referred in
Appendix [A.2]

4.1.2 EVALUATION PrRoTOCOLSY

Hyperparameters During training, for every epoch we process 400 batches of 128 instances,
which are sampled from a mixed set of all 9 problems. The total token length of each episode is
1000, either tailored or padded from the trajectory data with prefix. We use 10 layers in the trans-
former architecture with embedding dimension of 768. For tokenization, we set the discrete range,
continuous range and bin number as [200,), [0, 4] and 1800 respectively. We evaluate the model on
the validation dataset every two epochs and apply early stopping, terminating training if no improve-
ment is observed for 6 consecutive epochs. During inference, we evaluate the performances on each
problem individually, with a test dataset of 10000 each. We report the absolute objective value, the
inference time cost and the percentile gap to the expert performance. We list more implementation
details in for reproducibility.

Metrics We report four metrics respectively. Following previous CO related literature (Kool et al.,
2018)), we report the original objective and the gap from the expert results, and the evaluation time

20ur code is available at https://anonymous.4open.science/r/uniCO-35CC/

Under review as a conference paper at ICLR 2025

on the entire test dataset. Following the literature that studies generic decision-making (Reed et al.,
2022)), we also report the performance score as a percentage, where 100% corresponds to the per-
task expert and 0% to a random policy. It is calculated as Score = |obj. — obj,|/|obj — obj.|, where
obj. and obj, denotes the objective of expert and a random policy respectively (Wen et al., 2022).

Ablation and Baselines We evaluate our proposed model with two variations, either with or
without the two-stage supervised learning. We use Ours-DR to denote the model DRectly trained to
generate actions, as shown in Table@} As for the baseline methods, we first demonstrate correspond-
ing expert approach of each problem as a straight-forward comparison. We further compare with the
GATO framework (Reed et al., |2022), which was also re-implemented and reported by [Wen et al.
(2022) as DB1. Note that we also implement the original GATO framework from details in the orig-
inal paper manually, since it is not open-sourced. Instead of using any prefix or pretrain schemes,
GATO is trained using a causal transformer structure, where the trajectory data of each problem
is prepended by a prompt sequence from the same problem. The prompt consists of multiple step
transitions from other episodes. Other key hyperparameters remain the same as ours. Note that we
found GATO/DBI1 cannot converge on ATSP, MIS and FFSP under our evaluation setting, thus we
remove the three problems for GATO/DBI1 to train only across 6 problems, while we stick to 9. We
analyze the reason and influence in the next section. To calculate the optimization score, we also
report the performance of a random policy in terms of objective and time. The evaluation time of
the random policy shows the environment time cost in our implementation.

oP —— Ours
PCTSP . —— Gato/DB1 30
~ S — Ours
\fVR" —— Gato/DB1
N\ 24 16 = Ours-DR
w 12
818
-~ 08
c
5
F12 o
0.6
0.0 0.4 038 12 16
Batch Num x10°
Figure 5: Performances on diverse Figure 6: The training loss along with
problem types. total batch used of three models.

4.2 PERFORMANCES OF GENERIC PROBLEM SOLVING

The main results are illustrate in Table Generally, our proposed unified model showcase its
universal problem-solving ability across diverse CO problems. Except for the score of 89.88% on
FFSP, it achieves scores of over 90% on all other problems.

Our CO-prefix design is critical and significant. While two variants of our unified model are
trained on the entire nine problems, the GATO/DBI1 are trained only on the former six problems,
since we found that they can not converge on the latter three within a reasonable timeframe under
our evaluation settings, shown in Figure 5] This limitation arises since that GATO/DBI, lacking a
prefix design, computes full observation tokens at each step which makes them extremely inefficient
when the observation space is large. For example, in both ATSP and MIS problems, the original
static information is carried by the instance adjacency matrix, with a complexity of O(N?). In each
training episode, GATO/DB1 can only process one or two complete trajectory steps with or without
their prepended prompt sequences. The sparse loss signals generated on the action tokens impede
the model’s convergence. Even for the remaining problems, GATO/DB/1 still converges much slower
than ours across all problems, as shown in Figure[6] Moreover, our unified model design still shows
superior performance on four problems out of six.

The two-stage self-supervised learning scheme greatly improves performances. Compared to a
unified model that is directly trained to generate actions, a model fine-tuned on a pre-trained forward
dynamics model demonstrates superior performance across all nine problems. For example, in the
ATSP problem, the training scheme we introduced yields a performance improvement of 2.56

Under review as a conference paper at ICLR 2025

We further analyze the adaptability of our unified model to different CO problems. The in-
dividual training losses on each problem are illustrated in Figure Since the model is trained
on trajectory data from respective expert solvers, these solvers serve as natural performance upper
bounds for our unified model. An exception is observed in SPCTSP, where uncertainty suggests
the potential for performance beyond that bound. Generally, we identify two problem properties
that present challenges for our unified model at this stage. The first is information sparsity in token
sequences. Although ATSP and TSP share similar complexities from a heuristic perspective, our
model can more easily learn the policy for solving TSP while struggling with ATSP. This difficulty
arises because the token sequences for ATSP are much sparser than those for TSP, with problem
data stored in the adjacency matrix rather than in the nodes. The sparser the token information, the
harder it is for our model to learn effectively. The second challenge is the limitations imposed by
constraints within the problems. OP and CVRP have significantly more constraints to satisfy com-
pared to TSP, making the feasible action space under each state much more complex to learn. This
complexity further restricts the final optimization quality.

4.3 PERFORMANCES ON FEW-SHOT ABILITY

Few-shot on TSP Few-shot on TSP Few-shot on OP Few-shot on PCTSP
10 N 1.0 1.0 10

0.8 0.8 o8 08

0.6 206 v 0.6 v 0.6
R S S S
@

0.4 K04 @04 @04

02 0.2 0.2 0.2

0,0_5 0.0 0.0 0.0
3

0 10 20 0 5 10 15 20 0 6 9 12 15 0 3
Zero-shot Epoch Epoch Epoch
= From Pretrained =~ == From Scratch

Figure 7: The few-shot results on four routing problems.

To evaluate the few-shot capability of our model on unseen problems, we selected four routing
problems and trained a total of four unified models. Each model was trained on three out of the four
problems in a leave-one-out manner and was gradually fine-tuned using data from the fourth unseen
problem. We report the optimization scores for the new problem and compare them with those of a
model trained from scratch on the corresponding problem.

Overall, we found that our model demonstrates few-shot learning across all four problem settings
with limited data. In each case, the model achieves high solution quality from the very first epoch.
This is a significant advantage of a unified CO model, as CO encompasses a wide range of problems
with diverse settings. Consequently, the pre-trained unified model can be quickly adapted to an
unseen problem with minimal data, eliminating the need to retrain a separate model. This offers
enhanced convenience and efficiency in many real-world scenarios.

Furthermore, in addition to its few-shot capabilities, we observed zero-shot performance on TSP.
Since TSP serves as a foundational version of many routing problem variants, our model, pre-trained
on the other three problems, can directly generate semi-optimized solutions without any additional
data for fine-tuning.

5 FUTURE WORKS

In this paper, we thoroughly investigate how to develop a unified model to solve diverse CO problems
simultaneously, and evaluate the performance of our proposed unified model implementation in 9
problems. We believe that our approach provides a valuable complement to existing NCO methods
that focus on achieving optimal performance for individual CO problems.

As for our future work, to overcome the performance loss caused by token information sparsity as
discussed in Section 4.2, one promising direction is to incorporate our current transformer backbone
with GNN based structures, since many CO problems are defined or can be defined based on graphs.
However, how to maintain the universal token processing ability remains challenging. Another
direction is to incorporate our model with other recent progress in auto-regressive NCO methods,
such as [Kwon et al.| (2020);|(Chalumeau et al.| (2023).

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621-636, 1989.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances
in Neural Information Processing Systems, 35:31226-31238, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. Advances in Neural Information Processing Systems, 36:7947-7959, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084—15097, 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing systems, 32, 2019.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Paul Erd6s and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci, 5:17-61, 1960.

Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the orienteering problem
through branch-and-cut. INFORMS Journal on Computing, 10(2):133-148, 1998.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474-7482, 2021.

Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval Research Logis-
tics (NRL), 34(3):307-318, 1987.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner takes it all: Training performant rl populations for combinatorial optimization. Advances in
Neural Information Processing Systems, 36:48485-48509, 2023.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL http://www.
gurobi.comn.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966-980, 2017.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273-1286, 2021.

11

http://www.gurobi.com
http://www.gurobi.com

Under review as a conference paper at ICLR 2025

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659-6672, 2020.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936—1949,
2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188-21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138-5149, 2021.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Find-
ing near-optimal independent sets at scale. J. Heuristics, 23(4):207-229, 2017. doi: 10.1007/
$10732-017-9337-x. URLhttps://doi.org/10.1007/s10732-017-9337-xl

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198-26211, 2021.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1898—1908,
2024.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096-11107, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takdc. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k£ modes with one stone. Advances in neural information processing sys-
tems, 35:22955-22968, 2022.

Guman Singh and Mohammad Rizwanullah. Combinatorial optimization of supply chain networks:
A retrospective & literature review. Materials today: proceedings, 62:1636—1642, 2022.

Zhiqging Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36:3706-3731, 2023.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

12

https://doi.org/10.1007/s10732-017-9337-x

Under review as a conference paper at ICLR 2025

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Ying Wen, Ziyu Wan, Ming Zhou, Shufang Hou, Zhe Cao, Chenyang Le, Jingxiao Chen, Zheng
Tian, Weinan Zhang, and Jun Wang. On realization of intelligent decision-making in the real
world: A foundation decision model perspective. arXiv preprint arXiv:2212.12669, 2022.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67-82, 1997.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057-5069, 2021.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952-11969, 2023.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
positional generalization in control. arXiv preprint arXiv:2203.05960, 2022.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769-42789. PMLR, 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4648-4658,
2022.

13

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EVALUATION DETAILS.

In this section ,we provide more implementation details for reproducibility.

Table 3: Implementation details.

Module Element Detail
(0N Ubuntu 22.04.2
CUDA 11.7
System Python 3.114
Pytorch 2.0.1
Device 2*NVIDIA A100 80G
Backbone Llama
Embedding dimension 768
Layer Num 10
Q Head Num 8
KV Head Num 8
Max token length 1000
RMS Norm epsilon le-6
Weight Decay le-4
Early Stopping Runs 6
M of p-law 4
H ¢ w of p-law 15
yperparameters Shaped Discrete Token Range [0, 200)
Shaped Continuous Token Range [200, 2000)
Batch Size 1200
Batch Num 15000
Optimizer AdamW
inital learning rate 0
max learning rate 2.5e-4
leanring rate warmup ratio 5%
leanring rate decay ratio 75%
leanring rate decay factor 10
leanring rate decay style cosine

A.2 PROBLEM DETAILS.

In this section, we continue to introduce the implementation details on each CO problem. We use N
to denote either node, item or job amount, and M to denote the total machine amount in FFSP.

A.2.1 TRAVELING SALESMAN PROBLEM (TSP)

In the TSP, one should find the shortest route that visits each city exactly once and returns to the
starting city. The objective is to minimize the total distance of the tour.

Data Generation. We implement the dataset generation scheme described by Kool et al.| (2018),
for all TSP instances, the positions of /N nodes are uniformly randomly sampled in unit square. The
expert trajectory is collected by the well adopted state-of-the-art solver LKH3 (Helsgaun, [2017)).

Token Design For prefix tokens, we include the original Cartesian coordinates of each city with a
total number of 2N as continuous values. For tokens per step, we only record the continuous coor-
dinates of the current city as observation to reduce the sequence length. To help with convergence,
the information about which cities have been visited is embodied by the dynamic prefix attention
mask. Specifically, when generating actions, the coordinates of current and previously visited cities
in prefix sequence are ignored.

14

Under review as a conference paper at ICLR 2025

A.2.2 VEHICLE ROUTING PROBLEM (VRP)

In the Capacitated VRP (Toth & Vigo, 2014), each city has a certain demand. One should construct
multiple routes with minimal a distance that all start and end at a given depot, where the total
demands of cities within one route should not exceed the capacity limit. Except for the depot, each
city should be visited exactly once.

Data Generation. We implement the dataset described by |[Nazari et al.| (2018). The expert tra-
jectory is also collected via LKH3 (Helsgaun, 2017)). Specifically, each city ¢ € {1,2,.., N} has a
demand 0 < 0; < D, where D > 0 is the capacity of the vehicle (route). For each route R;, the
total demand of the cities along cannot exceed the vehicle’s capacity, i.e. ;. R, 0; < D. For our
experiments, We random sample the location coordinates of the depot and the cities within the unit
square uniformly. The capacity is set to D = 20 and the discrete demands are sampled uniformly
from {1, 2, ...,9}.

Token Design For prefix tokens, we include the original Cartesian coordinates of the depot and
each city, as well as the discrete demands of the cities, with a total number of 3N + 2 continuous
or discrete values. For tokens per step, we record the capacity left and the location coordinates of
the vehicle currently as observation. To help with convergence, the prefix tokens about cities whose
demand has been met will be ignored by the dynamic prefix attention mask when generating actions.

A.2.3 ORIENTEERING PROBLEM (OP)

In the OP (Golden et al.}|1987), each node is assigned with a specific prize. One should construct a
single tour that maximize the sum of prizes, starting and ending at a give depot. The tour does not
have to include every node anymore, but need to be shorter than a length limit.

Data Generation. We implement the data generation scheme by [Fischetti et al.| (1998); Kool et al.
(2018). The expert trajectory is collected via Gurobi (Gurobi Optimization, |2018). Specifically, The
location coordinates of depot as well as N node are random sampled uniformly in the unit square.
To make the problem more challenging, we made the prize p; for each node 7 proportional to its
distance from the depot by setting them as:

doi D
i =1 99 - JDi = ——
b + max’y_; doj] b 100

where dj; is the distance from node 4 to the depot. As for the length limit of the route, we set the
fixed max length as T' = 2, which makes the optimal number of access nodes different from instance
to instance

Token Design For prefix tokens, we include the original Cartesian coordinates of the depot and
each node, as well as all of the node prizes, with a total number of 3N + 2 continuous values. For
tokens per step, we record the length left to the limit, current location coordinates, and the total prize
we have gotten so far, with a total of 4 continuous values as observation. By utilizing the dynamic
prefix mask, all prefix tokens related to nodes that have been visited will be ignored when generating
actions, which helps the model converge efficiently.

A.2.4 PRIZE COLLECTING TSP (PCTSP)

In the PCTSP (Balas| [1989), the sum of total prize is no longer a optimization objective, but a
constraint. One should minimize the total route length plus the sum of penalties of unvisited nodes
which are given ahead, as well as collecting at least a minimal total prize.

Data Generation. We implement the data generation scheme by |Kool et al.|(2018)). The expert
trajectory is collected via an implementation of Iterated Local Search (ILS). Specifically, as the OP
problem mentioned previously, the location coordinates of the depot and all nodes are randomly
sampled uniformly within the unit square. For each node 4, the associated prize p; and penalty /3;
need to be balanced carefully. If the penalty is too small, the choice of node is almost entirely
determined by the total reward constraint; If the penalty is too large, all nodes are always accessed
and the total reward constraint fails. Following the reference |[Kool et al.|(2018)), we set the prize and

penalty as:
4
t; ~ if 0,1), i =t - —
Uniform(0,1), p N

15

Under review as a conference paper at ICLR 2025

KN
i ~ Unif 0,3 —
B n10rm< N)

where KV is about half of the trajectory length of the TSP problem with NV cities, we roughly set it
as K29 = 2, and the minimum total prize is set to 1 for our experiments.

Token Design For prefix tokens, we include the original Cartesian coordinates of the depot and
nodes, as well as the prize and penalty of each node, with a total number of 4N + 2 continuous
values. For tokens per step, we record the prize-to-go from the minimum total prize constraint and
the location coordinates currently, with a total of 3 continuous values as observation. We also set
the dynamic prefix mask to ignore all prefix tokens related to nodes visited before when generating
actions, which helps the model converge efficiently.

A.2.5 StocHASTIC PCTSP (SPCTSP)

In the SPCTSP, we show how our unified model performs when dealing with uncertainty. The
expected prize of each node is known before the optimization starts, while the real collected prize
can only be revealed after visitation. Data Generation. The data generation for SPCTSP is the
sameas in PCTSP, except that we additionally generate the expected prize, which has the same
distribution of the real prize.The expert solution algorithm is a modified version of ILS, where the
tour is re-optimized iteratively, as suggested by Kool et al.| (2018]).

Token Design The token design remains the same as PCTSP, except that in prefix tokens the prize
of each node is represented as the expected prize but not the real one.

A.2.6 ASYMMETRIC TSP (ATSP)

In the ATSP, the distances between node pairs are no longer determined by Euclidean distances based
on node coordinates. Considering a directed graph, the distances are no longer necessarily the same
in both directions, and are given in an asymmetric cost matrix upfront. We show how our model
performs when dealing with features of O(N?) complexity. We follow the data generation scheme
proposed by |[Kwon et al.| (2021), and adopt LKH3 as the corresponding expert solver Helsgaun
(2017). Data Generation. The data generation scheme remains the same as TSP, except that the
coordinates are provided while only adjacency matrix is visible. Token Design

A.2.7 KNAPSACK

In the Knapsack problem, a group of items with specific values and volumes are given. The optimiza-
tion objective is to maximize the total value of items selected without exceeding the total capacity.
We designed the problem generation scheme manually and implemented the dynamic programming
algorithm for trajectory collection.

Data Generation. We implement a manually designed data generation scheme. Specifically, The
values v; of each item ¢ € {1,2,..., N} are randomly sampled as:
v; ~ Uniform(2, N)

To make the problem more challenging, items of higher value should have a larger volume. We
further introduce some randomness and set the volume k; of item 7 as:

where ¢t ~ Uniform({—0.5,0.5}), which means we increase or decrease the volume of item 4
uniformly and randomly.

Token Design For prefix tokens, we include the values and volumes of all V items, with a total
number of 2N discrete values. For tokens per step, we only record the real-time left capacity as
observation. By utilizing the dynamic prefix mask, all prefix tokens related to the item that has been
packaged will be ignored when generating actions, which helps the model converge efficiently.

A.2.8 MAXIMUM INDEPENDENT SET (MIS)

In the MIS, an independent set is a set of vertices such that no two vertices in the set are adjacent.
One should find the largest possible independent set in the graph, meaning it contains the most
vertices among all possible independent sets.

16

Under review as a conference paper at ICLR 2025

Data Generation. We follow the random graph generation scheme proposed by
(1960) , and directly implement the script provided by [Sun & Yang| (2023) to generate the graphs.
The expert solver to generate trajectories is the Kamis|Lamm et al.[(2017) Token Design For prefix
tokens, we directly use the binary adjacency matrix, with a total of N tokens. For tokens per step,
we record whether each node is selected, excluded or not decided yet, with a total of NV tokens.

A.2.9 FLEXIBLE FLOW SHOP PROBLEM (FFSP)

In the FFSP, N jobs have to be processed in .S stages with the same order. Each job in each stage can
be handled by a machine from M total machines. The time required for each job at different stages
on different machines varies. Each machine can only process at most one job at the same time. The
goal is to schedule all jobs so that they can be finished with a minimum of time. Data Generation.
We directly adopt the data generation scheme and script provided by [Kwon et al| (2021). We further
and implement the corresponding MatNet as the only NCO expert solver in our experiments for
trajectory generation.

Token Design The prefix tokens include the job duration in each stage on the corresponding
machine, with a total amount of V x M. In each step, we track one single machine and decide
either to make it wait or to assign it with a new job. The step token is the job duration related to the
current machine, with a total length of M.

A.3 LEARNING ANALYSIS

We list showcase the training loss, the evaluation gap and optimization score of each individual
problem in our main results.

s —— ATSP —— OP 1.01
| —— BP PCTSP
4 = CVRP = SPCTSP 0.81
—— FFSP TSP
— MIS 0.61

ATSP

ol f
00l | MIS

— BP PCTSP
—— CVRP —— SPCTSP
! —— FFSP TSP
0
0 10 20 30 40 50 10 20 30 40 50
epoch epoch
(a) The aggregated training loss of each problem, (b) The score of each problem.
of which the weighted average is the total training
loss shown in Fig|6]
L7 — ATSP —— OP 0.00025
1.50 — BP PCTSP
—— CVRP —— SPCTSP
1.25 0.00020
—— FFSP TSP o
1.00 - MIS E
3 ©0.00015
0.75 £
0.50 8 0.00010
0.25
% n 0.00005
0.00
10 20 30 40 50 0 10 20 30 40 50
epoch epoch
(c) The performance gap of each problem. (d) The learning rate during training.

17

	Introduction
	Related Works
	Learning based Methods for CO problems
	Next-Token-Prediction in Decision-Making

	Methodology
	Preliminaries
	Auto-regressive MDP Formulation for CO
	Trajectory Datasets

	Non-causal Transformer with CO-prefix
	Two-Stage Self-Supervised Learning

	Performance Evaluation
	Evaluation Protocols
	Problem and Expert Selection
	Evaluation ProtocolsOur code is available at https://anonymous.4open.science/r/uniCO-35CC/

	Performances of Generic Problem Solving
	Performances on Few-shot Ability

	Future Works
	Appendix
	Evaluation Details.
	Problem Details.
	Traveling Salesman Problem (TSP)
	Vehicle Routing Problem (VRP)
	Orienteering Problem (OP)
	Prize Collecting TSP (PCTSP)
	Stochastic PCTSP (SPCTSP)
	Asymmetric TSP (ATSP)
	Knapsack
	Maximum Independent Set (MIS)
	Flexible Flow Shop Problem (FFSP)

	Learning Analysis

