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Abstract—This paper investigates the distributed tracking con-
trol problem for the stochastic multiagent systems with the asyn-
chronous edge-based transmission mechanism. Different from the
traditional time-based and event-based transmission mechanisms,
the proposed self-triggered transmission mechanism can achieve
the sampling task according to the current local information. In
order to save the communication resources as economically as
possible, the self-triggered transmission mechanism is designed as
the asynchronous mode. The proposed self-triggered transmission
mechanism can relieve the communication burden while reducing
the complexity of the scheme. Finally, simulation verification is
presented to demonstrate the effectiveness of the proposed control
strategy.

Index Terms—Data transmission mechanism, stochastic multi-
agent systems, tracking control.

I. INTRODUCTION

Stochastic multiagent systems (MASs) have been taken
into consideration in many fields [1]. There are plenty of
meaningful results to investigate cooperative control methods
for stochastic MASs. For example, the leader-following control
method of stochastic MASs in random vibration environment
was studied in [2]. Ma et al. [3] investigated the consensus
problem for a class of stochastic MASs. The distributed track-
ing control for the stochastic nonlinear MASs was considered
both in [4] and [5]. Above mentioned works assume that
the communication channels are ideal and each agent can
receive the accurate information. This hypothesis is hardly
achieved in real communication networks due to the limitation
of transmission bandwidth.

Various event-triggered (ET)strategies have been proposed
by an increasing number of researchers attracted by the wide
applications of event-based control and also its aforemen-
tioned challenges. Until now, many works have focused on
event-triggered control for various topics, including leaderless
consensus, coordinated tracking, output feedback consensus,
robustness consensus in the presence of external disturbances,
etc. The ET mechanisms are often used to save communication
resources [6]. As is known to all, the systems with ET mech-
anism must continuously check whether the trigger condition
is satisfied. To address this problem, the self-triggered mecha-
nism, one of ET mechanisms, has been considered in [7–9]. In
particular, the neural tracking control was investigated in [10]
based on the self-triggered mechanism. Considering that the

transmission bandwidth is always limited, it brings the severe
challenge to achieve the tracking task. Furthermore, reducing
the complexity of the scheme is also the tough problem.

Taking inspiration from the above, this paper designs the
adaptive tracking control strategy with the asynchronous edge-
based transmission mechanism. The main contributions are
listed below:

1) Different from the traditional event-based transmission
mechanisms which have to set the trigger conditions,
the proposed self-triggered transmission mechanism can
achieve the sampling task according to the current local
information.

2) In order to save the communication resources as eco-
nomically as possible, the self-triggered transmission
mechanism is designed as the asynchronous mode. Each
communication channel is set with independent trans-
mission mechanism to make the transmission be more
flexible.

II. PRELIMINARIES

A. Problem Formulation

The exchanged information between agents is represented
by a directed graph. In this paper, it has one leader labeled
0 and a set of N followers which denoted 1 to N . Let B =
diag {b1, ..., bK} ∈ RK×K be the adjacency matrix of leader,
and bi is the weight of the edge from Y0 to Yi.

The dynamic of the ith (i = 1, . . . , N) agent is defined in
the strict-feedback form

dxi,p = (xi,p+1 + fi,p(x̄i,p))dt+ qi,p(x̄i,p)dw

dxi,n = (ui + fi,n(x̄i,n))dt+ qi,n(x̄i,n)dw

yi = xi,1

(1)

where x̄i,p = [xi,1, ..., xi,p] represents the state vector with
p = 1, 2, ..., n−1. ui is the control input signal, and the output
signal of the ith agent is represented as yi. The output of leader
is denoted as y0. fi,p(x̄i,p), fi,n(x̄i,n), qi,p(x̄i,p) and qi,n(x̄i,n)
are unknown smooth nonlinear functions. w denotes an r-
dimension standard Brownian motion defined on the complete
probability space (Ξ, F, {Ft}t≥0 , P ). Ξ is a sample space. F
is a σ-field. {Ft}t≥0 is a filtration, and P is a probability
measure.



B. Asynchronous Edge-based Self-triggered Transmission
Mechanism

Considering that determine when to transmit information
from the leader to followers or between neighboring followers,
an asynchronous edge-based self-triggered transmission mech-
anism is proposed in this paper. The mechanism consists of
two kinds of transmission situations, designed correspondingly
for the communication edges from the leader to informed
followers, and the communication edges between neighboring
followers.

In order to achieve the asynchronous edge-based self-
triggered transmission mechanism, the intermediary control
signals will be designed by utilizing the local information.
Firstly, define the following local error variables as

δi0(t) = bi(yi − y̆i0)

δij(t) = ai,j(yi − y̆ij)
(2)

where y̆i0 and y̆ij are the signals on the edges (0, i) and
(j, i), respectively. Then, two intermediary control signals are
designed as follows:

ψi0(t) = hi0(δi0)

ψij(t) = gij(δ
i
j)

(3)

where hi0(.) and gij(.) are the designed continuous functions
which are positively related to the variables δi. Define the
edge-based sampling errors as τ ir = yr − y̆ir. Consider the
asynchronous edge-based self-triggered transmission mecha-
nism below

y̆ir(t) = yr(t
i
r,k),∀t ∈ [tir,k, t

i
r,k+1) (4)

tir,k+1 = tir,k +
ηr|ψir|+mr

max{~ir(t), |ζir(t)|}
(5)

where r = 0, 1, ..., i − 1, i + 1, ..., N and tir,k, t
i
r,k+1 ∈ N+.

Define 0 < ηr < 1 and 0 < mr < 1. yr(t) is one of
the output signals, and y̆ir(t) is the transmitted signal on the
corresponding edge (r, i). ~ir(t) and ζir(t) are the continuous
functions, which are designed below

ζir(t) =
yr(t

i
r,k)− y̆ir(t)
tr,k − t

~ir(t) = vre
δir
2ιr

(6)

where vr and ιr are positive constants. ζir(t) is designed to
describe the change degree of intermediary interval. ~ir(t) is
designed to effectively adjust the trigger interval because it
has the positive correlation with the synchronization errors.

When the trigger procedure begins and condition (5) is
satisfied, the transmitted signal y̆ir(t) will be assigned as the
output signal yr(tir,k). Then, the value will remain constant
over the period of time t ∈ [ti,k, ti,k+1). Moreover, the next
trigger time ti,k+1 will be got.

Remark 1 : The Zeno behaviors are discussed below. Consid-
ering the equation (5), the next trigger instant tir,k+1 is directly
obtained based on the current trigger instant tir,k with the

calculation. It is obvious that the trigger intervals are not equal
to zero at any time. Hence, the Zeno behaviors are avoided.

Combined with the tracking task in this paper, the tracking
errors is denoted by the following equation

si,1 =

N∑
j=1

ai,j(yi − yij) + bi(yi − yi0)

=

N∑
j=1

ai,j(yi − yj) + bi(yi − y0)− (

N∑
j=1

ai,j + bi)τ
i
r

(7)

III. CONTROLLER DESIGN

First, define the unknown constant ξi as

ξi = max
{
||%i,m||2

}
, m = 0, 1, ..., n (8)

The estimation of ξi is defined as ξ̂i, and there exists the
estimation error ξ̃i such that ξ̃i = ξi − ξ̂i.

Define the following transformation

si,k = xi,k − αi,k−1 (9)

where αi,k−1 is the virtual control signal.
Based on the (7), (8) and (9), the asynchronous edge-based

self-triggered control protocol is designed as follows:

αi,1 =
1

bi + di
[−ci,1si,1 −

N∑
j=1

ai,jxj,2 + biẏ0

− ξi,1
2υ2i,1

s3i,1φ
T
i,1φi,1]− 3

4
si,1

αi,k = −ci,ksi,k −
9

4
si,k −

1

4
$i,ksi,k +Hi,k20

− ξ̂i,k
2υ2i,k

s3i,kφ
T
i,kφi,k

ui = −ci,nsi,n −
ξ̂i,n

2υ2i,n
s3i,nφ

T
i,nφi,n +Hi,n20

(10)

where υi,. ci,. and ℵi,. are positive constants. Hi,.20 are the
output signals of the second-order sliding mode integral filter,
and $i,k are defined as

$i,k =

{
bi + di, k = 2

1, otherwise

Then, the corresponding adaptive laws are selected as

˙̂
ξi,1 =

1

2υ2i,1
s6i,1 − σi,1ξ̂i,1

˙̂
ξi,k =

1

2υ2i,k
s6i,k − σi,k ξ̂i,k

˙̂
ξi,n =

1

2υ2i,n
s6i,n − σi,nξ̂i,n

(11)

Theorem 1 : Considering the stochastic MASs (1) under the
asynchronous edge-based self-triggered transmission mecha-
nism (4) and (5), all the signals, especially tracking errors (7),



are bounded in probability under the action of Assumptions 1
and 2, input control signals (10), and adaptive laws (11).

Proof 1: Based on the backstepping framework in stochastic
MASs, consider the following transformation

si,1 =

N∑
j=1

ai,j(yi − γ̆ij) + bi(yi − y̆i0) (12)

si,k = xi,k − αi,k−1 (13)

where αi,k−1 is the virtual control signal. the process of
controller design is displayed as follows:

Step 1: From (8), one has

dsi,1 = [(bi + di)(si,2 + αi,1 + fi,1(xi,1))−
N∑
j=1

ai,j(xj,2

+ fj,1(xj,1)))− biẏ0]dt+ [(bi + di)qi,1(xi,1)

−
N∑
j=1

ai,jqj,1(xj,1)]dw (14)

Select the Lyapunov function as

Vi,1 =
1

4
s4i,1 +

1

2
ξ̃2i,1 (15)

Based on (10) and (11), one has

LVi,1 ≤ −ci,1s4i,1 −
σi,1
2
ξ̃2i,1 +

1

4
(bi + di)s

4
i,2 + ∆i,1

(16)
where ∆i,1 = 1

4ε
4
i,1 +

σi,1
2 ξ2i,1.

Step k (2 ≤ k ≤ n− 1): From (15), one has

dsi,k = (xi,k+1 + fi,k − Lαi,k−1)dt

+ (qi,k −
k−1∑
j=1

∂αi,k−1
∂xi,j

qi,j)dw (17)

Choose the Lyapunov function as

Vi,k = Vi,k−1 +
1

4
s4i,k +

1

2
ξ̃2i,k (18)

Based on (10) and (11), one has

LVi,k ≤ −
k∑

m=1

(ci,ms
4
i,m +

σi,m
2
ξ̃2i,m) +

1

4
s4i,k+1 + ∆i,k

− ιi,1
2
h̃2i,1 −

i,1
2
γ̃2i,1 (19)

where ∆i,k = ∆i,k−1 + 1
4ε

4
i,k +

σi,k
2 ξ2i,k + 1

4H
4
i,km + 3

4z
2
k.

Step n: Then, one has

dsi,n = dxi,n − dαi,n−1

= (ui + fi,n − Lαi,n−1)dt− (

n−1∑
m=1

∂αi,n−1
∂x̂i,m

qi,m)dw

(20)

Select the Lyapunov function as

Vi,n =
1

4
s4i,n +

1

2
ξ̃2i,n + Vi,n−1 (21)

Based on (10)and (11), one has

LVi,n ≤ −
n∑

m=1

(ci,ms
4
i,m +

σi,m
2
ξ̃2i,m) +

σi,n
2
ξ2i,n

+
3

4
2n +

1

2
υ2i,n +

1

4
δ4i,n +

1

4
H2
i,nm + ∆i,n−1 (22)

In view of (22), one has

LVi,n ≤ −ℵVi,n + [ (23)

where ℵ = min {2ci,m, ιi,1, i,1, σi,m} and [ = ∆i,ni−1 +
σi,n
2 ξ2i,n + 3

4 
2
n + 1

2υ
2
i,n + 1

4δ
4
i,n + 1

4H
2
i,nm. The following

inequation can be got

dE(V (t))

dt
≤ −ℵE(V (t)) + [, t ≥ 0 (24)

Then, one obtains

0 ≤ E[V (t)] ≤ e−ℵt(V (0)− [

ℵ
) +

[

ℵ
(25)

All signals in MASs (1) are SGUUB in probability.

IV. SIMULATION VERIFICATION

In this section, a numerical example is utilized to verify the
effectiveness of control scheme. Consider a class of stochastic
MASs with four followers and one leader. The adjacency
matrix A is written as

A =


0 0 0 1
1 0 0 0
0 1 0 0
0 1 1 0

 (26)

The dynamic of the ith (i = 1, 2, 3, 4) agent is defined in the
strict-feedback form

dxi,1 = (xi,2 + sin(xi,1))dt+ cos(xi,1)dw

dxi,2 = (ui + sin(xi,2))dt+ cos(xi,1)dw

yi = xi,1

(27)

Then, the dynamic of the leader is modeled as y0 = sin(t).
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Fig. 1. Tracking performance.
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Fig. 2. Tracking errors.
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Fig. 3. Trigger performance.
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Fig. 4. State evolution.

Fig. 1 illustrates the tracking performance of proposed
control method. The tracking errors are illustrated in Fig. 2.
The trigger performance is shown in Fig. 3. In addition, the

original state evolution is shown Fig. 4 to verify the control
performance.

V. CONCLUSION

In this paper, the asynchronous edge-based self-triggered
transmission mechanism has been investigated. The burden
of the transmission has been reduced. Eventually, simulation
verification have been provided to testify the effectiveness of
the proposed control strategy.
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