
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SOLVING DIVERSE COMBINATORIAL OPTIMIZATION
PROBLEMS WITH A UNIFIED MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Combinatorial Optimization (CO) covers a wide range of problems that exist in
many real-world scenarios, while solving them using learning based methods has
drawn great attention. Developing a unified deep model to solve diverse CO prob-
lems has many benefits, including a reduction in the need for hand-crafted designs
for individual problems and enhanced flexibility for few-shot learning in unseen
problem types. Meanwhile, a unified model with a single architecture and param-
eter set for diverse CO problems remains absent. To the best of our knowledge, we
are the first to formally investigate and develop such a unified model. Motivated
by the success of the next-token-prediction concept, we formulate each solution
into an Markov Decision Process, and train the model with transformer backbone
using tokenized data collected from problem solution trajectories. However, di-
rectly training the unified model is challenging due to the long token length of the
trajectories, which arises from the complex observation space of CO problems,
resulting from their NP-hard nature. Furthermore, using the same model to si-
multaneously predict observations and actions—distinct types of elements within
a trajectory—further increases training difficulty. To address these challenges,
we introduce two key designs. First, to reduce token length, we implement a
CO-prefix design that aggregates the static features of the problems. Second, to
account for the heterogeneity of state and action tokens within the MDP, we adopt
a two-stage self-supervised learning scheme. In the first stage, a dynamic predic-
tion model is learned, which then serves as a pre-trained model for subsequent
policy generation. Experiments across a set of nine problems demonstrate the ro-
bust problem-solving capabilities of our unified model, along with its few-shot
and even zero-shot generalization abilities. We believe our framework provides
a valuable complement to existing neural CO methods that focus on achieving
optimal performance for individual CO problems.

1 INTRODUCTION

Combinatorial optimization (CO) problems are crucial in a wide range of real-world scenarios, such
as logistics, industrial management, etc (Singh & Rizwanullah, 2022). To solve these generally NP-
hard problems, traditional integer programming and heuristics have been widely studied to obtain
either exact or near optimal solutions in the past decades. With the rapid growth of deep learn-
ing, solving CO problems using learning based methods has drawn increasing attention and led to
the rising field of Neural Combinatorial Optimization (NCO) (Kim et al., 2022; Drakulic et al.,
2024). Depending on the solution generation scheme, NCO methods can be generally classified into
auto-regressive ones and the non-autoregressive ones, where the former are more favored in recent
literature (Bello et al., 2016; Kool et al., 2018; Kwon et al., 2020; Kim et al., 2022). The auto-
regressive methods incrementally construct solutions, where the complete problem-solving process
can be naturally viewed as a Markov Decision Process (MDP). These end-to-end methods offer sig-
nificant computational efficiency and are more flexible in generating feasible solutions, as they can
easily avoid constraint-violating actions within the MDP framework (Kim et al., 2022).

However, a significant limitation still remains: models from existing literature can only deal with
specific problem types, lacking the capability to handle diverse problems simultaneously. There
are significant benefits to use one unified model across diverse problems. First, it reduces the need
of hand-crafted designs of each individual domain. Second, it can be utilized to unseen problem

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 2: The difference between previous frameworks and ours to solve diverse CO problems.
While previous frameworks require individual models with specific designs to adapt to different
problems, our framework only utilizes one unified model.

types much easier and faster than specific models trained from scratch, due to its potential few-shot
ability. Even though some literature claimed to propose generic frameworks, they only use the same
general architecture across different problems with specific model structures and different learning
parameters, which leads to the loss of generality, as shown in Figure 2. The development of these
NCO methods aligns with the famous No Free Lunch Theorem (NFLT) (Wolpert & Macready,
1997), which states that the only way one strategy, i.e. a deep model in NCO, can outperform
another if it is specialized to the specific problem structures under considerations. Most literature
avoids the challenge of achieving generality across different problems, and focuses on improving
performances on individual ones, illustrated as Model A and Model B in Figure 1. Thus we directly
explore such a challenge where few tackled in NCO, and a new research problem emerges: Can
we develop a unified model with one neural architecture and parameter set that solves diverse CO
problems simultaneously, with strong few-shot capability?

Figure 1: The No Free Lunch Theorem of
optimization.

Recently, the concept of next-token-prediction has
marked a new era in general artificial intelligence,
excelling in processing data across multiple sce-
narios, domains, and even modalities. The most
successful examples are the large language mod-
els (LLMs) and multimodal large languange mod-
els (MLLMs) (Achiam et al., 2023; Dubey et al.,
2024), which can generalize across various natu-
ral language process (NLP) and computer vision
(CV) scenarios and excel in few-shot learning tasks.
Furthermore, the concept has also been applied to
decision-making tasks directly (Chen et al., 2021).
For instance, Reed et al. (2022) developed a general-
ist agent to handle different control environments si-
multaneously, such as Atari games and robot bench-
marks. Motivated by these breakthroughs, we ex-
plore whether a unified model can be designed to tackle diverse CO problems under the same next-
token-prediction framework.

Generally, we collect solutions of raw problem instances generated by state-of-the-art solvers from
a mix of problem sources. Following the commonly adopted auto-regressive MDP formulation of
existing literature, we generate optimization trajectories where actions are iteratively selected to
based on temporary partial solutions. These trajectories are serialized into flat token sequences,
which are trained using a single transformer backbone, as shown in Figure 2. However, directly
applying existing training schemes to CO problems is often inefficient. Since most CO problems
are NP-hard, the observation space can be vast, leading to long token sequences and low training
efficiency. Additionally, a full trajectory consists of different types of elements, such as observations
and actions. Predicting all elements without considering their individual roles further increases the
overall training difficulty.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

To tackle these challenges, we introduce two approaches to improve generic training performances
considering the common characteristics of CO problems. First, we propose a non-causal, decoder-
only architecture that incorporates a CO-prefix to reduce the overall token length. Unlike other
environments where observations in an MDP can be fully dynamic, most information in a CO prob-
lem comes from its static description data. For instance, in a Traveling Salesman Problem (TSP),
the distances between node pairs remain unchanged regardless of the visiting order. Therefore, we
utilize a CO-prefix to aggregate the problems’ static features, while the subsequent main trajectory
handles dynamic observations. This reduces token length and improves training efficiency. Second,
we decompose the entire token generation process into two self-supervised learning stages to reduce
training difficulty. In the first stage, the model focuses solely on learning to predict forward dy-
namics, which then serves as the pre-trained model for the subsequent policy generation. These two
stages are designed to handle the heterogeneous elements within the trajectory, thereby reducing the
overall training difficulty.

We should point out that even though one recent literature declared to achieve multi-task learning
with cross-problem generalization for vehicle routing problems (VRP), it cannot be further general-
ized to a unified model that we aim to develop (Liu et al., 2024). They formulate VRPs as different
combinations of shared attributes, including capacity, backhauls, time windows, duration limit and
open route. The single model designed to solve VRPs within the attribute combinations still heavily
relies on human-crafted designs, and fails in generalizing to problems beyond these specific combi-
nations. In contrast, the framework we propose can be applied to any CO problems where a feasible
solution can be formulated as an MDP.

To summarize, our key contributions are:

• To the best of our knowledge, we are the first to thoroughly investigate solving diverse CO prob-
lems using a single unified model and to present a corresponding framework. We believe that
our framework provides a valuable complement to existing NCO methods that focus on achieving
optimal performance for individual CO problems.

• To address the challenges of directly applying existing next-token prediction concepts to CO prob-
lems, we introduce a CO-prefix design and a two-stage self-supervised learning scheme to reduce
token length and training difficulty.

• We establish a comprehensive testbed featuring nine CO problems to evaluate the generic
problem-solving ability of our unified CO model. Experiments demonstrate that the model
achieves strong generic problem-solving capabilities with only a slight reduction in performance.
Additionally, we showcase its few-shot and even zero-shot generalization abilities when tackling
new problems.

2 RELATED WORKS

2.1 LEARNING BASED METHODS FOR CO PROBLEMS

Research on NCO can be broadly divided into two categories: non-autoregressive and autoregressive
approaches.

Regarding non-autoregressive approaches, many methods directly train reinforcement learning (RL)
models to guide operators in refining feasible solutions. This scheme involves selecting an op-
erator from a candidate pool (Lu et al., 2019) or determining where an operator should be ap-
plied (Chen & Tian, 2019; Ma et al., 2021; Wu et al., 2021). These methods aim to imitate and
improve upon traditional heuristic search strategies through a data-driven approach. Another trend
in non-autoregressive methods is to learn an intermediate problem representation, which is then
used to guide the solution search. For example, a heatmap can be trained to predict the adjacency
matrix for TSP problems based on expert solutions, followed by a search to find the final solu-
tion (Joshi et al., 2019; Fu et al., 2021). In addition to using deep neural networks to directly predict
the adjacency matrix, diffusion models and probabilistic methods can also generate intermediate
representations (Sun & Yang, 2023; Karalias & Loukas, 2020). These approaches are particularly
effective in adapting to larger problem scales. However, these methods are often limited on specifc
problem types since they lack flexibility in handling complex problem constraints.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

As for autoregressive methods, they aim to incrementally build a solution by selecting new nodes
step by step, ultimately constructing a complete feasible solution. The pioneering work in this
area was the Pointer Network, which was first tested on the TSP(Vinyals et al., 2015). Subsequent
research combined the idea with reinforcement learning (RL), demonstrating its effectiveness across
a wider range of CO problems(Bello et al., 2016). Routing problems, a significant subclass of CO
problems, have been extensively studied within this autoregressive framework using RL (Kool et al.,
2018; Kwon et al., 2020). To account for both node- and edge-level features, a matrix-encoding
framework was later developed (Kwon et al., 2021). These methods are particularly advantageous
due to their fast inference speed, as the computational complexity during testing remains low. The
are also much more flexible in generating feasible actions handling various problem constraints.

A recent trend in the field is the exploration of algorithm generalization capabilities. Existing meth-
ods focus on generalizing across different data distributions (Zhou et al., 2023; Bi et al., 2022) and
problem scales (Zong et al., 2022; Li et al., 2021). Regarding generalization to multiple tasks, one
study attempts to solve various VRPs by decomposing them into several elementary tasks (Liu et al.,
2024). However, this decomposition heavily relies on human-designed rules, limiting its generaliza-
tion potential. As far as we know, there is no architecture for a truly general-purpose unified model
capable of addressing diverse CO problems.

2.2 NEXT-TOKEN-PREDICTION IN DECISION-MAKING

Besides the significant success of the next-token-prediction in both LLMs and MLLMs, researchers
have also investigated how to incorporate it with decision-making problems directly.

Chen et al. (2021) first studied using Transformer (Vaswani, 2017) as an effective backbone to handle
various control environments in an offline RL manner, including Atari, Open AI Gym, etc. They
train a single policy model to generate actions at each decision step. Janner et al. (2021) further
proposed the trajectory transformer that predicts all elements within a trajectory. Besides offline
RL, the similar architecture has also been incorporated with imitation learning (Reed et al., 2022;
Shafiullah et al., 2022; Brohan et al., 2022; Zhou et al., 2022). One notable application following
this line of research is the Generalist Agent, known as GATO (Reed et al., 2022), which successfully
extended its capabilities to multiple control environments using a unified model. Wen et al. (2022)
further implemented the GATO structure, referred to as DB1, and extended it to solve TSP problems.
Building on these successes, it is natural to consider transformers as the backbone for a unified model
capable of addressing diverse CO problems.

However, we found that Wen et al. (2022) employed an individual pretrained GCN model (Kipf
& Welling, 2016) specialized to TSP, which was used to generate TSP state embeddings. These
embeddings were then used to train the unified model, rather than using the original TSP data. We
believe this approach contradicts the original concept of a unified model, which relies solely on a
single architecture and parameter set. Nevertheless, we adopt the unified model structure proposed
by GATO and re-implemented in DB1 as an important baseline for comparison, where only the
original trajectory data is processed.

3 METHODOLOGY

3.1 PRELIMINARIES

3.1.1 AUTO-REGRESSIVE MDP FORMULATION FOR CO

We first formulate the sequential construction process of a CO problem solution as an MDP. Sug-
gested by existing auto-regressive NCO methods (Zhang et al., 2023), a complete solution can be
constructed by incrementally constructed via multiple decision steps.

Let S denote the entire state space with states st ∈ S and A ⊆ S × S with actions at ∈ A as the
action space. All states are assumed to be reachable from the original state s1. Since a CO problem
is fully observed and deterministic, the transition from a state st to st+1 is fully determined by the
action at. Each state st is represented as a set of actions taken before. A policy on the MDP refers to
a distribution P (s′|s) over the states s′ reachable from s via a single action. A feasible CO problem

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Causal decoder-only architecture
without CO prefix.

(b) Non-causal decoder-only architec-
ture with CO-prefix.

Figure 3: Two architecture designs for the unified model. a) Causal decoder-only architecture with-
out CO prefix, where each token is only conditioned on the past tokens and only trajectory data is
processed, adopted in Reed et al. (2022). The entire token length is large. b) Non-causal decoder-
only architecture with CO-prefix, where tokens in the CO-prefix shares richer representations condi-
tioned on both prior and past tokens. The trajectory no longer process duplicated static information.

solution represented as a complete trajectory τ can be further induced by the policy over T steps via∏T
t=1 P (st+1|st).

We note that most CO problems exhibit a common property of tail recursion: after applying a series
of construction steps to an instance, the remaining tail subproblem itself becomes an instance of the
original CO problem, as discussed in Drakulic et al. (2024). Any problem with this tail-recursion
property can be formulated as the aforementioned MDP. In this paper, we focus on CO problems
with such a property.

3.1.2 TRAJECTORY DATASETS

To prepare the trajectory datasets for training, we first obtain the final optimized solutions from
state-of-the-art solvers for various problem types. We then trace their complete optimization MDPs,
τ = (τ1, τ2, ..., τT), considering states and actions, where τt = (st, at).

To jointly handle diverse features from different problems and distributions, we then tokenize all
trajectory elements within the trajectory data via one same tokenizer. Specifically, discrete values,
such as the node indexes, are flattened into sequences of integers within the range of [Mind,Maxd).
Continuous values, such as demands and positions, are first encoded to [Minc,Maxc] if not already
in the range, and then discretized to Nbin uniform bins. The final trajectory token sequence τ is
formulated with observation tokens followed by an action spliter token Ia, then action tokens, as
shown in Figure 4:

τ = (τ1, τ2, ..., τT), where τt = (st, Ia, at) (1)
Note that the length of a fully tokenized sequence can sometimes be excessively long. To address
this, we use selected contiguous segments from the full trajectory. Furthermore, we only preserve
dynamic observations in the intermediate progress within st. The static information of the raw
problem instances is aggregated within a CO-prefix design, as introduced in the following.

3.2 NON-CAUSAL TRANSFORMER WITH CO-PREFIX

Due to the NP-hard complexity of most CO problems, the observation space and dimensionality can
be substantial, leading to long token sequences and reduced training efficiency.

To tackle this challenge, we first decompose the original state representation into static and dynamic
ones, since most information in a CO problem comes from its static description data. For instance,
static information of a given TSP instance includes the positions of each individual city, which
remains unchanged through an optimization MDP. While the dynamics only include the current po-
sition. We further employ a CO-prefix design to capture static information, which is prepended to

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) The dynamics forward stage. (b) The policy generation stage.

Figure 4: Two-stage self-supervised learning to train the unified CO model.

the beginning of the token trajectory. The subsequent sequence then focuses solely on dynamic ob-
servations. This approach allows us to avoid duplicating observation representations by tokenizing
only the current dynamic state instead of the entire sequence, as done in previous literature. Such
a design greatly reduce token length and improves training efficiency. Let Z and Z denote raw and
tokenized CO-prefix, the final token sequence fed into the model is (Z; Ip, τ), where Ip denotes a
spliter token in between.

Although the sequential nature of Markov Decision Processes (MDPs) with time-dependent order-
ing makes the causal transformer architecture a natural choice due to its simple and effective one-
directional design as suggested in previous sequential decision-making literature (Chen et al., 2021;
Reed et al., 2022), as shown in Figure 3(b), it has certain limitations. In particular, the CO-prefix Z
is time-invariant since it only contains static representations, where each token within Z should be
fully visible and processed with each other in a bi-directional manner.

To address this, we adopt a non-causal transformer architecture where the CO-prefix tokens are
processed bi-directionally, ensuring comprehensive context integration, while the remainder of the
sequence is still handled in a one-directional manner, as shown in Figure 3(a). Tokens in the CO-
prefix shares richer representations conditioned on both prior and past tokens and thus improves the
overall performances.

Action and CO-prefix Mask To ensure that each action selected by the unified model is fea-
sible during inference, the output policy must be masked to filter out actions that violate problem
constraints, using the action mask provided by the problem environment.

It’s important to note that during the generation of trajectory data, action masks are collected along-
side the trajectory data at each step. During training, the action mask is transformed into the CO-
prefix mask, with each token corresponding to infeasible actions being masked in the attention mod-
ule. For example, in the Traveling Salesman Problem (TSP), the CO-prefix mask encompasses all
coordinates of already visited cities. In the case of the Flexible Flow Shop Problem (FFSP), it refers
to the job duration entries of completed tasks. This design enables the model to focus on more
relevant tokens for feasible actions without increasing the overall token length.”

3.3 TWO-STAGE SELF-SUPERVISED LEARNING

Since a complete trajectory consists of different types of elements, such as observations and actions,
predicting them without distinguishing their individual roles further increases the training difficulty.

To tackle the challenge above, we decompose the entire token generation process into two stages in
a self-supervised learning manner, including a dynamics forward stage and a policy generation stage
as follows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• Dynamics forward stage. In the first stage, we pre-train the model to predict the next observation
given the current action. The training loss for a training batch B is defined as follows:

L(θ,B) = −
|B|∑
b=1

T b∑
t=1

logpθ(sbt+1|(Zb, Ip, τ b1 , τ
b
2 , ..., τ

b
t)), (2)

where T b is the amount of trajectory units in the current token length. Since MDP transitions
are deterministic in CO problems, ths dynamics model can be accurately trained with the same
amount of data.

• Policy generation stage. In the second stage, we fine-tune the model to generate actions based
on the pretrained model in advance. The training loss for a training batch B is defined as follows:

L(θ,B) = −
|B|∑
b=1

T b∑
t=1

logpθ(abt+1|(Zb, Ip, τ b1 , τ
b
2 , ..., τ

b
t , s

b
t+1, Ia)) (3)

This two-stage decomposition simplifies the learning process by decomposing the overall process
into two sub-tasks, allowing the model to first understand intermediate dynamics and then generate
qualified policy. This leads to faster and more effective convergence during training.

Table 1: The summary of the evaluated CO problems, along with individual expert solver to collect
trajectories, the token length in the CO-prefix and the token length in observation per step. N
denotes either node, item or job amounts. M denotes for machine amount in FFSP.

Problem Expert Solver Prefix-Token Obs-Token
TSP LKH3 (Helsgaun, 2017) 2N N + 2
VRP LKH3 (Helsgaun, 2017) 3N + 2 N + 3
OP Gurobi (Gurobi Optimization, 2018) 3N + 2 N + 4

PCTSP ILS 1 4N + 2 N + 3
SPCTSP re-opt with ILS 4N + 2 N + 3
Knapsack dynamic programming 2N N + 1

ATSP LKH3 (Helsgaun, 2017) N ×N N
MIS Kamis Lamm et al. (2017) N ×N N
FFSP MatNet (Kwon et al., 2021) N ×M M + 1

4 PERFORMANCE EVALUATION

4.1 EVALUATION PROTOCOLS

4.1.1 PROBLEM AND EXPERT SELECTION

To evaluate the generic problem solving ability of our proposed framework, we construct a problem
set from 9 diverse domains for evaluation.

We first select four common routing problems that were deeply investigated in recent literature (Kool
et al., 2018; Kim et al., 2022), including Traveling Salesman Problem (TSP), Vehicle Routing
Problem (VRP), Orienteering Problem (OP) and Prize Collecting TSP (PCTSP). Stochastic PCTSP
(SPCTSP) is further added to show how our model deals with uncertainty, suggested by (Kool et al.,
2018). We also consider the Asymmetric TSP (ATSP), where the problem is defined on adjacency
matrix without Cartesian coordinates (Kwon et al., 2021). Beyond routing problems, we first evalu-
ate our model on the Knapsack problem, following previous literature Bello et al. (2016); Grinsztajn
et al. (2023). Maximum Independent Set (MIS) is adopted as a representation problem that mainly
leverages features from graph structure Sun & Yang (2023), in which information carried by each
token is extremely sparse. Finally, we evaluate our model on the flexible flow shop problem (Kwon
et al., 2020).

For each problem, the trajectories are collected from individual expert solver, shown in Table 1.
We set the problem scale as N = 20, either for node, item or job amounts. We align the instance

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: The overall performance comparison on nine problems.

TSP CVRP
Method Obj. Gap Score Time Obj. Gap Score Time
Random 10.47 - 0.00% 9s 13.25 - 0.00% 29s
Expert 3.84 0.00% 100.00% 2h 6.11 0.00% 100.00% 5h

GATO/DB1 3.99 3.80% 97.68% 1h 6.63 8.51% 92.72% 2h
Ours-DR 3.88 1.04% 99.40% 8m 6.75 10.47% 91.04% 15m

Ours 3.87 0.78% 99.55% 9m 6.66 9.00% 92.30% 16m
PCTSP OP

Method Obj. Gap Score Time Obj. Gap Score Time
Random 9.25 - 0.00% 20s 1.93 - 0.00% 8s
Expert 3.16 0.00% 100.00% 2h 5.38 0.00% 100.00% 1h

GATO/DB1 3.27 3.48% 98.19% 1h 4.91 8.87% 85.46% 53m
Ours-DR 3.27 3.48% 98.19% 13m 5.00 7.06% 88.99% 8m

Ours 3.20 1.27% 99.34% 13m 5.06 5.95% 90.72% 8m
SPCTSP Knapsack

Method Obj. Gap Score Time Obj. Gap Score Time
Random 9.24 - 0.00% 20s 38.14 - 0.00% 6s
Expert 3.31 0.00% 100.00% 2h 63.89 0.00% 100.00% 10m

GATO/DB1 3.30 0.30% 100.17% 1h 62.19 2.66% 93.40% 35m
Ours-DR 3.28 -0.09% 100.51% 13m 61.78 3.30% 91.81% 4m

Ours 3.26 -1.51% 100.84% 13m 61.99 2.97% 92.62% 4m
ATSP MIS

Method Obj. Gap Score Time Obj. Gap Score Time
Random 10.49 - 0.00% 10s 9.11 - 0.00% 7m
Expert 3.85 0.00% 100.00% 2h 10.44 0.00% 100.00% 7m

GATO/DB1 - - - - - - - -
Ours-DR 4.38 13.76% 91.87% 9m 10.35 0.86% 93.23% 11m

Ours 4.22 9.61% 94.43% 10m 10.35 0.86% 93.23% 10m
FFSP

Method Obj. Gap Score Time
Random 45.00 - 0.00% 12min
Expert 27.31 0.00% 100.00% 5m

GATO/DB1 - - - -
Ours-DR 29.20 6.92% 89.32% 29min

Ours 29.10 6.55% 89.88% 27min

generation scheme with previous literature for each problem, and the details can be referred in
Appendix A.2.

4.1.2 EVALUATION PROTOCOLS2

Hyperparameters During training, for every epoch we process 400 batches of 128 instances,
which are sampled from a mixed set of all 9 problems. The total token length of each episode is
1000, either tailored or padded from the trajectory data with prefix. We use 10 layers in the trans-
former architecture with embedding dimension of 768. For tokenization, we set the discrete range,
continuous range and bin number as [200,), [0, 4] and 1800 respectively. We evaluate the model on
the validation dataset every two epochs and apply early stopping, terminating training if no improve-
ment is observed for 6 consecutive epochs. During inference, we evaluate the performances on each
problem individually, with a test dataset of 10000 each. We report the absolute objective value, the
inference time cost and the percentile gap to the expert performance. We list more implementation
details in A.1 for reproducibility.

Metrics We report four metrics respectively. Following previous CO related literature (Kool et al.,
2018), we report the original objective and the gap from the expert results, and the evaluation time

2Our code is available at https://anonymous.4open.science/r/uniCO-35CC/

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

on the entire test dataset. Following the literature that studies generic decision-making (Reed et al.,
2022), we also report the performance score as a percentage, where 100% corresponds to the per-
task expert and 0% to a random policy. It is calculated as Score = |obje−objr|/|obj−objr|, where
obje and objr denotes the objective of expert and a random policy respectively (Wen et al., 2022).

Ablation and Baselines We evaluate our proposed model with two variations, either with or
without the two-stage supervised learning. We use Ours-DR to denote the model DRectly trained to
generate actions, as shown in Table 2. As for the baseline methods, we first demonstrate correspond-
ing expert approach of each problem as a straight-forward comparison. We further compare with the
GATO framework (Reed et al., 2022), which was also re-implemented and reported by Wen et al.
(2022) as DB1. Note that we also implement the original GATO framework from details in the orig-
inal paper manually, since it is not open-sourced. Instead of using any prefix or pretrain schemes,
GATO is trained using a causal transformer structure, where the trajectory data of each problem
is prepended by a prompt sequence from the same problem. The prompt consists of multiple step
transitions from other episodes. Other key hyperparameters remain the same as ours. Note that we
found GATO/DB1 cannot converge on ATSP, MIS and FFSP under our evaluation setting, thus we
remove the three problems for GATO/DB1 to train only across 6 problems, while we stick to 9. We
analyze the reason and influence in the next section. To calculate the optimization score, we also
report the performance of a random policy in terms of objective and time. The evaluation time of
the random policy shows the environment time cost in our implementation.

Figure 5: Performances on diverse
problem types.

Figure 6: The training loss along with
total batch used of three models.

4.2 PERFORMANCES OF GENERIC PROBLEM SOLVING

The main results are illustrate in Table 2. Generally, our proposed unified model showcase its
universal problem-solving ability across diverse CO problems. Except for the score of 89.88% on
FFSP, it achieves scores of over 90% on all other problems.

Our CO-prefix design is critical and significant. While two variants of our unified model are
trained on the entire nine problems, the GATO/DB1 are trained only on the former six problems,
since we found that they can not converge on the latter three within a reasonable timeframe under
our evaluation settings, shown in Figure 5. This limitation arises since that GATO/DB1, lacking a
prefix design, computes full observation tokens at each step which makes them extremely inefficient
when the observation space is large. For example, in both ATSP and MIS problems, the original
static information is carried by the instance adjacency matrix, with a complexity of O(N2). In each
training episode, GATO/DB1 can only process one or two complete trajectory steps with or without
their prepended prompt sequences. The sparse loss signals generated on the action tokens impede
the model’s convergence. Even for the remaining problems, GATO/DB1 still converges much slower
than ours across all problems, as shown in Figure 6. Moreover, our unified model design still shows
superior performance on four problems out of six.

The two-stage self-supervised learning scheme greatly improves performances. Compared to a
unified model that is directly trained to generate actions, a model fine-tuned on a pre-trained forward
dynamics model demonstrates superior performance across all nine problems. For example, in the
ATSP problem, the training scheme we introduced yields a performance improvement of 2.56

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

We further analyze the adaptability of our unified model to different CO problems. The in-
dividual training losses on each problem are illustrated in Figure 8(a). Since the model is trained
on trajectory data from respective expert solvers, these solvers serve as natural performance upper
bounds for our unified model. An exception is observed in SPCTSP, where uncertainty suggests
the potential for performance beyond that bound. Generally, we identify two problem properties
that present challenges for our unified model at this stage. The first is information sparsity in token
sequences. Although ATSP and TSP share similar complexities from a heuristic perspective, our
model can more easily learn the policy for solving TSP while struggling with ATSP. This difficulty
arises because the token sequences for ATSP are much sparser than those for TSP, with problem
data stored in the adjacency matrix rather than in the nodes. The sparser the token information, the
harder it is for our model to learn effectively. The second challenge is the limitations imposed by
constraints within the problems. OP and CVRP have significantly more constraints to satisfy com-
pared to TSP, making the feasible action space under each state much more complex to learn. This
complexity further restricts the final optimization quality.

4.3 PERFORMANCES ON FEW-SHOT ABILITY

Figure 7: The few-shot results on four routing problems.

To evaluate the few-shot capability of our model on unseen problems, we selected four routing
problems and trained a total of four unified models. Each model was trained on three out of the four
problems in a leave-one-out manner and was gradually fine-tuned using data from the fourth unseen
problem. We report the optimization scores for the new problem and compare them with those of a
model trained from scratch on the corresponding problem.

Overall, we found that our model demonstrates few-shot learning across all four problem settings
with limited data. In each case, the model achieves high solution quality from the very first epoch.
This is a significant advantage of a unified CO model, as CO encompasses a wide range of problems
with diverse settings. Consequently, the pre-trained unified model can be quickly adapted to an
unseen problem with minimal data, eliminating the need to retrain a separate model. This offers
enhanced convenience and efficiency in many real-world scenarios.

Furthermore, in addition to its few-shot capabilities, we observed zero-shot performance on TSP.
Since TSP serves as a foundational version of many routing problem variants, our model, pre-trained
on the other three problems, can directly generate semi-optimized solutions without any additional
data for fine-tuning.

5 FUTURE WORKS

In this paper, we thoroughly investigate how to develop a unified model to solve diverse CO problems
simultaneously, and evaluate the performance of our proposed unified model implementation in 9
problems. We believe that our approach provides a valuable complement to existing NCO methods
that focus on achieving optimal performance for individual CO problems.

As for our future work, to overcome the performance loss caused by token information sparsity as
discussed in Section 4.2, one promising direction is to incorporate our current transformer backbone
with GNN based structures, since many CO problems are defined or can be defined based on graphs.
However, how to maintain the universal token processing ability remains challenging. Another
direction is to incorporate our model with other recent progress in auto-regressive NCO methods,
such as Kwon et al. (2020); Chalumeau et al. (2023).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Egon Balas. The prize collecting traveling salesman problem. Networks, 19(6):621–636, 1989.

Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. arXiv preprint arXiv:1611.09940, 2016.

Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances
in Neural Information Processing Systems, 35:31226–31238, 2022.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Felix Chalumeau, Shikha Surana, Clément Bonnet, Nathan Grinsztajn, Arnu Pretorius, Alexandre
Laterre, and Tom Barrett. Combinatorial optimization with policy adaptation using latent space
search. Advances in Neural Information Processing Systems, 36:7947–7959, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Advances in neural information processing systems, 32, 2019.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. Bq-nco: Bisimu-
lation quotienting for efficient neural combinatorial optimization. Advances in Neural Information
Processing Systems, 36, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Paul Erd6s and Alfréd Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci, 5:17–61, 1960.

Matteo Fischetti, Juan Jose Salazar Gonzalez, and Paolo Toth. Solving the orienteering problem
through branch-and-cut. INFORMS Journal on Computing, 10(2):133–148, 1998.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Bruce L Golden, Larry Levy, and Rakesh Vohra. The orienteering problem. Naval Research Logis-
tics (NRL), 34(3):307–318, 1987.

Nathan Grinsztajn, Daniel Furelos-Blanco, Shikha Surana, Clément Bonnet, and Tom Barrett. Win-
ner takes it all: Training performant rl populations for combinatorial optimization. Advances in
Neural Information Processing Systems, 36:48485–48509, 2023.

LLC Gurobi Optimization. Gurobi optimizer reference manual, 2018. URL http://www.
gurobi.com.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun tsp solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, 12:966–980, 2017.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. Advances in neural information processing systems, 34:1273–1286, 2021.

11

http://www.gurobi.com
http://www.gurobi.com

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional network
technique for the travelling salesman problem. arXiv preprint arXiv:1906.01227, 2019.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. Advances in Neural Information Processing Systems, 33:
6659–6672, 2020.

Minsu Kim, Junyoung Park, and Jinkyoo Park. Sym-nco: Leveraging symmetricity for neural com-
binatorial optimization. Advances in Neural Information Processing Systems, 35:1936–1949,
2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Attention, learn to solve routing problems! arXiv
preprint arXiv:1803.08475, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
Pomo: Policy optimization with multiple optima for reinforcement learning. Advances in Neural
Information Processing Systems, 33:21188–21198, 2020.

Yeong-Dae Kwon, Jinho Choo, Iljoo Yoon, Minah Park, Duwon Park, and Youngjune Gwon. Ma-
trix encoding networks for neural combinatorial optimization. Advances in Neural Information
Processing Systems, 34:5138–5149, 2021.

Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck. Find-
ing near-optimal independent sets at scale. J. Heuristics, 23(4):207–229, 2017. doi: 10.1007/
s10732-017-9337-x. URL https://doi.org/10.1007/s10732-017-9337-x.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. Ad-
vances in Neural Information Processing Systems, 34:26198–26211, 2021.

Fei Liu, Xi Lin, Zhenkun Wang, Qingfu Zhang, Tong Xialiang, and Mingxuan Yuan. Multi-task
learning for routing problem with cross-problem zero-shot generalization. In Proceedings of
the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1898–1908,
2024.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In International conference on learning representations, 2019.

Yining Ma, Jingwen Li, Zhiguang Cao, Wen Song, Le Zhang, Zhenghua Chen, and Jing Tang.
Learning to iteratively solve routing problems with dual-aspect collaborative transformer. Ad-
vances in Neural Information Processing Systems, 34:11096–11107, 2021.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. Advances in neural information processing
systems, 31, 2018.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,
Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al.
A generalist agent. arXiv preprint arXiv:2205.06175, 2022.

Nur Muhammad Shafiullah, Zichen Cui, Ariuntuya Arty Altanzaya, and Lerrel Pinto. Behavior
transformers: Cloning k modes with one stone. Advances in neural information processing sys-
tems, 35:22955–22968, 2022.

Guman Singh and Mohammad Rizwanullah. Combinatorial optimization of supply chain networks:
A retrospective & literature review. Materials today: proceedings, 62:1636–1642, 2022.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in Neural Information Processing Systems, 36:3706–3731, 2023.

Paolo Toth and Daniele Vigo. Vehicle routing: problems, methods, and applications. SIAM, 2014.

12

https://doi.org/10.1007/s10732-017-9337-x

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Ying Wen, Ziyu Wan, Ming Zhou, Shufang Hou, Zhe Cao, Chenyang Le, Jingxiao Chen, Zheng
Tian, Weinan Zhang, and Jun Wang. On realization of intelligent decision-making in the real
world: A foundation decision model perspective. arXiv preprint arXiv:2212.12669, 2022.

David H Wolpert and William G Macready. No free lunch theorems for optimization. IEEE trans-
actions on evolutionary computation, 1(1):67–82, 1997.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling Pan.
Let the flows tell: Solving graph combinatorial problems with gflownets. Advances in neural
information processing systems, 36:11952–11969, 2023.

Allan Zhou, Vikash Kumar, Chelsea Finn, and Aravind Rajeswaran. Policy architectures for com-
positional generalization in control. arXiv preprint arXiv:2203.05960, 2022.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789. PMLR, 2023.

Zefang Zong, Hansen Wang, Jingwei Wang, Meng Zheng, and Yong Li. Rbg: Hierarchically solving
large-scale routing problems in logistic systems via reinforcement learning. In Proceedings of
the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 4648–4658,
2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 EVALUATION DETAILS.

In this section ,we provide more implementation details for reproducibility.

Table 3: Implementation details.

Module Element Detail

System

OS Ubuntu 22.04.2
CUDA 11.7
Python 3.11.4
Pytorch 2.0.1
Device 2*NVIDIA A100 80G

Hyperparameters

Backbone Llama
Embedding dimension 768

Layer Num 10
Q Head Num 8

KV Head Num 8
Max token length 1000

RMS Norm epsilon 1e-6
Weight Decay 1e-4

Early Stopping Runs 6
M of µ-law 4
µ of µ-law 15

Shaped Discrete Token Range [0, 200)
Shaped Continuous Token Range [200, 2000)

Batch Size 1200
Batch Num 15000
Optimizer AdamW

inital learning rate 0
max learning rate 2.5e-4

leanring rate warmup ratio 5%
leanring rate decay ratio 75%
leanring rate decay factor 10
leanring rate decay style cosine

A.2 PROBLEM DETAILS.

In this section, we continue to introduce the implementation details on each CO problem. We use N
to denote either node, item or job amount, and M to denote the total machine amount in FFSP.

A.2.1 TRAVELING SALESMAN PROBLEM (TSP)

In the TSP, one should find the shortest route that visits each city exactly once and returns to the
starting city. The objective is to minimize the total distance of the tour.

Data Generation. We implement the dataset generation scheme described by Kool et al. (2018),
for all TSP instances, the positions of N nodes are uniformly randomly sampled in unit square. The
expert trajectory is collected by the well adopted state-of-the-art solver LKH3 (Helsgaun, 2017).

Token Design For prefix tokens, we include the original Cartesian coordinates of each city with a
total number of 2N as continuous values. For tokens per step, we only record the continuous coor-
dinates of the current city as observation to reduce the sequence length. To help with convergence,
the information about which cities have been visited is embodied by the dynamic prefix attention
mask. Specifically, when generating actions, the coordinates of current and previously visited cities
in prefix sequence are ignored.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2.2 VEHICLE ROUTING PROBLEM (VRP)

In the Capacitated VRP (Toth & Vigo, 2014), each city has a certain demand. One should construct
multiple routes with minimal a distance that all start and end at a given depot, where the total
demands of cities within one route should not exceed the capacity limit. Except for the depot, each
city should be visited exactly once.

Data Generation. We implement the dataset described by Nazari et al. (2018). The expert tra-
jectory is also collected via LKH3 (Helsgaun, 2017). Specifically, each city i ∈ {1, 2, .., N} has a
demand 0 < δi ≤ D, where D > 0 is the capacity of the vehicle (route). For each route Rj , the
total demand of the cities along cannot exceed the vehicle’s capacity, i.e.

∑
i∈Rj

δi ≤ D. For our
experiments, We random sample the location coordinates of the depot and the cities within the unit
square uniformly. The capacity is set to D = 20 and the discrete demands are sampled uniformly
from {1, 2, ..., 9}.

Token Design For prefix tokens, we include the original Cartesian coordinates of the depot and
each city, as well as the discrete demands of the cities, with a total number of 3N + 2 continuous
or discrete values. For tokens per step, we record the capacity left and the location coordinates of
the vehicle currently as observation. To help with convergence, the prefix tokens about cities whose
demand has been met will be ignored by the dynamic prefix attention mask when generating actions.

A.2.3 ORIENTEERING PROBLEM (OP)

In the OP (Golden et al., 1987), each node is assigned with a specific prize. One should construct a
single tour that maximize the sum of prizes, starting and ending at a give depot. The tour does not
have to include every node anymore, but need to be shorter than a length limit.

Data Generation. We implement the data generation scheme by Fischetti et al. (1998); Kool et al.
(2018). The expert trajectory is collected via Gurobi (Gurobi Optimization, 2018). Specifically, The
location coordinates of depot as well as N node are random sampled uniformly in the unit square.
To make the problem more challenging, we made the prize pi for each node i proportional to its
distance from the depot by setting them as:

pi = 1 +

[
99 · d0i

maxnj=1 d0j

]
, p̂i =

pi
100

where d0i is the distance from node i to the depot. As for the length limit of the route, we set the
fixed max length as T = 2, which makes the optimal number of access nodes different from instance
to instance

Token Design For prefix tokens, we include the original Cartesian coordinates of the depot and
each node, as well as all of the node prizes, with a total number of 3N + 2 continuous values. For
tokens per step, we record the length left to the limit, current location coordinates, and the total prize
we have gotten so far, with a total of 4 continuous values as observation. By utilizing the dynamic
prefix mask, all prefix tokens related to nodes that have been visited will be ignored when generating
actions, which helps the model converge efficiently.

A.2.4 PRIZE COLLECTING TSP (PCTSP)

In the PCTSP (Balas, 1989), the sum of total prize is no longer a optimization objective, but a
constraint. One should minimize the total route length plus the sum of penalties of unvisited nodes
which are given ahead, as well as collecting at least a minimal total prize.

Data Generation. We implement the data generation scheme by Kool et al. (2018). The expert
trajectory is collected via an implementation of Iterated Local Search (ILS). Specifically, as the OP
problem mentioned previously, the location coordinates of the depot and all nodes are randomly
sampled uniformly within the unit square. For each node i, the associated prize pi and penalty βi

need to be balanced carefully. If the penalty is too small, the choice of node is almost entirely
determined by the total reward constraint; If the penalty is too large, all nodes are always accessed
and the total reward constraint fails. Following the reference Kool et al. (2018), we set the prize and
penalty as:

ti ∼ Uniform(0, 1), ρi = ti ·
4

N

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

βi ∼ Uniform

(
0, 3 · K

N

N

)
where KN is about half of the trajectory length of the TSP problem with N cities, we roughly set it
as K20 = 2, and the minimum total prize is set to 1 for our experiments.

Token Design For prefix tokens, we include the original Cartesian coordinates of the depot and
nodes, as well as the prize and penalty of each node, with a total number of 4N + 2 continuous
values. For tokens per step, we record the prize-to-go from the minimum total prize constraint and
the location coordinates currently, with a total of 3 continuous values as observation. We also set
the dynamic prefix mask to ignore all prefix tokens related to nodes visited before when generating
actions, which helps the model converge efficiently.

A.2.5 STOCHASTIC PCTSP (SPCTSP)

In the SPCTSP, we show how our unified model performs when dealing with uncertainty. The
expected prize of each node is known before the optimization starts, while the real collected prize
can only be revealed after visitation. Data Generation. The data generation for SPCTSP is the
sameas in PCTSP, except that we additionally generate the expected prize, which has the same
distribution of the real prize.The expert solution algorithm is a modified version of ILS, where the
tour is re-optimized iteratively, as suggested by Kool et al. (2018).

Token Design The token design remains the same as PCTSP, except that in prefix tokens the prize
of each node is represented as the expected prize but not the real one.

A.2.6 ASYMMETRIC TSP (ATSP)

In the ATSP, the distances between node pairs are no longer determined by Euclidean distances based
on node coordinates. Considering a directed graph, the distances are no longer necessarily the same
in both directions, and are given in an asymmetric cost matrix upfront. We show how our model
performs when dealing with features of O(N2) complexity. We follow the data generation scheme
proposed by Kwon et al. (2021), and adopt LKH3 as the corresponding expert solver Helsgaun
(2017). Data Generation. The data generation scheme remains the same as TSP, except that the
coordinates are provided while only adjacency matrix is visible. Token Design

A.2.7 KNAPSACK

In the Knapsack problem, a group of items with specific values and volumes are given. The optimiza-
tion objective is to maximize the total value of items selected without exceeding the total capacity.
We designed the problem generation scheme manually and implemented the dynamic programming
algorithm for trajectory collection.

Data Generation. We implement a manually designed data generation scheme. Specifically, The
values vi of each item i ∈ {1, 2, ..., N} are randomly sampled as:

vi ∼ Uniform(2, N)

To make the problem more challenging, items of higher value should have a larger volume. We
further introduce some randomness and set the volume ki of item i as:

ki = (1 + t)vi

where t ∼ Uniform({−0.5, 0.5}), which means we increase or decrease the volume of item i
uniformly and randomly.

Token Design For prefix tokens, we include the values and volumes of all N items, with a total
number of 2N discrete values. For tokens per step, we only record the real-time left capacity as
observation. By utilizing the dynamic prefix mask, all prefix tokens related to the item that has been
packaged will be ignored when generating actions, which helps the model converge efficiently.

A.2.8 MAXIMUM INDEPENDENT SET (MIS)

In the MIS, an independent set is a set of vertices such that no two vertices in the set are adjacent.
One should find the largest possible independent set in the graph, meaning it contains the most
vertices among all possible independent sets.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Data Generation. We follow the random graph generation scheme proposed by Erd6s & Rényi
(1960) , and directly implement the script provided by Sun & Yang (2023) to generate the graphs.
The expert solver to generate trajectories is the Kamis Lamm et al. (2017) Token Design For prefix
tokens, we directly use the binary adjacency matrix, with a total of N2 tokens. For tokens per step,
we record whether each node is selected, excluded or not decided yet, with a total of N tokens.

A.2.9 FLEXIBLE FLOW SHOP PROBLEM (FFSP)

In the FFSP, N jobs have to be processed in S stages with the same order. Each job in each stage can
be handled by a machine from M total machines. The time required for each job at different stages
on different machines varies. Each machine can only process at most one job at the same time. The
goal is to schedule all jobs so that they can be finished with a minimum of time. Data Generation.
We directly adopt the data generation scheme and script provided by Kwon et al. (2021). We further
and implement the corresponding MatNet as the only NCO expert solver in our experiments for
trajectory generation.

Token Design The prefix tokens include the job duration in each stage on the corresponding
machine, with a total amount of N × M . In each step, we track one single machine and decide
either to make it wait or to assign it with a new job. The step token is the job duration related to the
current machine, with a total length of M .

A.3 LEARNING ANALYSIS

We list showcase the training loss, the evaluation gap and optimization score of each individual
problem in our main results.

(a) The aggregated training loss of each problem,
of which the weighted average is the total training
loss shown in Fig 6.

(b) The score of each problem.

(c) The performance gap of each problem. (d) The learning rate during training.

17

	Introduction
	Related Works
	Learning based Methods for CO problems
	Next-Token-Prediction in Decision-Making

	Methodology
	Preliminaries
	Auto-regressive MDP Formulation for CO
	Trajectory Datasets

	Non-causal Transformer with CO-prefix
	Two-Stage Self-Supervised Learning

	Performance Evaluation
	Evaluation Protocols
	Problem and Expert Selection
	Evaluation ProtocolsOur code is available at https://anonymous.4open.science/r/uniCO-35CC/

	Performances of Generic Problem Solving
	Performances on Few-shot Ability

	Future Works
	Appendix
	Evaluation Details.
	Problem Details.
	Traveling Salesman Problem (TSP)
	Vehicle Routing Problem (VRP)
	Orienteering Problem (OP)
	Prize Collecting TSP (PCTSP)
	Stochastic PCTSP (SPCTSP)
	Asymmetric TSP (ATSP)
	Knapsack
	Maximum Independent Set (MIS)
	Flexible Flow Shop Problem (FFSP)

	Learning Analysis

