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Abstract

We establish empirical risk minimization principles
for active learning by deriving a family of upper
bounds on the generalization error. Aligning with
empirical observations, the bounds suggest that su-
perior query algorithms can be obtained by com-
bining both informativeness and representativeness
query strategies, where the latter is assessed using
integral probability metrics. To facilitate the use of
these bounds in application, we systematically link
diverse active learning scenarios, characterized by
their loss functions and hypothesis classes to their
corresponding upper bounds. Our results show that
regularization techniques used to constraint the com-
plexity of various hypothesis classes are sufficient
conditions to ensure the validity of the bounds. The
present work enables principled construction and
empirical quality-evaluation of query algorithms in
active learning.

1 Introduction

Empirical risk minimization (ERM) principles are
at the heart of statistical learning theory. In ad-
dition to laying a formal mathematical foundation
for supervised-learning algorithms, they lead to sub-
stantial advances in algorithmic design, such as the
development of max-margin methods [1, 2]. How-
ever, the majority of ERM principles considered the
standard passive supervised-learning setting, and
formal principles for other settings such as online or
semi-supervised learning are largely missing.

An important such setting is that of active learn-
ing (AL), where, similar to the standard supervised-
learning setting, computer oracles learn a probability
distribution that models a certain phenomenon given
a finite set of observations. However, unlike in the
standard passive-learning setting, the oracle in AL
also selects an optimal, minimal set of observations
to achieve this goal. Even in the age of big data,
numerous applications require this setting, mainly
due to high computational costs corresponding to
the annotation, i.e., labeling of datapoints [3]. For
example, in the emerging field of physics-informed
neural networks, it is often required to learn so-
lutions or solution operators of high-dimensional
partial differential equations [4, 5]. Generating the

training data in such learning tasks involve running
computationally expensive numerical solvers. AL is,
indeed, a very appealing setting for such problems
and has been extensively applied for, e.g., parame-
teric Schrödinger equations [6–8].

The crucial task in all AL scenarios is to query the
labels of the most useful datapoints while minimiz-
ing the number of queries [3]. The rationale behind
the design of such query algorithms can be divided
into two categories [3, 9]. The first category relies
on the informativeness criterion [10, 11], where the
query algorithm aims at selecting the most infor-
mative samples, whereby shrinking the space of the
candidate hypotheses as fast as possible. Such query
algorithms indeed introduce a sampling bias [9], as
the selected training dataset is not necessarily i.i.d.
sampled from the true distribution. This renders
the query algorithm prone to oversampling outliers
that are not very representative of the application
domain, where the model would be employed [3,
12]. The second category is based on the repre-
sentativeness criterion, where the query algorithm
aims at selecting samples that are representative of
the patterns present in the unlabeled data. Such
methods tend to perform well when only a small
labelled dataset is available, but their performance
rather deteriorate with increasing labeled-dataset
size. Numerous empirical and theoretical studies
indeed point out that superior query algorithms can
be obtained by combining both criteria [9, 12, 13].

AL algorithms are often heuristic in designing
the specific query criterion or ad hoc in measuring
and combining the informativeness and represen-
tativeness of the samples. For example, a com-
mon heuristic to combine both criteria is to query
data points by a random-sample selection that gives
higher weights to samples corresponding to large
uncertainties. Since the selection of new points is
random, the query algorithm ends up querying rep-
resentative datapoints. While such heuristics are
often successful in practice, they lack a principled
approach and are often domain-specific [3]. Some
first steps into a more principled approach to AL
were taken in Wang and Ye [14], where the authors
derived an upper bound on the generalization er-
ror using the maximum mean discrepancy (MMD)
as a measure of the representativeness of a sample.
Later, a similar result was obtained using the Wasser-
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stein distance as a measure of representativeness [15].
However, these results assumed rather harsh condi-
tions on the loss function and the supervised-learning
problem that restrict the applicability of these upper
bounds.
Organization. In Section 2 we cite the ERM

principle in passive learning and introduce the notion
of integral probability metrics (IPMs). In Subsec-
tion 3.1 we establish an ERM principle for AL. In
Subsection 3.2 we link the upper bound in the ERM
principle to two learning settings, employing linear
models with the ℓ1-loss function, and deep neural
networks with the hinge loss, respectively.

Notation

On the probability measure space (Ω,A, P ) we con-
sider the random vector X : Ω → X ⊆ Rn and the
random variable Y : Ω → Y ⊆ R. To simplify the
terminology we refer to X by a random variable irre-
spective of the value of n. We set Z = (X,Y ) to be
the joint random variable and denote by PZ its prob-
ability distribution on Z := X×Y. We denote by PX

the marginal probability distribution and by PY |X
the conditional probability, i.e., PZ = PXPY |X . To
describe the queried data we introduce the random
variable Q : Ω → Q ⊆ Rn with distribution PQ.

Throughout the paper we denote by H a generic
hypothesis class containing learners h : X → Y
and by ℓ : Y2 → R≥0 a generic loss function that
evaluates the deviation of a prediction ŷ = h(x)
from the true label y. For such a loss function, a
fixed y ∈ Y and a fixed h ∈ H, we define ℓy : X → R
by ℓy(x) := ℓ(y, h(x)).

For a fixed H and ℓ we denote by RPZ (h) the true
risk of a hypothesis h ∈ H with respect to PZ , i.e.,

RPZ (h) :=

∫
Z
ℓ(y, h(x)) dPZ(x, y).

Given a dataset of finite observations Dm :=
{z1 = (x1, y1), . . . , zm = (xm, ym)}, we denote by
R̂(h;Dm) the empirical risk of the hypothesis h, i.e.,

R̂(h;Dm) :=
1

m

m∑
i=1

ℓ(yi, h(xi)).

Additionally, we define

K := ℓ ◦ H ◦Dm

:= {ℓ(yi, h(xi)) : h ∈ H, (xi, yi) ∈ Dm}.

Finally, for a vector v ∈ Rn we denote by ∥v∥2 the
standard 2-norm, i.e., ∥v∥2 =

∑n
i=1

√
w2

i . Similarly,
we set ∥v∥1 =

∑n
i=1 |vi| and for a matrix M ∈

Rn×m we consider the spectral-2-norm ∥M∥2 :=
sup∥v∥2=1 ∥Mv∥2. For compact sets A ⊂ Rn we set
MA := maxa∈A ∥a∥2.

2 Preliminaries

In standard supervised learning, the unachievable
goal of minimizing the true risk is replaced by mini-
mizing the empirical risk over a finite sample, while
imposing constraints on the complexity of the hy-
pothesis class, often using regularization techniques.
Formally, this common practice in supervised

learning can be understood as an inductive prin-
ciple, where the minimization of the true risk is
replaced by the minimization of an upper bound to
it. Such upper bounds exist in a variety of forms,
often involving different notions of complexity of the
hypothesis class [1, 2, 16]. As an example, we cite
the following celebrated result.

Theorem 1. Assume that ℓ(y, h(x)) ≤ k for some
k > 0, any h ∈ H and any (x, y) ∈ Z. Then, for any
δ > 0 and any h ∈ H, with probability of at least
1− δ over the choice of the training set Dm it holds
that

RPZ
(h) ≤R̂Dm∼PZ

(h) + 2 Rad(K)

+ k

√
2 log(4δ )

m
, (1)

where Rad(K) is the Rademacher complexity defined
by

Rad(K) := Eσ

[
sup
k∈K

1

m

m∑
i=1

σik(xi)

]
,

where Eσ denotes the expectation operator with
respect to the distribution of σ.

Proof. See Shalev-Shwartz and Ben-David [16, The-
orem. 26.5].

Minimizing the upper bound in (1) was shown to
be equivalent to common supervised-learning prac-
tices across a variety of loss functions and hypothesis
classes. Moreover, such upper bounds were shown
to accommodate novel statistical behaviors, such as
the generalization error of deep neural networks [17].
Similar to the standard supervised-learning set-

ting, the goal in AL is to find a hypothesis of h ∈ H
that minimizes the true risk. However, to achieve
this goal, the oracle in AL is required to select a
minimal set of observations. This often violates the
passive-learning assumption that the training data is
i.i.d. sampled from the true distribution. Generally,
the training data D in AL follows the distribution
PẐ := PQ PY |X , i.e., it shares the same conditional
distribution as the true distribution PZ , but has a
different marginal distribution PQ. The choice of
an optimal query algorithm can, thus, be framed as
finding an optimal marginal distribution PQ.
The representativeness criterion in AL can be

understood as the requirement that PQ does not de-
viate too much from the true marginal PX . To quan-
tify this deviation, we use the notion of IPM [18].
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Definition 1 (Integral Probability Metrics). Con-
sider the measure space (X,B(X)) where B(X) de-
notes the Borel σ-algebra generated by X ⊂ Rn.
Further let F ⊆ BC with BC the set of real-valued
measurable functions on X, which are bounded by
C > 0. Then, for two probability measures PX and
PQ on (X,B(X)) we define the integral probability
metric with respect to the generator F as

dF (PX , PQ) := sup
f∈F

∣∣∣ ∫
X
f(x)dPX(x)

−
∫
X
f(q)dPQ(q)

∣∣∣ (2)

Choosing different generators F in (2) leads to
different statistical distances. We consider the fol-
lowing two generators:

(1) The Total Variation metric (dFTV) is obtained
by considering

FTV := {f : X → R : ∥f∥∞ ≤ 1},

where ∥f∥∞ denotes the supremum norm.

(2) The Kantorovic metric (dFK
) is obtained by

considering

FK := {f : X → R : ∥f∥L ≤ 1},

where

∥f∥L := sup

{
|f(x)− f(y)|
∥x− y∥2

: x ̸= y, x, y ∈ S

}
denotes the Lipschitz semi-norm on a metric
space (S, ρ).

To establish the ERM principle for AL, we need
the following concept.

Definition 2 (Maximal Generator). Let F ⊆ BC be
a generator. We define the set of maximal generators
RF to be the set of functions f ∈ BC with the
property∣∣∣∫

X
f(x)dPX(x)−

∫
X
f(q)dPQ(q)

∣∣∣ ≤ dF (PX , PQ),

for all probability measures PX and PQ on (X,B(X)).
In other words, RF describes the largest set in

BC preserving the value of dF (·, ·). It is clear that
F ⊂ RF .

Lemma 1. Let (Y,B(Y), P ) be a probability space,
F ⊂ BC a generator and f : Y×X → R a B(Y×X)-
measurable function with f(y, ·) ∈ F ⊂ BC for all
y ∈ Y. Then

g(·) :=
∫
Y
f(y, ·)dP (y)

is a well-defined function on X and it holds that
g ∈ RF .

Proof. See Müller [18, Theorem 3.4].

Note that Lemma 1 also holds for any f ∈ RF .
The stage is now ready to state our results.

3 ERM in Active Learning

We begin by establishing the ERM principle for AL,
where the IPM is used as a measure of representa-
tiveness.

3.1 Bounding the True Risk

We recall that the training data in AL is assumed to
follow a distribution PẐ that shares the same con-
ditional distribution of the generating distribution
PZ , i.e., PẐ = PQPY |X . Further, recall that a given
a loss function ℓ : Y2 → R≥0 induces the function
ℓy : X → R by ℓy(x) := ℓ(y, h(x)) for some y ∈ Y
and h ∈ H. Lastly, recall that the set BC contains
all real-valued measurable functions on X, which are
bounded by C > 0.

Theorem 2 (ERM principle for AL). Let F ⊂ BC

be a generator for some C > 0, and ℓ : Y2 → R≥0

be a loss function that satisfies the hypothesis of
Theorem 1. Further, let ℓy ∈ F for all y ∈ Y and
h ∈ H and D̂m = {Ẑ1, . . . Ẑm} ∼ PẐ be an i.i.d
sample. Then, with probability of at least 1− δ and
for any h ∈ H, we have

RPZ
(h) ≤ R̂D̂m∼PẐ

(h) + dF (PX , PQ)

+ 2 Rad(l ◦ H ◦ D̂m)

+ k

√
2 log(4δ )

m
.

(3)

Proof. We note that the hypothesis of this theorem
satisfies the conditions of Theorem 1. Therefore, it
follows that

RPZ
(h) ≤RPZ

(h)−RPẐ
(h)

+ R̂D̂m∼PẐ
(h)

+ 2 Rad(l ◦ H ◦ D̂m)

+ k

√
2 log(4δ )

m
.

(4)

Set K(h) := RPZ
(h)−RPẐ

(h) and note that

K(h) =

∫
X

∫
Y
l(y, h(x))dPY |X(y)dPX(x)

−
∫
X

∫
Y
l(y, h(x))dPY |X(y)dPQ(x)

=

∫
X

∫
Y
l(y, h(x))dPY |X(y)dPX(x)

−
∫
X

∫
Y
l(y, h(x))dPY |X(y)dPQ(x)

by virtue of Fubini’s theorem. Set

g :=

∫
Y
l(y, h(·))dPY |X(y) (5)
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and note that ℓ(y, h(·)) = ℓy satisfies all the hy-
potheses of Lemma 1 and hence g ∈ RF . Thus,
using the definition of RF we can estimate

D(h) =

∫
X
g(x)dPX(x)−

∫
X
g(x)dPQ(x)

≤ sup
f∈RF

∣∣∣∫
X
f(x)dPX(x)−

∫
X
f(x)dPQ(x)

∣∣∣
= sup

f∈F

∣∣∣∫
X
f(x)dPX(x)−

∫
X
f(x)dPQ(x)

∣∣∣
= dF (PX , PQ).

Remark. We note that an upper bound on the
true risk in AL using the IPM appeared in the work
of Wang and Ye [14]. However, to derive their re-
sult the authors made a direct assumption on g,
see (5). A more refined version appeared in the
work of Saleh [19], where the author derived di-
rect conditions on the loss function ℓ that would
reduce the IPM to the Kantorovic metric and the
MMD. Theorem 2 can be considered as a more gen-
eral formulation of these results that allow a direct
connection to the literature on maximal generators.

Theorem 2 establishes an ERM principle, which is
in accordance with common practices in AL. To see
this consider a classification task and assume that
the AL oracle has access to a hypothesis class H, an
initially labelled dataset D(0) ∼ PZ and a pool of
unlabeled data that is i.i.d. sampled from PX . The
upper bound suggests finding a hypothesis h and
sampling an additional dataset D(1) that minimize
the empirical risk. A certain hypothesis h that
minimizes the empirical risk on D(0) would benefit
the most from a dataset D(1) that is close to the
decision boundary. This corresponds to the concept
of informativeness sampling in AL. In addition, the
upper bound in the theorem suggests that a query
strategy should sample points, whose distribution
is close to the true marginal distribution of the
data. In other words, an optimal query strategy
should sample points that are representative of the
underlying marginal. Indeed, a balance between
these two criteria is crucial for the success of an AL
query algorithm [9, 12, 13].

3.2 Mapping Learning Settings to
Generalization Bounds

The upper bound derived in Theorem 2 is generic
and can take many forms by choosing different gener-
ators F . We aim in this section at deriving explicit
bounds for the true risk given a certain learning
setting. Nevertheless, additional restrictions on the
learning setting need to be imposed for Theorem 2
to hold. We consider the learning setting to be de-
termined by a choice of the hypothesis class H, the

domain X, the codomain Y and the loss function ℓ.
In the following X ⊂ Rn and Y ⊂ R unless otherwise
specified.

We consider first a regression task employing the
linear hypothesis class

HL := {h : X → Y : h(x) = wTx+b, w ∈ Rn, b ∈ R},

where w and b are the learnable parameters along
with the loss ℓ1(y, h(x)) := |y−h(x)| defined for any
y ∈ Y and h ∈ HL.

Theorem 3 (Linear Hypothesis Classes). Consider
a regression problem employing HL and the ℓ1-loss.
Assume that w is such that ∥w∥2 ≤ 1. Then the
true risk of a hypothesis h ∈ HL can be bounded as
in Theorem 2 by choosing the generator F = FK .

Proof. Analogous to our previous notation we set
ℓy1(x) := ℓ1(y, h(x)) for any y ∈ Y.

Fix y ∈ Y and h ∈ HL. By Theorem 2, it suffices
to show that ℓy1 ∈ FK . For any x1, x2 ∈ X, it holds
that

|ℓy1(x1)− ℓy1(x2)| =
∣∣|h(x1)− y| − |h(x2)− y|

∣∣
≤

∣∣(wTx1 + b)− (wTx2 + b)
∣∣

≤
∣∣wT (x1 − x2)

∣∣
≤ ∥w∥2 ∥x1 − x2∥2,

where we used the reversed-triangle inequality and
the Cauchy-Schwarz inequality. Setting ∥w∥2 ≤ 1
implies that ∥ℓy1∥L ≤ 1 and hence ℓ1 ∈ FK .

Theorem 1 suggests that the natural regulariza-
tion constraint ∥w∥2 ≤ 1, commonly used for mit-
igating overfitting, is sufficient to bound the true
risk of a linear hypothesis class in an AL setting.

We now look at an example of a binary classifica-
tion problem, i.e., Y = {−1, 1}, using feed-forward
neural networks

HNN := {h : X → Y : h(x) = sign(oT f(x) + b)}

with weight o ∈ Rn and bias t ∈ R in the out-
put layer and the neural network function f(x) =
W (L)σ(W (L−1) · · ·σ(W (1)x+b(1)) · · ·+b(L−1))+b(L),
where σ is the ReLU activation function, and W (l),
b(l) are the weight matrices and bias vectors, respec-
tively. The learnable parameters are assumed to
have arbitrary finite dimensions. We consider the
hinge loss ℓH(y, h(x)) = max (0, 1− y(wTx+ b)).

Theorem 4 (Neural Networks). Consider a binary
classification task employing HNN and the ℓH -loss.
Assume that ∥o∥2

∏L
i=1 ∥W∥2 ≤ 1, then the true

risk of a hypothesis h ∈ HNN can be bounded as in
Theorem 2 by choosing the generator F = FK.

Proof. Similarly to the previous proof, it suffices to
show that ℓyH ∈ FK for any y ∈ Y = {−1, 1} and h ∈
HNN with ∥o∥

∏L
i=1 ∥W∥2 ≤ 1. This follows directly
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H ℓ Condition IPM

HL ℓ1 ∥w∥2 ≤ 1 dFK

Regression ℓ2 ∥w∥2 ≤ 1−MY−|b|
MX

dFTV

Hg ℓ1
2MX
σ2 ∥w∥21 ≤ 1 dFK

Hσ(L) ℓlog ∥w∥2 ≤ log(e−1)
MX

dFTV

Classification HSVM ℓH ∥w∥2 ≤ 1 dFK

HNN ℓH ∥o∥2
∏L

i=1 ∥W∥2 ≤ 1 dFK

Table 1. The table summarizes the mapping of various learning settings to corresponding IPMs in Theorem 2
under specified conditions on the learnable parameters w. The learning tasks are characterized by the hypothesis
class (linear HL, Gaussian Hg, logistic Hσ(L), support vector machines HSVM, and neural networks HNN) and the
loss function ℓ (ℓ1, logistic ℓlog, and hinge ℓH). The formal definitions of the hypothesis classes and the losses are
provided in Subsection 3.2 and Appendix A.

from the fact that feedforward neural networks with
ReLU activation functions are Lipschitz continuous
with bounded Lipschitz constant ∥o∥

∏L
i=1 ∥W∥2,

see Scaman and Virmaux [20, Proposition 1], and the
fact that ℓh is Lipschitz continuous with Lipschitz
constant 1.

We note that Theorem 4 as well suggests that
regularization constraints on the learnable parame-
ters are sufficient to bound the true risk in an AL
setting.

Theorem 3 and Theorem 4 are only two exam-
ples on how to constraint the hypothesis class for
deriving a suitable generalization bound in an AL
setting. We note that a variety of other learning
settings employing other losses and other hypotheses
classes can be considered. We summarize similar
results that allow embedding in various generators
in Table 1 and refer the reader to the respective
proofs in Appendix A. Similar to Theorem 3 and
Theorem 4, the complementary results in Table 1
suggest that the regularization constraints on the
learnable parameters seem to play a crucial role
for the design of query strategies in AL. However,
in several cases, the regularization constraints are
dependent on bounds on MX and MY.

4 Conclusion and Outlook

We derived a bound on the generalization error for
AL that is based on the IPM as a measure of rep-
resentativeness. The bound suggests that a query
strategy should sample informative samples while
maintaining a distribution of the queried samples
that is close to the true marginal distribution. This
aligns with common practices in AL.

We augmented the bound with a variety of ex-
amples that show how to embed different learning
settings in various generators. A key insight from
these examples is that the regularization constraints

on the learnable parameters seem to play a crucial
role for a principled design of query strategies. The
results of this analysis, summarized in Table 1, can
be used to guide the design of query strategies in
AL. To this end, the user must first identify which
setting in Table 1 matches their scenario. Once
identified, the next step is to derive an algorithm
that minimizes an empirical estimate of the relevant
upper bound, as done, e.g., in the work of Wang
and Ye [14].
Additionally, our results can be used to evaluate

the quality of ad hoc query strategies in AL. A nec-
essary step towards such an application is to derive
upper bounds to the true risk that employ empirical
estimates of the IPM, see, e.g., Sriperumbudur et
al. [21] for general discussion on empirical estimates
of IPMs.

We note that the choice of the IPM as a measure
of representativeness is not unique. Other choices
of metrics to measure the representativeness of the
samples, such as, e.g., ϕ−divergences, can be con-
sidered [22]. We leave this as an open question for
future research.
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A More Learning Settings

Theorem 3 and Theorem 4 are only two examples on
how to constraint the hypothesis class for deriving
a suitable generalization bound in an AL setting.
In the following we provide the reader with further
results, which are also summarized in Table 1.
We start by looking at the Gaussian hypothesis

class defined as

Hg :=
{
h : X → Y : h(x) =

n∑
i=1

wig(x, ti)
}
,

where g(x, ti) = e

(
− ∥x−ti∥

2

2σ2

)
, for some fixed σ > 0,

and learnable parameters w = (w1, . . . , wn) ∈ Rn

and ti ∈ X for any i = 1, . . . , n.

Theorem 5 (Gaussian Hypothesis Classes). Con-
sider a regression problem employing Hg and the
ℓ1-loss. Assume X to be compact, with bound MX,
and w to be such that 2MX

σ2 ∥w∥1 ≤ 1, then the true
risk of a hypothesis h ∈ Hg can be bounded as in
Theorem 2 by choosing the generator F = FK .

Proof. Set ℓy1(x) := ℓ1(y, h(x)) for any y ∈ Y. Fix
y ∈ Y and h ∈ Hg. By Theorem 2, it suffices to
show that ℓy1 ∈ FK. For arbitrary ti ∈ X observe
that ∣∣∣∣ ∂∂xg(x, ti)

∣∣∣∣ = 1

σ2
e

(
− ∥x−ti∥

2

2σ2

)
∥x− ti∥2

≤ 2MX

σ2
.

Thus, the function f(x) = g(x, ti) is Lipschitz con-
tinuous on X with ∥f∥L ≤ 2MX

σ2 . Finally, for any
x1, x2 ∈ X we have

|ℓy1(x1)− ℓy1(x2)| =
∣∣|h(x1)− y| − |h(x2)− y|

∣∣
≤

∣∣∣∣∣
n∑

i=1

wig(x1, ti)−
n∑

i=1

wig(x2, ti)

∣∣∣∣∣
≤

n∑
i=1

|wi| |g(x1, ti)− g(x2, ti)|

≤
n∑

i=1

|wi|
2MX

σ2
∥x1 − x2∥2

= ∥w∥1
2MX

σ2
∥x1 − x2∥2.

Setting ∥w∥1 2MX
σ2 ≤ 1 implies that ∥ℓy1∥L ≤ 1 and

hence ℓ1 ∈ FK .

In contrast to Theorem 3 and Theorem 4, The-
orem 5 requires the input space X to be compact.
Such assumptions are not uncommon in practice.
For example, in image classification, the input space
is bounded by the pixel values. For example, consid-
ering grey images, it is valid to assume that the pixel
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values lie in the compact domain [0, 1]. In this case,
the assumption of Theorem 5 reduces to 2

σ2 ∥w∥1 ≤ 1.
Such bounded input domains also show up naturally
in other applications, such as geographic locations
or financial data. Additionally, in practice, one
can preprocess the input data to fit within certain
bounds. For example, feature scaling or normaliza-
tion is commonly used to bound the input space to
a fixed interval, see [23, 24]. In these scenarios, the
constraints are inherent to the domain X, and they
effectively regularize the learning process without
being formalized as part of the algorithm. Further-
more, such constraints are useful assumptions in the
context of kernel methods. For example, assuming
the input data lies within a compact set helps in con-
trolling the Rademacher complexity, which provides
better generalization bounds, see [16].

This argumentation can also be applied to a-priori
constraints on the codomain Y, which we will use in
the following result for the linear hypothesis classes.

Theorem 6 (Linear Hypothesis Classes). Consider
a regression problem employing HL and the ℓ2-loss.
Assume X and Y to be compact, with bounds MX
and MY, and w and b to be such that ∥w∥2 ≤
1−MY−|b|

MX
, then the true risk of a hypothesis h ∈ HL

can be bounded as in Theorem 2 by choosing the
generator F = FTV.

Proof. Set ℓyH(x) := ℓ2(y, h(x)) for any y ∈ Y. Fix
y ∈ Y and h ∈ HL. By Theorem 2, it suffices to
show that ℓy2 ∈ FTV. To this end, it suffices to show
that |y − wTx− b| ≤ 1. Note that

|y − wTx− b| ≤ |y|+ ∥w∥2∥x∥2 + |b|
≤ MY + ∥w∥2MX + |b|,

Thus, setting ∥w∥2 ≤ 1−MY−|b|
MX

we get ℓy2 ∈ FTV.

As previously mentioned, restrictions on the do-
main X and codomain Y are used in Theorem 6.
Looking at an example of a learning setting, where
X = [−1, 1] and Y = [−0.5, 0.5] leads to the classical
regularization formulation ∥w∥2 ≤ 0.5− |b|.
Next, we look at some more binary classification

settings. Consider the hypothesis class of logistic
linear functions

Hσ(L) := {h : X → Y : h(x) = σ(wTx), w ∈ Rn}

with the sigmoid activation function σ(z) = 1
1+e−z

for z ∈ R and learnable parameter w. This hy-
pothesis class is often used in combination with the
logistic loss function ℓlog(y, h(x)) = −(y log(h(x)) +
(1−y) log(1−h(x))) for y ∈ Y, x ∈ X and h ∈ Hσ(L).
We set Y = {0, 1} and denote by e the Euler number.

Theorem 7 (Logistic Hypothesis Classes). Consider
a binary classification problem employing Hσ(L) and

the logistic loss. Assume X to be compact, with
bound MX, and w to be such that ∥w∥2 ≤ log(e−
1)MX, then the true risk of a hypothesis h ∈ Hσ(L)

can be bounded as in Theorem 2 by choosing the
generator F = FTV.

Proof. Set ℓylog(x) := ℓlog(y, h(x)) for any y ∈ Y.
Fix y ∈ Y and h ∈ Hσ(L). By Theorem 2, it suffices
to show that ℓylog ∈ FTV. We first consider y = 1

and observe that for any x ∈ X, we have |ℓylog(x)| =
log (1 + e−wT x). Similarly, for y = 0, we observe

that |ℓylog(x)| = log (1 + ew
T x) for any x ∈ X. Thus,

setting ∥w∥2 ≤ log(e−1)
MX

implies ∥ℓylog∥∞ ≤ 1 and

hence ℓylog ∈ FTV.

Next we look at the hypothesis class of linear
support vector machines (SVM) given by

HSVM := {h : X → Y : h(x) = sign(wTx+ b)}

with learnable parameters w ∈ Rn and b ∈ R. The
primary loss function used in linear SVM is the
hinge loss ℓH(y, h(x)) := max(0, 1− y(wTx+ b)) for
y ∈ Y, x ∈ X and h ∈ HSVM. We set Y = {−1, 1}.

Theorem 8 (Support Vector Machines). Consider
a binary classification problem employing HSVM and
the hinge loss. Assume w to be such that ∥w∥ ≤ 1,
then the true risk of a hypothesis h ∈ HK can be
bounded as in Theorem 2 by choosing the generator
F = FK.

Proof. Set ℓyH(x) := ℓH(y, h(x)) for any y ∈ Y. Fix
y ∈ Y and h ∈ HSVM. By Theorem 2, it suffices
to show that ℓyH ∈ FK. We note that the function
ℓyH(ŷ) := max(0, 1− yŷ) is Lipschitz continuous on
Y with Lipschitz constant 1. Additionally, for any
w ∈ Rn and b ∈ R the affine linear function wTx+ b
is Lipschitz continuous on X with Lipschitz constant
∥w∥2. Thus, for any x1, x2 ∈ X we have

|ℓyH(x1)− ℓyH(x2)| ≤
∣∣(wTx1 + b)− (wTx2 + b)

∣∣
≤ ∥w∥2∥x1 − x2∥2.

Setting ∥w∥2 ≤ 1 implies that ∥ℓyH∥L ≤ 1 and hence
ℓH ∈ FK .
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