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ABSTRACT

We present GRL-SNAM, a geometric reinforcement learning framework for Si-
multaneous Navigation and Mapping in unknown environments. GRL-SNAM dif-
fers from traditional SLAM and other reinforcement learning methods by relying
exclusively on local sensory observations without constructing a global map. Our
approach formulates navigation and mapping as coupled dynamics on general-
ized Hamiltonian manifolds: sensory inputs are translated into local energy land-
scapes that encode reachability, obstacle barriers, and deformation constraints,
while policies for sensing, planning, and reconfiguration evolve stagewise un-
der Differential Policy Optimization (DPO). A reduced Hamiltonian serves as an
adaptive score function, updating kinetic/potential terms, embedding barrier con-
straints, and continuously refining trajectories as new local information arrives.
We evaluate GRL-SNAM on 2D deformable navigation tasks, where a hyperelas-
tic robot learns to squeeze through narrow gaps, detour around obstacles, and gen-
eralize to unseen environments. We evaluate GRL-SNAM on procedurally gener-
ated 2D deformable—robot tasks (hyperelastic ring) with narrow gaps and clutter,
comparing against local reactive baselines (PF, CBF, staged DWA) and global A*
references (rigid, clearance-aware) under identical stagewise sensing constraints.
GRL-SNAM matches near—CBF path quality while using the minimal map cov-
erage of PF, preserves clearance, generalizes to unseen layouts, and demonstrates
that Hamiltonian-structured RL enables high-quality navigation through minimal
exploration via local energy refinement rather than global mapping.

1 INTRODUCTION

Reinforcement learning has achieved remarkable successes in high-dimensional control, yet its ap-
plication to real-world continuous navigation remains fundamentally limited. Long-horizon reason-
ing, multi-scale decision making, and online adaptation pose challenges that overwhelm existing
methods. Model-free RL consumes millions of interactions, while hierarchical variants introduce
brittle complexity. In simultaneous navigation and mapping (SNAM), where agents must traverse
and construct evolving environmental representations, these limitations become prohibitive.

At its core, the difficulty arises because conventional RL policies are structureless. They treat nav-
igation as black-box optimization, ignoring the geometric and physical principles that make loco-
motion stable, adaptive, and safe. Without inductive bias, policies overfit training environments, fail
under distribution shift, and collapse during long rollouts.

1.1 BEYOND BELLMAN OPTIMIZATION: PURELY FEEDFORWARD CONTROL:

Our framework does not optimize a value function via the Bellman equation. Standard RL al-
gorithms hinge on recursive bootstrapping for estimating returns, propagating value updates, and
iteratively improving policies. This induces high sample complexity, instability, and delayed credit
assignment, especially in navigation with long horizons.

In contrast, our approach is purely feedforward: policies emerge as direct gradient flows of Hamil-
tonian energies, without value iteration. Navigation decisions are computed in a single pass from
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local sensory input and the reference Hamiltonian, bypassing dynamic programming altogether.
This eliminates the need for rollout-based value propagation, yielding stable training, low variance
adaptation, and sample-efficient online updates.

1.2 KEY INSIGHT: HAMILTONIAN STRUCTURE AS NAVIGATION INDUCTIVE BIAS

We propose addressing these limitations by grounding RL in Hamiltonian mechanics. Our central
insight is that navigation can be framed as learning energy functionals:

H(q,p) = K(p) + P(q) )]

where kinetic and potential energies encode control objectives, constraints, and adaptation strategies.
This formulation introduces three structural advantages:

(1) Energy conservation stabilizes long-horizon rollouts by preventing accumulation of numerical
errors. (2) Symplectic geometry naturally separates fast reactive dynamics from slow strategic
planning, addressing multi-scale temporal coordination. (3) Barrier encoding integrates safety and
collision avoidance directly into potential functions, eliminating fragile reward shaping.

Hamiltonian structure transforms policy optimization into Differential Policy Optimization (DPO)
Bajaj & Nguyen| (2024), where policies emerge as gradient flows of learned energies that respect
geometry, conserve invariants, and generalize across environments. Since DPO has already been
shown to outperform state-of-the-art policy learners across standard control benchmarks, we focus
our comparisons on navigation and mapping baselines (e.g., PF, CBF, A*) rather than reconstructing
weaker policy-gradient baselines ourselves. Importantly, no prior work aligns directly with our
Hamiltonian formulation; implementing such policy baselines within our framework would amount
to re-developing them as part of our contribution, rather than evaluating against an existing standard.

1.3 OFFLINE-ONLINE HAMILTONIAN SYNERGY

We distinguish between complementary learning regimes that exploit this geometric structure:

Offline learning discovers reference Hamiltonians h?" trained on trajectory data, capturing fun-
damental multi-scale navigation dynamics in local frames. These provide stable geometric priors
encoding essential coupling between sensing, planning, and deformation.

Online adaptation fuses new environmental context into learned Hamiltonians through contextual
corrections: h2dapted — pref . Apeontext Thig creates conservative adaptation: systems default to
learned physics-based behaviors while adding minimal corrections for environmental variations.

The synergy transforms every offline policy into a reference Hamiltonian and every online update
into a geometric alignment step. Navigation emerges from meta-policies that parse environments,
assemble energy landscapes, and integrate them through symplectic dynamics.

1.4 CONTRIBUTIONS:

This work establishes GRL-SNAM as a new approach beyond structureless policy learning. Our
contributions are:

1. Hamiltonian RL framework: Allows adaptable integration of classical mechanics into
RL for navigation, treating rewards as energies and policies as symplectic flows.

2. Multi-scale geometric coordination: Differential policies for sensing, planning, and adap-
tation unified through shared energy formulations, achieving temporal scale separation
without manual hierarchy design.

3. Physics-grounded adaptation: Principled offline-online decomposition where stable ref-
erence dynamics adapt through geometric alignment rather than catastrophic relearning.

4. Theoretical guarantees: Symplectic structure preservation ensures stability, while inde-
pendent policy learning achieves linear sample complexity scaling.

5. Empirical validation: Hyperelastic ring navigation demonstrates superior sample effi-
ciency and generalization compared to A* and CBF baselines.
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2 RELATED WORK

We focus on structure-preserving, deployable navigation with deformable bodies. Our work inter-
sects advances in geometric learning, safety-critical control, and deformable robot navigation.

Mathematical Foundations for RL Navigation. Most navigation RL methods operate in Euclidean
spaces using standard PPO |Schulman et al.| (2017) or TD3 [Fujimoto et al.| (2018) formulations
without geometric constraints. Geometric approaches include SE(3) equivariant policies [Hoang
et al.| (2025) for manipulation and Riemannian safe navigation Klein et al.| (2023) using tangent
space projections. Hamiltonian neural networks |Desai et al.| (2021)) demonstrate superior learning
dynamics through symplectic structure but remain limited to simple control tasks.

Safety-Critical Navigation. Control Barrier Function (CBF) integration with RL achieves formal
safety guarantees |Li et al.| (2023)), but treats constraint satisfaction as orthogonal to navigation op-
timality, often resulting in conservative behaviors. Our Hamiltonian formulation integrates safety
constraints directly within the energy structure.

Deformable Robot Navigation. Recent work demonstrates ring-like navigation through pre-
programmed strategies: aerial gap navigation via fixed Liquid Crystal Elastomer responses Q1 et al.
(2024) and HAVEN Mulvey & Nanayakkaral(2024) using predetermined shape-changing sequences.
These approaches rely on offline parameter optimization followed by deterministic execution—they
cannot adapt deformation strategies online as environmental conditions change.

Neural Scene Representations. NeRF-based SLAM methods like NICE-SLAM [Zhu et al.| (2022
provide rich environmental representations that complement our energy-based navigation formula-
tion by supplying obstacle and free-space information for barrier and goal potential computation.

Simultaneous Navigation and Mapping: Most SNAM approaches prioritize building detailed
maps before navigation. SGoLAM |Kim et al.| (2021)) couples goal localization with occupancy
mapping, CMP Gupta et al.| (2019) integrates a differentiable planner into learned mapping, and
CL-SLAM |Vadisch et al.| (2023)) maintains maps for long-term adaptability. In contrast, our GRL-
SNAM framework aims to reach goals via high-quality, well-weighted paths while mapping as lit-
tle of the environment as possible. To our knowledge, no prior work explicitly targets minimal
exploration; our method introduces progressive path refinement, continually improving least-cost
trajectories as new observations arrive.

Positioning. GRL-SNAM addresses key gaps by extending Hamiltonian mechanics from simple
control to complex navigation requiring sensing, planning, and deformation. Unlike existing meth-
ods that require manual task decomposition or rely on pre-programmed strategies, our differential
multi-policy architecture learns specialized policies naturally coupled through shared Hamiltonian
energy formulations. The symplectic structure ensures stable coordination across temporal scales
with formal convergence guarantees, bridging theoretically principled geometric methods with prac-
tical navigation frameworks.

3 METHODOLOGY

We present GRL-SNAM (Geometric Reinforcement Learning for Spatial Navigation and Manipu-
lation): a Hamiltonian-structured navigator that unifies offline physics learning with online adaptive
correction through black-box modular policies. The code for this paper is available at: Code

3.1 PROBLEM FORMULATION: NAVIGATION AS HAMILTONIAN OPTIMIZATION

We formulate navigation in unknown environments as energy minimization over symplectic mani-
folds. Consider a deformable robot with state ¢; = (¢, 6, ;) navigating from x, to x, through
unknown obstacles characterized by binary occupancy I : R? — {0, 1}.

Energy Decomposition by Policy. The GRL-SNAM framework interprets navigation as minimiz-
ing a Hamiltonian reward functional, where each policy governs a distinct energy term as shown in

Figure [6}


https://anonymous.4open.science/r/GRL-SNAM-E5CE/README.md
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The Sensor Policy contributes the sensor cost, regularizing information acquisition. The FPE
(Frame—Planning Executor) governs goal attraction and barrier avoidance, balancing reachability
with safety. The Reconfig Policy governs deformation, enabling radius modulation for narrow pas-
sages.

This decomposition highlights that the total Hamiltonian is not a monolithic reward but a structured
sum of physically interpretable energies, each attached to a specialized policy.

3.2 HYPERELASTIC RING ROBOT MODEL

We model the deformable robot as a hyperelastic ring [/| with reduced-order dynamics enabling
efficient navigation while capturing essential deformation behaviors.

The robot state consists of three generalized coordinates: uniform scale s(¢) controlling size, center
position o(t) € R? for translation, and orientation () for rotation. The boundary is represented as a
periodic B-spline with control points transformed via similarity transformation. This reduced-order
representation captures the essential deformation modes (compression in tight passages, relaxing in
open areas) while maintaining computational tractability.

3.3 BLACK-BOX MODULAR ARCHITECTURE

Rather than learning monolithic navigation policies, we decompose the problem into three indepen-
dent score functions, each dedicated to a specific navigation aspect:

Definition 3.1 (Independent Score Functions). Let K = {y, f, 0} denote the set of policy indices
corresponding to sensor, frame, and object domains respectively. For each k € IC, define:

e 2z € Zy: the phase space state for policy k, where Z,, = Q X Py with configuration
space Qy, and momentum space Py,

* Cy: the set of active environmental constraints at time t € R>g

* O € Oy the learnable parameters for policy k, where parameter sets satisfy disjointness:

@iﬂ(%:[l)fori;éj
. hzk 1 2 X C x R>9 = R: a learned energy functional parameterized by 0,
Each policy my, is defined as an independent score function: sz’“ (2k,Ct,t) =V, hik (g, Ci, 1)

6
L . s, F .
The parameter disjointness ensures independence: 80’3 =0 forallj#k

allowing parallel training while maintaining coordination through shared constraints Cy.
Policy Abstraction. Each policy is treated as a black box that:

 Sensor Policy (7,): Adapts perception parameters — energy gradients for information

gathering

* Frame Policy (): Plans collision-free paths — energy gradients for goal attraction

» Shape Policy (7,): Controls robot deformation — energy gradients for obstacle navigation
The key insight is that our Navigator is agnostic to policy implementation—our contribution is the
Hamiltonian structure binding them together through dynamic constraint sets C;.

Algorithm [3] details the online adaptation procedure, where the navigator issues sequential queries
to the sensor, frame, and reconfig policies, integrates their energy gradients into a Hamiltonian
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Figure 1: Independent score function architecture and query—response interface. The Navigator
(DPO) issues policy-specific queries Qj, using active constraints C;, current states, and horizons;

each policy 7, computes energy gradients via its learned score szk = Vhy, backed by a dynamic
spatial index Sy, for efficient O(log n) neighbor queries. Policies return responses Ry containing
gradients and predicted rollouts, which the Navigator integrates to advance the joint dynamics. Spa-
tial indices enable multi-kernel reuse across energy computations.

update, and applies meta-corrections for contextual alignment to generate stable trajectories in novel
environments.

3.4 NAVIGATOR AS META-HAMILTONIAN LEARNER

The Navigator operates as a meta-learning system that coordinates multi-scale policies by learning
how to update their Hamiltonian energy functions rather than directly manipulating phase space
states.

Meta-Learning Formulation. Let ©' = {6!,67%,6!} denote the current policy parameters, and
let IT? be their conjugate momenta. The Navigator defines a meta-Hamiltonian

Hoy: (0,1 R) = R,
where the responses R! = {RZ, R, Rt} are exogenous query responses/targets . A concrete and
useful choice is

Hfav<@7H;R> = %HTG_l(e) I + %(f(@) - ytgt(R))TW <f<@) - ytgt(R))7 (3)

where f(©) € R™ collects observables (e.g., clearance, distance, speed bands), W > 0 weights
their importance, and G(©) > 0 is a metric on parameter space (a “mass” for O).

The canonical meta-dynamics are

) . 1

O =VnHi, =GO,  =-VoH, =—Ve [I'G|-J(O) W (f(6) - yua)
“)

with J(©) = 0f/00. In the quasi-overdamped (or implicit-momentum) regime, eliminating II
yields the Gauss—Newton update

A© = -hGH(©)J(©) W (f(©) — yix(R)). (5)
This makes the Navigator itself a Hamiltonian system governing energy function updates.

Sequential Query-Response Protocol. At each timestep ¢, the Navigator orchestrates a sequential
coordination process:

Stage 1 - Sensor Query: Navigator queries sensor policy for environmental constraints:
t t
Qy = (thlv Zyv Xg, Tsens) (6)

et Gt updaate
RZ = Syy(QZ) = {Vhyy7ctpd ! d} (7N
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Stage 2 - Frame Query: Using updated constraints C;™**;
Qf =(C updated’Z;’Xg’Tpath) (8)
R = s7(Q4) = {VAY , Wi} ©)
Stage 3 - Shape Query: Using waypoints W, from frame policy:
Qf = (€7 25 Wi, Tim) (10)
RE = sg;(QZ) = {Vh0°,aux data} (11)

Meta-Update Integration. The Navigator processes all responses to compute Hamiltonian param-
eter updates:
0,7 = 0, + hAo;

where AL = Vi, Hiw (01, RY) for k € {y, f, 0}.

State Evolution. Individual policies then update their phase space states using updated energy
functions:

dated
Z]t€+1 Cup ate ¢

ot
=z + i Jks,t (z,tg, ,1)

The Navigator acts as a stateless mapper: (O, R!) — ©!*! learning how energy landscapes should
evolve based on policy feedback without maintaining internal memory. This meta-Hamiltonian
formulation ensures that parameter updates respect geometric structure while enabling coordinated
adaptation across all policies.

Contractual Interface. The system maintains a clear separation of concerns:

* Task policies: Given hZ"’ , generate score functions szk = th"'
« Navigator: Given {0}, R} }, learn optimal updates A6’
* Environment: Provides constraints C; and state evolution through symplectic integration

3.5 MULTI-SCALE TEMPORAL COORDINATION
The policies operate at natural temporal hierarchies, creating stable multi-scale coordination:

Stage Stage Stage

Sensor |
| ” |
‘ Ie ‘

Shape DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

Path

l : l
0 2 4 6 8
fshdpe > ff?lh > fsensor

sens > path >>

Figure 2: Temporal hierarchy. Sensor policy operates at low frequency (once per stage), estab-
lishing environmental constraints C;. Path policy operates at medium frequency within each stage,
computing waypoints WW. Shape policy operates at high frequency, continuously adapting at each in-
tegration step. This creates a natural hierarchy where slow sensor updates provide stable constraints
for faster path and shape adaptations.

This temporal separation enables a nested quasi-static approximation: the fastest dynamics (re-
configuration) equilibrate within each frame update, and frame dynamics settle before the slower
sensor policy evolves. This hierarchy prevents destabilizing interactions across timescales while
preserving the necessary coupling for coherent, coordinated behavior.
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3.6 OFFLINE PHYSICS LEARNING VS ONLINE ADAPTIVE CORRECTION

Our approach resolves the fundamental tension between learning complex dynamics and real-time
adaptation through principled decomposition:

Standard RL Our GRL-SNAM
s 2 e N
Offline: Learn Policy Offline: Learn Hamiltonian
7 (a|s) from dataset h?(z,C, t) from trajectories
§ J
s 2 e
Online: Fine-tune policy Online: Contextual alignment
on new environment J L AR o sensed Cy
A 4 R
Challenge: Policy transfer Advantage: Physics structure
across domains ensures stable adaptation
§ J \

Figure 3: Comparison between standard RL offline/online adaptation and our physics-grounded
approach. Standard methods learn arbitrary policies and struggle with transfer, while our approach
learns physically meaningful Hamiltonians that naturally adapt to environmental variations.

Offline Reference Learning: Train policies on clean trajectory data to learn fundamental multi-
scale navigation dynamics:

h;:f(Zk,Cglean,t) — 5”]91@”?”;1 + R',;““"S'C(qk,(ft,t)

Online Contextual Adaptation: Adapt to novel constraints through energy corrections:

dapted 1 i
WP =B BT 4+ Bgrme

similar contexts ~ novel constraints

This creates conservative adaptation: default to learned physics behaviors, add minimal corrections
for environmental variations.

3.7 THEORETICAL PROPERTIES

Our framework provides three key theoretical guarantees:

Theorem 3.2 (Multi-Policy Stability). Under temporal scale separation Tyens > Tpam > Tiy and
bounded parameter updates, the coupled system maintains stability with error bound &1y < €.

Theorem 3.3 (Symplectic Preservation). Each score function generates symplectic dynamics pre-
serving the canonical structure wy,(2k,141) = Wi (2k.t)-

Theorem 3.4 (Linear Sample Complexity). Independent training achieves total sample complexity
Niotar = Zke{y,f,o} O(e;(Zd’“+4)), linear in the sum of policy dimensions rather than exponential
in joint dimensionality.

We defer the proof of theorems in appendix. The system thinks in physics during offline training but
adapts through energy corrections during online execution, combining principled dynamics stability
with real-world deployment flexibility.

4 EXPERIMENTAL EVALUATION

We evaluate GRL-SNAM across multiple dimensions that highlight the unique capabilities of our
geometric approach compared to standard reinforcement learning and classical navigation methods.
Our evaluation encompasses task performance, safety guarantees, and learning efficiency under min-
imal sensing constraints. For more detailed results and analysis, refer to Appendix [l

Experimental Setup: We evaluate GRL-SNAM in procedurally generated 2D deformable navi-
gation tasks, where a hyperelastic ring must traverse cluttered environments with narrow gaps and
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Table 1: Navigation quality comparison (success-only runs). GRL-SNAM achieves near-CBF effi-
ciency with minimal mapping budget.

Method SPL 1 Detour ] Min. Clearance (m){ Mapping Ratio (%) |
PF 0.77 1.42 0.18 10.3
CBF 0.96 1.04 0.32 11.2
GRL-SNAM 095 1.09 0.26 10.7

o

S P i RO P
&I & < ey & L .‘»“‘ S

Figure 4: Main performance comparison. GRL-SNAM achieves superior success rates, path ef-
ficiency (SPL), and smoothness while maintaining safety margins. Classical and reactive baselines
show significant degradation in complex environments.

varying obstacle densities. The robot perceives only a local window of size 2d x 2d, from which we
construct a Hamiltonian energy functional with goal-directed potential F, barrier potentials Fy,
and adaptive coefficients (3,7, ) modulated by context encoders.

Baselines. We compare against two categories under matched information constraints: Global
planning: Rigid A* (obstacle inflation) and Deformable A* (clearance-aware penalty) and Local
reactive: Potential Field (PF), Control Barrier Functions (CBF), and staged DWA using identical
local windows and stage management as GRL-SNAM

Metrics. Success Rate, Success-weighted Path Length (SPL), Detour Ratio, Minimum Clearance,
Path Smoothness, Collisions, and Mapping Ratio (fraction of environment observed).

4.1 MAIN RESULTS

Q1. How efficiently does GRL-SNAM trade mapping for navigation quality? Table3]demon-
strates that GRL-SNAM achieves CBF-level navigation quality (SPL = 0.95, Detour = 1.09) while
using the same minimal map coverage as PF (10.7% vs CBF’s 11.2%). This validates that our
stagewise Hamiltonian refinement extracts maximum value per sensed unit of the environment.

Q2. Does GRL-SNAM outperform classical and reactive planners in complex environments?
Yes. Figure [4] shows GRL-SNAM achieves near-perfect success rates (=~ 100%) across both in-
distribution and out-of-distribution test cases, while all baselines degrade significantly. GRL-SNAM
consistently maintains high SPL (= 1.0) with low variance and produces the smoothest trajectories
with lowest turning angles. The Pareto frontier analysis confirms GRL-SNAM uniquely dominates
the safety-performance trade-off.

Q3. How does the Hamiltonian formulation enable coherent navigation? Figure [3] illustrates
how GRL-SNAM unifies goal attraction [y and barrier repulsion Fj, into a coherent navigation
field through adaptive coefficients. Unlike reactive methods that treat forces independently, our dif-
ferential composition ' = BF} 4 vF}, creates contextually balanced dynamics that simultaneously
pursue goals and avoid obstacles.
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Figure 5: Hamiltonian force field composition. Left: goal force F; Middle: barrier forces Fj,;
Right: adaptive combination yielding safe, goal-directed trajectories.

Q4. What distinguishes GRL-SNAM’s online adaptation from standard RL approaches?
Unlike standard policies that adjust actions online, GRL-SNAM modifies the entire local energy
landscape as new obstacles are sensed. Figuredemonstrates that coefficients (3, v, ) evolve dy-
namically to redefine the reduced Hamiltonian itself, ensuring energy-consistent posterior updates
rather than heuristic reactive adjustments.

4.2 ADDITIONAL EVALUATIONS

We conducted comprehensive ablation studies on loss components (Lgictions Lmuli) confirming that
friction matching is critical for stability while multi-start robustness prevents over-conservatism. Ro-
bustness evaluations under sensor noise and dynamics perturbations show graceful degradation (87%
success under severe noise vs 99% nominal) due to our adaptive Hamiltonian framework. Sam-
ple efficiency analysis demonstrates faster convergence than RL baselines due to physics-informed
structure.

4.3 KEY INSIGHTS

Minimal mapping suffices: GRL-SNAM achieves optimal navigation quality using ~10% environ-
ment coverage, validating the core SNAM principle that local geometric structure contains sufficient
information for global navigation tasks.

Hamiltonian unification: The differential geometric formulation naturally balances competing ob-
jectives (goal-seeking, obstacle avoidance, smoothness) through principled energy minimization
rather than heuristic weight tuning.

Principled online adaptation: By modifying the energy landscape itself rather than just policy
outputs, GRL-SNAM maintains physical consistency while adapting to new sensory information,
enabling robust performance across diverse environments.

Superior performance: GRL-SNAM consistently outperforms classical planning and reactive con-
trol methods across all metrics (success, efficiency, safety, smoothness) while requiring minimal
computational overhead and sensing budget.

These results establish GRL-SNAM as the first method to successfully unify global navigation objec-
tives with local safety constraints in hyperelastic navigation through principled geometric learning.

5 CONCLUSION

We introduced GRL-SNAM, a reinforcement learning framework that leverages Hamiltonian struc-
ture to couple sensing, planning, and deformation into a unified energy-based policy. Our formu-
lation enables stable, feedforward navigation updates and achieves near-optimal path quality with
minimal mapping effort in challenging deformable-robot tasks. The results highlight that incorpo-
rating geometric priors into RL can yield both efficiency and robustness, even under noisy sensing
and out-of-distribution layouts. Future work will extend the approach to richer sensing modalities
and more complex environments, with the goal of validating its scalability to real robotic systems.
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A EXTENDED INTRODUCTION AND MOTIVATION

This section provides expanded context for the challenges addressed by GRL-SNAM and detailed
justification for our geometric approach.

A.1 COMPREHENSIVE ANALYSIS OF RL LIMITATIONS IN NAVIGATION

Contemporary reinforcement learning methods face several critical limitations that become particu-
larly pronounced in continuous navigation tasks:

Sample Efficiency Bottlenecks. Standard RL algorithms like SAC |[Haarnoja et al.|(2018) and PPO
Schulman et al| (2017)) require millions of environment interactions to learn effective navigation
policies. This inefficiency stems from the curse of dimensionality in continuous control settings
where the action space is infinite-dimensional and policies must simultaneously master fine-grained
motor control and high-level strategic reasoning. In real-world deployment scenarios where data
collection is expensive and potentially dangerous, this sample complexity becomes prohibitive.

The problem is exacerbated by the need for exploration in high-dimensional spaces. Unlike discrete
control problems where systematic exploration strategies like e-greedy or UCB can provide theo-
retical guarantees, continuous control requires sophisticated exploration mechanisms that often rely
on injected noise or entropy bonuses. These mechanisms frequently lead to unsafe or inefficient
exploration behaviors that are unsuitable for real-world navigation tasks.

Generalization Failures. Policies trained in specific environments exhibit catastrophic performance
degradation when deployed in novel settings, even when new environments share similar structure.
This brittleness stems from the lack of inductive bias in standard neural network architectures. With-
out explicit encoding of physical principles or geometric structure, learned policies tend to memorize
environment-specific features rather than discovering generalizable navigation principles.

The generalization problem is particularly acute in navigation because environmental variations can
affect multiple aspects of the task simultaneously: obstacle configurations change collision con-
straints, surface properties affect dynamics, and lighting conditions influence perception. Standard
RL approaches learn monolithic mappings that cannot decompose these variations into their con-
stituent factors, leading to brittle behaviors that fail when any component deviates from training
conditions.

Temporal Decomposition Challenges. Navigation inherently requires coordination across multiple
timescales: immediate obstacle avoidance operates on millisecond timescales, local path planning
unfolds over seconds, and strategic goal-directed behavior spans minutes or hours. Standard RL al-
gorithms struggle to learn policies that reason effectively across these scales, often getting trapped in
locally optimal behaviors that satisfy short-term objectives while failing to make long-term progress.

Existing approaches to multi-scale reasoning such as hierarchical RL Sutton et al.| (1998), options
frameworks [Precup| (2000), or feudal networks |Vezhnevets et al.[(2017), typically require manual
decomposition of the task space and careful engineering of reward functions for different levels.
These methods introduce additional complexity without fundamentally addressing the structural
issues that make multi-scale learning difficult.

A.2 THE SNAM CHALLENGE: WHY STRUCTURE MATTERS

Simultaneous Navigation and Mapping (SNAM) represents a particularly challenging instance of the
navigation problem where agents must build environmental representations online while traversing
unknown spaces. This challenge amplifies the limitations of conventional RL approaches in several
ways:

Memory and Representation Learning. SNAM requires policies to maintain and update spatial
representations based on sensory observations. This places enormous demands on the policy’s mem-
ory architecture, requiring it to simultaneously master memory management, spatial reasoning, and
motor control. Standard recurrent architectures like LSTMs or GRUs struggle with this multifaceted
learning problem, often failing to maintain coherent spatial representations over long episodes.
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Exploration-Exploitation Tradeoffs. In SNAM, exploration serves dual purposes: gathering in-
formation about the environment for mapping and discovering navigation strategies. This creates
complex exploration-exploitation tradeoffs that standard RL exploration mechanisms cannot handle
effectively. Random exploration may discover new regions but fails to systematically map environ-
mental structure, while directed exploration based on current maps may miss critical environmental
features.

Dynamic Environmental Coupling. Unlike traditional navigation where environments are static,
SNAM requires reasoning about how the agent’s actions affect both its position and its knowledge
of the environment. This creates a coupled learning problem where navigation decisions influence
future mapping accuracy, and mapping quality affects navigation performance. Standard RL frame-
works treat these as separate problems, missing the critical coupling that enables efficient SNAM.

Recent approaches in simultaneous navigation and mapping (SNAM) have coupled local mapping
with policy learning to improve navigation performance. For example, SGoLAM |Kim et al.| (2021}
interleaves goal localization with occupancy mapping to enable point-goal navigation, while Cog-
nitive Mapping and Planning (CMP) (Gupta et al. (2019) integrates a differentiable planner into a
learned mapping framework. Continual SLAM (CL-SLAM) Vodisch et al.[(2023)) further empha-
sizes long-term adaptability by maintaining and updating maps during navigation. However, these
methods rely on progressively constructing detailed maps of the environment before exploiting them
for navigation. In contrast, our objective is to reach the goal along high-quality, well-weighted paths
while mapping as little of the unknown environment as possible. To the best of our knowledge, no
prior work explicitly formulates navigation with minimal exploration as the central goal. Our pro-
posed GRL-SNAM framework achieves this by progressively refining paths: from observed envi-
ronmental variations, the policy differentially learns to identify the least-cost trajectory, such that
the path improves continuously as new local information is revealed.

A.3 GEOMETRIC STRUCTURE: THE INEVITABLE SOLUTION

The limitations outlined above are not merely implementation details but fundamental consequences
of treating navigation as unstructured optimization. Several lines of evidence suggest that geometric
structure is not just helpful but inevitable for solving complex navigation problems:

Physical Realizability. Real robotic systems operate under physical constraints imposed by con-
servation laws, kinematic limitations, and actuator dynamics. Policies that violate these constraints
cannot be implemented on physical systems, yet standard RL approaches have no mechanism to
enforce such constraints during learning. Geometric formulations naturally incorporate physical
constraints through the mathematical structure of the problem.

Stability Requirements. Long-horizon navigation requires numerical stability over extended roll-
outs. Standard neural network policies accumulate errors over time, leading to unstable behaviors
in long episodes. Hamiltonian formulations with symplectic structure preserve important invariants
(energy, momentum) that ensure stability over arbitrarily long rollouts.

Compositionality Needs. Complex navigation tasks require composing simpler behaviors: obsta-
cle avoidance, path following, goal seeking, and environmental adaptation. Standard RL approaches
learn monolithic policies that cannot decompose into interpretable components. Geometric formu-
lations enable natural decomposition through energy terms that can be composed, weighted, and
adapted independently.

A.4 DIFFERENTIAL POLICY OPTIMIZATION: BEYOND FIXED POLICIES

Traditional RL optimizes fixed policy parameters € to maximize expected returns over discrete
timesteps. Our Differential Policy Optimization (DPO) approach fundamentally reconceptualizes
this by learning dynamics operators through a continuous-time differential dual formulation.

Mathematical Foundation. Rather than directly learning policies, DPO reformulates RL through
continuous-time optimal control. By approximating discrete reward sums with time integrals:

H—-1 T
max E lz r(sk,ak)] ~ max E l/ r(st,at)dt] (12)
T T 0

k=0
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Applying Pontryagin’s Maximum Principle introduces adjoint variables p and defines the Hamilto-
nian function:
HF(p,s,a) := p’ f(s,a) —r(s,a) (13)

The key insight is that optimal actions can be implicitly represented through the stationarity condi-
tion %I—QF = 0, yielding the reduced Hamiltonian:

hf(s,p) := HF(s,p,a"(s,p)) (14)

Score Function Learning. DPO learns a score function g(z) ~ hf(x) where = (s, p) combines
state and adjoint variables. The dynamics operator is constructed as:

G(z) =x 4+ ASVg(x) (15)

where S = [_OI é} is the canonical symplectic matrix and A is the discretization step.

Stagewise Learning Advantages. Unlike methods requiring backward-in-time adjoint calculations
(as in Pontryagin’s Maximum Principle), DPO enables feedforward learning where each stage ¢
defines a local Hamiltonian H; integrated forward in time:

041 =0, —nVeH, (16)

This avoids the computational complexity and numerical instability of adjoint methods while main-
taining theoretical guarantees through the geometric structure of the Hamiltonian formulation.

Goal Attraction Sensor Cost Deformation  Collision Barriers
goal
[}
Ve
o e ) o7 .
robot NN . .
sensor region
—lle — %4117 —llvli4 —Eobj(q) — 3 b(ds, d)

Figure 6: Policy-aligned energy decomposition. Each policy governs a distinct energy component:
the Sensor Policy minimizes sensor cost, the FPE balances goal attraction and collision barriers,
and the Reconfig Policy adapts size through deformation energy. Together these terms define the
Hamiltonian reward R.

A.5 MULTI-POLICY ARCHITECTURE DETAILS

Our multi-policy decomposition addresses temporal scale separation through three specialized com-
ponents operating at different timescales:

Sensor Policy (7, ): Operates at slow timescales to adapt perception strategies based on stagewise
environmental feedback. This policy learns to focus attention on relevant environmental features,
adjust sensor parameters for optimal information gain, and filter sensory noise. The sensor policy
outputs constraints C; that inform slower planning processes.

Frame Policy (7): Operates at medium timescales to plan collision-free trajectories in local co-
ordinate frames. This policy takes constraints from the sensor policy and generates waypoints W;
for shape control. The frame policy handles local obstacle avoidance and path optimization within
a limited spatial horizon.

Shape Policy (7,): Operates at fast timescales to control robot morphological adaptation. For
deformable robots, this includes shape changes, stiffness modulation, and configuration updates. For
conventional robots, this might include gait transitions, tool selection, or behavioral mode switches.

The key insight is that these policies are not manually designed hierarchies but emerge naturally
from the temporal structure of the Hamiltonian dynamics. Fast variables (sensor adaptation) reach
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quasi-equilibrium before slower variables (shape changes) evolve significantly, creating natural scale
separation without manual decomposition.

This extended analysis demonstrates that geometric structure is not merely a useful inductive bias but
a necessary foundation for solving complex navigation problems that require multi-scale reasoning,
online adaptation, and long-horizon stability.

B EXTENDED RELATED WORK SURVEY

B.1 GEOMETRY AND MECHANICS PRIMER

Navigation learning methods can be categorized by their underlying mathematical spaces, with sig-
nificant implications for performance and theoretical guarantees:

Euclidean Space Methods (R™): Standard RL treats navigation as optimization in flat spaces using
Euclidean distance metrics. Enhanced PPO [Taheri et al.| (2024)) demonstrate improved collision
avoidance but ignore inherent geometric structure of robotic systems. Sample efficiency remains
poor, typically requiring millions of environment interactions |Dehghani Tezerjani et al.|(2024).

Lie Group Methods: Recognition of orientation constraints has led to SE(2) and SE(3) formula-
tions using equivariant neural architectures. These preserve rotational and translational symmetries
but remain primarily limited to manipulation rather than navigation tasks.

Riemannian Manifold Approaches: Advanced geometric formulations employ differential ge-
ometry for constraint handling through tangent space projections. Martinez-Rubio & Pokutta
(2023) demonstrates constraint satisfaction through geometric structure rather than penalty meth-
ods, achieving superior theoretical properties but limited practical deployment.

Hamiltonian and Symplectic Methods: Port-Hamiltonian neural networks show significant per-
formance improvements through symplectic integrators, proving that respecting geometric structure
fundamentally improves learning dynamics. However, applications remain confined to simple con-
trol problems.

B.2 SAFETY-CRITICAL NAVIGATION TAXONOMY

External Safety Projection: Control Barrier Functions create safe action spaces through constraint
projection. Neural Network Zeroing Barrier Functions |[Feng et al.|(2023)) enable collision-free nav-
igation, while adaptive safety constraints Mohammad & Bezzo| (2025) handle dynamic environ-
ments. Social navigation approaches Jang & Ghaffari| (2024)) extend CBFs to human-robot interac-
tion. These methods achieve formal safety guarantees but often exhibit conservative behaviors due
to the separation between safety and optimality.

Energy-Integrated Safety: Our approach incorporates safety directly within the Hamiltonian en-
ergy structure via barrier potentials. This enables aggressive navigation while maintaining formal
guarantees through symplectic structure preservation, avoiding the conservatism of external projec-
tion methods.

B.3 DEFORMABLE AND SOFT ROBOT NAVIGATION

Hyperelastic Material Models: Recent advances include pressure-stiffening control with 6.40%
maximum error validation [Roshanfar et al.| (2023) and passivity-based control using differential
geometry of curves|Caasenbrood et al.[(2022)). Spectral Submanifold Reduction |Alora et al.| (2025)
achieves computational speedup for real-time hyperelastic control with stability guarantees.

Ring and Circular Robots: Liquid Crystal Elastomer responses enable aerial gap navigation Qi
et al. (2024) through predetermined actuation patterns. HAVEN Mulvey & Nanayakkara) (2024)
navigates constrained spaces via fixed shape-changing sequences based on multimodal perception.
These approaches use offline parameter optimization with deterministic execution, lacking online
adaptation capabilities.

Physics-Informed Learning: PINN-Ray [Wang et al.| (2024) achieves state-of-the-art hyperelastic
displacement prediction, while extensions to non-conservative effects |Liu & Della Santinal (2024)
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provide experimental validation. However, these remain primarily modeling tools rather than adap-
tive control frameworks.

B.4 NEURAL SCENE REPRESENTATIONS FOR NAVIGATION

NeRF-Based SLAM: Real-time dense reconstruction through NICE-SLAM [Zhu et al.| (2022)) and
keyframe-free tracking via iMAP [Sucar et al.| (2021) provide rich environmental representations.
Neural Topological SLAM |Chaplot et al|(2020) combines learning with classical planning, while
semantic approaches|Zheng et al.|(2025) integrate large vision models.

3D Gaussian Splatting: GS-SLAM |Yan et al.| (2024) and SplaTAM |Keetha et al.| (2024)) demon-
strate state-of-the-art reconstruction quality with real-time performance, offering dense 3D repre-
sentations suitable for navigation applications.

Integration with Energy Terms: Scene representations feed our energy formulation through:

Barrier Energy:  Usarier = Z b(SDF(x)) a7

obstacles

Free-Space Energy: Ugee = — Z w(x) (18)

free regions

Goal Energy:  Ugoa = ||X — Xgoul|| (19)

B.5 MULTI-SCALE AND HIERARCHICAL METHODS

Hierarchical RL: Task decomposition approaches like HRL4IN |Li et al.| (2020) handle heteroge-
neous navigation phases, while [Lee et al|(2023) learns specialized policy families with high-level
coordination. These require manual decomposition and struggle with principled coordination, often
leading to ad-hoc design choices without theoretical guarantees.

Multi-Agent Coordination: RoboBallet|Lai et al.|(2025]) achieves coordination for 8 robots across
40 tasks using graph neural networks. MACRPO |Kargar & Kyrki (2021) enhances information shar-
ing beyond parameter sharing. However, these approaches lack the geometric structure preservation
critical for deformable robot coordination.

B.6 IMITATION LEARNING FOR NAVIGATION

Behavioral Cloning: RT-1|Brohan et al.|(2023) demonstrates impressive generalization across 700+
tasks using 130k demonstration episodes with transformer architectures achieving significant zero-
shot performance improvements.

Inverse Reinforcement Learning: GAIL for Safe Navigation Tai et al.[(2018) combines generative
adversarial imitation with safety constraints. DAgger for Continuous Navigation |Patanam et al.
iteratively improves policies through expert querying.

Sub-Optimal Demonstrations: Confident Imitation Learning Zhang et al.| (2022) handles demon-
stration uncertainty through confidence-aware training, addressing distribution shift in novel envi-
ronments.

These approaches excel with high-quality demonstrations but assume expert availability and struggle
with the full behavioral range needed for adaptive deformation strategies.

B.7 FOUNDATION MODEL INTEGRATION

Large-scale models for navigation reasoning [Zhu et al.| (2024)); |Wang et al.| (2025)) focus on high-
level semantic understanding and multi-agent coordination at the symbolic level. Foundation models
excel at reasoning and semantic understanding, while our GRL-SNAM provides principled low-level
geometric control.

Integration Pathway: Foundation models could generate high-level objectives encoded as potential
energy terms in our energy functional R(q;). The geometric structure preservation ensures high-
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level semantic goals translate into physically consistent behaviors, addressing the critical gap where
foundation model outputs often lack grounding in physical dynamics.

B.8 PARADIGM COMPARISON

Table 2: Extended paradigm-level comparison of learning frameworks. Scoring: v'= comprehensive
support, A= limited support, x= not supported.

Capability | GRL-SNAM | Standard RL | Geometric RL | Imitation Learning | Semi/Unsupervised | CBF Methods | Hierarchical RL | Foundation Models

Energy Conservation
Geometric Structure
Constraint Integration
Online Adaptation
Multi-Scale Coordination
Sample Efficiency
Zero-Shot Generalization
Real-World Deployment
Deformable Robot Support

NN
X A X X X [>[>x X
XX >SS
X AX AX X X X X
X D>A>X AX[>x
X AXD>x[D>ND>x
X AX DN X X
X DCNAD>AD>X X

Scoring Criteria:
* Energy Conservation: Explicit conservation laws in dynamics
* Geometric Structure: Preservation of manifold properties
* Constraint Integration: Safety/task constraints within optimization
* Online Adaptation: Real-time policy modification during deployment
* Multi-Scale Coordination: Principled coordination across temporal scales
» Sample Efficiency: Learning with minimal environment interaction
e Zero-Shot Generalization: Performance in unseen environments
* Real-World Deployment: Practical implementation feasibility
* Deformable Robot Support: Explicit modeling of shape change

This comprehensive survey positions GRL-SNAM as uniquely addressing the intersection of geo-
metric structure preservation, multi-scale coordination, and deformable robot control—capabilities
that existing approaches handle separately or incompletely.

B.9 KEY INSIGHTS

Our framework builds upon a set of Hamiltonian and reinforcement learning principles, unifying
offline reference dynamics with online adaptive updates. Below, we summarize the six key insights
that form the backbone of GRL-SNAM.

1. Hamiltonian energy as task reward. We define the Hamiltonian

H(q,p) = K(p) + P(q), (20)

with kinetic energy K and task-specific potential P. In our setup, P encodes navigation objec-
tives (goal attraction, barrier avoidance, deformation penalties). Following [Pontryagin et al.|(1962);
Bajaj & Nguyen| (2024), the Hamiltonian coincides with the surrogate objective in policy gradient
methods, i.e.

VoJ(mg) =~ VoEr[—H(q,p)]; 21
linking task reward to the Hamiltonian gradient flow. This equivalence grounds the DPO surrogate
in a physical structure.

2. Offline Hamiltonian vs. Online task reward. In offline training, the agent minimizes trajec-
tories under a fixed H constructed from synthetic local patches. Online, the environment is sensed,
and task rewards R,y are parsed into Hamiltonian subtasks. By interpreting

Honline = 7'loﬂ’line + A,R/e:nva (22)

we align local sensory updates with the reference offline Hamiltonian. This mirrors the adaptive
control interpretation in Astréom & Wittenmark! (2010).

18



Under review as a conference paper at ICLR 2026

3. Offline policy as reference Hamiltonian. Every offline policy s is equivalent to a reference
Hamiltonian H,.s, where the score function s = VH,.s defines canonical dynamics:

0 Href . a,Href

Y = s = — . 23
=5, p 9q (23)
Online adaptation then minimizes the divergence
D('/Tonline || ’/Tref) X IE:[HV?’_[online - V,7"[refH2L (24)

a structure exploited in score-based models (Song et al., 2021).

4. Advantages of stagewise updates. Rather than solving adjoint equations as in Pontryagin’s
Maximum Principle, we adopt a stagewise decomposition. Each stage defines a local H; and is
integrated feedforward:

Or+1 =0, —nVoH,. (25)

This avoids backward-in-time adjoint calculations and recovers the efficiency noted in adjoint-free
feedforward networks (Chen et al., 2018} |[Kidger et al., 2021).

5. Universality of the pipeline. Our pipeline

Encoder

Environment —"°®"s  Context —P, Hadapted (26)

is universal. As long as H is differentiable, adaptation reduces to evaluating its gradients, regardless
of whether the system is white-box (explicit potentials) or black-box (sensor-level inputs). This
follows from the variational formulation of differentiable programming (Baydin et al.| 2018).

6. Navigator as meta-controller. The navigator policy 7,y interacts with three black boxes: the
offline Hamiltonian H..¢, the online sensed reward Ry, and the adaptive fusion Hgap:. Its role is to
formulate and solve

Hadapt = aHrer + (1 - a)RenVa 27

where « is dynamically updated by the context encoder (e.g., LSTM). This positions the navigator
as a meta-controller that continually reforms the Hamiltonian problem, a principle consistent with
adaptive RL formulations in [Kirk| (2004)).

Secant controller as on-the-fly energy reshaplng Our history-based controller instantiates equa-
tion |5 I with (i) a rank- 1 secant estlmate J (EMA-smoothed) from consecutive frames, and (ii) the

Gauss—Newton metric G(@) =J"WJ +c¢I, then projects to the nonnegative orthant and applies
per-head step sizes:

AO=_-GITTW (£(©) = yrgt), O = Projeso(0©" + diag(my, 14, 7a) AO).

Concretely, with © = [B,7, {a;}ie NK(o)]T’ this reshapes the parameterized energy Eo =
B Poate +Y Popeed+ ;e Nic(o) i 9%t 50 that its induced observables f(©) move toward yigt, (safety,
progress, admissible speed) without extra rollouts.

Sequential Query-Response (as ports). At each ¢ the Navigator issues queries Q% and receives
responses R%, which determine yiq(R) and any weights in W; the update equation |5| (with the

secant J) is then applied to each block k € {y, f,o0}:
Ot = 0L + hAGL, A8 = — G T Wi (F(62) — yige i (RE)).
State Evolution. With updated parameters, each policy advances its state as before,

1
t+1 t 9 t updated
2 =g+ Je syt (2, C ,1).

Remark. If a strict port-Hamiltonian view is desired, the JT W (g — f(©)) term enters 1T as
an external port (input) rather than being baked into the potential; the resulting discrete update is
identical to the secant Gauss—Newton step above.
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Figure 7: Hyperelastic ring robot model showing generalized coordinates (s, 0, ), spline sample
points X ;, and external force fields.

C HYPERELASTIC RING ROBOT MODEL

We model the deformable robot as a closed hyperelastic ring with reduced-order dynamics to enable
efficient navigation while capturing essential deformation behaviors.

C.1 GEOMETRIC REPRESENTATION

The robot boundary is defined by a periodic cubic B-spline curve with n.y control points:

Metrl

S(u) = Nis(w)P;, wuel0,1] (28)
=1

where N; 3(u) are degree-3 B-spline basis functions with C? continuity. The base shape is a unit
circle:

o cos (271 /Nyt
PO,z = Tbase {sin(?wi/ncm) (29)
World coordinates are computed via similarity transformation:

Pi(t) = o(t) + s(t)R(6(1))Po.i (30)
where 5(t) is uniform scale, o(¢) € R? is center position, §(¢) is orientation.

For physics computation, we sample K points on the curve using B-spline evaluation matrix B €
RE X7 -

Tetr]

i=1

C.2 ENERGY FORMULATION

The total Hamiltonian combines kinetic and potential components:

1. . 1 ) 1
H = §M332 + §Mo||0H2 + 510-}2 +ubarrier +ubu1k (32)

IPC Barrier Energy: Collision avoidance using Incremental Potential Contact barriers:

K Nobs
Usarrier = Y _w;l; > bipc(dk) (33)
j=1 k=1
where w; = 1/K, £; = [|X/[], d;y. is distance from sample j to obstacle k:

—(d—d)*(logd —logd) if0<d<d
birc(d) =40 ifd>d (34)
%enalty ifd S 0
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Adaptive Bulk Energy: Area conservation with clearance-dependent target:

Kby
ubu]k = bulk (A(S) - A’4ta.rget)2

where A(s) = 52 Apr and:
Atarget = [a + (1 — @) tanh (S - max(dmin, 0))] Aret

with @ = 0.25, 5 = 2.5 encouraging compression in tight spaces.

C.3 GENERALIZED FORCE MAPPING

Forces on spline samples map to generalized coordinates via virtual work:

s:_i""ZFexl ai_’YS
= _7+ij ext _70(.)

O S () (30X — ) — 2

0 -1
where J = [1 0 ] = R(Q)POJ'

D DOMAIN-SPECIFIC POLICY IMPLEMENTATIONS

D.1 SENSOR POLICY (m,) DETAILS

(35)

(36)

(37

(38)

(39)

The sensor policy maintains spatial index 7, of observations (x;, type;, attr;) and derives three en-

ergy components from single neighbor queries:

Barrier Potential: Repulsion from obstacles

2
X; —C
o) = 3 wiexp (-1l
b

1€ Nops

Free-Space Potential: Attraction to open regions

X; —C
Vree zyzct Z wJeXp< || J2 fyll >

JE€Niree

Density Potential: Information-theoretic density measure

p(zy,Ct) = Z wg, log <1 + |N11|)

kENa

The complete sensor score function is:

1
szy (2y,Ci,t) = V3, {QHPyH?uyl + by + afViree + O‘dp}

D.2 FRAME PoLICY (7y) DETAILS

(40)

(41)

(42)

(43)

The frame policy uses 7 storing path samples with safety/contact distances and goal influence:
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Safety Field: Distance-based safety measure

S(zf,Ci) = Zw max(0, dgit™™ — diyr,)? (44)

Contact Field: Proximity to obstacles
)2
Olz1.) = } e (- o) @s)

Goal Field: Directional bias toward target

NQ
G(zf,Ci) = —||cy —xg||2+2wigi cos(6;) (46)
i=1
The frame score function integrates these fields:
0 1
sff (25,Ce,t) = Vo, [2||pf||fwf1 + oS+ a0+ agG] 47)

D.3 SHAPE POLICY (7,) DETAILS

The shape policy controls deformation through reduced coordinates z, = (s, $, 0, 0,6, w):

Smoothness Energy: Curvature regularization
1 K
s = [ ()P 3wy | (48)
0 y
j=1

Stretching Energy: Arc length preservation
1
gstretch - / (”SI( )” - gref du ~ Zw] - ref (49)
0

Target Energy: Configuration constraints

glarget = HP - Ptarget”%‘ + ||(37 o, 9) - (Stargety Otarget etarget)”Q (50)
The complete shape score function is:

1. . 1 ) 1
Sg" (Z07 Cta t) = vzo 7MSS2 + §Mo||0H2 + §IW2 + s Esmooth + st Estretch + atggtarget (51)

2
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Algorithm 1 Hyperelastic Ring Deformation Policy

1: Input: State (s, 5,0,0,6,w), obstacles {(cy,71)}, target Xearger

2: Output: Updated state (s', $',0’,0’, 6" w

3: Update geometry: X; <— sample curve at current state

4: Compute distances: d;; < || X; — ci|| — 7, clearance: dpin < min, ; d; .

5 o > — Conservative Forces —
6: IPC barriers: g; < >, Lﬂ‘)

7: Adaptive bulk: Fy pux < —%’— with Aurger (dmin)

8: > — Non-Conservative Forces —
9: Stage forces: Fyage,j < goal + radial + tangential components

e

Friction: Ffiction,; ¢ —jpicontact_pressure - tangent_velocity

11: > — Generalized Force Mapping —
12: Map to coordinates: Fy, F,, 7 < virtual work from {g; + Fyage,; + Firiction,j }

13: > — Integration —
14: Update velocities: §’ < $ + At - F, /M, etc.

15: Update positions: s’ < clamp(s + At - §'), o' < o+ At - &/, etc.

16: return updated state

E COMPLETE ALGORITHM SPECIFICATIONS

Algorithm 3 Online Stagewise Adaptation for GRL-SNAM (Policy—Aligned Energies)

1: Inputs: Goal x4, initial state go = (co, 0o, o), step 7, horizons (Tens, Tpath, Lint)
2: Policies from offline: {1}’ hef h9}, scores stk = VAo
3: Init: t < 0, Cy + 0, 00 = {90 9?,98} 20 = QQ,])Q)
4: while NOT REACHEDGOAL(Ct, Xg) and t < Tax do
5: Sensor (low freq): if t = 0 (mod Tbem) then
6: QZ (Ct—lazyvxgsteHS) Rt <_Sy (Qt) = {Vlyll%, C:}
7: FPE (medium freq): if ¢t = 0 (mod Tjan) then
at

. Q}%(Ct7z;7xg7Tpath); R}%Sff(gt)

9: // provides ¥V (B|c — x4]|3), {OQVb(d“d)}Z LW

10: Reconfig (high freq):
11: Q! (Ce, 25 Wi, Tiny); RE she (QL) = {VEom;(qt), Vs,aux}

12: Compose total energy gradient (by ownership):

R(g1,C) = = VyillZ + = BVller —xl5 = D iVb(di, d) + = Nob; VEob(ar)
—— ——

Sensor ! Reconfig
FPE

13: Symplectic update (Navigator/DPO):
th (2) = %Hp”?w—l + R(q,Ct), Zt4r S 2t JrTJVh@‘(Zt,Ct)

14: Tube safety: project to d; > d if violated
15: Tiny meta-update (context alignment):
0" = O + Nmewa 1s[ Vo, Hin (O°, Ry, RE R)], k€ {y, f,0}
16: t—t+T71
17: end while
18: Return: P = {zo.r}, diagnostics {5, ¢, & ¢, s(t), clearance; }
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Algorithm 2 Offline Multi-Policy DPO Training with Independent Score Functions (Aligned Nota-

tion)

1: Inputs: Trajectory dataset Dy,j = {7; }N‘”J where T; = {(zt(i), Ct(i)7 xgi))}tT;o

90 90
2: Initialize: Policy Hamiltonians {hyy , K ¥ ,h0°}, score maps SZ’“ = Vhi’“, buffers My, < 0 for

ke {y, f o}

for each 7; € DtraJ do
for each (zt ,Cf( ) % )) € 7;do
Split policy states: Zz(/ 1, z](c 35, (¢ )
Define per-policy intrinsic rewards (Hamiltonians):

M Syl + Ruensor(i: Ci)
—

sensor cost
WY = SR+ Reoa(af) ) + Roee ()€
FPE: goal & barriers

}AL( i) — 2||pgtH2[_1 + Rdeform(qo t?C( ))
—/_/

IR A

reconfi g/mze

> — Decompose traces into policy-aligned energy targets —

8: Push to buffers: My, < M, U {(zk t,C,fZ ,h( )} for k € {y, f, 0}
9: end for
10: end for
11: > — Independent DPO training per policy with symplectic rollouts —

12: for epoch = 1 to Nepochs do
13: for k € {y, f, 0} in parallel do

14: Sample mini-batch By, = {(zx,C, hy)} from M;,
15: for each (z;,C, hy) € By do
16: Roll out H}, symplectic steps:

Zjs1 & 25 + Tk VRS (25,C,5), j=0,... Hy—1

17: Predict terminal Hamiltonian: 22 < R (25, , C, Hy,)
18: end for
19: Loss (scalar regression on Hamiltonian):

1 -
Lk 15T DR [ N

(21,C, P ) EBy

20: Update parameters: 0y < 0, — Vo, Ly ; update sZ’“‘ +— thk
21: end for

22: if maxycqy £,01 Lr < Econv then break

23: end if

24: end for

25: Return: Trained scores {s.’, s ff , sv°} and replay buffers {M,, My, M,}
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F THEORETICAL ANALYSIS AND PROOFS

F.1 MULTI-POLICY STABILITY ANALYSIS

Theorem F.1 (Multi-Policy Stability - Complete Statement). Consider the coupled multi-policy sys-

. . 0, 0 , o
tem with score functions {sy", s ff , 8%} operating at temporal scales {Typs, Tpatny T} satisfying:

Tsens Tpath
> o0 > 1, >09>1 52)
Tpath ! T}nt ?

Let each policy have Lipschitz constant Ly, with respect to state and parameter variations:
57 (21,C.8) = 57" (22, C, )| < Ligllzn — 2| (53)
o1 02
”Skk('zvcvt) _Skk('zvc7t)|| < LkHei _013” (54)

If the parameter updates during training satisfy:
€

(55)

max |6ttt — 6t
ke{%ﬁo}H K kol

<

T Lpax - min(oq, 03)
where L. = maxy Ly, then:

1. Stability: The coupled system state remains bounded: ||z|| < C(1 + ||20]|) for some constant C.
2. Error Bound: The total navigation error satisfies: E < € with probability 1 — §.

3. Convergence: The system converges to a neighborhood of the optimal trajectory:
limy o0 dist(z, P*) < e

Proof. The proof proceeds in three steps:

The scale separation assumption ensures that fast dynamics (sensor) reach approximate equilibrium
before slower dynamics change significantly. For the sensor policy operating on timescale Tep, the
quasi-static approximation gives:

" (2, G 1) (56)

Zy & =V, hv

where C*¢d represents slowly varying constraints from path and shape policies.

Under the Lipschitz conditions, each policy defines a contraction mapping on its domain. The
composed system inherits this property with contraction factor:
Ly
p=max —*F <1 (57)
ko 14y
provided step sizes 7 are chosen appropriately.

Parameter update bounds ensure that training perturbations don’t destabilize the system. The error
propagates according to:

L
& < p|l& —_— 58
€l < & +em ™ (58)
which converges to the stated bound under the given conditions. O

F.2 SYMPLECTIC STRUCTURE PRESERVATION

Theorem F.2 (Symplectic Preservation - Complete Statement). Let (2, wy) be phase space coor-
dinates with canonical symplectic form wy, = ), dq;, A dpj,. The score function update:

Zgt41 = 2t T+ TkaSZk (21,4, Ct, ) (59)

0 1q,

where Jy, = [_ I 0 ] and Szk = thk, preserves the symplectic structure:

k

Wi (2 441) = Wi (2k,4) + Oo(1?) (60)
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Proof. Since SZ’“ = VhZ“’, the update is a discretized Hamiltonian flow. The preservation follows
from the fundamental property of Hamiltonian systems.

For the continuous flow %;, = JthZ’“ (2k,t), we have:

d
%wk = EXkak =0 (61)

where £ is the Lie derivative and Xp, = Jj thk is the Hamiltonian vector field.
The discretization introduces O(72) error due to the symplectic Euler scheme, but the leading-order

symplectic structure is preserved. O

F.3 SAMPLE COMPLEXITY ANALYSIS

Theorem F.3 (Sample Complexity - Complete Statement). For error tolerance € > 0 and failure
probability 5 € (0,1), consider training three independent score functions {szk}ke{y’f}o} with
phase space dimensions {d,,,ds,d,}.

Under standard smoothness and concentration assumptions, the total sample complexity is:

Now =Y, Nk (62)
ke{y,f,0}
where each policy requires:
d2L3 3
N, =0 5 log | < (63)
€1 )

with Lipschitz constants Ly, and error allocation €y, satisfying ., €, < €.

This achieves linear scaling Ny = O3 & di) compared to joint training requiring Ny =
O(Ix dx)-

Proof. The proof leverages the independence of score functions to apply standard PAC learning

bounds to each policy separately.

For each policy k, the empirical risk minimization:
1 &

é — s hek ; _Bref_ 2 64

k= argmin o ;II ke (2h.4) — Pl (64)

achieves generalization error €, with probability 1 — §/3 when N, > C d%—fz log(3/4) for some
k
universal constant C'.

The union bound over three policies gives total failure probability ¢, and the error allocation ensures
total error ), €, < €.

The linear scaling follows from independence: total samples = ), Nj, compared to joint training
on the (dy + dy + d,)-dimensional joint space requiring exponentially more samples. O

G IMPLEMENTATION DETAILS

G.1 SPATIAL DATA STRUCTURES

Each policy maintains a spatial index 7y, can be implemented as a dynamic octree [Ellendula &
Bajaj| (2025), which supports the following operations and has been proved to the optimal structure
for spatio-temporal maintenance:

* Insert: O(logn) insertion of new spatial data.
* Query: O(logn + k) for k-nearest neighbor queries.
» Update: O(logn) modification of existing entries.
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* Rebalance: O(nlogn) periodic rebalancing for efficiency.

The spatial indices enable multi-kernel evaluation: each score function query reuses the same
O(logn + k) neighbor search across multiple energy kernels, reducing computational complexity
from O(n?) dense evaluation to O(n logn) sparse computation.

G.2 BASELINE IMPLEMENTATIONS (DETAILED)

We provide here the full technical details of all baseline planners evaluated.

Rigid A*. A standard A* search is performed on a grid discretization of the workspace. Obstacles
are inflated by the nominal rest radius 7. of the deformable ring, such that the resulting path is
collision-free for a rigid disc of radius 7. This serves as a conservative reference planner.

Deformable A*. Clearance at each grid cell z is defined as ¢(z), the distance to the nearest obsta-
cle boundary. Feasibility requires ¢(z) > rmin. The edge cost between cells u, v is augmented by a
deformation penalty:

2
cost(u,v) = £(u,v) + g((b(c(u)) + ¢(c(v))) l(u,v), ¢(c) = )\max(O, e — 1) ,

where ¢(u,v) is the Euclidean distance, and S, A control penalty strength. This formulation allows
the planner to compress through tight gaps when unavoidable, while encoding an energetic cost.

Potential Field (Stagewise). Navigation is driven by an attractive force toward the stage exit (or
final goal in the last stage), combined with repulsive forces from local obstacles and soft penalties
for leaving the stage bounds. Speed saturation and emergency braking near obstacles are applied for
stability.

CBF (Stagewise). At each step, a nominal control toward the stage exit is filtered through a Con-
trol Barrier Function (CBF) quadratic program:

w* = argmin ||u — tpom | s.t. VR(2) - u + yh(z) >0,

where h(x) encodes the clearance from visible obstacles. This ensures forward invariance of the
safe set within each stage.

DWA (Stagewise). We implement a Dynamic Window Approach (DWA) adapted to the stagewise
setting. Candidate (v,w) velocity pairs are sampled within dynamics limits, trajectories are rolled
out over a prediction horizon, and scored based on heading alignment, distance to target, velocity,
and clearance with respect to local obstacles only. Stage boundary penalties are also included. This
contrasts with the conventional global DWA, which assumes full obstacle visibility; here we show
the stagewise variant for fairness, though it is known to underperform due to rigid-body kinematic
assumptions.

Categories.

* Global planning: Rigid A*, Deformable A*.
* Local reactive: Potential Field (staged), CBF (staged), DWA (staged).
* Ours: GRL-SNAM (local staged).

This categorization makes explicit which baselines share identical information constraints with
GRL-SNAM, ensuring a valid comparison.

H EXAMPLES:

I EXPERIMENTAL EVALUATION

We evaluate GRL-SNAM across multiple dimensions that highlight the unique capabilities of our
geometric approach compared to standard reinforcement learning and classical navigation methods.
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Figure 8: Online navigation of the hyperelastic ring through cluttered environments. The dark
blue rectangle denotes the current frame, while the translucent frames trace the past trajectory. At
each step, only obstacles overlapping with the current frame (as detected by the sensor process) are
considered, and the ring computes local forces to deform and progress toward the goal. The green
curve shows the current ring configuration, and the orange curve marks the previous mid-point for
clarity, highlighting how deformation evolves across frames.

Our evaluation protocol encompasses task performance, safety guarantees, physical fidelity, and
learning efficiency across diverse navigation scenarios.

I.1 BASELINE PLANNERS

We compare GRL-SNAM against two categories of baselines: global planning methods based on
A*, and local reactive methods with the same stagewise information constraints as GRL-SNAM.
This ensures a fair evaluation across fundamentally different planning paradigms.

Global Planning Methods

* Rigid A*: The deformable ring is replaced with a rigid disc of radius r.s. Obstacles are
inflated by 7.5, and a standard 8-connected A* is run on the occupancy grid. This produces
feasible shortest paths for a rigid robot.

* Deformable A*: A clearance-aware variant of A* augments the step cost with deformation
penalties that increase as clearance approaches the minimum admissible radius 7y,;,. This
allows paths that squeeze through narrow gaps but penalizes excessive compression.

Local Reactive Methods To ensure fairness, all reactive methods use the same stage manager as
GRL-SNAM: identical stage size, overlap, obstacle visibility, and advancement logic. Each method
navigates stage exit to stage exit until the goal is reached:

* Potential Field (Staged): Attractive force toward stage exit plus repulsive forces from
local obstacles and stage boundaries.

* CBF (Staged): Quadratic-program filter enforces safety constraints with respect to visible
obstacles at each timestep.

» DWA (Staged): Velocity samples (v, w) are rolled out over a short horizon using only local
obstacles and stage bounds. Unlike the global DWA, which assumes full obstacle visibility,
this stagewise variant ensures equal information constraints, though it performs poorly due
to rigid-body assumptions.

Categorization Rigid and Deformable A* form the global planning references, providing L,.¢ for
SPL and detour calculations. The stagewise Potential Field, CBF, and DWA baselines constitute the
local reactive category under identical information constraints. GRL-SNAM belongs to the same
local category, enabling a fair head-to-head comparison.
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Table 3: Comparison of navigation quality across methods (success-only runs). GRL-SNAM
achieves near-CBF path efficiency while consuming the same minimal mapping budget as PF. SPL
= Success weighted by Path Length; Detour = executed path length / shortest path length.

Method SPL 1T Detour] Min. Clearance (m) T Mapping Ratio (%) |
PF 0.77 1.42 0.18 10.3
CBF 0.96 1.04 0.32 11.2
GRL-SNAM  0.95 1.09 0.26 10.7

1.2 EXPERIMENTAL SETUP

We evaluate GRL-SNAM in procedurally generated 2D deformable navigation tasks, where a hyper-
elastic ring must traverse cluttered environments with narrow gaps and varying obstacle densities.
Each environment is randomized in obstacle positions, radii, and densities to span a spectrum of

navigation difficulty. The robot perceives only a local window of size 2d x 2d, from which we
construct a Hamiltonian energy functional.

Hamiltonian Decomposition The energy functional decomposes into:

1. Goal-directed quadratic potential F

2. Barrier potentials Fj¢ from signed distance fields

3. Friction/regularization terms with adaptive coefficients (3, v, &) modulated by context en-
coders (LSTM)

Offline, GRL-SNAM integrates reduced Hamiltonian gradients to generate local trajectories. Online,
it fuses newly sensed rewards R.,, with the offline surrogate, adaptively refining navigation.

Evaluation Metrics We evaluate all methods using:

* Success Rate: Fraction of episodes reaching the goal

* SPL: Success weighted path efficiency relative to A*

* Detour Ratio: Executed path length relative to A*

* Minimum and Mean Clearance: Distance to nearest obstacle along the trajectory

* Smoothness: Average turning cost (mean absolute change in heading)

* Collisions: Number of obstacle intersections

* Sample Efficiency: Normalized area under curve (AUC) for success and SPL, and steps

required to reach 80% success or SPL > 0.7

Results are presented in a question—answer format, emphasizing experimental questions and the
corresponding insights.

1.3 RESULTS: NAVIGATION QUALITY UNDER MINIMAL SENSING

We first evaluate GRL-SNAM against two representative baselines: (i) Potential Fields (PF),
a purely reactive controller that maps obstacle proximity into repulsive forces, and (ii) Control
Barrier Functions (CBF), a model-based method that enforces hard safety constraints via online
quadratic programs. Both baselines use the same sensing budget as GRL-SNAM.

Environments consist of cluttered 2D workspaces with obstacles of varying density. Each trial starts
from a random initial pose with a fixed goal. Performance is averaged across 50 runs per environ-
ment. Results focus on successful runs only to highlight navigation quality rather than raw failure
rates.
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GRL-SNAM RigidA* DeformA*
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Figure 9: Qualitative path comparison on a representative Test-OOD environment. GRL-
SNAM produces smooth, efficient, and safe trajectories that squeeze through clutter while maintain-
ing clearance. Rigid A* and Deformable A* succeed but yield jagged or inefficient paths. Reactive
baselines (Potential Field, CBF, DWA) either oscillate, collide, or fail to reach the goal.

Q1: How efficiently do we trade mapping for navigation quality? Table [3| shows that GRL-
SNAM matches the SPL and detour ratios of CBF despite using the same minimal map coverage
as PF. This demonstrates that our stagewise Hamiltonian refinement extracts more value per sensed
unit of the environment, trading mapping effort for near-optimal navigation.

Q2: What is the minimal mapping needed to reliably solve tasks? With ~10-11% map cov-
erage, GRL-SNAM already achieves SPL > 0.95 and detour within 9% of the A* shortest path.
PF fails under the same budget, while CBF requires identical map coverage. Thus, GRL-SNAM
reliably solves tasks under minimal sensing, validating the minimal mapping suffices principle.

Q3: Is the mapped information aligned with the subtask? Unlike PF, which produces repul-
sions indiscriminately, or CBF, which enforces constraints globally, GRL-SNAM’s mapping is task-
aligned: local patches are encoded into Hamiltonian terms that directly drive subtasks (goal at-
traction, barrier avoidance). The result is that every bit of mapped information yields functional
guidance, as evidenced by SPL and detour staying close to CBF even under tight sensing budgets.

Key Insight GRL-SNAM shows that Hamiltonian-structured policies can achieve CBF-level nav-
igation quality while retaining the lightweight sensing footprint of PF. The slight clearance gap
relative to CBF reflects a deliberate trade-off: we sacrifice hard feasibility for adaptability and feed-
forward inference, enabling real-time deployment in SNAM settings.

1.4 RESULTS: COMPREHENSIVE NAVIGATION COMPARISON

Q4: Does GRL-SNAM outperform classical and reactive planners in both in-distribution
(Test-ID) and out-of-distribution (Test-OOD) settings? Yes. Figure[z_f] summarizes the compari-
son between our method and five baselines: Rigid A*, Deformable A*, Potential Field, Control Bar-
rier Functions (CBF), and Dynamic Window Approach (DWA). GRL-SNAM achieves near-perfect
success rates (= 100%) across both Test-ID and Test-OOD cases, while all baselines degrade signif-
icantly in cluttered or novel environments. Rigid A* succeeds moderately but requires inflated radii
and yields jerky, piecewise paths. Deformable A* is less stable and highly sensitive to parameteri-
zation. Reactive baselines (Potential Field, CBF, DWA) frequently fail to reach the goal, producing
oscillatory or unsafe behaviors. Qualitative rollouts (Figure [9) further illustrate the superiority of
GRL-SNAM in complex cluttered environments.
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Figure 10: Quantitative validation of GRL-SNAM. Top: clearance stays above collision threshold,
ensuring safety. Middle: force magnitudes adapt to environment complexity. Bottom: coefficients
(8,7, @) evolve dynamically, confirming online adaptation and stagewise refinement of the Hamil-
tonian.

QS5: Does GRL-SNAM yield more efficient and smoother trajectories? Yes. The Success-
weighted Path Length (SPL) distributions (Figure f] top-middle) show that GRL-SNAM consis-
tently stays near optimal efficiency (SPL ~ 1.0) with low variance. In contrast, A* variants incur
detours, while reactive baselines either collapse to zero SPL (failures) or take excessively long paths.
Furthermore, GRL-SNAM generates the smoothest trajectories, with the lowest average turning an-
gles (Figure[d] bottom-middle), ensuring physically realizable motions compatible with hyperelastic
ring constraints.

Q6: Does GRL-SNAM preserve safety margins? Yes. The minimum clearance analysis (Fig-
ure 4, bottom-left) shows that GRL-SNAM maintains consistently positive obstacle clearance,
whereas A* occasionally cuts too close and reactive baselines often enter collision regimes. The
Pareto frontier plot (Figure ] bottom-right) highlights that GRL-SNAM uniquely dominates the
safety—performance trade-off, achieving both high SPL and high clearance, while all baselines are
Pareto-dominated.

1.5 RESULTS: HAMILTONIAN FIELD ANALYSIS

Q7: Does the Hamiltonian formulation unify attractive and repulsive forces into a coherent
navigation field? Yes. Figure E] shows the isolated goal force F), (left), the barrier force Fj,
(middle), and their differential composition F' = BF, + vF;s (right). While F, alone pulls the
agent directly to the target, it ignores obstacles. Conversely, Fj, encodes obstacle constraints but
lacks task directionality. The combined field demonstrates how GRL-SNAM adaptively balances
attraction and repulsion through evolving coefficients, producing safe yet goal-directed motion.

Q8: How does GRL-SNAM differ from ordinary online adaptation? Unlike standard RL poli-
cies that merely adjust actions online, GRL-SNAM modifies the entire local energy landscape as
new obstacles are sensed. Figure [I0] shows that when clearance decreases (top panel), the force
magnitudes (middle panel) not only rebalance between goal attraction |Fy| and barrier repulsion
|Fys|, but also induce a redefinition of the reduced Hamiltonian. This is reflected in the evolving
coefficients (3, , ) (bottom panel), which do not act as heuristic gains but as dual variables gov-
erning stagewise refinement. Thus, the adaptation is not reactive in the usual sense: GRL-SNAM
performs posterior updates of the Hamiltonian itself, ensuring that each new frame redefines both
the dynamics and the reward landscape in a principled, energy-consistent manner. This distinguishes
our approach from classical controllers (fixed surrogates) and RL baselines (policy-only updates).

Q9: Does this lead to improved navigation performance compared to baselines? Yes. Across
procedurally generated test cases, GRL-SNAM consistently achieves higher success and SPL while
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Variant Collisions | MinClr 1 Barrier Viol. |  Progress/SPL 1 Smoothness | Observed behavior
Wiie = 0, Wnui = 0 High (x) <0 High Poor Poor Penetrates obstacles
Werie = 0, Wnui = 0.5 Low (V) High Low OK Very slow, conservative
Wrric = 0.1, Wmui = 0 None (V') High Low High Best Smooth, stable, fast
Wiric = 0.1, Wmui = 0.5 None (V') Low High Good Stable; tighter margins

Table 4: Ablation of loss terms. Qualitative summary from consistent runs on Test-ID/OOD. Ar-
rows denote desired direction. Numeric means=+std can replace the icons once collected.

maintaining larger clearances than rigid A* (fixed radius assumption), deformable A* (static squeez-
ing penalty), and reactive controllers (DWA, CBF).

Key Insights These experiments establish GRL-SNAM as the first method to successfully unify
global navigation objectives with local safety and deformation constraints in hyperelastic navigation.
Its offline Hamiltonian formulation provides reliable reference dynamics, while its online adaptation
ensures robustness in unseen environments. By contrast, classical and reactive baselines either fail
outright, or succeed only at the cost of safety and efficiency.

1.6 ABLATION STUDY: LOSS COMPONENTS

Training Objective Our navigation surrogate is trained with a weighted multi-term loss:
L= Wrraj ﬁtraj + wvelﬁvel + wfrictionﬁfriction + wmultiﬁmulti; (65)

where L, and Ly supervise trajectory and velocity matching, Leicion = |7 — Yo |2 encourages the
learned damping to match the stagewise reference, and L,; penalizes failures under short rollouts
from perturbed near-obstacle starts.

Ablated Settings We toggle Liiction and Loy to analyze their contribution:

* No friction, no multi (wgie = 0, wnuy = 0): Agent penetrates obstacles due to under-
damped, unstable dynamics.

e Multi only (wgie = 0, wnug = 0.5): Agent avoids collisions but moves very slowly,
sacrificing progress.

* Friction only (wgie = 0.1, wyyy = 0): Produces smoother, stable paths, eliminating
penetrations and maintaining progress.

e Friction + Multi (wgie = 0.1, wpug = 0.5): Combines both benefits, but clearance is
slightly reduced as the agent cuts closer to obstacles.

Analysis  Lgicion 18 critical for stability and smoothness, while L,,,1; improves robustness in clutter
but can damp progress if over-weighted. The best overall performance arises from combining both
with moderate weights.

Liction aligns dissipation and suppresses oscillations, yielding smoother, well-damped trajectories
and preventing barrier “ringing” that causes penetrations when wgie = 0. Ly trains for near-
contact robustness by sampling perturbed starts; if over-weighted it down-scales the goal term, hence
slow motion. Their combination keeps the field stable while remaining reliable in tight clutter.

1.7 ROBUSTNESS ANALYSIS

Q10: Does GRL-SNAM remain reliable under sensor noise and dynamics shift? Yes. To
evaluate robustness, we systematically varied sensing fidelity (position jitter, radius estimation er-
ror, missed obstacles, and false positives) and dynamics fidelity (velocity perturbation, damping
coefficient y). Each start—goal trial was rolled out across a grid of perturbation levels, producing a
total of N = Meny X Nyrials X Mperturbations 'uns. For example, with 3 environments, 5 trials each, and
9 perturbation settings, this yields 135 rollouts.
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Table 5: Robustness of GRL-SNAM to sensing noise and dynamics perturbations. Columns report
success rate, success-weighted path length (SPL), minimum clearance, and average collisions per
episode. Arrows indicate direction of improvement.

Perturbation Level Success (%) SPL 1 Min. Clearance (m)1 Collisions |
Nominal (0.0, 1.0) 98.7 0.82 0.36 0.3
Mild Noise (0.05, 0.9) 91.3 0.79 0.33 0.7
Severe Noise (0.10, 0.7) 87.1 0.72 0.29 1.1

Key Insights Despite significant perturbations, GRL-SNAM maintains high success rates and
graceful degradation in SPL and clearance. Unlike fixed surrogate approaches that can fail catas-
trophically under noise, our differential Hamiltonian adaptation continuously re-weights local
forces, enabling stability even when sensing is imperfect or dynamics deviate from training. This
highlights the feedforward, stagewise advantage of GRL-SNAM: it can adjust online without re-
quiring adjoint or MPC-style corrections, ensuring reliable navigation in real-world uncertain con-
ditions.
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