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ABSTRACT

Semi-Supervised Few-shot Learning (SS-FSL) investigates the benefit of incorpo-1

rating unlabelled data in few-shot settings. Recent work has relied on the popular2

Semi-Supervised Learning (SSL) concept of iterative pseudo-labelling, yet often3

yield models that are susceptible to error propagation and are sensitive to initial-4

isation. Alternative work utilises the concept of consistency regularisation (CR),5

a popular SSL state of the art technique where a student model is trained to con-6

sistently agree with teacher predictions under different input perturbations, with-7

out pseudo-label requirements. However, applications of CR to the SS-FSL set-8

up struggle to outperform pseudo-labelling approaches; limited available training9

data yields unreliable early stage predictions and requires fast convergence that is10

not amenable for, typically slower to converge, CR approaches.11

In this paper, we introduce a prototype-based approach for SS-FSL that exploits12

model consistency in a robust manner. Our Dynamic Prototype Refinement (DPR)13

approach is a novel training paradigm for few-shot model adaptation to new un-14

seen classes, combining concepts from metric and meta-gradient based FSL meth-15

ods. New class prototypes are alternatively refined 1) explicitly, using labelled16

and unlabelled data with high confidence class predictions and 2) implicitly, by17

model fine-tuning using a data selective CR loss. DPR affords CR convergence,18

with the explicit refinement providing an increasingly stronger initialisation. We19

demonstrate method efficacy and report extensive experiments on two competitive20

benchmarks; miniImageNet and tieredImageNet. The ability to effectively utilise21

and combine information from both labelled base-class and auxiliary unlabelled22

novel-class data results in significant accuracy improvements.23

1 INTRODUCTION24

Few-Shot Learning (FSL) has recently made steady progress in the directions of both metric learn-25

ing (Vinyals et al., 2016; Snell et al., 2017; Sung et al., 2018; Qiao et al., 2018), where class rep-26

resentative features are learned to optimise intra- and inter-class distances, and meta-gradient ap-27

proaches (Finn et al., 2017; Antoniou et al., 2018; Rajeswaran et al., 2019; Rusu et al., 2018) that28

focus on optimising model convergence with very few training examples. Despite recent progress,29

FSL performance remains limited by the small available data from which to learn from. One promis-30

ing direction for progress involves introducing unlabelled training examples, allowing for expansion31

of training set variability without increasing data labelling costs. Recent work has shown that this32

strategy, referred to as semi-supervised few-shot learning (SS-FSL), can substantially boost FSL33

performance in classification settings (Ren et al., 2018; Li et al., 2019b). These works take advan-34

tage of semi-supervised learning (SSL) techniques, that historically focus on large data regimes, to35

leverage information from additional unlabelled samples in combination with state of the art FSL36

approaches. State of the art SS-FSL (Liu et al., 2018; Li et al., 2019b) relies on popular SSL tech-37

niques of label propagation (Iscen et al., 2019), propagating label predictions to unlabelled data,38

and self-training (Lee, 2013) that repeatedly labels unlabelled data, based on confidence scores, and39

then retrains with this additional pseudo-annotated data. An important drawback of such strategies40

is their reliance on iteratively extending the training set using pseudo-label predictions. Building41

on pseudo-label decisions can propagate and amplify errors during training, yielding brittle methods42

sensitive to model initialisation and noisy data. This problem is exacerbated in few-shot scenarios,43

where available labelled data is highly limited and pseudo labels therefore have larger influence.44
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In light of these limitations, alternative work has explored the use of self-supervision techniques (Gi-45

daris et al., 2019; Yu et al., 2020) to leverage information from unlabelled data. This involves the46

introduction of auxiliary tasks and artificial labels (e.g. image rotation prediction, jigsaw puzzles) or47

training process regularisation via a low density assumption (regularisation of consistency). These48

techniques are able to exploit unlabelled data without introducing reliance on pseudo-labels. No-49

tably, Consistency Regularisation (CR) (Tarvainen & Valpola, 2017; Laine & Aila, 2016; Berthelot50

et al., 2019b;a) regularises models to output consistent predictions under varying input perturbations.51

This constitutes a state of the art SSL strategy, typically outperforming pseudo-label approaches52

in large data regimes. In SS-FSL settings, however, self-supervision methods struggle to outper-53

form pseudo-labelling approaches and fail to fully exploit the benefits, especially in the lowest data54

regimes. This commonly results in more modest improvements from the use of unlabelled data.55

In this work we propose a strategy that enables harnessing of the aforementioned strong performance56

of CR in standard SSL, for the SS-FSL setting. We hypothesise that CR currently fails in the SS-57

FSL scenario due to 1) slow convergence of CR techniques (Berthelot et al., 2019a), which is in58

conflict with FSL fast convergence requirements to alleviate overfitting risks and 2) poor reliability59

of model predictions in early stages, when training with limited data. We introduce a novel method60

specifically designed to address these issues and demonstrate empirically that our strategy allows61

successful exploitation of CR in the SS-FSL setting, outperforming state of the art techniques.62

Our formulation exploits the popular concept of prototypes (Snell et al., 2017), commonly used in63

metric-learning based FSL. Prototypes P={p1, p2, . . . , pCb
} are learned global feature representa-64

tions, each describing a particular class to recognise. Class prototypes are typically defined as the65

average feature representation of the labelled set. They are learned using a set of base classes such66

that the distances between input samples, of a given class, and the respective class prototype is min-67

imised (else maximised). Our approach builds on the imprinted weights model (Qi et al., 2018), a68

variant of prototypical networks, that use a simple normalisation trick to learn prototypes as clas-69

sifier weights in an end-to-end manner (c.f. commonly used episode training Snell et al. (2017)).70

Our proposed two-stage approach comprises pre-training on base classes, followed by our key in-71

novation, a Dynamic Prototype Refinement (DPR) on novel classes. Using the imprinted weights72

(IW) model we are able to seamlessly introduce an auxiliary CR loss in our base training process.73

This allows to leverage unlabelled data from base classes and learn a robust initialisation for our74

DPR stage. Our novel DPR method exploits unlabelled samples from novel classes towards learning75

prototypes of higher quality. Our approach alternates between explicit updating of prototypes using76

selected unlabelled samples yielding the most confident predictions (i.e. nearest to their assigned77

class prototype), and implicit fine-tuning of the model with CR on a second selection of unlabelled78

samples. We will show that alternating between typically smaller, more conservative updates (im-79

plicit refinement) and larger, often times more disruptive feature averaging based updates (explicit80

refinement), results in faster convergence for CR and often large performance gains, whilst at the81

same time affording robustness to pseudo-labelling errors. We highlight that in contrast to pseudo-82

labelling based approaches (Liu et al., 2018; Li et al., 2019b); estimated labels are not propagated83

and are used exclusively to strengthen prototype initialisation, prior to fine-tuning. It is this property84

that enables recovery from potential erroneous labels and the prevention of gradual drift.85

In summary, our contributions are three-fold: (a) We present “Fewmatch”; a novel semi-supervised86

few-shot learning approach that robustly exploits the concept of consistency regularisation, allevi-87

ating the requirement of iterative pseudo-labelling and consistently outperforming approaches that88

alternatively do possess such a requirement. (b) We introduce a dynamic prototype refinement pro-89

cess, a novel training paradigm designed to harness the power of CR in few-shot regimes through the90

use of both implicit and explicit prototype refinement steps. (c) Extensive experiments demonstrate91

that we achieve state of the art performance on two standard benchmarks, outperforming prior CR92

and self-supervised methods with significant accuracy gains. Further to this, we additionally explore93

more realistic few-shot test conditions in terms of inequalities relating to unlabelled data availability.94

2 RELATED WORK95

Semi-supervised learning Existing SSL methods generally fall into two categories: (1) Pseudo-96

labelling and (2) Consistency Regularisation. Techniques in the former category iteratively assign97

pseudo labels to the unlabelled samples such that they can then be used with a supervised loss.98
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These include directly using the network class prediction (Lee, 2013) and graph-based label prop-99

agation (Iscen et al., 2019). A number of SSL works build on the second category of Consistency100

Regularisation (Sajjadi et al., 2016; Laine & Aila, 2016; Tarvainen & Valpola, 2017), and have101

achieved impressive results. The crux of the idea of CR is to encourage invariant (stable) predic-102

tions for a given sample under different perturbations towards improving class decision boundaries.103

CR ideas were first explored in (Sajjadi et al., 2016; Laine & Aila, 2016) and extended in (Tar-104

vainen & Valpola, 2017) where the authors propose a mean teacher framework to perform CR be-105

tween a student and teacher model in a learning paradigm involving models that share the same106

architecture and teacher parameters are updated as an exponential moving average of the student107

weights. Several works such as ICT (Verma et al., 2019), Mixmatch (Berthelot et al., 2019b) and108

Remixmatch (Berthelot et al., 2019a) have then enabled sample perturbations by creating variants of109

mixup samples (Zhang et al., 2017) that can then be further perturbed. Encouraged by the benefits110

that result from representing class information using prototypes (Snell et al., 2017; Qi et al., 2018),111

we take an alternative approach to CR in the context of SS-FSL and influence model prediction by112

considering a measure of distance between unlabelled data and class prototypes.113

Few-Shot Learning Existing FSL approaches can be broadly divided into two categories (1) Metric114

based (Snell et al., 2017; Vinyals et al., 2016; Qi et al., 2018) and (2) Gradient based (Finn et al.,115

2017; Antoniou et al., 2018; Rajeswaran et al., 2019; Rusu et al., 2018). Metric based methods aim116

to learn global class feature representations (i.e. prototypes) whose distance is minimal to samples117

of the same class. In this paper, we take advantage of one such method; Imprinted weights (Qi118

et al., 2018) in order to provide per class prototypes. One of the main advantages of this approach119

is that it does not require the standard, restrictive episode training strategy. Episode training is120

framed as a sequence of artificially designed FSL tasks with fixed category and labelled sample121

counts and also imposes an identical test time set-up. This in theory affords us greater flexibility122

with the learning problem definition, allows for consideration of more practical problem setups, and123

for easier combination with techniques from other fields such as integration of auxiliary losses.124

Semi-Supervised Few-Shot Learning (SS-FSL) Existing SS-FSL approaches are based on the125

pseudo-labelling strategy that was discussed in the context of SSL. Ren et al. (2018) propose mask126

soft K-means, based on the metric learning approach, ProtoNets (Snell et al., 2017). The authors127

use a soft K-means and iteratively assign pseudo labels to tune prototypes. More recently (Liu et al.,128

2018) propose a Transductive Propagation Network (TPN) that propagates labels from unlabelled129

data through a graph of samples and meta-learns key hyperparameters. Li et al. (2019b) proposed a130

Learning to Self-Train (LST) approach that is based on self-training and meta-learns a soft weighting131

network to control the influence of pseudo labelled samples and reduces label-noise during training.132

Another set of approaches explore the use of self-supervision to leverage unlabelled data. Gidaris133

et al. (2019) introduce auxiliary tasks, exploiting image rotations and jigsaw puzzles to learn better134

feature representations. More aligned with SSL approaches and closer to our work, Yu et al. (2020)135

pre-trains a classification model on base classes (in the standard FSL setting) using the imprinted136

weights model and fine-tunes (without prototypes) on novel classes using the CR based mixmatch137

algorithm (Berthelot et al., 2019b). While these approaches alleviate the error propagation problem138

that is common when pseudo labelling is employed (Laine & Aila, 2016), their performance gains139

remain limited; the techniques are not specifically adapted to the few-shot setting. Conversely,140

we propose a unique training scheme that iteratively refines prototypes using both explicit average141

feature representation and implicit CR refinement. We will show that this enables more flexible142

feature adaptation to novel tasks and obtains more accurate class prototypes.143

3 METHODOLOGY144

We consider a base training dataset Dbase={X l
b, X

u
b } comprising Labelled Data (LD)145

X l
b={xl1, . . . ,xln} with labels Yb={y1, . . . , yn}, as well as an additional set of Unlabelled Data146

(UD) Xu
b ={xu1 , . . . ,xum}. All examples in Dbase belong to one of Cb base categories. Our novel147

dataset Dnovel contains Cn disjoint novel classes each with only a handful of labelled samples (e.g.148

≤ 5) as well as a further limited set of unlabelled samples per class (e.g. ≤ 100) with which to149

fine-tune the model. Dnovel further comprises UD used for evaluation. Our objective, similarly to150

standard few-shot settings, is to learn a classifier capable of accurately recognising novel classes,151

despite having only a limited amount of available LD. However in contrast to standard FSL, we152

possess additional UD for both base and novel classes, which we aim to leverage to maximise per-153

3



Under review as a conference paper at ICLR 2021

Imprint 

classifier
W

Labelled support set

Weak

Class prediction

Teacher 

Prediction

Consistency 

Regularisation Loss

Cross 

Entropy 

Loss

Select 

top K 

most 

confident

W*

Augmentation
Strong

Select 

top K 

most 

confident

Student

Teacher WT

Teacher prototypes

Moving

average

(1) Imprint classifier with labelled data (2) Explicitly refine classifier with unlabeled data

W

Unlabelled support set

Student

Imprint classifier with 

labelled + selected 

unlabeled examples

W*

(3) Implictly refine the model with fine-tuning and consistency regularisation

Student

Labelled support set

Unlabelled support set

Student

Prediction

Iterate 

steps 2 and 3

Figure 1: Overview of the Dynamic Prototype Refinement process. See main text for details.

formance. To formalise our setting, we consider that Dnovel comprises of a fixed support set of Kl
n154

labelled and Ku
n unlabelled examples per class, and refer to the remaining unlabelled test images as155

the query set Qn. This Cn-way Kl
n-shot classification problem defines a standard SS-FSL setting.156

Our proposed “FewMatch” method first trains a classification model onDbase by exploiting the con-157

cept of imprinted weights (IW) (Sec 3.1). IW allow end-to-end model training, while at the same158

time learning global class feature representations (commonly referred to as prototypes (Snell et al.,159

2017)) utilised as classifier weights. This is achieved by computing predictions as the cosine similar-160

ity between input features and classifier. End-to-end training allows seamless introduction of a CR161

loss, effectively leveraging UD to train a strong feature extractor and learn high quality prototypes.162

The second stage involves model fine-tuning on Dnovel in order to leverage UD for novel classes.163

We introduce a novel training scheme: our Dynamic Prototype Refinement (DPR) process (Sec 3.2).164

Our iterative strategy alternates between explicit prototype refinement using feature averaging and165

implicit parameter updates using fine-tuning and CR. The strong initialisation provided by the ex-166

plicit averaging and longer training times afforded by the iterative scheme enable to successfully167

harness the power of CR in even the lowest data regimes. An overview of the proposed DPR is168

provided in Figure 1 with an analogous overview of the base training process in Appendix A.6.169

3.1 BASE TRAINING: PROTOTYPE DRIVEN CONSISTENCY REGULARISATION170

In this section we firstly introduce our imprinted weight formulation and then describe the integra-171

tion of this within a teacher-student framework, enabling the introduction of our CR loss.172

Imprinted weights formulation. Our classification model uses a standard architecture, compris-173

ing a feature extraction network θf , and a classifier defined by a fully connected layer without bias174

W ∈ F × Cb, where F is the output dimension of θf . The main idea of imprinted weights is to175

train the model such that, for a given class c, the cosine similarity between the embedding vector176

θf (x) of input image x and the corresponding column wc of W is maximised. By normalising177

the classifier and embedding vectors, the model can be trained end-to-end using a standard cross178

entropy loss. In this setting, wc is regarded as the prototype representation of class c and can be179

learned implicitly without the, typically required, episode training strategy and support set aver-180

aging. More formally, for input sample x, the set of classification scores output by the model is181

f(x) = {f1(x), f2(x), . . . , f c(x), . . . , fCb(x)} and the score for a given class c is computed as:182

f c
(
x
)

=
exp

(
γ
(
wT

c , θf (x)
))

∑Cb

i=1 exp
(
γ
(
wT

i , θf (x)
)) (1)

where wi is the ith column of weight matrix W and the prototype pi of class i. The scaled cosine183

similarity is then given by γ
(
wT

i , θf(x)
)

= s · wT
i

(
θf(x)

)
. wi and θf(x) are normalized using the L2184

norm, and s is a trainable scalar, as introduced by (Qi et al., 2018) to avoid the risk that the cosine185

distance yields distributions lacking in discriminative power. Finally, the classification loss can be186
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calculated as: Lce(x) = −
∑Cb

c=1 δc,y log fc(x) where δc,y is the Dirac delta function. Defining187

class prototypes as learnable model weights affords end-to-end training and enables introduction of188

CR to our model in a natural fashion. These decisions allow us to leverage UD and implicitly refine189

prototypes without explicit pseudo-labelling. Furthermore, this approach optimises the base class190

learning process by allowing full exploitation of the available LD without the typical requirement191

that necessitates simulation of the few-shot set-up (episode training) (Finn et al., 2017).192

Consistency Regularisation. We highlight that the described training strategy does not yet lever-193

age UD, available in the considered SS-FSL problem setting. Towards taking advantage of UD,194

we introduce a CR loss (Tarvainen & Valpola, 2017) that is driven by the learned prototypes. The195

idea underlying CR is to regularise predictions such that they become invariant to small input per-196

turbations that do not affect class semantics. This strategy has been used successfully for a variety197

of problems and is particularly appealing in the semi-supervised context as it leverages UD with-198

out explicit pseudo-labelling. A key difference in our setting, with respect to conventional SSL,199

is that our CR loss directly depends on prototype instantiations, as predictions are based on the200

distance between input and each class prototype. This strategy drives our approach to learn more201

discriminative and robust prototypes towards maintaining classification accuracy under different in-202

put perturbations. Following strategies adopted in the recent SSL state of the art (Berthelot et al.,203

2019a), we embed our IW model within a teacher-student framework (Tarvainen & Valpola, 2017)204

where we seek to impose consistency between teacher and student predictions. Both teacher and205

student networks share the same architecture, however only student weights are optimised by back-206

propagation. Teacher weights θT are computed as an Exponential Moving Average (EMA) of the207

student weights θ , θT = (1 − α)θT + αθ. Such temporal averaging strategies have been shown to208

yield more robust and accurate models and are therefore desirable in often noisy few-shot settings.209

Considering an unlabelled sample ub we realise sample perturbations, as suggested in (Xie et al.,210

2019; Berthelot et al., 2019a), by generating ūb and ûb using weak and strong augmentations re-211

spectively. The weak augmentation sample ūb has the goal of improving prediction stability in the212

teacher network. This strategy helps to constrain the strong augmentation sample prediction. The213

consistency loss is then computed as: Lcons(ub) = ||Sharp(ft(ûb), T )− fs(ūb)||2; where fs and ft214

are predictions computed by the student and teacher networks respectively; and Sharp(·) is a sharp-215

ening function, parametrised by temperature T , introduced in (Berthelot et al., 2019b) to reduce the216

entropy of the label distribution. In summary, the model is trained on the base classes using global217

loss Lbase = Lce + λLcons, where hyperparameter λ balances the relative influence of the terms.218

3.2 DYNAMIC PROTOTYPE REFINEMENT219

Our training stage, consideringDbase, yields a model capable of estimating reliable class prototypes220

on novel, unseen categories. In a standard few-shot setting (i.e. without available UD), prototypes221

are often estimated directly from the support set and reliable performance can be achieved without222

further training. In our problem setting, we set the objective of exploiting the additionally available223

UD in order to obtain strong prototype initialisations that then lend themselves to further refine-224

ment. Towards this goal, the main component of FewMatch constitutes our Dynamic Prototype225

Refinement (DPR) strategy, taking advantage of the UD available from Dnovel, with the aim of im-226

proving model adaption to novel categories. By design our approach is able to improve performance227

on novel categories despite the presence of limited data regimes. DPR comprises three stages: (1)228

Prototype Initial Inference (PII), via the introduced IW procedure (2) Explicit prototype refinement229

using top-K selection and (3) Implicit prototype refinement using CR. Prototypes are initially es-230

timated during the first step and then dynamically updated using iterations of steps two and three,231

such that prototype quality is iteratively improved. The remainder of this section provides further232

detail on steps (1)-(3) and the iterative process.233

Prototype Initial Inference. Given new category j from Dnovel with support set234

Sj={xs
1, y

s
1, . . . ,x

s
n, y

s
n} ∪ {u1, . . . , um}, compute an initial prototype using the labelled sup-235

port set as:236

p∗j = P (Sj) =
1

|Sj |
∑

xs
i∈Sj

θf (xs
i ), (2)
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The estimated prototype is then imprinted in classifier W as wj = pj and the process is repeated237

for each new category (see Figure 1). This allows for recognition of new classes without model238

retraining and provides high quality initialisation for our dynamic refinement stage.239

Explicit Prototype Refinement. We highlight that initial prototypes, computed using Eq. 2, do not240

make use of the additional UD available for novel classes. Exploiting UD can be considered crucial241

for novel classes due to the availability of only limited labelled data. Towards reducing prototype242

biases, we expand the support set using pseudo-labelled UD, where labels are assigned according243

to respective prediction scores. The prediction scores fs(u) are again obtained with Eq. 1 using up-244

dated prototype estimates and current model parameters. We mitigate the varying quality of pseudo245

labels by selecting the top-K samples with the most confident predictions per class which, by defi-246

nition, consist of the K unlabelled samples that are closest to their assigned class’ prototypes. This247

augmentation results in an extended annotated support set defined for each class j as S∗j=Sj ∪ Uj ,248

where Uj=top-K(f js (u)) is the set of unlabelled samples selected for class j. The prototype is then249

refined using Eq. 2 by replacing S with S∗. Crucially, we emphasise that per stage pseudo-labels are250

used uniquely to update prototypes and that samples, pseudo-labelled at this stage, are considered251

unlabelled again at the next iteration. Importantly pseudo-labels are therefore not propagated, al-252

lowing for recovery from potentially erroneous predictions during the subsequent fine-tuning stage.253

Implicit Refinement using Consistency Regularisation. Our implicit refinement stage inherits254

ideas from gradient-based FSL, which typically adapts the entire model to novel classes via a fine-255

tuning stage. This stage is generally missing from prototype-based methods, which explicitly repre-256

sent prototypes as an average feature representation, and thus lose the flexibility afforded by learning257

implicit network parameters. This fine-tuning stage is particularly desirable in our setting, where we258

seek to maximally leverage the available UD and our prototypes are defined as model weights. It is a259

natural choice to consider deploying Consistency Regularisation to fine-tune the model, noting that260

the refined prototypes obtained at this stage afford high quality teacher predictions. We implement261

the strategy described in Sec. 3.1 to fine-tune the model on novel classes with CR. To further im-262

prove robustness to noisy teacher predictions and difficult examples, we adopt a selective prototype263

CR strategy. By calculating teacher prediction scores ft(ū) according to their prototype distance,264

we can select the top-K unlabelled examples with the least ambiguous label predictions to compute265

the CR loss. Note that this second top-K selection set V will differ from top-K set U computed266

during the explicit stage, as 1) prototypes were updated 2) they are computed on the teacher model267

subject to weak input augmentation. The model is fine-tuned for R gradient updates by minimising268

L(x, vub ) = Lce(x) + λftLcons(vu), where Lce and Lcons are computed as described in Sec. 3.1,269

where labelled sample x is from Dnovel and vu ∈ V .270

Dynamic Prototype Refinement. Our implicit and explicit refinement steps allow iterative pro-271

totype refinement towards further performance improvement. We alternate between explicit and272

implicit steps for M iterations, reinitialising estimated pseudo-label at each iteration. Top-K selec-273

tion, for the first explicit stage, relies on student predictions since teachers are randomly initialised.274

Teacher predictions, presumed to be more accurate and stable, are used in subsequent iterations. Im-275

portantly, we note that teacher parameters are reinitialised before each implicit stage (after explicit276

selection) thus introducing stochasticity, increasing robustness to pseudo-label errors and aiding loss277

optimization. Algorithm details for dynamic prototype refinement are provided in Appendix A.5278

4 EXPERIMENTS279

Experimental set-up. We evaluated Fewmatch on two standard SS-FSL benchmarks:280

miniImageNet (Vinyals et al., 2016) and tieredImageNet (Ren et al., 2018), both subsets of the281

ImageNet dataset (Russakovsky et al., 2015) designed specifically for FSL. MiniImageNet con-282

sists of 100 classes with 600 image samples per class. We use the standard 64/16/20 classes split283

for train/val/test sets (Vinyals et al., 2016) and use 40%/60% of the data for labelled/unlabelled284

splits following previous works (Ren et al., 2018; Li et al., 2019b). TieredImageNet contains 608285

classes from 34 super-level categories. These are divided into 20/6/8 coarse super-level categories286

for train/val/test splits and contain 351, 97 and 160 classes, respectively. We follow the standard287

semi-supervised split (Ren et al., 2018; Li et al., 2019b), with 10% of the images of each class288

forming the labelled split and the remaining 90% being the UD. We consider Kl
n = 5 way N=1, 5289

shot classification problems and follow the strategy adopted in (Ren et al., 2018; Li et al., 2019b) to290
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Table 1: Mean classification accuracies of the 5-way 1/5-shot tasks. (Bold: Best results per set-
up). SL+U setting uses all available training LD (SL setting) with additional UD vs SSL using 10%
(tieredImageNet) or 40% LD (miniImageNet). Grey rows: methods using self-supervision.

Setting Model Backbone miniImagenet tieredImagenet
1-shot 5-shot 1-shot 5-shot

SL
MTL (Sun et al., 2019) ResNet-12 61.20 ±1.80 75.50 ±0.80 - -
CTM (Li et al., 2019a) ResNet-18 62.05 ±0.55 78.63 ±0.06 64.78 ±0.11 81.05 ±0.52
CC+rot (Gidaris et al., 2019) WRN-28-10 62.93 ±0.45 79.87 ±0.33 70.53 ±0.51 84.98 ±0.36

SL + U CC+rot+unlabelled WRN-28-10 64.03 ±0.46 80.68 ±0.33 - -
TransMatch (Yu et al., 2020) WRN-28-10 63.02±1.07 81.19±0.59 - -

SSL

MS k-Means (Ren et al., 2018) 4Conv 50.4 64.4 52.4 69.9
MS k-Means with MTL ResNet-12 62.1 73.6 68.6 81.0
TPN (Liu et al., 2018) 4Conv 52.8 66.4 55.7 71.0
TPN with MTL ResNet-12 62.7 74.2 72.1 83.3
LST (Li et al., 2019b) ResNet-12 70.1 ±1.9 78.7 ±0.8 77.7 ±1.6 85.2 ±0.8
Ours ResNet-12 75.66±0.95 82.93±0.62 78.70±0.93 85.40±0.58

Distractor Setting

SL + U TransMatch WRN-28-10 59..32±1.10 79.29±0.62 - -

SSL
MS k-Means with MTL ResNet-12 61.0 72.0 66.9 80.2
TPN with MTL ResNet-12 61.3 72.4 71.5 82.7
LST ResNet-12 64.1 77.4 73.4 83.4
Ours ResNet-12 70.35±0.98 80.23±0.66 74.24±0.95 83.64±0.63

generate test episodes: we randomly sample Kl
n classes from the test set, N labelled images from291

each class, 100 unlabelled images as support images and 15 query images.292

The previous protocol can be regarded as a standard set-up that we follow for fair comparisons.293

Towards exploring more realistic few-shot testing scenarios, we consider two additional directions.294

Firstly, the distractor setting (Li et al., 2019b) introduces UD from irrelevant classes, providing a295

more challenging test environment. Testing involves randomly selecting 100 unlabelled images from296

three task-irrelevant classes to serve as distractors and adding these to the unlabelled set. Table 1297

(lower), reports mean accuracy for 600 randomly generated test episodes in comparison to the state-298

of-the-art for this challenging setting. Secondly, the absence of an episode-based training require-299

ment affords FewMatch additional flexibility and enables more realistic SS-FSL testing schemes,300

e.g. investigating model adaptation capabilities under varying amounts of UD per class. We pro-301

vide classification accuracies for settings with unbalanced class sampling: (1) randomly selecting302

between 70-130 US per class; (2) 80-120 US per class. As Table 2 shows, FewMatch performance303

retains stability in unbalanced settings, c.f. the balanced default (exactly 100 US per class).304

The method was implemented with PyTorch (Paszke et al., 2017) using the same ResNet-12 back-305

bone as (Li et al., 2019b). For base category training, we follow parameters used in (Gidaris &306

Komodakis, 2018): our model is optimised using SGD with momentum 0.9, weight decay 0.0005,307

mini-batchsize 256 (128 LD and 128 UD) for 30 epochs. All input images were resized to 84×84.308

The learning rate was initialised to 0.1, and updated to 0.01 at epoch 20. Followng SSL practice (Tar-309

vainen & Valpola, 2017), weighting parameter λ is defined as a linear ramp-up function increasing310

from 0 to 300 in the first 15 epochs. We set the total number of DPR iterations as M = 3 and each311

implicit refinement step fine-tunes the model for 20 steps with 0.01 learning rate. Each mini-batch312

comprises all LD and 40 randomly sampled UD per-category. We linearly increase weighting pa-313

rameter λft from 0 to 10 in the first 10 steps. The number of unlabelled samples selected is set to314

K = 25. We set EMA rate α = 0.5, and T = 0.5. Strong augmentations for the student network315

are computed using RandAugment (e.g. color, shear) (Cubuk et al., 2019), applying three random316

operations with magnitude set to 9. Teacher weak augmentations use random cropping and flipping.317

Comparison to State-of-the-Art (SOTA) methods. We compared FewMatch with SOTA ap-318

proaches including (a) 3 FSL and (b) 5 SS-FSL methods in Table 1. We note that several SS-FSL319

approaches, including FewMatch, outperform SOTA FSL approaches, highlighting the potential320

of using additional UD to learn more accurate models. We observe that FewMatch outperforms321

the SS-FSL state of the art in both standard and distractor settings and that strongest performance322
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Table 2: Ablation study on miniImagenet.
PCR: base training prototype Consistency Reg-
ularisation; ER: Explicit prototype refinment;
IR: Implicit refinement using Selective Consis-
tency Regularisation; DR: Dynamic Refinement

Model Components miniImageNet
PCR ER IR DR 1-shot 5-shot

Remixmatch 53.52 66.50
Imprinted-weights (IW) 59.09 75.59

IW + Remixmatch (no mixup) 62.20 76.31
3 61.59 77.90
3 3 71.35 81.75
3 3 3 72.52 82.25
3 3 3 3 75.66 82.93

Unbalanced Number of Unlabelled Samples
min/max US 70/130 74.24 82.51
min/max US 80/120 75.14 82.82

Figure 2: Accuracy on training unlabelled data
with M = 3 iterations of the DPR stage.

gains are observed in the 1-shot setting. We further highlight that 1) we significantly outperform323

self-supervision methods that use a more powerful backbone encoder and were trained in a more324

favourable setting (SL+U: using all base LD with additional UD, vs SSL setting using a fraction of325

LD only) and 2) the closest SOTA method LST, requires, in contrast to FewMatch, complex episode326

training, requiring a fixed number of LD and UD at both training and test time.327

Ablation experiments. We evaluate the influence of each model component using miniImageNet328

under 5 way 1/5 shot settings. Specifically, we evaluate the influence of using CR in the base329

training stage (PCR), Explicit Prototype refinement (ER), Implicit Refinement (IR) and Dynamic330

Refinement (DR) which iterates between ER and IR. We additionally include three baselines: Im-331

printed Weights (Qi et al., 2018) (no use of unlabelled data), SOTA CR based SSL method Remix-332

match (Berthelot et al., 2019a) (no accounting for the few-shot setup), and Imprinted Weights com-333

bined with Remixmatch. We highlight that the latter baseline is highly similar to the method of Yu334

et al. (2020) and provides context towards the performance expected in the SSL setting. We note335

that methods using Remixmatch use CR during both base and novel training stages and that the336

latter method is implemented without mixup (used in the Remixmatch method) as the label mixing337

strategy is not compatible with the prototype approach and would require the definition of infinitely338

many prototypes. Results are reported in Table 2 and show that each component makes a clear con-339

tribution to the performance gain; with ER (providing a strong initialisation) and DR (addressing340

slow CR convergence rates) yielding the strongest performance gains.341

Analysis of the DPR process. Figure 2 evaluates the improved reliability of teacher predictions342

throughout our DPR process (M=3). We report accuracy on training UD during the DPR stage,343

compared to baseline imprinted weights + remixmatch (IWR) which uses CR without addressing the344

underlying challenges. We observe that our iterative process continuously improves performance,345

successfully exploiting CR towards reaching higher quality predictions. Conversely, the IWR model346

fails to exploit UD, obtaining a minimal performance gain with respect to baseline FSL method IW.347

5 CONCLUSION348

We introduced a novel prototype-driven approach named FewMatch, designed specifically to exploit349

the power of consistency regularisation in limited data regimes. In contrast with pre-existing state of350

the art methods, we alleviate requirements for iterative pseudo-labelling, preventing propagation of351

errors induced by inaccurate model predictions. We go beyond the introduction of self-supervised352

auxiliary losses and propose a novel training strategy: a dynamic prototype refinement that alter-353

nates between explicit pseudo label based updates and implicit model fine-tuning. Our extensive354

experiments demonstrate that this iterative strategy allows successful exploitation of unlabelled data355

within a consistency regularisation framework, yielding large performance gains.356
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A APPENDIX422

We provide additional material to supplement our work. Section A.1 evaluates the influence of the423

number of unlabelled samples on FewMatch’s performance, and demonstrates the method’s ability to424

leverage unlabelled examples. In Section A.2, we report a comparison between the Semi-Supervised425

Learning (SSL), Few Shot Learning (FSL) and Semi-Supervised Few Shot Learning (SS-FSL) set-426

tings, highlighting the challenges associated with SS-FSL. In Section A.3, we report an additional427

experiment, studying the influence of Dynamic Prototype Refinement (DPR) iterations M on our428

model performance. Please refer to our main paper for further method details. In Section A.4, we429

further synthesize the comparison between FewMatch and existing SS-FSL approaches, explicitly430

providing additional details to highlight the main differences between the considered methods. In431

Section A.5, we provide pseudocode description of our Dynamic Prototype Refinement process. Fi-432

nally, Section A.6 provides detailed pseudocode for the first stage of our method (prototype-driven433

consistency regularisation as described in Section 3.1 of the main paper).434

A.1 INFLUENCE OF THE NUMBER OF UNLABELLED SAMPLES435

We test the impact of using variable amounts of US per class on classification accuracy in the 5-436

way 1-shot setting on miniImageNet. Results are shown in Figure 3, showing a large increase in437

performance when including 50 US and a more modest yet consistent improvement as the number438

of US increases. This highlights the advantage provided by the use of US to complement the few-439

shot labelled examples, as well as FewMatch’s ability to leverage unlabelled examples.440
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Figure 3: Mean classification accuracy on 5-way 1-shot on miniImageNet with varying amounts of
unlabelled samples.

A.2 COMPARISON BETWEEN SSL, FSL, AND SS-FSL SETTINGS441

In Table 3, we report training sample counts (labelled and unlabelled) per category used in FSL,442

SSL and SS-FSL settings. The stated values follow the convention in Ren et al. (2018) (5-way443

1-shot) on Mini-ImageNet and, for SSL, we report the setting comprising the minimal LS with444

respect to recent state of art methods Berthelot et al. (2019a) on the common benchmark, CIFAR-445

10. Compared to FSL, this table highlights that 1) fewer labelled data is available during the base446

training stage, increasing the difficulty of obtaining a strong initialisation and 2) a substantial amount447

of additional unlabelled data is available for novel classes. Compared to SSL, the amount of labelled448

and unlabelled samples is significantly reduced in the SS-FSL setting (in particular; the unlabelled449

samples), highlighting the challenges associated with adapting SSL methods to the SS-FSL scenario.450

Table 3: Comparison of available per category training Labelled Samples (LS) and Unlabelled Sam-
ples (US) between FSL, SS-FSL, SSL)

Data Split FSL SS-FSL SSL
Base classes 600 LS 240 LS + 360 US -
Novel classes 1 LS 1LS + 100 US 25 LS + 4750 US

A.3 PARAMETER STUDY: DYNAMIC PROTOTYPE REFINEMENT (DPR) ITERATIONS451

Figure 4: Dynamic Prototye Refinement (DPR) performance with respect to iterations M

We evaluate the influence of DPR iteration count M with respect to model performance in the 5-452

way 1-shot setting and report respective test accuracies in Figure 4. We observe similar behaviour453

for both datasets considered (miniImageNet and tieredImageNet), with performance improving and454
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then stabilising for M ≥ 3. Our model requires only three iterations to reach optimal performance455

in the investigated settings.456

A.4 COMPARISON OF FEWMATCH AND EXISTING SS-FSL APPROACHES457

In Table 4, we provide an additional detailed comparison of FewMatch with state of the art SS-FSL458

approaches, including Masked Soft k-Means (Ren et al., 2018), Transmatch (Yu et al., 2020) and459

LST (Li et al., 2019b). We compare six different characteristics of the methods: Base dataset split,460

Training Strategy, Prototype estimation, Classifier learning approach, backbone encoder adaptation461

strategy (to novel task) and SSL approach used. Table 2 illustrates that 1) FewMatch provides a more462

flexible training strategy as it does not require episodic training. This allows consideration of differ-463

ent set-ups at test time in contrast to episodic training that typically enforcing a fixedK-way-N -shot464

setting. 2) Compared to Masked Soft k-Means, the only other method using prototypes, FewMatch465

adopts a more flexible prototype learning process by combining feature averaging with fine-tuning.466

This is enabled by the fact that prototypes are defined as classifier weights, allowing learning of high467

quality prototype representations. Furthermore, FewMatch adapts the feature backbone to the novel468

task, reducing the influence of domain shift. 3) In contrast to LST, Fewmatch combines classifier pa-469

rameter updates with the concept of prototypes, allowing a stronger initialization for the fine-tuning470

stage to be obtained. 4) In contrast to TransMatch, FewMatch uses fewer labelled training examples471

in the base training stage, and fine tunes the model using a combination of feature averaging and472

backpropagation; affording better CR convergence.473

Table 4: Comparison of FewMatch to existing SS-FSL approaches

Method Masked Soft k-Means Transmatch LST FewMatch
Base dataset 60% US+40% LS 100% LS 60% US+40% LS 60% US+40% LS
Training Episodic End to end Episodic End to end
Prototypes Feature averaging / / Iterative feature

averaging and backpropClassifier / backpropagation backpropagation
Feature Fixed Fixed Adapted to novel task Adapted to novel task
Learning Pseudo label CR Pseudo label CR

A.5 DYNAMIC PROTOTYPE REFINEMENT ALGORITHM474

We provide an algorithmic description of our Dynamic Prototype Refinement (DPR) process in475

Algorithm 1. DPR contains three steps: 1) Prototypes initial inference; 2) Explicit prototype refine-476

ment; 3) Implicit refinement using CR. We alternate between explicit and implicit refinement for M477

epochs after the initial inference step.478

A.6 BASE TRAINING PROCESS479

We provide, in Algorithm 2, pseudo-code for our prototype-driven consistency regularisation strat-480

egy (corresponding to the first training stage, on base classes) and illustrate the process in Figure 5.481

The method is further described in Section 3.1 of the main paper.482
PrototypesNetwork

Labelled

W

Base Categories

Unlabelled

Student

Prediction

Teacher 

Prediction

Consistency 

regularisation Loss

Weak

Augmentation
Strong

Feature

Cross 

Entropy Loss

Student

teacher

Student

Teacher

Moving

average

WT

Figure 5: Base training process
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Algorithm 1 Dynamic Prototype Refinement
1: Input: labelled examples S = {S1, . . . , Sj , SCn

}, and unlabelled examples U ; Number of
novel categories: Cn ; number of iterations M; number of fine-tuning steps R; pre-trained stu-
dent and teacher model parameters θ,θT ; weighting parameters λft, α.

2: Output: Prototypes of novel categories W ∗∗, student model parameters θ;
3: Prototypes initial inference: W ← {p∗1, p∗2, . . . , p∗Cn

}, calculate p∗j ← P (Sj) by Eq equation 2
4: For i = 1 to M :
5: Explicit prototype refinement
6: Uj ←top-K(f jt,θT ,WT

(u)),∀j ∈ 1, . . . , Cn, f jt,θT ,WT
computed by equation 1

with parameters θT ,WT . θT ,WT initialised to θ,W for i = 1
7: S∗j ← Uj ∪ Sj ∀j ∈ 1, . . . , Cn
8: W ∗ ← {P (S∗1 ), . . . , P (S∗Cn

)}
9: Implicit refinement using CR

10: Randomly re-initialise teacher parameters θT
11: For r = 1 to R:
12: Sample a batch of unlabelled samples Us from U
13: ū←WeakAugment(u), û← StrongAugment(u), u ∈ Us
14: Vj ←top-K(f jt,θt,W∗(ū)) ∀j ∈ 1, . . . , Cn
15: W ∗∗, θ∗ ← arg min

W,θ
Lce(x) + λftLcons(vub ), x ∈ S, vu ∈ V = {V1, · · · , VCn}

16: Update teacher parameters WT ← (1− α)WT + αW ∗∗, θT ← (1− α)θT + αθ∗

17: end

Algorithm 2 Prototype Driven Consistency Regularization
1: Input: Labelled examples and their one-hot labels X = {(xb, yb) : b ∈ 1, . . . , B}, Unlabelled

examples U = {(ub) : b ∈ 1, . . . , B}, weighting parameters λ, α.
2: Output: Optimised student model parameters θ∗,W ∗

3: Randomly initialise Student and Teacher model parameters and prototypes: θ,θT ,W ,WT

4: While not done do
5: Sample batch of labelled Xb and unlabelled samples Ub from X ,U
6: for all (xb, ub) ∈ (Xb,Ub) do
7: x̂b = StrongAugment(xb)
8: ūb = WeakAugment(ub)
9: ûb = StrongAugment(ub)

10: qlb ← fs,θ,W (x̂b), fs,θ,W (x̂b) computed as in Eq (1) in main-manuscript with student
parameters θ,W

11: qub ← ft,θT ,WT
(ūb) , q̂ub = fs,θ,W (ûb)

12: L(xb, ub) = Lce(qlb) + λ||Sharp(qub , T )− q̂ub ||2 as in Eq (2) in main-manuscript
13: W ∗, θ∗ ← arg min

W,θ

∑
Xb,Ub

L(xb, ub)

14: Update teacher parameters WT ← (1− α)WT + αW ∗, θT ← (1− α)θT + αθ∗

15: end
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