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ABSTRACT

Combinatorial Optimization (CO) encompasses a wide range of problems that
arise in many real-world scenarios. While significant progress has been made in
developing learning-based methods for specialized CO problems, a unified model
with a single architecture and parameter set for diverse CO problems remains elu-
sive. Such a model would offer substantial advantages in terms of efficiency and
convenience. In this paper, we introduce and formalize a unified model for solving
various CO problems. Inspired by the success of next-token prediction, we frame
each problem-solving process as a Markov Decision Process (MDP), tokenize the
corresponding sequential trajectory data, and train the model using a transformer
backbone. To reduce token length in the trajectory data, we propose a CO-prefix
design that aggregates static problem features. To address the heterogeneity of
state and action tokens within the MDP, we employ a two-stage self-supervised
learning approach. In this approach, a dynamic prediction model is first trained
and then serves as a pre-trained model for subsequent policy generation. Exper-
iments across nine CO problems demonstrate the generic problem-solving capa-
bility of our unified model, highlighting its few-shot and even zero-shot ability to
generalize to unseen problems through rapid fine-tuning. We believe our frame-
work offers a valuable complement to existing neural CO methods that focus on
optimizing performance for individual problems.

1 INTRODUCTION

Combinatorial optimization (CO) problems are pivotal in a wide range of real-world applications,
including logistics and industrial management (Singh & Rizwanullah| 2022)). To address these gen-
erally NP-hard problems, traditional integer programming and heuristic methods have been exten-
sively studied to obtain either exact or near-optimal solutions over the past decades. With the rapid
growth of deep learning, solving CO problems using learning-based methods has garnered increas-
ing attention, giving rise to the field of Neural Combinatorial Optimization (NCO)
Drakulic et al., [2024). Among all NCO schemes, the auto-regressive construction methods are fa-
vored in recent literature (Bello et al., 2016}, [Kool et al.l 2018} [Kwon et al.| [2020; [Kim et al,[2022).
These methods construct solutions incrementally, and the entire problem-solving process can natu-
rally be framed as a Markov Decision Process (MDP). These end-to-end methods offer significant
computational efficiency and flexibility in generating feasible solutions, as they can easily avoid

constraint-violating actions within the MDP framework (Kim et al.,[2022).

However, a significant limitation remains: models from existing literature are typically tailored to
specific problem types, lacking the ability to handle a wide range of problems simultaneously. There
are clear advantages to using a unified model across diverse problems. First, it reduces the need for
hand-crafted designs for each individual problem. Second, it facilitates adaptation to unseen prob-
lem types more quickly and efficiently than training specific models from scratch. Although some
literature claims to propose generic frameworks, these methods generally apply the same general ar-
chitecture to different problems, but with specific model structures and varying learning parameters.
This results in a loss of true generality. The development of these NCO methods aligns with the
famous No Free Lunch Theorem (NFLT) (Wolpert & Macready, [1997). Most literature avoids the
challenge of achieving generality across different problems, and focuses on improving performances
on individual ones, illustrated as Model A and Model B in Figurem In contrast, we tackle the chal-
lenge of achieving generality across diverse CO problems, posing a new research question: Can we




Under review as a conference paper at ICLR 2025

develop a unified model with a single neural architecture and parameter set that can simultaneously
solve diverse CO problems, while maintaining strong few-shot capabilities?

Recently, the concept of next-token-prediction has
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decision-making tasks directly (Chen et al., [2021).
For instance, (2022) developed a general-

ist agent to handle different control environments si-
multaneously, such as Atari games and robot bench-
marks. Motivated by these breakthroughs, we ex-
plore whether a unified model can be designed to tackle diverse CO problems under the same next-
token-prediction framework.

CO Problem Type

Figure 1: The No Free Lunch Theorem of
optimization.

In general, we collect solutions for raw problem instances generated by state-of-the-art solvers from
a variety of problem sources. Adopting the widely used auto-regressive MDP formulation from ex-
isting literature, we generate optimization trajectories where actions are iteratively selected based
on partial solutions. These trajectories are serialized into flat token sequences and trained using a
single transformer backbone, as illustrated in Figure [2] However, directly applying existing train-
ing schemes to CO problems often proves inefficient. Since most CO problems are NP-hard, the
observation space can be large, resulting in long token sequences and reduced training efficiency.
Furthermore, a full trajectory contains different types of elements, including states and actions. Pre-
dicting all elements in a unified manner, without addressing their distinct roles and the heterogeneity
between them, further complicates the training process.

To tackle these challenges, we introduce two approaches to improve generic training performances
considering the common characteristics of CO problems. First, we propose a non-causal, decoder-
only architecture that incorporates a CO-prefix to reduce the overall token length. Unlike other
environments where observations in an MDP can be fully dynamic, most information in a CO prob-
lem comes from its static description data. For instance, in a Traveling Salesman Problem (TSP),
the distances between node pairs remain unchanged regardless of the visiting order. Therefore, we
utilize a CO-prefix to aggregate the problems’ static features, while the subsequent main trajectory
handles dynamic observations. This reduces token length and improves training efficiency. Second,
we decompose the entire token generation process into two self-supervised learning stages to reduce
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Figure 2: The difference between previous frameworks and ours to solve diverse CO problems.
While previous frameworks require individual models with specific designs to adapt to different
problems, our framework only utilizes one unified model.
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training difficulty. In the first stage, the model focuses solely on learning to predict forward dy-
namics, which then serves as the pre-trained model for the subsequent policy generation. These two
stages are designed to handle the heterogeneous elements within the trajectory, thereby reducing the
overall training difficulty.

It is important to note that although one recent literature claims to achieve multi-task learning with
cross-problem generalization for vehicle routing problems (VRP) (Liu et al., 2024), it cannot be
extended to a unified model as we propose. In their approach, VRPs are formulated as different
combinations of shared attributes, such as capacity, backhauls, time windows, duration limits, and
open routes. However, the single model designed to solve VRPs within these attribute combinations
still relies heavily on human-crafted designs and struggles to generalize to problems outside these
specific configurations. In contrast, the framework we propose can be applied to any CO problems,
as long as a feasible solution can be formulated as an MDP.

To summarize, our key contributions are:

* To the best of our knowledge, we are the first to thoroughly investigate solving diverse CO prob-
lems using a single unified model and to present a corresponding framework. We believe that
our framework provides a valuable complement to existing NCO methods that focus on achieving
optimal performance for individual CO problems.

* To address the challenges of directly applying existing next-token prediction concepts to CO prob-
lems, we introduce a CO-prefix design and a two-stage self-supervised learning scheme to reduce
token length and training difficulty.

* We establish a comprehensive testbed featuring nine CO problems to evaluate the generic
problem-solving ability of our unified CO model. Experiments show that the model exhibits
strong generic problem-solving capabilities. Additionally, we demonstrate its few-shot and even
zero-shot generalization abilities when tackling new problems, enabled by fast fine-tuning.

2 RELATED WORKS

2.1 AUTO-REGRESSIVE NCO METHODS

Auto-regressive NCO methods aim to incrementally build a feasible solution step by step. The
pioneering work in this area was the Pointer Network, which was first tested on TSP(Vinyals
et al.| 2015). Subsequent research extended this idea by incorporating reinforcement learning (RL),
demonstrating its effectiveness across a broader range of CO problems (Bello et al., 2016). Routing
problems, a significant subclass of CO problems, have been extensively studied within this auto-
regressive framework using RL (Kool et al.| [2018; [Kwon et al., |2020). To better account for both
node and edge level features, a matrix-encoding framework was developed (Kwon et al., [2021])).
The potential of applying auto-regressive NCO methods to more general CO problems was also dis-
cussed (Drakulic et al.|[2024). These methods offer significant advantages due to their fast inference
speed, as their computational complexity during testing remains low. Additionally, they are much
more flexible in generating feasible actions that respect various problem constraints.

A recent trend in NCO research is exploring the generalization capabilities of algorithms. Existing
methods primarily focus on generalizing across different data distributions (Zhou et al., 2023} [Bi
et al.,|2022) and problem scales (Zong et al.l [2022; [Li et all 2021). In terms of generalization to
multiple problems, one study attempts to solve various VRPs by decomposing them into several
elementary tasks (Liu et al.| 2024)). However, this decomposition relies heavily on human-designed
rules, which limits its generalization potential. To the best of our knowledge, no architecture cur-
rently exists for a truly general-purpose unified model capable of addressing a wide range of CO
problems.

2.2 NEXT-TOKEN-PREDICTION IN DECISION-MAKING

In addition to the significant success of next-token prediction in both LLMs and MLLMs, researchers
have also explored how to directly incorporate this approach into decision-making problems. (Chen
et al.| (2021) first explored the use of the Transformer (Vaswani, 2017) as an effective backbone for
handling various control environments in an offline RL setting, including Atari, OpenAl Gym, and
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others. They trained a single policy model to generate actions at each decision step. Janner et al.
(2021) further proposed the Trajectory Transformer, which predicts all elements within a trajectory.
In addition to offline RL, similar architectures have been integrated with imitation learning (Reed
et al., 2022} Shafiullah et al.| 2022} Brohan et al., [2022; [Zhou et al.| |2022). A notable application
of this approach is the Generalist Agent, GATO (Reed et al., [2022)), which successfully extended its
capabilities across multiple control environments using a unified model. |Wen et al.| (2022)) further
adapted the GATO structure, referred to as DB1, and extended it to solve TSP problems. Building on
these successes, it is natural to consider Transformers as the backbone for a unified model capable
of solving diverse CO problems.

However, we note thatWen et al.| (2022)) employed a pretrained GCN model (Kipf & Welling, [2016)
specifically trained for TSP to generate TSP state embeddings. These embeddings were then used
to train the unified model, rather than using the original TSP data directly. We believe this approach
contradicts the core concept of a unified model, which should rely solely on a single architecture
and parameter set. Nevertheless, we adopt the unified model structure proposed by GATO and re-
implemented in DB1 as a key baseline for comparison, where only the original trajectory data is
processed.

3 METHODOLOGY

3.1 PRELIMINARIES

3.1.1 AUTO-REGRESSIVE MDP FORMULATION FOR CO PROBLEM

We first formulate the sequential construction process of a CO problem solution as an MDP. Follow-
ing the approach of existing auto-regressive NCO methods (Zhang et al.l|2023)), a complete solution
is incrementally constructed through multiple decision steps.

Let S denote the entire state space, with states s; € S, and let A C S x S be the action space,
where actions are denoted by a; € A. All states are assumed to be reachable from the initial state
s1. Since a CO problem is fully observed and deterministic, the transition from state s; to sy is
fully determined by action a;. Each state s, is represented as a set of actions taken before. A policy
in the MDP refers to a distribution P(s’|s) over the states s’ that can be reached from from s via a
single action. A feasible CO problem solution, represented as a complete trajectory 7, can be further

induced by the policy over T steps via H;‘F:l P(s¢41]8¢t)-

It is important to note that many CO problems exhibit the property of tail recursion: after applying a
series of construction steps, the remaining tail subproblem becomes a smaller instance of the original
CO problem, as discussed in Drakulic et al.| (2024). Any problem with this tail-recursion property
can be formulated as the MDP described above. In this paper, we focus on CO problems that exhibit
this property.

3.1.2 TRAIJECTORY DATASETS

To prepare the trajectory datasets for training, we first obtain the final optimized solutions from state-
of-the-art solvers for various problems. We then trace their complete optimization MDP episodes,
7 = (11, T2, ..., 77 ), Where each episode consists of states and actions, with 7y = (s;, a;) represent-
ing the state-action pairs at each step.

To jointly handle diverse features from different problems and distributions, we flatten all elements
within the MDP episode into one dimension and tokenize them through a tokenization process.
Discrete values, such as the node indices of actions, are directly assigned with integer token IDs
from [Ming, Maxg). Continuous values, such as demands and positions, are first encoded via mu-
law, discretized to Ny, uniform bins, and then tokenized into the range [Min., M ax.). The final
trajectory token sequence 7 at each step is formulated with state tokens, followed by an action spliter
token < | >, and then action tokens:

7= (71,72, .-, 77), WhereT; = (57, <|>,ay). (1)
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Note that the length of a fully tokenized sequence can sometimes be excessively long. To address
this, we set the target total token length L in advance, and use selected contiguous segments from
complete solution MDPs. Additionally, we only preserve dynamic observations in the intermediate
progress within s;, while the static information of the raw problem instances is aggregated within a
CO-prefix design, as introduced in the following section. For each problem instance and its complete
solution MDP, we collect multiple trajectories as data augmentation. Details of tokenization and
trajectory collection can be found in Appendix
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Figure 3: Two architecture designs for the unified model. a) Causal decoder-only architecture with-
out CO prefix, where each token is only conditioned on the past tokens and only trajectory data is
processed, adopted in [Reed et al.| (2022)). The entire token length is large. b) Non-causal decoder-
only architecture with CO-prefix, where tokens in the CO-prefix shares richer representations condi-
tioned on both prior and past tokens. The trajectory no longer process duplicated static information.

3.2 NON-CAUSAL TRANSFORMER WITH CO-PREFIX

Due to the NP-hard nature of most CO problems, the observation space and dimensionality can be
large, resulting in long token sequences and reduced training efficiency.

To tackle this challenge, we decompose the original state representation into static and dynamic
components, as most of the information in a CO problem comes from its static description data. For
instance, in a TSP instance, the positions of the cities are static and remain unchanged throughout
the optimization MDP, while the dynamic information only includes the current position. We further
introduce a CO-prefix design to capture the static information, which is prepended to the beginning
of the token trajectory. The subsequent sequence then focuses solely on dynamic observations.
This approach avoids duplicating the representation of observations by tokenizing only the current
dynamic state at each step, rather than the entire information. This design significantly reduces
token length and improves training efficiency. Let P and P represent the raw and tokenized CO-
prefix, respectively. The final token sequence fed into the model is (P; <X>,7), where < | > denotes
a separator token between them.

Although the sequential nature of Markov Decision Processes (MDPs) with time-dependent order-
ing makes the causal transformer architecture a natural choice due to its simple and effective one-
directional design, as suggested in previous sequential decision-making literature (Chen et al., 2021}
Reed et al.| [2022)), shown in Figure@ it has certain limitations. Specifically, the CO-prefix P is
time-invariant, as it only contains static representations. Therefore, each token within P should be
fully visible and processed with each other in a bi-directional manner.

To address this, we adopt a non-causal transformer architecture, where the CO-prefix tokens are
processed bi-directionally to ensure comprehensive context integration, while the remainder of the
sequence is handled in a one-directional manner, as shown in Figure [3(a)) The CO-prefix tokens
share richer representations, conditioned on both preceding and subsequent tokens, which enhances
overall performance.
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Action and CO-prefix Mask To ensure that each action selected by the unified model is fea-
sible during inference, the output policy must be masked to filter out actions that violate problem
constraints, using the action mask provided by the problem environment.

It is important to note that during the generation of trajectory data, action masks are collected along-
side the trajectory data at each step. During training, the action mask is transformed into the CO-
prefix mask, where each token corresponding to an infeasible action is masked in the attention
module. For example, in the Traveling Salesman Problem (TSP), the CO-prefix mask includes the
coordinates of already visited cities. In the Flexible Flow Shop Problem (FFSP), it corresponds to
the job duration entries of completed tasks. This design allows the model to focus on more relevant
tokens for feasible actions, without increasing the overall token length.
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Figure 4: Two-stage self-supervised learning to train the unified CO model.

3.3 TwO-STAGE SELF-SUPERVISED LEARNING

Since a complete trajectory consists of different types of elements, such as observations and actions,
predicting them without distinguishing their individual roles further increases the training difficulty.

To address this challenge, we decompose the token generation process into two stages in a self-
supervised learning framework: a dynamics forward stage and a policy generation stage, as shown
in Figure 4

* Dynamics forward stage. In the first stage, we pre-train the model to predict the next observation
given the current action. The training loss for a training batch B is defined as follows:

|B| T° L L L
L(0,B) == logps(st,1|(Z°, I, 70,75, ... 7)), 2)

b=1 t=1

where T is the amount of trajectory units in the current token length. Since MDP transitions
are deterministic in CO problems, ths dynamics model can be accurately trained with the same
amount of data.

* Policy generation stage. In the second stage, we fine-tune the model to generate actions based
on the pretrained model in advance. The training loss for a training batch 3 is defined as follows:

|Bl 1° s
L£(0,B) = — ZZlogpg(afﬂ\(Z”,Ip7'{’,7'5’, N LI ) (3)

b=1 t=1

This two-stage decomposition simplifies the learning process by decomposing the overall process
into two sub-tasks, allowing the model to first understand intermediate dynamics and then generate
qualified policy. This leads to faster and more effective convergence during training.
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4 PERFORMANCE EVALUATION

4.1 PROBLEM AND EXPERT SELECTION

To evaluate the generic problem-solving ability of our proposed framework, we construct a set of
nine diverse problems for assessment.

Table 1: The summary of the evaluated CO problems, along with individual expert solver to collect
trajectories, the prefix token length and the step state token length. N denotes the number of nodes,
items, or jobs, depending on the problem, and M denotes the number of machines in the FFSP.

Problem Expert Solver Prefix-Token | State-Token
TSP LKH3 (Helsgaun, 2017) 2N 2
VRP LKH3 (Helsgaun, 2017) 3N +2 3
OP Gurobi (Gurobi Optimization, [2018)) 3N +2 4
PCTSP IL AN 42 3
SPCTSP re-opt with ILS 4N + 2 3
Knapsack dynamic programming 2N 1
ATSP LKH3 (Helsgaun, 2017) N x N N
MIS Kamis|Lamm et al.| (2017) N x N N
FFSP MatNet (Kwon et al.,[2021) N x M M+1

We first select four common routing problems that have been extensively studied in recent liter-
ature (Kool et al., 2018; [ Kim et al.| [2022), including Traveling Salesman Problem (TSP), Vehicle
Routing Problem (VRP), Orienteering Problem (OP) and Prize Collecting TSP (PCTSP). To demon-
strate how our model handles uncertainty, we also include the Stochastic PCTSP (SPCTSP). We
also consider Asymmetric TSP (ATSP), where the problem is defined on adjacency matrix without
Cartesian coordinates (Kwon et al.,[2021)). Beyond routing problems, we evaluate our model on the
Knapsack problem following previous NCO literature Bello et al.| (2016); (Grinsztajn et al.| (2023).
We also include the Maximum Independent Set (MIS) problem, which leverages features primarily
from graph structures (Sun & Yang 2023). Finally, we assess our model on the Flexible Flow Shop
Problem (FFSP), as suggested by (Kwon et al., 2020)).

For each problem, trajectories are collected from individual expert solver, as shown in Table [T] The
problem scale is set to N = 20, where NN represents the number of nodes, items, or jobs, depending
on the problem. The instance generation scheme is aligned with previous literature for each problem.
Details of data generation and token design can be found in Appendix [A]

4.2 EVALUATION PROTOCOLS

Hyperparameters During training, each epoch consists of 400 batches, with 128 trajectories in
each batch. The trajectory data for each epoch is newly sampled from a mixed set of all 9 prob-
lems. The total token length of each trajectory is L = 1000, either clipped or padded from the
complete MDP episode data concatenated to the CO-prefix. The transformer architecture uses 10
layers with 768 embedding dimensions. For tokenization, the discrete range is set to [0, 200), the
continuous range to [0,4], and the bin number to 1800. We evaluate the model on the validation
dataset every two epochs and apply early stopping if no improvement is observed over 6 consecu-
tive epochs. During inference, performance is evaluated on each problem individually, using a test
dataset of 10,000 instances per problem. Further implementation details are provided in Appendix[D]
for reproducibilityﬂ

Metrics We report four metrics respectively. Following previous NCO literature (Kool et al.,
2018)), we present the original objectives, the gap from expert results, and the evaluation time on
the entire test dataset. Additionally, in line with literature on generic decision-making (Reed et al.,
2022), we report performance scores as a percentage, where 100% represents the expert performance
for each task, and 0% corresponds to a random policy. The score is calculated as Score = |obj. —

"https://github.com/jordanamecler/PCTSP
20ur code is available at https://anonymous.4open.science/r/uniCO-35CC/
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Table 2: Performance results on all nine problems are presented. The best results among all learning-
based models are underlined, and the best results among all unified models are in bold.

TSP Knapsack
Method Obj.J Gapl Scoref  Timel | Obj.t  Gapl Scoret  Timel
Random 10.47 - 0.00% (9s) | 38.14 - 0.00% (6s)
Expert 3.84 0.00% 100.00%  (2h) | 63.89 0.00% 100.00% (10m)
POMO-single traj 3.84 0.07% 99.98% (22s) | 63.14 1.17% 97.09% (30s)
POMO 3.84 0.01% 99.99% (23s) | 63.79 0.16% 99.61% (31s)
GATO/DB1-greedy 3.99 3.80% 97.68% (1h) | 62.19 2.66% 93.40%  (35m)
GATO/DB1-sampling | 3.86 0.49% 99.70%  (15h) | 63.56 0.26%  98.72%  (24m)
Ours-DR 3.88 1.04% 99.40% (8m) | 61.78 3.30% 91.81% (4m)
Ours-greedy 3.87 0.78% 99.55% Om) | 6199 297% 92.62% (4m)
Ours-samping 384 0.01%  99.99% (1h) | 63.53 0.56% 98.60% (8h)
CVRP OP
Method Obj.J Gapl Scoret  Timel | Obj.t  Gapl Scoret  Timel
Random 13.25 - 0.00% (29s) 1.93 - 0.00% (8s)
Expert 6.11 0.00% 100.00%  (5h) 538  0.00% 100.00%  (1h)
AM-greedy 6.38 4.40% 96.12% (7s) 519  3.72% 93.86% (9s)
AM-sampling 6.29 2.96% 97.40% (14m) | 526  2.55% 95.78% (7m)
GATO/DB1-greedy 6.63 8.51% 92.72% (2h) 491 8.87% 85.46%  (53m)
GATO/DB1-sampling | 6.27 241% 97.82%  (18h) | 530 1.56% 97.42%  (10h)
Ours-DR 6.75 10.47% 91.04% (15m) | 5.00 7.06% 88.99% (8m)
Ours-greedy 6.66 9.00% 92.30%  (16m) | 5.06 5.95% 90.72% (8m)
Ours-samping 6.27 2.40% 97.85 % (2h) 532 121% 98.01% (51m)
PCTSP SPCTSP
Method Obj.J Gapl Scoref  Timel | Obj.]  Gapl Scoret  Timel
Random 9.25 - 0.00% (20s) 9.24 - 0.00% (20s)
Expert 3.16 0.00% 100.00%  (2h) 331 0.00% 100.00%  (2h)
AM-greedy 3.18 0.85% 99.57% (13s) | 323 -0.71% 101.25% (9s)
AM-sampling 3.16 0.13% 99.97%  (12m) | 320 -1.85% 101.94% (10m)
GATO/DBI1-greedy 3.27 3.48% 98.19% (1h) 330 -030% 100.17%  (1h)
GATO/DB1-sampling | 3.20 1.26% 99.36%  (15h) | 3.28 -0.90% 100.47%  (16h)
Ours-DR 3.27 3.48% 98.19% (13m) | 328 -091% 100.51% (13m)
Ours-greedy 3.20 1.27% 99.34%  (13m) | 326 -1.51% 100.84% (13m)
Ours-samping 315 -027% 100.21% (2h) 316 -4.03% 102.89% (2h)
ATSP FFSP
Method Obj.J Gapl Score T  Timel | Obj.l  Gapl Scoret  Timel
Random 10.49 - 0.00% (10s) | 45.00 - 0.00% (12m)
Expert 3.85 0.00% 100.00%  (2h) | 27.31 0.00% 100.00%  (5m)
MatNet 3.87 0.52% 99.70% (33s) | 27.31 0.00% 100.0% (5m)
MatNet-augment 3.85 0.03% 99.98% (7m) - - - -
GATO/DBI1-greedy 1047 171.95% 0.30% (32m) | 4142 51.67% 20.24% (4h)
GATO/DBI1-sampling | 8.86 131.09%  22.78% (8h) | 41.01 50.16% 22.56%  (65h)
Ours-DR 4.38 13.76% 91.87% 9m) | 2920 6.92% 89.32%  (29m)
Ours-greedy 4.22 9.61% 94.43%  (10m) | 29.11  6.59% 89.82%  (27m)
Ours-samping 3.96 3.04% 98.15% (4h) | 2834 3.77%  94.18% (7h)
MIS
Method Obj.T Gapl, Scoret  Timel
Random 9.11 - 0.00% (7m)
Expert 1044 0.00% 100.00%  (7m)
LwD 1042 0.19% 98.50% (8m)
GATO/DB1-greedy 9.70 7.09% 4436%  (33m)
GATO/DB1-sampling | 9.82 5.94% 53.38% (8h)
Ours-DR 1035  0.86% 93.23%  (11m)
Ours-greedy 1035  0.86% 93.23%  (10m)
Ours-samping 1042  0.19% 98.50 % (1h)

objr|/|obj — obj,|, where obj. and obj, denote the objectives of the expert and a random policy
respectively (Wen et al., 2022).

Ablation and Baselines = We evaluate our proposed model with two variations: with and with-
out the two-stage supervised learning. We refer to the model directly trained to generate actions as
Ours-DR, as shown in Table [2| For baseline comparisons, we first demonstrate the corresponding
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expert approach for each problem as a straightforward benchmark. We then compare our model
with GATO 2022), which was re-implemented and reported by as
DBI1. Note that we manually implemented the original GATO framework, as it is not open-sourced.
Unlike our approach, GATO is trained using a causal transformer structure, where the trajectory
data for each problem is prepended with a prompt sequence from the same problem. The prompt
consists of multiple step transitions from other episodes, and other key hyperparameters remain the
same as ours. Both GATO and Ours are evaluated using two decoding strategies: greedy decoding
and sampling, with 16 solutions per evaluation. Finally, we compare our model with auto-regressive
specialist NCO methods, which also use the MDP formulation for CO problems. We report perfor-
mance on the TSP and Knapsack problems for POMO (Kwon et al.|[2020), CVRP, OP, PCTSP, and
SPCTSP for AM [2018), ATSP and FFSP for MatNet (Kwon et al. [2021)), and MIS for
LwD [2020). Note that MatNet is used as both the expert solver and the learning baseline
for FFSP. We also report performance for a random policy, along with the evaluation time, which
reflects the environment time cost in our implementation.

oP — Qurs
pcTSP . — Gato/DB1 50
= Ours
— Gato/DB1
24 16 = Ours-DR
0 12
d18
~ 08
c
s
F12 o4
Knapsack )
0.6
MIS
ATSP B 0.0 0.4 08 12 16
FFSP Batch Num x10°
Figure 5: Performances compari- Figure 6: The loss curves along with
son with sampling. Scores larger total batch used of three models dur-
than 100 are clipped. ing training.

4.3 PERFORMANCES OF GENERIC PROBLEM SOLVING

The main evaluation results across all 9 problems are illustrated in Table[2] The best results among
all learning-based models, whether specialist or unified, are underlined, while the best results among
all unified models are shown in bold. We note that GATO/DB/1 struggled to converge effectively on
the ATSP, FFSP, and MIS problems under the given evaluation settings. In these cases, the data
trajectories of the three problems may have been too noisy for the model to learn other problems
effectively. To address this, we trained two versions of GATO/DB1: one on all 9 problems and
another on the first 6 problems. We report the better results for the first 6 problems from each model
version.

Our unified model demonstrates strong generic problem-solving abilities, achieving perfor-
mance comparable to specialist models. With greedy decoding, our model achieves scores above
90.7% on all problems except FFSP, and with 16-sample decoding, it reaches 97.8%. Remarkably,
when using sampling, our model even outperforms specialist learning baselines under the same set-
ting on 6 out of the 9 problems.

The CO-prefix design is significant. Besides the main table, we also compare the performance
of our model with GATO/DBI in Figure[5] GATO/DBI struggles to converge effectively on ATSP,
FFSP, and MIS, primarily due to its lack of a prefix design. Without this design, GATO/DB1 com-
putes full observation tokens at each step, which becomes highly inefficient when the observation
space is large. For instance, in both ATSP and MIS, the static information is represented by the
instance adjacency matrix, which has a complexity of O(NN?). In each training episode, GATO/DB1
can only process one or two complete trajectory steps, with or without their prepended prompt se-
quences. The sparse loss signals from action tokens hinder the model’s convergence. Even for the
remaining problems, GATO/DB1 converges much slower than our model across all tasks, as shown
in Figure[f] Despite this, our unified model still outperforms GATO/DB1 on 5 out of the 9 problems.
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The two-stage self-supervised learning scheme improves performances. Compared to a unified
model that is directly trained to generate actions, a model fine-tuned on a pre-trained forward dy-
namics model outperforms across all nine problems when evaluated with greedy decoding. The
separation of dynamics prediction and action generation significantly reduces the overall training
difficulty, leading to improved solution quality.

4.4 PERFORMANCES ON FEW-SHOT ABILITY

. Few-shot on TSP Few-shot on CVRP Few-shot on OP Few-shot on PCTSP
1.0 1.0

Score

(s} .
A 04| Zero-shot

6 9

12 0 3
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4 8 12 16 0 3 6
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= From Pretrained === From Scratch

6
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Figure 7: The few-shot results on four routing problems. The x-axis represents the percentage of
data used for fine-tuning in relation to the data used in the main results.

To evaluate the few-shot generalization ability of our model on unseen problems, we select four
routing problems and train four distinct unified models. Each model is trained in a leave-one-out
manner, excluding the selected problem, and then gradually fine-tuned using datasets from the un-
seen problem. In each epoch for fine-tuning, we use 0.67% of the total data that was used for the
problem in the main results. We report the optimization scores and compare them with those of a
model trained from scratch on the corresponding problem, as shown in Figure[7]

Overall, our model demonstrates strong few-shot generalization across all four problem settings,
even with limited data. In each case, the model achieves high solution quality after just one epoch,
using only 0.67% of total data. These results show that our pre-trained unified model can be quickly
adapted to an unseen problem with minimal data, eliminating the need for time-consuming retraining
of a separate model. This significantly enhances both convenience and efficiency, making it well-
suited for real-world applications.

In addition to few-shot abilities, we observed even zero-shot generalization on TSP. The correspond-
ing prefix and step token designs, which only include city coordinates, represent a subset of the more
complex routing problems. Our pre-trained model, originally trained on these high-level problems,
is able to directly generate solutions with approximately 48% optimality without any additional
fine-tuning data.

5 CONCLUSION AND FUTURE WORKS

In this paper, we have thoroughly investigated the development of a unified model capable of solving
a diverse range of CO problems simultaneously. We evaluated the performance of our proposed
model on nine different problems, demonstrating that our approach provides a valuable complement
to existing NCO methods that focus on optimizing performance for individual CO problems.

As for our future work, we plan to enhance our model to tackle problems with significantly larger to-
ken sequences. One promising direction involves integrating our current transformer backbone with
Graph Neural Network (GNN)-based structures, as many CO problems are either inherently graph-
based or can be reformulated as graph problems. Additionally, we aim to explore incorporating
our approach with advances in large model architectures and techniques for efficient long-sequence
training..
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A  PROBLEM DETAILS

In this section, we continue to introduce the implementation details on each CO problem. We
use IV to denote either node, item or job amount, and M to denote the total machine amount in
FFSP. For each problem, we list the data generation scheme, the expert solver selection, the token
(feature) design reference literature, prefix token designs and step token designs respectively. A
brief summary is shown in Table[3]

Table 3: The summary of the evaluated CO problems, along with individual expert solver to collect
trajectories, the prefix token length and the step state token length. N denotes the number of nodes,
items, or jobs, depending on the problem, and M denotes the number of machines in the FFSP.

Problem Expert Solver Prefix-Token | State-Token
TSP LKH3 (Helsgaun, 2017) 2N 2
VRP LKH3 (Helsgaun, 2017) 3N +2 3
OP Gurobi (Gurobi Optimization, [2018) 3N +2 4
PCTSP ILS AN +2 3
SPCTSP re-opt with ILS 4N + 2 3
Knapsack dynamic programming 2N 1
ATSP LKH3 (Helsgaun, 2017) N x N N
MIS Kamis|Lamm et al.| (2017) N x N N
FFSP MatNet (Kwon et al.,[2021) N x M M+1

A.1 TRAVELING SALESMAN PROBLEM (TSP)

In the TSP, the objective is to should find the shortest route that visits each city exactly once and
returns to the starting city. The objective is to minimize the total distance of the tour.

Data Generation: We implement the dataset generation scheme described by |[Kool et al.| (2018),
for all TSP instances, the positions of N nodes are uniformly randomly sampled in unit square.

Expert Solver: LKH (Helsgaun, 2017).

Token (Feature) Design Reference: AM (Kool et al., [2018]), POMO (Kwon et al., 2020).
Prefix Tokens: Coordinates of each city (2N continuous values).

Step State Tokens: Coordinates of the current city (2 continuous values).

Step Action Tokens: The index of the city to visit next.

A.2 VEHICLE ROUTING PROBLEM (VRP)

In the Capacitated VRP (Toth & Vigol |2014), each city has a certain demand. The objective is to
construct multiple routes with minimal a distance that all start and end at a given depot, where the
total demands of cities within one route should not exceed the capacity limit. Except for the depot,
each city should be visited exactly once.

Data Generation. We implement the dataset described by [Nazari et al.| (2018)). Specifically, each
city i € {1,2,..,N} has a demand 0 < é; < D, where D > 0 is the capacity of the vehicle
(route). For each route I?;, the total demand of the cities along cannot exceed the vehicle’s capacity,
ie > i R, d; < D. For our experiments, We random sample the location coordinates of the depot

and the cities within the unit square uniformly. The discrete demands are sampled uniformly from
{1,2,...,9} and the capacity is set to D?° = 30, D% = 40.

Expert Solver: LKH (Helsgaun, |[2017).
Token (Feature) Design Reference: AM (Kool et al.,[2018]), POMO (Kwon et al.| [2020).

Prefix Tokens: Coordinates of depot and each city (2(N 4 1) continuous values), demands of each
city (/V continuous values).

13



Under review as a conference paper at ICLR 2025

Step State Tokens:  Coordinates of the current location (2 continuous values), current volume
budget(1 continuous value).

Step Action Tokens: The index of the location to visit next.

A.3 ORIENTEERING PROBLEM (OP)

In the OP (Golden et al.| |[1987), each node is assigned with a specific prize. The objective is to
construct a single tour that maximize the sum of prizes, starting and ending at a give depot. The tour
does not have to include every node anymore, but need to be shorter than a length limit.

Data Generation. We implement the data generation scheme by [Fischetti et al.| (1998); Kool et al.
(2018). Specifically, The location coordinates of depot as well as N node are random sampled
uniformly in the unit square. To make the problem more challenging, we made the prize p; for each
node ¢ proportional to its distance from the depot by setting them as:

doi . Di
99. — 0| 5 =
max’_, doj] P 00

pi =1+

where dy; is the distance from node ¢ to the depot. As for the length limit of the route, we set
the fixed max length as 72° = 2 and 7°° = 3, which makes the optimal number of access nodes
different from instance to instance.

Expert Solver: Gurobi (Gurobi Optimization, [2018]).
Token (Feature) Design Reference: AM (Kool et al., [2018]).

Prefix Tokens: Coordinates of the depot and each city (2(/N + 1) continuous values), prize of each
city (/V continuous values).

Step State Tokens:  Coordinates of the current location (2 continuous values), total prize collected
so far (1 continuous value), current length budget (1 continuous value).

Step Action Tokens: The index of the location to visit next.

A.4 PRIZE COLLECTING TSP (PCTSP)

In the PCTSP (Balas| [1989), the sum of total prize is no longer a optimization objective, but a
constraint. The objective is to minimize the total route length plus the sum of penalties of unvisited
nodes which are given ahead, as well as collecting at least a minimal total prize.

Data Generation. We implement the data generation scheme by Kool et al.|(2018). Specifically,
as the OP problem mentioned previously, the location coordinates of the depot and all nodes are
randomly sampled uniformly within the unit square. For each node ¢, the associated prize p; and
penalty 3; need to be balanced carefully. If the penalty is too small, the choice of node is almost
entirely determined by the total reward constraint; If the penalty is too large, all nodes are always
accessed and the total reward constraint fails. Following the reference Kool et al.|(2018])), we set the

prize and penalty as:

4
t; ~ Uniform(0,1), p;=1t; - —

N
KN
: ~ Unif 3.
B UIllOI‘IIl<03 N)

where KV is about half of the trajectory length of the TSP problem with IV cities, we roughly set it
as K29 = 2, K°° = 3, and the minimum total prize is set to 1 for our experiments.

Expert Solver: Iterated Local Search (ILS).
Token (Feature) Design Reference: AM (Kool et al., 2018).

Prefix Tokens: Coordinates of the depot and each city (2(/N + 1) continuous values), prize of each
city (N continuous values), penalty of each city (/N continuous values).

Step State Tokens: Coordinates of the current location (2 continuous values), prize-to-go to the
minimum required total prize (1 continuous value).
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Step Action Tokens: The index of the location to visit next.

A.5 StocHASTIC PCTSP (SPCTSP)

In the SPCTSP, we show how our unified model performs when dealing with uncertainty. Compared
to PCTSP, the expected prize of each node is known before the optimization starts, while the real
collected prize can only be revealed after visitation.

Data Generation. The data generation for SPCTSP is the sameas in PCTSP, except that we ad-
ditionally generate the expected prize, which has the same distribution of the real prize.The expert
solution algorithm is a modified version of ILS, where the tour is re-optimized iteratively, as sug-
gested by Kool et al.|(2018).

Expert Solver: Modified Iterated Local Search (ILS) by suggested Kool et al.| (2018]).
Token (Feature) Design Reference: AM (Kool et al., 2018).

Prefix Tokens: Coordinates of the depot and each city (2(IN 4 1) continuous values), expected
prize of each city (N continuous values), penalty of each city (/V continuous values).

Step State Tokens: Coordinates of the current location (2 continuous values), prize-to-go to the
minimum required total prize (1 continuous value).

Step Action Tokens: The index of the location to visit next.

A.6 ASYMMETRIC TSP (ATSP)

In the ATSP, the distances between node pairs are no longer determined by Euclidean distances
based on node coordinates. Considering a directed graph, the distances are no longer necessarily
the same in both directions, and are given in an asymmetric cost matrix upfront. We show how our
model performs when dealing with features of O(N?) complexity.

Data Generation. We follow the same data generation scheme as we did for TSP instances. The
cities are selected uniformly in a unit square but only adjacency matrix is visible to represent problem
instance.

Expert Solver: LKH3 (Helsgaun, [2017).

Token (Feature) Design Reference: Raw feature usage.

Prefix State Tokens: Adjacency matrix (/N x IV continuous values), serialized by rows.
Step Tokens: The row of the current city in adjacency matrix (N continuous values).

Step Action Tokens: The index of the city to visit next.

A.7 KNAPSACK

In the Knapsack problem, a group of items with specific values and volumes are given. The objective
is to maximize the total value of items selected without exceeding the total capacity. We designed
the problem generation scheme manually and implemented the dynamic programming algorithm for
trajectory collection.

Data Generation. We implement a manually designed data generation scheme. Specifically, The
values v; of each item ¢ € {1,2, ..., N} are randomly sampled as:

v; ~ Uniform(2, 20)

To make the problem more challenging, items of higher value should have a larger volume. We
further introduce some randomness and set the volume k; of item ¢ as:

ki = (1+t)v;

where ¢t ~ Uniform({—0.5,0.5}), which means we increase or decrease the volume of item 4
uniformly and randomly. we set the fixed total capacity as 72° = 30 and 7°° = 75.

Expert Solver: Gurobi (Gurobi Optimization, 2018)).

15



Under review as a conference paper at ICLR 2025

Token (Feature) Design Reference: POMO (Kwon et al.| 2020).

Prefix Tokens: Values of all items (/N discrete values), volumes of all items (/N discrete values).

Step State Tokens: Current volume budget (1 discrete values).

Step Action Tokens:  The index of the newly selected item.

A.8 MAXIMUM INDEPENDENT SET (MIS)

In the MIS, an independent set is a set of vertices such that no two vertices in the set are adjacent.
One should find the largest possible independent set in the graph, meaning it contains the most
vertices among all possible independent sets.

Data Generation. We follow the random graph generation scheme proposed by |[Erd6s & Rényi
(1960) , and directly implement the script provided by [Sun & Yang|(2023)) to generate the graphs.

Expert Solver: Kamis (Camm et all,[2017).

Token (Feature) Design Reference: Raw feature usage.

Prefix Tokens: Adjacency matrix (N x N discrete values), serialized by rows.

Step State Tokens: Whether each node is selected, excluded or not decided yet. (/N discrete
values).

Step Action Tokens: The index of the newly selected node.

A.9 FLEXIBLE FLOW SHOP PROBLEM (FFSP)

In the FFSP, N jobs have to be processed in several stages with the same order. Each job in each
stage can be handled by a machine from M total machines. The time required for each job at
different stages on different machines varies. Each machine can only process at most one job at the
same time. The goal is to schedule all jobs so that they can be finished with a minimum of time.

Data Generation. We directly adopt the data generation scheme and script provided by
(2021)), where N = 20, M = 12. We further implement the corresponding MatNet as the only
NCO expert solver in our experiments for trajectory generation.

Expert Solver: MatNet (Kwon et al.} 202T).

Token (Feature) Design Reference: MatNet (Kwon et al,[2021).

Prefix Tokens: Job durations in each stage on the corresponding machine of each job (N x M
discrete values).

Step State Tokens: Job durations of the current machine (M discrete values).

Step Action Tokens: The index of the newly selected job to the current machine, or halt.

A.10 GENERALIZATION POTENTIAL TO OTHER CO PROBLEMS

n the current stage, we selected nine problems for evaluation. However, our unified model has the
potential to be extended to a much broader range of CO problems, particularly those exhibiting the
tail-recursion property, as discussed in Section 3. As demonstrated by [Drakulic et al| (2024)), any
problem with this property can be formulated as an MDP. The MDP trajectory data can then be
tokenized and processed within our model, thereby equipping the unified model with the ability to
solve a wider variety of problems.

We also discuss how our approach could be extended to handle CO problems that are entirely dy-
namic, such as online bin packing. A key characteristic of such problems is that all relevant features
are dynamic. For example, proposed maintaining a Packing Configuration Tree
(PCT) to hierarchically represent the current packing state. In this MDP formulation, the state at
each step includes internal nodes of the PCT, representing the space configurations of packed items,
and leaf nodes, representing the potential placements for the current item. The action is the selection
of a leaf node.
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In this case, the CO-prefix remains empty, as there are no static features to extract, and only step
tokens are available. The unified model, therefore, processes MDP transitions without any prior
knowledge provided by a CO-prefix. This simplified version of our approach resembles the GATO
framework, with only the two-stage training process, and can still perform effectively in problems
with relatively small scales, as shown in Table [2] and Table ] where the token length does not
present a significant challenge. However, as token length grows indefinitely, such as in the case of
the linearly increasing PCT descriptor in 3D online bin packing, our model may become vulnerable
to inefficiencies.

Addressing this challenge aligns with our future research direction, where we aim to improve token
usage efficiency and adapt our model to handle larger-scale problems with more tokens.

B TOKENIZATION AND TRAJECTORY COLLECTION DETAILS
In this section, we detail the tokenization and trajectory collection methods used in our model.

B.1 TOKENIZATION

A complete trajectory sequence fed into our model consists of two components: the CO-prefix and
the subsequent transition steps in the corresponding MDP episode, as illustrated in Figure[8] Both
raw CO-prefix P and state s; at each step contain values that can be categorized into discrete and
continuous types, as discussed in the previous section. In most CO problems, the action represen-
tation is a discrete value. Both continuous and discrete values are flattened into a one-dimensional
sequence and tokenized separately.

* As for continuous values, our goal is to discretize them and map them to unique token IDs. To
achieve this, we use mu-law transformation to convert all values into a fixed range. The mu-law
transformation is a common technique to handle continuous signals, ensuring that the values are
transformed into a finite range suitable for tokenization. The formula for the mu-law transforma-
tion is: log 2] 0)

og(|z|pw+ 1.

F(z) =sgn(z) —————=

(@) = sgn(@) s M5 1.0)
where M = 4 and ;¢ = 15 in our experiments, and could be adjusted according to different data
distribution. The transformed values are further discretized via Ny;, = 1800 bins, and mapped

with token IDs of Z € [200, 2000).

* As for discrete values, we directly assign them with token IDs from the integer range Z € [0, 200).
All discrete values encountered in our previous experiments are strictly less than 200, ensuring that
this range is sufficient to cover all discrete values in the data.

“4)

In addition to the discrete and continuous values, we also introduce two special tokens for separating
key parts of the trajectory sequence.

* Action Splitter: The token < | >, which separates the state tokens from the action tokens at each
step, is assigned the token ID 2000.

* Prefix Splitter: The token <X>, which separates the CO-prefix from the subsequent MDP episode,
is assigned the token ID 2001.

Once the tokens have been assigned, they are embedded into a continuous vector space using a
lookup table. This embedding approach, where each token is mapped to a fixed-length vector,
is consistent with the methods used in previous works such as |[Reed et al] (2022) and [Janner
(2021). For position encoding, we employ a combination of both local and global position
encodings. The local position encoding uses the local index within each step 7, or the prefix P,
while the global position encoding follows the traditional approach.

B.2 TRAJECTORY COLLECTION AND DATA AUGMENTATION

In contrast to previous specialist NCO models, which typically use each raw problem instance only
once during training or augment it based on symmetries of the CO problem (Kool et al., 2018}, [Kwon|
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CO-prefix MDP episode

{'0':[1, 21, 'C’':[0.4, 0.1, 0.31}

| g | : |

T 1
Toenseasece | [3] [s] [ =] [=] [=] [ 6 [ (=] ] [ [0
|

Local
position index

Global
position index

Figure 8: Tokenization illustration of CO-prefix and MDP sequence. 'D’ includes all discrete values,
and "C’ includes all continuous ones.

[2020), our unified model employs a different data collection strategy. Each raw problem
instance, along with its expert solution trajectory, can be used to generate multiple trajectory data
for training, either complete or partial, as illustrated in Figure[9]

We set the target total token length L (L = 1000 in our main results) in advance, and compute
the length of CO-prefix token length for each instance. The remaining token length, which will be
allocated to the trajectory data 7, is determined by subtracting the CO-prefix token length from the
target total token length L. The remaining token length corresponds to the maximum number of
time steps H in the target sequence 7.

Next, we use the total time steps 7" from the complete MDP episode and clip subsequences from the
original trajectory. If H > T, we clip subsequences with steps in the range of [2,T]. If H <= T,
we clip subsequences with steps in the range of [2, H]. These subsequences are concatenated to the
CO-prefix P to form a complete tokenized trajectory. It will be further padded to the target token
length L, ensuring that each trajectory can be processed in parallel within a batch. The padded
tokens are masked during computation so they do not affect model training.

This approach allows for significant data augmentation, as a single problem instance can generate
multiple unique trajectories. Importantly, we do not restrict each trajectory to start from its very first
time step during training. Instead, the model learns from the internal transitions between various
steps in the trajectory, enhancing its ability to generalize across different stages of the solution
process.

H timesteps of target sequence T

H-1 steps

T-1 steps

000000

H-4 steps
000000

o)
E
2
o

=
xX

~

d Xi}d4d-0d

(@ H>T. by H<T.

Figure 9: Trajectory collection illustration. Instead of directly using all transitions with 1" steps of
the original MDP episode, we collect subsequences and concatenate them to the prefix P as the
trajectory data we use for training.
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Table 4: Performance results with problem scales of 50. The best results among all learning-based
models are underlined, and the best results among all unified models are in bold.

TSP Knapsack
Method Obj.l  Gapl Scoret  Time| | Obj.T Gapl Scoret  Timel
Random 26.08 - 0.00% (20s) | 85.31 - 0.00% (1m)
Expert 5,69 0.00% 100.00% (2h) | 161.99 0.00% 100.00% (26m)
POMO-single traj 573  0.70% 99.80%  (37s) | 161.04 0.59%  98.76%  (1m)
POMO 570 0.10% 99.97%  (1lm) | 161.87 0.08% 99.84%  (2m)

GATO/DB1-greedy 625 986%  97.22% (4h) 160.13  0.84%  97.57% (2h)
GATO/DB1-sampling | 596 4.64%  98.68%  (62h) | 160.63 0.81%  98.20%  (34h)
Ours-DR-greedy 599 527%  9853% (20m) | 16036 1.01%  97.80%  (6m)

Ours-greedy 593  438% 98.77% (22m) | 160.68 0.81%  98.20% (7m)
Ours-sampling 578 145%  99.59% (3h) | 16193 0.04% 99.92% (1h)
CVRP OP
Method Obj.l  Gapl Scoret  Time| | Obj.T Gapl Score?  Timel
Random 30.67 - 0.00% (Im) 3.14 - 0.00% (Im)
Expert 10.35  0.00% 100.00%  (12h) 16.59  0.00% 100.00%  (5h)
AM-greedy 1097 588%  97.00%  (20s) 16.01 334%  95.84%  (11s)
AM-sampling 10.76  3.79%  98.06% (35m) | 16.55 1.61% 98.01% (12m)

GATO/DB1-greedy | 11.72 12.89%  93.37% (6h) 14.66 11.57%  85.68% (3h)
GATO/DB1-sampling | 11.19  7.87%  95.96%  (94h) 1591  4.08%  94.94%  (4%h)
Ours-DR-greedy 11.68 12.82% 93.42%  (34m) | 1538 7.29%  91.00% (17m)

Ours-greedy 11.61 12.14% 93.77% (34m) | 1549 6.64% 91.77% (16m)
Ours-sampling 11.06 6.80% 96.50% (5h) 16.23 2.07% 97.44% (2h)
PCTSP
Method Obj.l  Gapl Scoret  Timel
Random 21.37 - 0.00% (1m)
Expert 448 0.00% 100.00%  (5h)
AM-greedy 458 230%  9937%  (13s)
AM-sampling 4.53 1.15% 99.69%  (22m)

GATO/DB1-greedy 492  989%  97.27% (4h)
GATO/DB1-sampling | 4.63 323%  99.11%  (65h)
Ours-DR-greedy 479  692%  98.16%  (29m)
Ours-greedy 4.76 6.30% 98.27%  (29m)

Ours-sampling 454 136%  99.63% (4h)

C ADDITIONAL RESULTS

C.1 SUPPLEMENTARY PERFORMANCES ON LARGER SCALES

In addition to the main results where N = 20 for all problems, we further evaluate the performance
of our unified model on larger problem scales. Specifically, we examine a problem scale of N = 50
for five selected problems, and summarize the results in Table@

The results demonstrate that our proposed unified model maintains consistent performance even
as the problem scale increases from N = 20 to N = 50. Notably, our model outperforms the
GATO/DBI baseline and achieves performance comparable to that of single-model baselines. Our
model even outperforms the POMO baseline on the Knapsack problem. These results underscore the
robustness and scalability of our unified model, confirming that it is capable of handling problem in-
stances with larger scales while maintaining high-quality performance across diverse CO problems.

C.2 GENERALIZATION TO LARGER SCALES

In addition to evaluating our unified model on test sets of the same scale as the training set, we
further analyze how well the model generalizes to larger-scale problems. To do so, we utilize the
pre-trained model that was trained and reported in Table [2] from Section 4. We then fine-tune this
model on newly collected trajectory data for TSP with larger problem sizes: N = 100 and N = 200.
The fine-tuning is performed for 10 epochs for each scale, and the results are compared with the
POMO baseline (Kwon et al., [2020).
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The performance results are shown in Figure [I0} where we observe how the model adapts to larger
problem sizes. Results demonstrate that POMO, as a specialist model, can be directly generalized to
large scale problem even without finetuning. The unified model still requires finetuning steps to re-
obtain problem solving ability. However, the necessary finetuning is fast. After only 3 and 5 epochs
each, our unified model outperforms POMO already. These results highlight the model’s ability to
scale effectively and provide valuable insights into the impact of fine-tuning on performance as the
problem size increases.

N=20 to N=100 N=20 to N=200
1.000 1.000
/—t—-r—""_'_—*"_‘_‘
0.975 0.975
0.950 0.950
0.9841{
0.925 0.925
o 0.080 | o
g 0.900 g 0.900
2] 0976 n
0.875 0.875
0.9721
0.850 25 50 75 160 0.850 -
0.825 iy 0.825
) —— POMO ’
0.800 T T y 0.800
0 2 4 6 8 10 0
Epoch Epoch

Figure 10: Results of finetuning the unified model trained with N = 20 problems in Tableto large

scale TSP problem with N = 100 and N = 200.

Table 5: Performances comparison on different problem combinations. Three combinations are
considered: all 9 problems, 6 routing problems and 3 non-routing problems. The best results are

highlighted in bold.
All Problems Routing Problems | Non-Routing Problems
Ob;. Score Ob;. Score Ob;. Score
TSP 387 9955% | 403  96.75% - -
CVRP 6.66 92.30% | 6.89  88.72% - -
PCTSP 320 9934% | 338  96.25% - -
OP 506 90.72% | 474  80.02% - -
SPCTSP | 3.26 100.84% | 3.39  98.55% - -
ATSP 422  9443% | 411  95.80% - -
Knapsack | 61.99  92.62% - - 61.95 92.47%
MIS 10.35  93.23% - - 10.28 87.97%
FFSP 29.10 89.88% - - 29.11 89.85%

C.3 ANALYSIS ON PROBLEM COMBINATIONS

To better understand how the combination of different CO problems influences the performance of
our unified model, we train the model on three distinct problem groups: (1) all nine problems, (2)
six routing problems, and (3) three non-routing problems. The performance results are evaluated via
greedy decoding, and are shown in Table 3]

Interestingly, we find that aggregating problem instances from structurally diverse problems can
further boost the overall performance of the model. Except for ATSP, training on all nine problems
together results in the best scores across all other problems compared to the other problem group
combinations.

This observation demonstrates the effectiveness of a unified model trained on a diverse set of prob-
lems, as it can continuously improve its performance even as the data and problem types become
more varied. This phenomenon aligns with findings from GATO (Reed et al, [2022)), where the
model showed advantages when trained across different tasks, and we further confirm its applicabil-
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ity to combinatorial optimization problems. Our results provide compelling evidence that a unified
model can generalize well across a wide range of CO problems.

C.4 ABLATION ON PARAMETER SCALES

To better understand the effect of parameter scale on overall performance, we train several versions
of our model with different parameter scales on five problems with N = 50. Specifically, we focus
on adjusting the width of the transformer backbone, i.e., the embedding dimensions. The results of
these experiments are summarized in Table[6]

We observe that the performance of our model continues to improve as the total parameter scale
increases. However, the rate of improvement gradually slows down when the total parameter scale
reaches 75M and 131M, corresponding to embedding dimensions of 768 and 1024, respectively.
Among these configurations, the model with 131M parameters outperforms the model with 75M
parameters on three out of five problems.

While increasing the parameter scale generally improves performance, we find that further scaling
the parameters beyond a certain point yields diminishing returns. This suggests that the current
limitations are not solely related to parameter scale but may also be influenced by the number of
problem types and the amount of data used for training. Moving forward, we aim to further explore
how increasing the diversity of problem types and expanding the data size can enhance the scalability
of our model, unlocking its full potential.

Table 6: Ablation study on different embedding dimensions. The best results are in bold.

h=128 h=256 h=512 h=768 h=1024
#params=2.7M #params=9M #params=34M #params=75M #params=131M
Ob;j. Score Ob;j. Score Ob;. Score Ob;. Score Ob;j. Score

TSP 6.82  9444%  6.02 9837% 594 98.718% 596  98.66%  5.92  98.83%
CVRP 1255 89.13% 11.75 93.12% 11.59 93.87% 1159 93.89% 11.68 93.41%
opP 1122 60.07% 15.18 89.41% 15.55 92.16% 1537 90.76%  15.61 92.62%

PCTSP 556  9330% 491 9733% 477 9820%  4.81 98.00% 471  98.59%
Knapsack | 140.14 69.94% 160.28 97.69% 160.28 97.65% 160.49 97.96% 160.36 97.80%
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D EVALUATION DETAILS AND TRAINING PROCESS REPORTS.

In this section ,we provide more implementation details for reproducibility.

Table 7: Implementation details.

Module \ Element Detail
oS Ubuntu 22.04.2
CUDA 11.7
System Python 3.114
Pytorch 2.0.1
Device 2*NVIDIA A100 80G
Backbone Llama
Embedding dimension 768
Layer Num 10
Q Head Num 8
KV Head Num 8
Total token length L 1000
RMS Norm epsilon le-6
Weight Decay le-4
Early Stopping Runs 6
M of p-law 4
of p-law 15
Hyperparameters [ ]\/;Lind 7’“ Mazy) [0, 200)
[Ming, Maxg) [200, 2000)
Optimizer AdamW
inital learning rate 0
max learning rate 2.5e-4
leanring rate warmup ratio 5%
leanring rate decay ratio 5%
leanring rate decay factor 10
leanring rate decay style cosine
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