
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLVING DIVERSE COMBINATORIAL OPTIMIZATION
PROBLEMS WITH A UNIFIED MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization (CO) encompasses a wide range of problems that
arise in many real-world scenarios. While significant progress has been made in
developing learning-based methods for specialized CO problems, a unified model
with a single architecture and parameter set for diverse CO problems remains elu-
sive. Such a model would offer substantial advantages in terms of efficiency and
convenience. In this paper, we introduce and formalize a unified model for solving
various CO problems. Inspired by the success of next-token prediction, we frame
each problem-solving process as a Markov Decision Process (MDP), tokenize the
corresponding sequential trajectory data, and train the model using a transformer
backbone. To reduce token length in the trajectory data, we propose a CO-prefix
design that aggregates static problem features. To address the heterogeneity of
state and action tokens within the MDP, we employ a two-stage self-supervised
learning approach. In this approach, a dynamic prediction model is first trained
and then serves as a pre-trained model for subsequent policy generation. Exper-
iments across nine CO problems demonstrate the generic problem-solving capa-
bility of our unified model, highlighting its few-shot and even zero-shot ability to
generalize to unseen problems through rapid fine-tuning. We believe our frame-
work offers a valuable complement to existing neural CO methods that focus on
optimizing performance for individual problems.

1 INTRODUCTION

Combinatorial optimization (CO) problems are pivotal in a wide range of real-world applications,
including logistics and industrial management (Singh & Rizwanullah, 2022). To address these gen-
erally NP-hard problems, traditional integer programming and heuristic methods have been exten-
sively studied to obtain either exact or near-optimal solutions over the past decades. With the rapid
growth of deep learning, solving CO problems using learning-based methods has garnered increas-
ing attention, giving rise to the field of Neural Combinatorial Optimization (NCO) (Kim et al., 2022;
Drakulic et al., 2024). Among all NCO schemes, the auto-regressive construction methods are fa-
vored in recent literature (Bello et al., 2016; Kool et al., 2018; Kwon et al., 2020; Kim et al., 2022).
These methods construct solutions incrementally, and the entire problem-solving process can natu-
rally be framed as a Markov Decision Process (MDP). These end-to-end methods offer significant
computational efficiency and flexibility in generating feasible solutions, as they can easily avoid
constraint-violating actions within the MDP framework (Kim et al., 2022).

However, a significant limitation remains: models from existing literature are typically tailored to
specific problem types, lacking the ability to handle a wide range of problems simultaneously. There
are clear advantages to using a unified model across diverse problems. First, it reduces the need for
hand-crafted designs for each individual problem. Second, it facilitates adaptation to unseen prob-
lem types more quickly and efficiently than training specific models from scratch. Although some
literature claims to propose generic frameworks, these methods generally apply the same general ar-
chitecture to different problems, but with specific model structures and varying learning parameters.
This results in a loss of true generality. The development of these NCO methods aligns with the
famous No Free Lunch Theorem (NFLT) (Wolpert & Macready, 1997). Most literature avoids the
challenge of achieving generality across different problems, and focuses on improving performances
on individual ones, illustrated as Model A and Model B in Figure 1. In contrast, we tackle the chal-
lenge of achieving generality across diverse CO problems, posing a new research question: Can we

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

develop a unified model with a single neural architecture and parameter set that can simultaneously
solve diverse CO problems, while maintaining strong few-shot capabilities?

Figure 1: The No Free Lunch Theorem of
optimization.

Recently, the concept of next-token-prediction has
marked a new era in general artificial intelligence,
excelling in processing data across multiple sce-
narios, domains, and even modalities. The most
successful examples are the large language mod-
els (LLMs) and multimodal large languange mod-
els (MLLMs) (Achiam et al., 2023; Dubey et al.,
2024), which can generalize across various natu-
ral language process (NLP) and computer vision
(CV) scenarios and excel in few-shot learning tasks.
Furthermore, the concept has also been applied to
decision-making tasks directly (Chen et al., 2021).
For instance, Reed et al. (2022) developed a general-
ist agent to handle different control environments si-
multaneously, such as Atari games and robot bench-
marks. Motivated by these breakthroughs, we ex-
plore whether a unified model can be designed to tackle diverse CO problems under the same next-
token-prediction framework.

In general, we collect solutions for raw problem instances generated by state-of-the-art solvers from
a variety of problem sources. Adopting the widely used auto-regressive MDP formulation from ex-
isting literature, we generate optimization trajectories where actions are iteratively selected based
on partial solutions. These trajectories are serialized into flat token sequences and trained using a
single transformer backbone, as illustrated in Figure 2. However, directly applying existing train-
ing schemes to CO problems often proves inefficient. Since most CO problems are NP-hard, the
observation space can be large, resulting in long token sequences and reduced training efficiency.
Furthermore, a full trajectory contains different types of elements, including states and actions. Pre-
dicting all elements in a unified manner, without addressing their distinct roles and the heterogeneity
between them, further complicates the training process.

To tackle these challenges, we introduce two approaches to improve generic training performances
considering the common characteristics of CO problems. First, we propose a non-causal, decoder-
only architecture that incorporates a CO-prefix to reduce the overall token length. Unlike other
environments where observations in an MDP can be fully dynamic, most information in a CO prob-
lem comes from its static description data. For instance, in a Traveling Salesman Problem (TSP),
the distances between node pairs remain unchanged regardless of the visiting order. Therefore, we
utilize a CO-prefix to aggregate the problems’ static features, while the subsequent main trajectory
handles dynamic observations. This reduces token length and improves training efficiency. Second,
we decompose the entire token generation process into two self-supervised learning stages to reduce

Figure 2: The difference between previous frameworks and ours to solve diverse CO problems.
While previous frameworks require individual models with specific designs to adapt to different
problems, our framework only utilizes one unified model.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

training difficulty. In the first stage, the model focuses solely on learning to predict forward dy-
namics, which then serves as the pre-trained model for the subsequent policy generation. These two
stages are designed to handle the heterogeneous elements within the trajectory, thereby reducing the
overall training difficulty.

It is important to note that although one recent literature claims to achieve multi-task learning with
cross-problem generalization for vehicle routing problems (VRP) (Liu et al., 2024), it cannot be
extended to a unified model as we propose. In their approach, VRPs are formulated as different
combinations of shared attributes, such as capacity, backhauls, time windows, duration limits, and
open routes. However, the single model designed to solve VRPs within these attribute combinations
still relies heavily on human-crafted designs and struggles to generalize to problems outside these
specific configurations. In contrast, the framework we propose can be applied to any CO problems,
as long as a feasible solution can be formulated as an MDP.

To summarize, our key contributions are:

• To the best of our knowledge, we are the first to thoroughly investigate solving diverse CO prob-
lems using a single unified model and to present a corresponding framework. We believe that
our framework provides a valuable complement to existing NCO methods that focus on achieving
optimal performance for individual CO problems.

• To address the challenges of directly applying existing next-token prediction concepts to CO prob-
lems, we introduce a CO-prefix design and a two-stage self-supervised learning scheme to reduce
token length and training difficulty.

• We establish a comprehensive testbed featuring nine CO problems to evaluate the generic
problem-solving ability of our unified CO model. Experiments show that the model exhibits
strong generic problem-solving capabilities. Additionally, we demonstrate its few-shot and even
zero-shot generalization abilities when tackling new problems, enabled by fast fine-tuning.

2 RELATED WORKS

2.1 AUTO-REGRESSIVE NCO METHODS

Auto-regressive NCO methods aim to incrementally build a feasible solution step by step. The
pioneering work in this area was the Pointer Network, which was first tested on TSP(Vinyals
et al., 2015). Subsequent research extended this idea by incorporating reinforcement learning (RL),
demonstrating its effectiveness across a broader range of CO problems (Bello et al., 2016). Routing
problems, a significant subclass of CO problems, have been extensively studied within this auto-
regressive framework using RL (Kool et al., 2018; Kwon et al., 2020). To better account for both
node and edge level features, a matrix-encoding framework was developed (Kwon et al., 2021).
The potential of applying auto-regressive NCO methods to more general CO problems was also dis-
cussed (Drakulic et al., 2024). These methods offer significant advantages due to their fast inference
speed, as their computational complexity during testing remains low. Additionally, they are much
more flexible in generating feasible actions that respect various problem constraints.

A recent trend in NCO research is exploring the generalization capabilities of algorithms. Existing
methods primarily focus on generalizing across different data distributions (Zhou et al., 2023; Bi
et al., 2022) and problem scales (Zong et al., 2022; Li et al., 2021). In terms of generalization to
multiple problems, one study attempts to solve various VRPs by decomposing them into several
elementary tasks (Liu et al., 2024). However, this decomposition relies heavily on human-designed
rules, which limits its generalization potential. To the best of our knowledge, no architecture cur-
rently exists for a truly general-purpose unified model capable of addressing a wide range of CO
problems.

2.2 NEXT-TOKEN-PREDICTION IN DECISION-MAKING

In addition to the significant success of next-token prediction in both LLMs and MLLMs, researchers
have also explored how to directly incorporate this approach into decision-making problems. Chen
et al. (2021) first explored the use of the Transformer (Vaswani, 2017) as an effective backbone for
handling various control environments in an offline RL setting, including Atari, OpenAI Gym, and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

others. They trained a single policy model to generate actions at each decision step. Janner et al.
(2021) further proposed the Trajectory Transformer, which predicts all elements within a trajectory.
In addition to offline RL, similar architectures have been integrated with imitation learning (Reed
et al., 2022; Shafiullah et al., 2022; Brohan et al., 2022; Zhou et al., 2022). A notable application
of this approach is the Generalist Agent, GATO (Reed et al., 2022), which successfully extended its
capabilities across multiple control environments using a unified model. Wen et al. (2022) further
adapted the GATO structure, referred to as DB1, and extended it to solve TSP problems. Building on
these successes, it is natural to consider Transformers as the backbone for a unified model capable
of solving diverse CO problems.

However, we note that Wen et al. (2022) employed a pretrained GCN model (Kipf & Welling, 2016)
specifically trained for TSP to generate TSP state embeddings. These embeddings were then used
to train the unified model, rather than using the original TSP data directly. We believe this approach
contradicts the core concept of a unified model, which should rely solely on a single architecture
and parameter set. Nevertheless, we adopt the unified model structure proposed by GATO and re-
implemented in DB1 as a key baseline for comparison, where only the original trajectory data is
processed.

3 METHODOLOGY

3.1 PRELIMINARIES

3.1.1 AUTO-REGRESSIVE MDP FORMULATION FOR CO PROBLEM

We first formulate the sequential construction process of a CO problem solution as an MDP. Follow-
ing the approach of existing auto-regressive NCO methods (Zhang et al., 2023), a complete solution
is incrementally constructed through multiple decision steps.

Let S denote the entire state space, with states st ∈ S , and let A ⊆ S × S be the action space,
where actions are denoted by at ∈ A. All states are assumed to be reachable from the initial state
s1. Since a CO problem is fully observed and deterministic, the transition from state st to st+1 is
fully determined by action at. Each state st is represented as a set of actions taken before. A policy
in the MDP refers to a distribution P (s′|s) over the states s′ that can be reached from from s via a
single action. A feasible CO problem solution, represented as a complete trajectory τ , can be further
induced by the policy over T steps via

∏T
t=1 P (st+1|st).

It is important to note that many CO problems exhibit the property of tail recursion: after applying a
series of construction steps, the remaining tail subproblem becomes a smaller instance of the original
CO problem, as discussed in Drakulic et al. (2024). Any problem with this tail-recursion property
can be formulated as the MDP described above. In this paper, we focus on CO problems that exhibit
this property.

3.1.2 TRAJECTORY DATASETS

To prepare the trajectory datasets for training, we first obtain the final optimized solutions from state-
of-the-art solvers for various problems. We then trace their complete optimization MDP episodes,
τ = (τ1, τ2, ..., τT), where each episode consists of states and actions, with τt = (st, at) represent-
ing the state-action pairs at each step.

To jointly handle diverse features from different problems and distributions, we flatten all elements
within the MDP episode into one dimension and tokenize them through a tokenization process.
Discrete values, such as the node indices of actions, are directly assigned with integer token IDs
from [Mind,Maxd). Continuous values, such as demands and positions, are first encoded via mu-
law, discretized to Nbin uniform bins, and then tokenized into the range [Minc,Maxc). The final
trajectory token sequence τ at each step is formulated with state tokens, followed by an action spliter
token <|>, and then action tokens:

τ = (τ1, τ2, ..., τT), where τt = (st,<|>, at). (1)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Note that the length of a fully tokenized sequence can sometimes be excessively long. To address
this, we set the target total token length L in advance, and use selected contiguous segments from
complete solution MDPs. Additionally, we only preserve dynamic observations in the intermediate
progress within st, while the static information of the raw problem instances is aggregated within a
CO-prefix design, as introduced in the following section. For each problem instance and its complete
solution MDP, we collect multiple trajectories as data augmentation. Details of tokenization and
trajectory collection can be found in Appendix B.

(a) Causal decoder-only architecture
without CO prefix.

(b) Non-causal decoder-only architec-
ture with CO-prefix.

Figure 3: Two architecture designs for the unified model. a) Causal decoder-only architecture with-
out CO prefix, where each token is only conditioned on the past tokens and only trajectory data is
processed, adopted in Reed et al. (2022). The entire token length is large. b) Non-causal decoder-
only architecture with CO-prefix, where tokens in the CO-prefix shares richer representations condi-
tioned on both prior and past tokens. The trajectory no longer process duplicated static information.

3.2 NON-CAUSAL TRANSFORMER WITH CO-PREFIX

Due to the NP-hard nature of most CO problems, the observation space and dimensionality can be
large, resulting in long token sequences and reduced training efficiency.

To tackle this challenge, we decompose the original state representation into static and dynamic
components, as most of the information in a CO problem comes from its static description data. For
instance, in a TSP instance, the positions of the cities are static and remain unchanged throughout
the optimization MDP, while the dynamic information only includes the current position. We further
introduce a CO-prefix design to capture the static information, which is prepended to the beginning
of the token trajectory. The subsequent sequence then focuses solely on dynamic observations.
This approach avoids duplicating the representation of observations by tokenizing only the current
dynamic state at each step, rather than the entire information. This design significantly reduces
token length and improves training efficiency. Let P and P represent the raw and tokenized CO-
prefix, respectively. The final token sequence fed into the model is (P ;<X>, τ), where <|> denotes
a separator token between them.

Although the sequential nature of Markov Decision Processes (MDPs) with time-dependent order-
ing makes the causal transformer architecture a natural choice due to its simple and effective one-
directional design, as suggested in previous sequential decision-making literature (Chen et al., 2021;
Reed et al., 2022), shown in Figure 3(b), it has certain limitations. Specifically, the CO-prefix P is
time-invariant, as it only contains static representations. Therefore, each token within P should be
fully visible and processed with each other in a bi-directional manner.

To address this, we adopt a non-causal transformer architecture, where the CO-prefix tokens are
processed bi-directionally to ensure comprehensive context integration, while the remainder of the
sequence is handled in a one-directional manner, as shown in Figure 3(a).The CO-prefix tokens
share richer representations, conditioned on both preceding and subsequent tokens, which enhances
overall performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Action and CO-prefix Mask To ensure that each action selected by the unified model is fea-
sible during inference, the output policy must be masked to filter out actions that violate problem
constraints, using the action mask provided by the problem environment.

It is important to note that during the generation of trajectory data, action masks are collected along-
side the trajectory data at each step. During training, the action mask is transformed into the CO-
prefix mask, where each token corresponding to an infeasible action is masked in the attention
module. For example, in the Traveling Salesman Problem (TSP), the CO-prefix mask includes the
coordinates of already visited cities. In the Flexible Flow Shop Problem (FFSP), it corresponds to
the job duration entries of completed tasks. This design allows the model to focus on more relevant
tokens for feasible actions, without increasing the overall token length.

(a) The dynamics forward stage. (b) The policy generation stage.

Figure 4: Two-stage self-supervised learning to train the unified CO model.

3.3 TWO-STAGE SELF-SUPERVISED LEARNING

Since a complete trajectory consists of different types of elements, such as observations and actions,
predicting them without distinguishing their individual roles further increases the training difficulty.

To address this challenge, we decompose the token generation process into two stages in a self-
supervised learning framework: a dynamics forward stage and a policy generation stage, as shown
in Figure 4.

• Dynamics forward stage. In the first stage, we pre-train the model to predict the next observation
given the current action. The training loss for a training batch B is defined as follows:

L(θ,B) = −
|B|∑
b=1

T b∑
t=1

logpθ(sbt+1|(Zb, Ip, τ b1 , τ
b
2 , ..., τ

b
t)), (2)

where T b is the amount of trajectory units in the current token length. Since MDP transitions
are deterministic in CO problems, ths dynamics model can be accurately trained with the same
amount of data.

• Policy generation stage. In the second stage, we fine-tune the model to generate actions based
on the pretrained model in advance. The training loss for a training batch B is defined as follows:

L(θ,B) = −
|B|∑
b=1

T b∑
t=1

logpθ(abt+1|(Zb, Ip, τ b1 , τ
b
2 , ..., τ

b
t , s

b
t+1, Ia)) (3)

This two-stage decomposition simplifies the learning process by decomposing the overall process
into two sub-tasks, allowing the model to first understand intermediate dynamics and then generate
qualified policy. This leads to faster and more effective convergence during training.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

4 PERFORMANCE EVALUATION

4.1 PROBLEM AND EXPERT SELECTION

To evaluate the generic problem-solving ability of our proposed framework, we construct a set of
nine diverse problems for assessment.

Table 1: The summary of the evaluated CO problems, along with individual expert solver to collect
trajectories, the prefix token length and the step state token length. N denotes the number of nodes,
items, or jobs, depending on the problem, and M denotes the number of machines in the FFSP.

Problem Expert Solver Prefix-Token State-Token
TSP LKH3 (Helsgaun, 2017) 2N 2
VRP LKH3 (Helsgaun, 2017) 3N + 2 3
OP Gurobi (Gurobi Optimization, 2018) 3N + 2 4

PCTSP ILS1 4N + 2 3
SPCTSP re-opt with ILS 4N + 2 3
Knapsack dynamic programming 2N 1

ATSP LKH3 (Helsgaun, 2017) N ×N N
MIS Kamis Lamm et al. (2017) N ×N N
FFSP MatNet (Kwon et al., 2021) N ×M M + 1

We first select four common routing problems that have been extensively studied in recent liter-
ature (Kool et al., 2018; Kim et al., 2022), including Traveling Salesman Problem (TSP), Vehicle
Routing Problem (VRP), Orienteering Problem (OP) and Prize Collecting TSP (PCTSP). To demon-
strate how our model handles uncertainty, we also include the Stochastic PCTSP (SPCTSP). We
also consider Asymmetric TSP (ATSP), where the problem is defined on adjacency matrix without
Cartesian coordinates (Kwon et al., 2021). Beyond routing problems, we evaluate our model on the
Knapsack problem following previous NCO literature Bello et al. (2016); Grinsztajn et al. (2023).
We also include the Maximum Independent Set (MIS) problem, which leverages features primarily
from graph structures (Sun & Yang, 2023). Finally, we assess our model on the Flexible Flow Shop
Problem (FFSP), as suggested by (Kwon et al., 2020).

For each problem, trajectories are collected from individual expert solver, as shown in Table 1.The
problem scale is set to N = 20, where N represents the number of nodes, items, or jobs, depending
on the problem. The instance generation scheme is aligned with previous literature for each problem.
Details of data generation and token design can be found in Appendix A.

4.2 EVALUATION PROTOCOLS

Hyperparameters During training, each epoch consists of 400 batches, with 128 trajectories in
each batch. The trajectory data for each epoch is newly sampled from a mixed set of all 9 prob-
lems. The total token length of each trajectory is L = 1000, either clipped or padded from the
complete MDP episode data concatenated to the CO-prefix. The transformer architecture uses 10
layers with 768 embedding dimensions. For tokenization, the discrete range is set to [0, 200), the
continuous range to [0, 4], and the bin number to 1800. We evaluate the model on the validation
dataset every two epochs and apply early stopping if no improvement is observed over 6 consecu-
tive epochs. During inference, performance is evaluated on each problem individually, using a test
dataset of 10,000 instances per problem. Further implementation details are provided in Appendix D
for reproducibility2.

Metrics We report four metrics respectively. Following previous NCO literature (Kool et al.,
2018), we present the original objectives, the gap from expert results, and the evaluation time on
the entire test dataset. Additionally, in line with literature on generic decision-making (Reed et al.,
2022), we report performance scores as a percentage, where 100% represents the expert performance
for each task, and 0% corresponds to a random policy. The score is calculated as Score = |obje −

1https://github.com/jordanamecler/PCTSP
2Our code is available at https://anonymous.4open.science/r/uniCO-35CC/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Performance results on all nine problems are presented. The best results among all learning-
based models are underlined, and the best results among all unified models are in bold.

TSP Knapsack
Method Obj.↓ Gap↓ Score↑ Time↓ Obj.↑ Gap↓ Score↑ Time↓
Random 10.47 - 0.00% (9s) 38.14 - 0.00% (6s)
Expert 3.84 0.00% 100.00% (2h) 63.89 0.00% 100.00% (10m)

POMO-single traj 3.84 0.07% 99.98% (22s) 63.14 1.17% 97.09% (30s)
POMO 3.84 0.01% 99.99% (23s) 63.79 0.16% 99.61% (31s)

GATO/DB1-greedy 3.99 3.80% 97.68% (1h) 62.19 2.66% 93.40% (35m)
GATO/DB1-sampling 3.86 0.49% 99.70% (15h) 63.56 0.26% 98.72% (24m)

Ours-DR 3.88 1.04% 99.40% (8m) 61.78 3.30% 91.81% (4m)
Ours-greedy 3.87 0.78% 99.55% (9m) 61.99 2.97% 92.62% (4m)

Ours-samping 3.84 0.01% 99.99% (1h) 63.53 0.56% 98.60% (8h)
CVRP OP

Method Obj.↓ Gap↓ Score↑ Time↓ Obj.↑ Gap↓ Score↑ Time↓
Random 13.25 - 0.00% (29s) 1.93 - 0.00% (8s)
Expert 6.11 0.00% 100.00% (5h) 5.38 0.00% 100.00% (1h)

AM-greedy 6.38 4.40% 96.12% (7s) 5.19 3.72% 93.86% (9s)
AM-sampling 6.29 2.96% 97.40% (14m) 5.26 2.55% 95.78% (7m)

GATO/DB1-greedy 6.63 8.51% 92.72% (2h) 4.91 8.87% 85.46% (53m)
GATO/DB1-sampling 6.27 2.41% 97.82% (18h) 5.30 1.56% 97.42% (10h)

Ours-DR 6.75 10.47% 91.04% (15m) 5.00 7.06% 88.99% (8m)
Ours-greedy 6.66 9.00% 92.30% (16m) 5.06 5.95% 90.72% (8m)

Ours-samping 6.27 2.40% 97.85% (2h) 5.32 1.21% 98.01% (51m)
PCTSP SPCTSP

Method Obj.↓ Gap↓ Score↑ Time↓ Obj.↓ Gap↓ Score↑ Time↓
Random 9.25 - 0.00% (20s) 9.24 - 0.00% (20s)
Expert 3.16 0.00% 100.00% (2h) 3.31 0.00% 100.00% (2h)

AM-greedy 3.18 0.85% 99.57% (13s) 3.23 -0.71% 101.25% (9s)
AM-sampling 3.16 0.13% 99.97% (12m) 3.20 -1.85% 101.94% (10m)

GATO/DB1-greedy 3.27 3.48% 98.19% (1h) 3.30 -0.30% 100.17% (1h)
GATO/DB1-sampling 3.20 1.26% 99.36% (15h) 3.28 -0.90% 100.47% (16h)

Ours-DR 3.27 3.48% 98.19% (13m) 3.28 -0.91% 100.51% (13m)
Ours-greedy 3.20 1.27% 99.34% (13m) 3.26 -1.51% 100.84% (13m)

Ours-samping 3.15 -0.27% 100.21% (2h) 3.16 -4.03% 102.89% (2h)
ATSP FFSP

Method Obj.↓ Gap↓ Score ↑ Time↓ Obj.↓ Gap↓ Score↑ Time↓
Random 10.49 - 0.00% (10s) 45.00 - 0.00% (12m)
Expert 3.85 0.00% 100.00% (2h) 27.31 0.00% 100.00% (5m)
MatNet 3.87 0.52% 99.70% (33s) 27.31 0.00% 100.0% (5m)

MatNet-augment 3.85 0.03% 99.98% (7m) - - - -
GATO/DB1-greedy 10.47 171.95% 0.30% (32m) 41.42 51.67% 20.24% (4h)

GATO/DB1-sampling 8.86 131.09% 22.78% (8h) 41.01 50.16% 22.56% (65h)
Ours-DR 4.38 13.76% 91.87% (9m) 29.20 6.92% 89.32% (29m)

Ours-greedy 4.22 9.61% 94.43% (10m) 29.11 6.59% 89.82% (27m)
Ours-samping 3.96 3.04% 98.15% (4h) 28.34 3.77% 94.18% (7h)

MIS
Method Obj.↑ Gap↓ Score↑ Time↓
Random 9.11 - 0.00% (7m)
Expert 10.44 0.00% 100.00% (7m)
LwD 10.42 0.19% 98.50% (8m)

GATO/DB1-greedy 9.70 7.09% 44.36% (33m)
GATO/DB1-sampling 9.82 5.94% 53.38% (8h)

Ours-DR 10.35 0.86% 93.23% (11m)
Ours-greedy 10.35 0.86% 93.23% (10m)

Ours-samping 10.42 0.19% 98.50% (1h)

objr|/|obj − objr|, where obje and objr denote the objectives of the expert and a random policy
respectively (Wen et al., 2022).

Ablation and Baselines We evaluate our proposed model with two variations: with and with-
out the two-stage supervised learning. We refer to the model directly trained to generate actions as
Ours-DR, as shown in Table 2. For baseline comparisons, we first demonstrate the corresponding

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

expert approach for each problem as a straightforward benchmark. We then compare our model
with GATO (Reed et al., 2022), which was re-implemented and reported by Wen et al. (2022) as
DB1. Note that we manually implemented the original GATO framework, as it is not open-sourced.
Unlike our approach, GATO is trained using a causal transformer structure, where the trajectory
data for each problem is prepended with a prompt sequence from the same problem. The prompt
consists of multiple step transitions from other episodes, and other key hyperparameters remain the
same as ours. Both GATO and Ours are evaluated using two decoding strategies: greedy decoding
and sampling, with 16 solutions per evaluation. Finally, we compare our model with auto-regressive
specialist NCO methods, which also use the MDP formulation for CO problems. We report perfor-
mance on the TSP and Knapsack problems for POMO (Kwon et al., 2020), CVRP, OP, PCTSP, and
SPCTSP for AM (Kool et al., 2018), ATSP and FFSP for MatNet (Kwon et al., 2021), and MIS for
LwD (Ahn et al., 2020). Note that MatNet is used as both the expert solver and the learning baseline
for FFSP. We also report performance for a random policy, along with the evaluation time, which
reflects the environment time cost in our implementation.

Figure 5: Performances compari-
son with sampling. Scores larger
than 100 are clipped.

Figure 6: The loss curves along with
total batch used of three models dur-
ing training.

4.3 PERFORMANCES OF GENERIC PROBLEM SOLVING

The main evaluation results across all 9 problems are illustrated in Table 2. The best results among
all learning-based models, whether specialist or unified, are underlined, while the best results among
all unified models are shown in bold. We note that GATO/DB1 struggled to converge effectively on
the ATSP, FFSP, and MIS problems under the given evaluation settings. In these cases, the data
trajectories of the three problems may have been too noisy for the model to learn other problems
effectively. To address this, we trained two versions of GATO/DB1: one on all 9 problems and
another on the first 6 problems. We report the better results for the first 6 problems from each model
version.

Our unified model demonstrates strong generic problem-solving abilities, achieving perfor-
mance comparable to specialist models. With greedy decoding, our model achieves scores above
90.7% on all problems except FFSP, and with 16-sample decoding, it reaches 97.8%. Remarkably,
when using sampling, our model even outperforms specialist learning baselines under the same set-
ting on 6 out of the 9 problems.

The CO-prefix design is significant. Besides the main table, we also compare the performance
of our model with GATO/DB1 in Figure 5. GATO/DB1 struggles to converge effectively on ATSP,
FFSP, and MIS, primarily due to its lack of a prefix design. Without this design, GATO/DB1 com-
putes full observation tokens at each step, which becomes highly inefficient when the observation
space is large. For instance, in both ATSP and MIS, the static information is represented by the
instance adjacency matrix, which has a complexity of O(N2). In each training episode, GATO/DB1
can only process one or two complete trajectory steps, with or without their prepended prompt se-
quences. The sparse loss signals from action tokens hinder the model’s convergence. Even for the
remaining problems, GATO/DB1 converges much slower than our model across all tasks, as shown
in Figure 6. Despite this, our unified model still outperforms GATO/DB1 on 5 out of the 9 problems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

The two-stage self-supervised learning scheme improves performances. Compared to a unified
model that is directly trained to generate actions, a model fine-tuned on a pre-trained forward dy-
namics model outperforms across all nine problems when evaluated with greedy decoding. The
separation of dynamics prediction and action generation significantly reduces the overall training
difficulty, leading to improved solution quality.

4.4 PERFORMANCES ON FEW-SHOT ABILITY

Figure 7: The few-shot results on four routing problems. The x-axis represents the percentage of
data used for fine-tuning in relation to the data used in the main results.

To evaluate the few-shot generalization ability of our model on unseen problems, we select four
routing problems and train four distinct unified models. Each model is trained in a leave-one-out
manner, excluding the selected problem, and then gradually fine-tuned using datasets from the un-
seen problem. In each epoch for fine-tuning, we use 0.67% of the total data that was used for the
problem in the main results. We report the optimization scores and compare them with those of a
model trained from scratch on the corresponding problem, as shown in Figure 7.

Overall, our model demonstrates strong few-shot generalization across all four problem settings,
even with limited data. In each case, the model achieves high solution quality after just one epoch,
using only 0.67% of total data. These results show that our pre-trained unified model can be quickly
adapted to an unseen problem with minimal data, eliminating the need for time-consuming retraining
of a separate model. This significantly enhances both convenience and efficiency, making it well-
suited for real-world applications.

In addition to few-shot abilities, we observed even zero-shot generalization on TSP. The correspond-
ing prefix and step token designs, which only include city coordinates, represent a subset of the more
complex routing problems. Our pre-trained model, originally trained on these high-level problems,
is able to directly generate solutions with approximately 48% optimality without any additional
fine-tuning data.

5 CONCLUSION AND FUTURE WORKS

In this paper, we have thoroughly investigated the development of a unified model capable of solving
a diverse range of CO problems simultaneously. We evaluated the performance of our proposed
model on nine different problems, demonstrating that our approach provides a valuable complement
to existing NCO methods that focus on optimizing performance for individual CO problems.

As for our future work, we plan to enhance our model to tackle problems with significantly larger to-
ken sequences. One promising direction involves integrating our current transformer backbone with
Graph Neural Network (GNN)-based structures, as many CO problems are either inherently graph-
based or can be reformulated as graph problems. Additionally, we aim to explore incorporating
our approach with advances in large model architectures and techniques for efficient long-sequence
training..

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Sungsoo Ahn, Younggyo Seo, and Jinwoo Shin. Learning what to defer for maximum independent
sets. In International conference on machine learning, pp. 134–144. PMLR, 2020.

Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances
in Neural Information Processing Systems, 35:31226–31238, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Paul Erd6s and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci, 5:17–61, 1960.

Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the orienteering problem
through branch-and-cut. INFORMS Journal on Computing, 10(2):133–148, 1998.

Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval Research Logis-
tics (NRL), 34(3):307–318, 1987.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner takes it all: Training performant rl populations for combinatorial optimization. Advances in
Neural Information Processing Systems, 36:48485–48509, 2023.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL http://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

11

http://www.gurobi.com
http://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Find-
ing near-optimal independent sets at scale. J. Heuristics, 23(4):207–229, 2017. doi: 10.1007/
s10732-017-9337-x. URL https://doi.org/10.1007/s10732-017-9337-x.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1898–1908,
2024.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 35:22955–22968, 2022.

Guman Singh and Mohammad Rizwanullah. Combinatorial optimization of supply chain networks:
A retrospective & literature review. Materials today: proceedings, 62:1636–1642, 2022.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36:3706–3731, 2023.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Ying Wen, Ziyu Wan, Ming Zhou, Shufang Hou, Zhe Cao, Chenyang Le, Jingxiao Chen, Zheng
Tian, Weinan Zhang, and Jun Wang. On realization of intelligent decision-making in the real
world: A foundation decision model perspective. arXiv preprint arXiv:2212.12669, 2022.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67–82, 1997.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023.

Hang Zhao, Yang Yu, and Kai Xu. Learning efficient online 3d bin packing on packing configuration
trees. In International conference on learning representations, 2021.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
positional generalization in control. arXiv preprint arXiv:2203.05960, 2022.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4648–4658,
2022.

12

https://doi.org/10.1007/s10732-017-9337-x

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A PROBLEM DETAILS

In this section, we continue to introduce the implementation details on each CO problem. We
use N to denote either node, item or job amount, and M to denote the total machine amount in
FFSP. For each problem, we list the data generation scheme, the expert solver selection, the token
(feature) design reference literature, prefix token designs and step token designs respectively. A
brief summary is shown in Table 3.

Table 3: The summary of the evaluated CO problems, along with individual expert solver to collect
trajectories, the prefix token length and the step state token length. N denotes the number of nodes,
items, or jobs, depending on the problem, and M denotes the number of machines in the FFSP.

Problem Expert Solver Prefix-Token State-Token
TSP LKH3 (Helsgaun, 2017) 2N 2
VRP LKH3 (Helsgaun, 2017) 3N + 2 3
OP Gurobi (Gurobi Optimization, 2018) 3N + 2 4

PCTSP ILS 3 4N + 2 3
SPCTSP re-opt with ILS 4N + 2 3
Knapsack dynamic programming 2N 1

ATSP LKH3 (Helsgaun, 2017) N ×N N
MIS Kamis Lamm et al. (2017) N ×N N
FFSP MatNet (Kwon et al., 2021) N ×M M + 1

A.1 TRAVELING SALESMAN PROBLEM (TSP)

In the TSP, the objective is to should find the shortest route that visits each city exactly once and
returns to the starting city. The objective is to minimize the total distance of the tour.

Data Generation: We implement the dataset generation scheme described by Kool et al. (2018),
for all TSP instances, the positions of N nodes are uniformly randomly sampled in unit square.

Expert Solver: LKH (Helsgaun, 2017).

Token (Feature) Design Reference: AM (Kool et al., 2018), POMO (Kwon et al., 2020).

Prefix Tokens: Coordinates of each city (2N continuous values).

Step State Tokens: Coordinates of the current city (2 continuous values).

Step Action Tokens: The index of the city to visit next.

A.2 VEHICLE ROUTING PROBLEM (VRP)

In the Capacitated VRP (Toth & Vigo, 2014), each city has a certain demand. The objective is to
construct multiple routes with minimal a distance that all start and end at a given depot, where the
total demands of cities within one route should not exceed the capacity limit. Except for the depot,
each city should be visited exactly once.

Data Generation. We implement the dataset described by Nazari et al. (2018). Specifically, each
city i ∈ {1, 2, .., N} has a demand 0 < δi ≤ D, where D > 0 is the capacity of the vehicle
(route). For each route Rj , the total demand of the cities along cannot exceed the vehicle’s capacity,
i.e.

∑
i∈Rj

δi ≤ D. For our experiments, We random sample the location coordinates of the depot
and the cities within the unit square uniformly. The discrete demands are sampled uniformly from
{1, 2, ..., 9} and the capacity is set to D20 = 30, D50 = 40.

Expert Solver: LKH (Helsgaun, 2017).

Token (Feature) Design Reference: AM (Kool et al., 2018), POMO (Kwon et al., 2020).

Prefix Tokens: Coordinates of depot and each city (2(N+1) continuous values), demands of each
city (N continuous values).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Step State Tokens: Coordinates of the current location (2 continuous values), current volume
budget(1 continuous value).

Step Action Tokens: The index of the location to visit next.

A.3 ORIENTEERING PROBLEM (OP)

In the OP (Golden et al., 1987), each node is assigned with a specific prize. The objective is to
construct a single tour that maximize the sum of prizes, starting and ending at a give depot. The tour
does not have to include every node anymore, but need to be shorter than a length limit.

Data Generation. We implement the data generation scheme by Fischetti et al. (1998); Kool et al.
(2018). Specifically, The location coordinates of depot as well as N node are random sampled
uniformly in the unit square. To make the problem more challenging, we made the prize pi for each
node i proportional to its distance from the depot by setting them as:

pi = 1 +

[
99 · d0i

maxnj=1 d0j

]
, p̂i =

pi
100

where d0i is the distance from node i to the depot. As for the length limit of the route, we set
the fixed max length as T 20 = 2 and T 50 = 3, which makes the optimal number of access nodes
different from instance to instance.

Expert Solver: Gurobi (Gurobi Optimization, 2018).

Token (Feature) Design Reference: AM (Kool et al., 2018).

Prefix Tokens: Coordinates of the depot and each city (2(N+1) continuous values), prize of each
city (N continuous values).

Step State Tokens: Coordinates of the current location (2 continuous values), total prize collected
so far (1 continuous value), current length budget (1 continuous value).

Step Action Tokens: The index of the location to visit next.

A.4 PRIZE COLLECTING TSP (PCTSP)

In the PCTSP (Balas, 1989), the sum of total prize is no longer a optimization objective, but a
constraint. The objective is to minimize the total route length plus the sum of penalties of unvisited
nodes which are given ahead, as well as collecting at least a minimal total prize.

Data Generation. We implement the data generation scheme by Kool et al. (2018). Specifically,
as the OP problem mentioned previously, the location coordinates of the depot and all nodes are
randomly sampled uniformly within the unit square. For each node i, the associated prize pi and
penalty βi need to be balanced carefully. If the penalty is too small, the choice of node is almost
entirely determined by the total reward constraint; If the penalty is too large, all nodes are always
accessed and the total reward constraint fails. Following the reference Kool et al. (2018), we set the
prize and penalty as:

ti ∼ Uniform(0, 1), ρi = ti ·
4

N

βi ∼ Uniform

(
0, 3 · K

N

N

)
where KN is about half of the trajectory length of the TSP problem with N cities, we roughly set it
as K20 = 2,K50 = 3, and the minimum total prize is set to 1 for our experiments.

Expert Solver: Iterated Local Search (ILS).

Token (Feature) Design Reference: AM (Kool et al., 2018).

Prefix Tokens: Coordinates of the depot and each city (2(N+1) continuous values), prize of each
city (N continuous values), penalty of each city (N continuous values).

Step State Tokens: Coordinates of the current location (2 continuous values), prize-to-go to the
minimum required total prize (1 continuous value).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Step Action Tokens: The index of the location to visit next.

A.5 STOCHASTIC PCTSP (SPCTSP)

In the SPCTSP, we show how our unified model performs when dealing with uncertainty. Compared
to PCTSP, the expected prize of each node is known before the optimization starts, while the real
collected prize can only be revealed after visitation.

Data Generation. The data generation for SPCTSP is the sameas in PCTSP, except that we ad-
ditionally generate the expected prize, which has the same distribution of the real prize.The expert
solution algorithm is a modified version of ILS, where the tour is re-optimized iteratively, as sug-
gested by Kool et al. (2018).

Expert Solver: Modified Iterated Local Search (ILS) by suggested Kool et al. (2018).

Token (Feature) Design Reference: AM (Kool et al., 2018).

Prefix Tokens: Coordinates of the depot and each city (2(N + 1) continuous values), expected
prize of each city (N continuous values), penalty of each city (N continuous values).

Step State Tokens: Coordinates of the current location (2 continuous values), prize-to-go to the
minimum required total prize (1 continuous value).

Step Action Tokens: The index of the location to visit next.

A.6 ASYMMETRIC TSP (ATSP)

In the ATSP, the distances between node pairs are no longer determined by Euclidean distances
based on node coordinates. Considering a directed graph, the distances are no longer necessarily
the same in both directions, and are given in an asymmetric cost matrix upfront. We show how our
model performs when dealing with features of O(N2) complexity.

Data Generation. We follow the same data generation scheme as we did for TSP instances. The
cities are selected uniformly in a unit square but only adjacency matrix is visible to represent problem
instance.

Expert Solver: LKH3 (Helsgaun, 2017).

Token (Feature) Design Reference: Raw feature usage.

Prefix State Tokens: Adjacency matrix (N ×N continuous values), serialized by rows.

Step Tokens: The row of the current city in adjacency matrix (N continuous values).

Step Action Tokens: The index of the city to visit next.

A.7 KNAPSACK

In the Knapsack problem, a group of items with specific values and volumes are given. The objective
is to maximize the total value of items selected without exceeding the total capacity. We designed
the problem generation scheme manually and implemented the dynamic programming algorithm for
trajectory collection.

Data Generation. We implement a manually designed data generation scheme. Specifically, The
values vi of each item i ∈ {1, 2, ..., N} are randomly sampled as:

vi ∼ Uniform(2, 20)

To make the problem more challenging, items of higher value should have a larger volume. We
further introduce some randomness and set the volume ki of item i as:

ki = (1 + t)vi

where t ∼ Uniform({−0.5, 0.5}), which means we increase or decrease the volume of item i
uniformly and randomly. we set the fixed total capacity as T 20 = 30 and T 50 = 75.

Expert Solver: Gurobi (Gurobi Optimization, 2018).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Token (Feature) Design Reference: POMO (Kwon et al., 2020).

Prefix Tokens: Values of all items (N discrete values), volumes of all items (N discrete values).

Step State Tokens: Current volume budget (1 discrete values).

Step Action Tokens: The index of the newly selected item.

A.8 MAXIMUM INDEPENDENT SET (MIS)

In the MIS, an independent set is a set of vertices such that no two vertices in the set are adjacent.
One should find the largest possible independent set in the graph, meaning it contains the most
vertices among all possible independent sets.

Data Generation. We follow the random graph generation scheme proposed by Erd6s & Rényi
(1960) , and directly implement the script provided by Sun & Yang (2023) to generate the graphs.

Expert Solver: Kamis (Lamm et al., 2017).

Token (Feature) Design Reference: Raw feature usage.

Prefix Tokens: Adjacency matrix (N ×N discrete values), serialized by rows.

Step State Tokens: Whether each node is selected, excluded or not decided yet. (N discrete
values).

Step Action Tokens: The index of the newly selected node.

A.9 FLEXIBLE FLOW SHOP PROBLEM (FFSP)

In the FFSP, N jobs have to be processed in several stages with the same order. Each job in each
stage can be handled by a machine from M total machines. The time required for each job at
different stages on different machines varies. Each machine can only process at most one job at the
same time. The goal is to schedule all jobs so that they can be finished with a minimum of time.

Data Generation. We directly adopt the data generation scheme and script provided by Kwon
et al. (2021), where N = 20,M = 12. We further implement the corresponding MatNet as the only
NCO expert solver in our experiments for trajectory generation.

Expert Solver: MatNet (Kwon et al., 2021).

Token (Feature) Design Reference: MatNet (Kwon et al., 2021).

Prefix Tokens: Job durations in each stage on the corresponding machine of each job (N × M
discrete values).

Step State Tokens: Job durations of the current machine (M discrete values).

Step Action Tokens: The index of the newly selected job to the current machine, or halt.

A.10 GENERALIZATION POTENTIAL TO OTHER CO PROBLEMS

n the current stage, we selected nine problems for evaluation. However, our unified model has the
potential to be extended to a much broader range of CO problems, particularly those exhibiting the
tail-recursion property, as discussed in Section 3. As demonstrated by Drakulic et al. (2024), any
problem with this property can be formulated as an MDP. The MDP trajectory data can then be
tokenized and processed within our model, thereby equipping the unified model with the ability to
solve a wider variety of problems.

We also discuss how our approach could be extended to handle CO problems that are entirely dy-
namic, such as online bin packing. A key characteristic of such problems is that all relevant features
are dynamic. For example, Zhao et al. (2021) proposed maintaining a Packing Configuration Tree
(PCT) to hierarchically represent the current packing state. In this MDP formulation, the state at
each step includes internal nodes of the PCT, representing the space configurations of packed items,
and leaf nodes, representing the potential placements for the current item. The action is the selection
of a leaf node.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

In this case, the CO-prefix remains empty, as there are no static features to extract, and only step
tokens are available. The unified model, therefore, processes MDP transitions without any prior
knowledge provided by a CO-prefix. This simplified version of our approach resembles the GATO
framework, with only the two-stage training process, and can still perform effectively in problems
with relatively small scales, as shown in Table 2 and Table 4, where the token length does not
present a significant challenge. However, as token length grows indefinitely, such as in the case of
the linearly increasing PCT descriptor in 3D online bin packing, our model may become vulnerable
to inefficiencies.

Addressing this challenge aligns with our future research direction, where we aim to improve token
usage efficiency and adapt our model to handle larger-scale problems with more tokens.

B TOKENIZATION AND TRAJECTORY COLLECTION DETAILS

In this section, we detail the tokenization and trajectory collection methods used in our model.

B.1 TOKENIZATION

A complete trajectory sequence fed into our model consists of two components: the CO-prefix and
the subsequent transition steps in the corresponding MDP episode, as illustrated in Figure 8. Both
raw CO-prefix P and state st at each step contain values that can be categorized into discrete and
continuous types, as discussed in the previous section. In most CO problems, the action represen-
tation is a discrete value. Both continuous and discrete values are flattened into a one-dimensional
sequence and tokenized separately.

• As for continuous values, our goal is to discretize them and map them to unique token IDs. To
achieve this, we use mu-law transformation to convert all values into a fixed range. The mu-law
transformation is a common technique to handle continuous signals, ensuring that the values are
transformed into a finite range suitable for tokenization. The formula for the mu-law transforma-
tion is:

F (x) = sgn(x)
log(|x|µ+ 1.0)

log(Mµ+ 1.0)
(4)

where M = 4 and µ = 15 in our experiments, and could be adjusted according to different data
distribution. The transformed values are further discretized via Nbin = 1800 bins, and mapped
with token IDs of Z ∈ [200, 2000).

• As for discrete values, we directly assign them with token IDs from the integer range Z ∈ [0, 200).
All discrete values encountered in our previous experiments are strictly less than 200, ensuring that
this range is sufficient to cover all discrete values in the data.

In addition to the discrete and continuous values, we also introduce two special tokens for separating
key parts of the trajectory sequence.

• Action Splitter: The token <|>, which separates the state tokens from the action tokens at each
step, is assigned the token ID 2000.

• Prefix Splitter: The token <X>, which separates the CO-prefix from the subsequent MDP episode,
is assigned the token ID 2001.

Once the tokens have been assigned, they are embedded into a continuous vector space using a
lookup table. This embedding approach, where each token is mapped to a fixed-length vector,
is consistent with the methods used in previous works such as Reed et al. (2022) and Janner
et al. (2021). For position encoding, we employ a combination of both local and global position
encodings. The local position encoding uses the local index within each step τ t or the prefix P ,
while the global position encoding follows the traditional approach.

B.2 TRAJECTORY COLLECTION AND DATA AUGMENTATION

In contrast to previous specialist NCO models, which typically use each raw problem instance only
once during training or augment it based on symmetries of the CO problem (Kool et al., 2018; Kwon

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 8: Tokenization illustration of CO-prefix and MDP sequence. ’D’ includes all discrete values,
and ’C’ includes all continuous ones.

et al., 2020), our unified model employs a different data collection strategy. Each raw problem
instance, along with its expert solution trajectory, can be used to generate multiple trajectory data
for training, either complete or partial, as illustrated in Figure 9.

We set the target total token length L (L = 1000 in our main results) in advance, and compute
the length of CO-prefix token length for each instance. The remaining token length, which will be
allocated to the trajectory data τ , is determined by subtracting the CO-prefix token length from the
target total token length L. The remaining token length corresponds to the maximum number of
time steps H in the target sequence τ .

Next, we use the total time steps T from the complete MDP episode and clip subsequences from the
original trajectory. If H > T , we clip subsequences with steps in the range of [2, T]. If H <= T ,
we clip subsequences with steps in the range of [2, H]. These subsequences are concatenated to the
CO-prefix P to form a complete tokenized trajectory. It will be further padded to the target token
length L, ensuring that each trajectory can be processed in parallel within a batch. The padded
tokens are masked during computation so they do not affect model training.

This approach allows for significant data augmentation, as a single problem instance can generate
multiple unique trajectories. Importantly, we do not restrict each trajectory to start from its very first
time step during training. Instead, the model learns from the internal transitions between various
steps in the trajectory, enhancing its ability to generalize across different stages of the solution
process.

(a) H > T . (b) H < T .

Figure 9: Trajectory collection illustration. Instead of directly using all transitions with T steps of
the original MDP episode, we collect subsequences and concatenate them to the prefix P as the
trajectory data we use for training.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 4: Performance results with problem scales of 50. The best results among all learning-based
models are underlined, and the best results among all unified models are in bold.

TSP Knapsack
Method Obj.↓ Gap↓ Score↑ Time↓ Obj.↑ Gap↓ Score↑ Time↓
Random 26.08 - 0.00% (20s) 85.31 - 0.00% (1m)
Expert 5.69 0.00% 100.00% (2h) 161.99 0.00% 100.00% (26m)

POMO-single traj 5.73 0.70% 99.80% (37s) 161.04 0.59% 98.76% (1m)
POMO 5.70 0.10% 99.97% (1m) 161.87 0.08% 99.84% (2m)

GATO/DB1-greedy 6.25 9.86% 97.22% (4h) 160.13 0.84% 97.57% (2h)
GATO/DB1-sampling 5.96 4.64% 98.68% (62h) 160.63 0.81% 98.20% (34h)

Ours-DR-greedy 5.99 5.27% 98.53% (20m) 160.36 1.01% 97.80% (6m)
Ours-greedy 5.93 4.38% 98.77% (22m) 160.68 0.81% 98.20% (7m)

Ours-sampling 5.78 1.45% 99.59% (3h) 161.93 0.04% 99.92% (1h)
CVRP OP

Method Obj.↓ Gap↓ Score↑ Time↓ Obj.↑ Gap↓ Score↑ Time↓
Random 30.67 - 0.00% (1m) 3.14 - 0.00% (1m)
Expert 10.35 0.00% 100.00% (12h) 16.59 0.00% 100.00% (5h)

AM-greedy 10.97 5.88% 97.00% (20s) 16.01 3.34% 95.84% (11s)
AM-sampling 10.76 3.79% 98.06% (35m) 16.55 1.61% 98.01% (12m)

GATO/DB1-greedy 11.72 12.89% 93.37% (6h) 14.66 11.57% 85.68% (3h)
GATO/DB1-sampling 11.19 7.87% 95.96% (94h) 15.91 4.08% 94.94% (49h)

Ours-DR-greedy 11.68 12.82% 93.42% (34m) 15.38 7.29% 91.00% (17m)
Ours-greedy 11.61 12.14% 93.77% (34m) 15.49 6.64% 91.77% (16m)

Ours-sampling 11.06 6.80% 96.50% (5h) 16.23 2.07% 97.44% (2h)
PCTSP

Method Obj.↓ Gap↓ Score↑ Time↓
Random 21.37 - 0.00% (1m)
Expert 4.48 0.00% 100.00% (5h)

AM-greedy 4.58 2.30% 99.37% (13s)
AM-sampling 4.53 1.15% 99.69% (22m)

GATO/DB1-greedy 4.92 9.89% 97.27% (4h)
GATO/DB1-sampling 4.63 3.23% 99.11% (65h)

Ours-DR-greedy 4.79 6.92% 98.16% (29m)
Ours-greedy 4.76 6.30% 98.27% (29m)

Ours-sampling 4.54 1.36% 99.63% (4h)

C ADDITIONAL RESULTS

C.1 SUPPLEMENTARY PERFORMANCES ON LARGER SCALES

In addition to the main results where N = 20 for all problems, we further evaluate the performance
of our unified model on larger problem scales. Specifically, we examine a problem scale of N = 50
for five selected problems, and summarize the results in Table 4.

The results demonstrate that our proposed unified model maintains consistent performance even
as the problem scale increases from N = 20 to N = 50. Notably, our model outperforms the
GATO/DB1 baseline and achieves performance comparable to that of single-model baselines. Our
model even outperforms the POMO baseline on the Knapsack problem. These results underscore the
robustness and scalability of our unified model, confirming that it is capable of handling problem in-
stances with larger scales while maintaining high-quality performance across diverse CO problems.

C.2 GENERALIZATION TO LARGER SCALES

In addition to evaluating our unified model on test sets of the same scale as the training set, we
further analyze how well the model generalizes to larger-scale problems. To do so, we utilize the
pre-trained model that was trained and reported in Table 2 from Section 4. We then fine-tune this
model on newly collected trajectory data for TSP with larger problem sizes: N = 100 and N = 200.
The fine-tuning is performed for 10 epochs for each scale, and the results are compared with the
POMO baseline (Kwon et al., 2020).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The performance results are shown in Figure 10, where we observe how the model adapts to larger
problem sizes. Results demonstrate that POMO, as a specialist model, can be directly generalized to
large scale problem even without finetuning. The unified model still requires finetuning steps to re-
obtain problem solving ability. However, the necessary finetuning is fast. After only 3 and 5 epochs
each, our unified model outperforms POMO already. These results highlight the model’s ability to
scale effectively and provide valuable insights into the impact of fine-tuning on performance as the
problem size increases.

Figure 10: Results of finetuning the unified model trained with N = 20 problems in Table 2 to large
scale TSP problem with N = 100 and N = 200.

Table 5: Performances comparison on different problem combinations. Three combinations are
considered: all 9 problems, 6 routing problems and 3 non-routing problems. The best results are
highlighted in bold.

All Problems Routing Problems Non-Routing Problems
Obj. Score Obj. Score Obj. Score

TSP 3.87 99.55% 4.03 96.75% - -
CVRP 6.66 92.30% 6.89 88.72% - -
PCTSP 3.20 99.34% 3.38 96.25% - -

OP 5.06 90.72% 4.74 80.02% - -
SPCTSP 3.26 100.84% 3.39 98.55% - -

ATSP 4.22 94.43% 4.11 95.80% - -
Knapsack 61.99 92.62% - - 61.95 92.47%

MIS 10.35 93.23% - - 10.28 87.97%
FFSP 29.10 89.88% - - 29.11 89.85%

C.3 ANALYSIS ON PROBLEM COMBINATIONS

To better understand how the combination of different CO problems influences the performance of
our unified model, we train the model on three distinct problem groups: (1) all nine problems, (2)
six routing problems, and (3) three non-routing problems. The performance results are evaluated via
greedy decoding, and are shown in Table 5.

Interestingly, we find that aggregating problem instances from structurally diverse problems can
further boost the overall performance of the model. Except for ATSP, training on all nine problems
together results in the best scores across all other problems compared to the other problem group
combinations.

This observation demonstrates the effectiveness of a unified model trained on a diverse set of prob-
lems, as it can continuously improve its performance even as the data and problem types become
more varied. This phenomenon aligns with findings from GATO (Reed et al., 2022), where the
model showed advantages when trained across different tasks, and we further confirm its applicabil-

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

ity to combinatorial optimization problems. Our results provide compelling evidence that a unified
model can generalize well across a wide range of CO problems.

C.4 ABLATION ON PARAMETER SCALES

To better understand the effect of parameter scale on overall performance, we train several versions
of our model with different parameter scales on five problems with N = 50. Specifically, we focus
on adjusting the width of the transformer backbone, i.e., the embedding dimensions. The results of
these experiments are summarized in Table 6.

We observe that the performance of our model continues to improve as the total parameter scale
increases. However, the rate of improvement gradually slows down when the total parameter scale
reaches 75M and 131M, corresponding to embedding dimensions of 768 and 1024, respectively.
Among these configurations, the model with 131M parameters outperforms the model with 75M
parameters on three out of five problems.

While increasing the parameter scale generally improves performance, we find that further scaling
the parameters beyond a certain point yields diminishing returns. This suggests that the current
limitations are not solely related to parameter scale but may also be influenced by the number of
problem types and the amount of data used for training. Moving forward, we aim to further explore
how increasing the diversity of problem types and expanding the data size can enhance the scalability
of our model, unlocking its full potential.

Table 6: Ablation study on different embedding dimensions. The best results are in bold.

h=128 h=256 h=512 h=768 h=1024
#params=2.7M #params=9M #params=34M #params=75M #params=131M
Obj. Score Obj. Score Obj. Score Obj. Score Obj. Score

TSP 6.82 94.44% 6.02 98.37% 5.94 98.78% 5.96 98.66% 5.92 98.83%
CVRP 12.55 89.13% 11.75 93.12% 11.59 93.87% 11.59 93.89% 11.68 93.41%

OP 11.22 60.07% 15.18 89.41% 15.55 92.16% 15.37 90.76% 15.61 92.62%
PCTSP 5.56 93.30% 4.91 97.33% 4.77 98.20% 4.81 98.00% 4.71 98.59%

Knapsack 140.14 69.94% 160.28 97.69% 160.28 97.65% 160.49 97.96% 160.36 97.80%

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D EVALUATION DETAILS AND TRAINING PROCESS REPORTS.

In this section ,we provide more implementation details for reproducibility.

Table 7: Implementation details.

Module Element Detail

System

OS Ubuntu 22.04.2
CUDA 11.7
Python 3.11.4
Pytorch 2.0.1
Device 2*NVIDIA A100 80G

Hyperparameters

Backbone Llama
Embedding dimension 768

Layer Num 10
Q Head Num 8

KV Head Num 8
Total token length L 1000
RMS Norm epsilon 1e-6

Weight Decay 1e-4
Early Stopping Runs 6

M of µ-law 4
µ of µ-law 15

[Mind,Maxd) [0, 200)
[Mind,Maxd) [200, 2000)

Optimizer AdamW
inital learning rate 0
max learning rate 2.5e-4

leanring rate warmup ratio 5%
leanring rate decay ratio 75%
leanring rate decay factor 10
leanring rate decay style cosine

22

	Introduction
	Related Works
	Auto-regressive NCO Methods
	Next-Token-Prediction in Decision-Making

	Methodology
	Preliminaries
	Auto-regressive MDP Formulation for CO Problem
	Trajectory Datasets

	Non-causal Transformer with CO-prefix
	Two-Stage Self-Supervised Learning

	Performance Evaluation
	Problem and Expert Selection
	Evaluation Protocols
	Performances of Generic Problem Solving
	Performances on Few-shot Ability

	Conclusion and Future Works
	Problem Details
	Traveling Salesman Problem (TSP)
	Vehicle Routing Problem (VRP)
	Orienteering Problem (OP)
	Prize Collecting TSP (PCTSP)
	Stochastic PCTSP (SPCTSP)
	Asymmetric TSP (ATSP)
	Knapsack
	Maximum Independent Set (MIS)
	Flexible Flow Shop Problem (FFSP)
	Generalization Potential to other CO Problems

	Tokenization and Trajectory Collection Details
	Tokenization
	Trajectory Collection and Data Augmentation

	Additional Results
	Supplementary Performances on Larger Scales
	Generalization to Larger Scales
	Analysis on Problem Combinations
	Ablation on Parameter Scales

	Evaluation Details and Training Process Reports.

