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ABSTRACT

We present GRL-SNAM, a geometric reinforcement learning framework for Si-
multaneous Navigation and Mapping in unknown environments. GRL-SNAM dif-
fers from traditional SLAM and other reinforcement learning methods by relying
exclusively on local sensory observations without constructing a global map. Our
approach formulates navigation and mapping as coupled dynamics on general-
ized Hamiltonian manifolds: sensory inputs are translated into local energy land-
scapes that encode reachability, obstacle barriers, and deformation constraints,
while policies for sensing, planning, and reconfiguration evolve stagewise un-
der Differential Policy Optimization (DPO). A reduced Hamiltonian serves as an
adaptive score function, updating kinetic/potential terms, embedding barrier con-
straints, and continuously refining trajectories as new local information arrives.
We evaluate GRL-SNAM on 2D deformable navigation tasks, where a hyperelas-
tic robot learns to squeeze through narrow gaps, detour around obstacles, and gen-
eralize to unseen environments. We evaluate GRL-SNAM on procedurally gener-
ated 2D deformable–robot tasks (hyperelastic ring) with narrow gaps and clutter,
comparing against local reactive baselines (PF, CBF, staged DWA) and global A*
references (rigid, clearance-aware) under identical stagewise sensing constraints.
GRL-SNAM matches near–CBF path quality while using the minimal map cov-
erage of PF, preserves clearance, generalizes to unseen layouts, and demonstrates
that Hamiltonian-structured RL enables high-quality navigation through minimal
exploration via local energy refinement rather than global mapping.

1 INTRODUCTION

Reinforcement learning has achieved remarkable successes in high-dimensional control, yet its ap-
plication to real-world continuous navigation remains fundamentally limited. Long-horizon reason-
ing, multi-scale decision making, and online adaptation pose challenges that overwhelm existing
methods. Model-free RL consumes millions of interactions, while hierarchical variants introduce
brittle complexity. In simultaneous navigation and mapping (SNAM), where agents must traverse
and construct evolving environmental representations, these limitations become prohibitive.

At its core, the difficulty arises because conventional RL policies are structureless. They treat nav-
igation as black-box optimization, ignoring the geometric and physical principles that make loco-
motion stable, adaptive, and safe. Without inductive bias, policies overfit training environments, fail
under distribution shift, and collapse during long rollouts.

1.1 BEYOND BELLMAN OPTIMIZATION: PURELY FEEDFORWARD CONTROL:

Our framework does not optimize a value function via the Bellman equation. Standard RL al-
gorithms hinge on recursive bootstrapping for estimating returns, propagating value updates, and
iteratively improving policies. This induces high sample complexity, instability, and delayed credit
assignment, especially in navigation with long horizons.

In contrast, our approach is purely feedforward: policies emerge as direct gradient flows of Hamil-
tonian energies, without value iteration. Navigation decisions are computed in a single pass from
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local sensory input and the reference Hamiltonian, bypassing dynamic programming altogether.
This eliminates the need for rollout-based value propagation, yielding stable training, low variance
adaptation, and sample-efficient online updates.

1.2 KEY INSIGHT: HAMILTONIAN STRUCTURE AS NAVIGATION INDUCTIVE BIAS

We propose addressing these limitations by grounding RL in Hamiltonian mechanics. Our central
insight is that navigation can be framed as learning energy functionals:

H(q, p) = K(p) + P (q) (1)

where kinetic and potential energies encode control objectives, constraints, and adaptation strategies.
This formulation introduces three structural advantages:

(1) Energy conservation stabilizes long-horizon rollouts by preventing accumulation of numerical
errors. (2) Symplectic geometry naturally separates fast reactive dynamics from slow strategic
planning, addressing multi-scale temporal coordination. (3) Barrier encoding integrates safety and
collision avoidance directly into potential functions, eliminating fragile reward shaping.

Hamiltonian structure transforms policy optimization into Differential Policy Optimization (dfPO)
Nguyen & Bajaj (2025), where policies emerge as gradient flows of learned energies that respect
geometry, conserve invariants, and generalize across environments. We not only compare our al-
gorithm against standard deep reinforcement learning baselines but also focus our comparisons on
task-specific navigation and mapping baselines such as PF, CBF, and A*.

1.3 OFFLINE-ONLINE HAMILTONIAN SYNERGY

We distinguish between complementary learning regimes that exploit this geometric structure:

Offline learning discovers reference Hamiltonians hθ
∗

trained on trajectory data, capturing fun-
damental multi-scale navigation dynamics in local frames. These provide stable geometric priors
encoding essential coupling between sensing, planning, and deformation.

Online adaptation fuses new environmental context into learned Hamiltonians through contextual
corrections: hadapted = href + ∆hcontext This creates conservative adaptation: systems default to
learned physics-based behaviors while adding minimal corrections for environmental variations.

The synergy transforms every offline policy into a reference Hamiltonian and every online update
into a geometric alignment step. Navigation emerges from meta-policies that parse environments,
assemble energy landscapes, and integrate them through symplectic dynamics.

1.4 CONTRIBUTIONS:

This work establishes GRL-SNAM as a new approach beyond structureless policy learning. Our
contributions are:

1. Hamiltonian RL framework: Allows adaptable integration of classical mechanics into
RL for navigation, treating rewards as energies and policies as symplectic flows.

2. Multi-scale geometric coordination: Differential policies for sensing, planning, and adap-
tation unified through shared energy formulations, achieving temporal scale separation
without manual hierarchy design.

3. Physics-grounded adaptation: Principled offline-online decomposition where stable ref-
erence dynamics adapt through geometric alignment rather than catastrophic relearning.

4. Theoretical guarantees: Symplectic structure preservation ensures stability, while inde-
pendent policy learning achieves linear sample complexity scaling.

5. Empirical validation: Hyperelastic ring navigation demonstrates superior sample effi-
ciency and generalization compared to A* and CBF baselines.
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2 RELATED WORK

We focus on structure-preserving, deployable navigation with deformable bodies. Our work inter-
sects advances in geometric learning, safety-critical control, and deformable robot navigation.

Mathematical Foundations for RL Navigation. Most navigation RL methods operate in Euclidean
spaces using standard PPO Schulman et al. (2017) or TD3 Fujimoto et al. (2018) formulations
without geometric constraints. Geometric approaches include SE(3) equivariant policies Hoang
et al. (2025) for manipulation and Riemannian safe navigation Klein et al. (2023) using tangent
space projections. Hamiltonian neural networks Desai et al. (2021) demonstrate superior learning
dynamics through symplectic structure but remain limited to simple control tasks.

Safety-Critical Navigation. Control Barrier Function (CBF) integration with RL achieves formal
safety guarantees Li et al. (2023), but treats constraint satisfaction as orthogonal to navigation op-
timality, often resulting in conservative behaviors. Our Hamiltonian formulation integrates safety
constraints directly within the energy structure.

Deformable Robot Navigation. Recent work demonstrates ring-like navigation through pre-
programmed strategies: aerial gap navigation via fixed Liquid Crystal Elastomer responses Qi et al.
(2024) and HAVEN Mulvey & Nanayakkara (2024) using predetermined shape-changing sequences.
These approaches rely on offline parameter optimization followed by deterministic execution—they
cannot adapt deformation strategies online as environmental conditions change.

Neural Scene Representations. NeRF-based SLAM methods like NICE-SLAM Zhu et al. (2022)
provide rich environmental representations that complement our energy-based navigation formula-
tion by supplying obstacle and free-space information for barrier and goal potential computation.

Simultaneous Navigation and Mapping: Most SNAM approaches prioritize building detailed
maps before navigation. SGoLAM Kim et al. (2021) couples goal localization with occupancy
mapping, CMP Gupta et al. (2019) integrates a differentiable planner into learned mapping, and
CL-SLAM Vödisch et al. (2023) maintains maps for long-term adaptability. In contrast, our GRL-
SNAM framework aims to reach goals via high-quality, well-weighted paths while mapping as lit-
tle of the environment as possible. To our knowledge, no prior work explicitly targets minimal
exploration; our method introduces progressive path refinement, continually improving least-cost
trajectories as new observations arrive.

Positioning. GRL-SNAM addresses key gaps by extending Hamiltonian mechanics from simple
control to complex navigation requiring sensing, planning, and deformation. Unlike existing meth-
ods that require manual task decomposition or rely on pre-programmed strategies, our differential
multi-policy architecture learns specialized policies naturally coupled through shared Hamiltonian
energy formulations. The symplectic structure ensures stable coordination across temporal scales
with formal convergence guarantees, bridging theoretically principled geometric methods with prac-
tical navigation frameworks.

3 METHODOLOGY

We present GRL-SNAM (Geometric Reinforcement Learning for Spatial Navigation and Manipu-
lation): a Hamiltonian-structured navigator that unifies offline physics learning with online adaptive
correction through black-box modular policies. The code for this paper is available at: Code

We formulate navigation in unknown environments as iterative energy minimization with active
response of dynamical constraints. Consider a deformable robot with state qt = (ct, θt,yt, ψt) ∈ Q
navigating from x0 to xg through unknown obstacles characterized by binary occupancy I : R2 →
{0, 1}. ct and θt are robot frame coordinates and axis angle w.r.t. world coordinate, while yt and ψt

are robot sensory and object configuration state respectively. We denote each fixed local senario as
an environment configuration E . The goal of GRL-SNAM is to i) identify response from three offline
solvers ii) build a digital-twin style surrogate and give feedback of each black-box across stages (at
the time scale when E updates). To achieve both goals, we first address the Hamiltonian energy
setup attached to each fixed seneario E , then one explain what could be the connection between
sensory, movement and reconfiguration solvers after integration of expected Hamiltonians. Lastly,
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we explain what feedback one can provide via interaction with offline solvers that online correction
can inject partially or fully by surgery of energy functionals.

3.1 ONLINE STAGEWISE ADAPTATION

Before turning to the experimental evaluation, we briefly summarize how the Hamiltonian structure
(§3.2), the modular policy architecture (§3.3), and the meta-learning framework (§C.4) are combined
at test time into a unified navigation system.

Overview. At each navigation stage, the navigator sequentially queries the three offline-trained
policies πy (sensor), πf (frame/FPE), and πo (object/reconfig) to obtain state-dependent control
proposals. The meta-policy gξ maps the current environment and policy responses to environment-
dependent energy weights and friction, from which we assemble a surrogate Hamiltonian and inte-
grate the corresponding port-Hamiltonian dynamics with dissipation and port correction. Observable
quantities such as clearance, goal progress, and speed are then used to perform a short Jacobian-
based update of the active energy weights and friction coefficients, yielding a stagewise adaptation
loop. The full pseudo-code, including initialization, query protocols, energy assembly, integration
details, and adaptation rules, is deferred to Algorithm 3 in Appendix E.

3.2 NAVIGATION AS HAMILTONIAN OPTIMIZATION

From optimal control to Hamiltonian via Legendre–Fenchel conjugacy (fixed E). Fix an
environment E and consider the control–affine dynamics q̇ = f(q) + A(q)u with stage cost
L(q, u; E) = −R(q; E) + φ(u), where R encodes goal/deflection/barrier terms and φ penalizes
effort. Pontryagin’s principle introduces a costate p and the control Hamiltonian H(q, p, u; E) :=
p⊤(f(q) + A(q)u)− L(q, u; E). Eliminating u amounts to taking the Legendre–Fenchel conjugate
of φ:

H(q, p; E) = sup
u

{
p⊤A(q)u− φ(u)

}
+ p⊤f(q) +R(q; E)

= φ∗(A(q)⊤p)+ p⊤f(q) +R(q; E),
(2)

provided φ is proper, closed, and strictly convex. The optimal feedback is u⋆(q, p) =
∇φ∗(A(q)⊤p). In the common quadratic case φ(u) = 1

2 u
⊤Φu (with Φ≻ 0 as a kinectic “term”),

we have φ∗(w) = 1
2 w

⊤Φ−1w, hence

H(q, p; E) = 1
2 p

⊤(A(q)Φ−1A(q)⊤
)
p + p⊤f(q) + R(q; E). (3)

Identifying the inverse mass asM(q)−1 := A(q)R−1A(q)⊤ and (optionally) absorbing p⊤f(q) into
a gauge term (or set f(q) ≡ 0) yields the mechanical form H(q, p; E) = 1

2 p
⊤M(q)−1p+R(q; E).

The canonical equations, q̇ = ∇pH and ṗ = −∇qH , are therefore the Hamiltonian outcome of
the fixed-E optimal control problem. Soft constraints (barriers) simply contribute additively to R;
nonconservative effects can be modeled as port inputs without altering the conjugate construction
(esp. friction). Thus, for each scenario E , the inner motion law is Hamiltonian with kinetic energy
induced by the control penalty via conjugacy and potential shaped by the environment. Note that
motion planning offline policy may or may not follow the surrogate Hamiltonian one wish to align
but we caliberate the surrogate by interaction with response (and in this paper we particularly focus
on discrete (q, p) dynamics via aggregations).

Search space for the Hamiltonian. The goal of navigator is to learn to search in the energy space
of H . The Hamiltonian defined in 3 is a function on the cotangent bundle T ∗Q:

H ∈ H :=
{
H(q, p; E) = 1

2 p
⊤M(q)−1p + R(q; E)

∣∣M : Q→S2++, R ∈ R
}
.

We regard R as a Hilbert space of admissible potentials on Q (and w.r.t. environmental configu-
ration) (e.g. L2(Q × E )). For planar navigation we restrict the search to the environment-indexed
linear cone generated by task energies, where each policy governs a distinct energy term and a joint
dynamical barrier term. We model the meta navigator by a parametrized map E→ηξ(E) producing
nonnegative dual weights that shape the primal potential. In general, each energy term may itself be
parametrized:

H(q, p;ω, ξ, E) = 1
2 p

⊤M(q;ωM )−1p + R(q;ω, ηξ(E)),

4
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R(q;ω, ηξ(E)) = Esensor(q; E , ωy) + β(E)Egoal(q; E , ωg) + λ(E)Eobj(q;ωd)

+
∑

i∈Ct(E,q)

αi(E , t) b
(
di(q; E);ωb

)
, (4)

with ηξ(E) = (β(E), λobj(E), {αi(E , t)}) ∈ Rm(E,t)
+ . Here ω = (ωy, ωM , ωg, ωd, ωb) are intra-

term parameters (e.g. metric, goal shape, deformation model, barrier template), while ηξ learns
the inter-term tradeoffs by mapping the environment E to dual weights. The cardinality m(E , t) =
2+|Ct(E , q)| is environment/active-set dependent, so ηξ is implemented with a permutation-invariant
set encoder that outputs per-constraint scores αi(E , t)≥0, together with scalars β(E), λ(E)≥0. The
active set Ct(E , q) := {i | di(q, E) ≤ d̂} is discovered online by sensing.

3.3 NAVIGATOR’S SUBMODULAR ARCHITECTURE

Rather than learning monolithic navigation policies, we decompose the problem into three indepen-
dent score functions, each dedicated to a specific navigation aspect (we refer readers Figure 1 for
details):

Definition 3.1 (Independent Score Functions). Let K = {y, f, o} denote the set of policy indices
corresponding to sensor, frame, and object domains respectively. For each k ∈ K, define:

• zk ∈ Zk: the phase space state for policy k, where Zk = Qk × Pk with configuration
space Qk and momentum space Pk

• θk ∈ Θk: the learnable parameters for policy k, where parameter sets satisfy disjointness:
Θi ∩Θj = ∅ for i ̸= j

• hθkk : Zk × E × R≥0 → R: a learned energy functional parameterized by θk

Each policy πk is defined as an independent score function: sθkk (zk, E , t) = Sθk
k (∇zkh

θk
k (zk, E , t))

The parameter disjointness ensures independence: ∂s
θk
k

∂θj
= 0 for all j ̸= k

allowing parallel training while maintaining coordination through shared constraints Ct.

Policy Abstraction. Each policy is treated as a black box that:

• Sensor Policy (πy): Adapts perception parameters → energy gradients for information
gathering

• Frame Policy (πf ): Plans collision-free paths → energy gradients for goal attraction

• Shape Policy (πo): Controls robot deformation → energy gradients for obstacle navigation

The key insight is that our Navigator is agnostic to policy implementation—our contribution is the
Hamiltonian structure binding them together through dynamic constraint sets Ct.
Algorithm 3 details the online adaptation procedure, where the navigator issues sequential queries
to the sensor, frame, and reconfig policies, integrates their energy gradients into a Hamiltonian
update, and applies meta-corrections for contextual alignment to generate stable trajectories in novel
environments.

Hamiltonian of modular sub-systems. Let K = {y, f, o} index three Hamiltonian submodules
with local states zk = (qk, pk) ∈ T ∗Qk and local Hamiltonians

Hk(qk, pk; ξ, E) = 1
2 p

⊤
kMk(qk)

−1pk + Rk(qk; E)︸ ︷︷ ︸
module potential

.

The navigator represents the whole stack by a surrogate Hamiltonian on T ∗Q, where η(E) =

gξ(E) ∈ Rm(E,t)
+ is the meta policy(explorer) output for potential functional. For navigation, in

5
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Sensor Process πy

s
θy
y (zy, E, t) = S

θy
y (∇zyh

θy
y (zy, E, t))

Free Path Extractor πf

s
θf
f (zf , E, t) = S

θf
f (∇zf

h
θf
f (zf , E, t))

Shape Reconfig πo

sθoo (zo, E, t) = Sθo
o (∇zoh

θo
o (zo, E, t))

Sy Sf So

b free ρ S C G sm st tg

Ty Tf To

Navigator gξ (Meta-Hamiltonian Learner)
Surrogate: H(q, p;ω, ξ, E) = 1

2p
⊤M(q;ωM )−1p + R(q;ω, ηξ(E))

Output: ηξ(E) = (β(E), λ(E), {αi(E, t)}), µξ(E), uξ
f

QueryResponse QueryResponse QueryResponse

Hy(qy, py ; ξ, E), zy,0, Ty
Hf (qf , pf ; ξ, E), zf,0, Tf Ho(qo, po; ξ, E), zo,0, ToRy = {z(k)

y,t , s
(k)
y,t ,QoIy}

Ty
t=0 Rf = {z(k)

f,t , s
(k)
f,t ,QoIf}

Tf
t=0

Ro = {z(k)
o,t , s

(k)
o,t ,QoIo}

To
t=0

Environment E
(x0,xg), I(·)

Trajectory P
z0:T

Legend: port query response

QoIs: QoIy = ∆E , QoIf = {v(f)
t }, QoIo = {mini di(q

(o)
t )}

Figure 1: Independent score function architecture and query–response interface. The Navigator
gξ issues queries containing local Hamiltonians Hk, initial states zk,0, and time horizons Tk to
each policy πk (k ∈ {y, f, o}). Each policy computes score functions sθkk via energy gradients from
learned Hamiltonians hθkk , backed by spatial indices Sk for efficient neighbor queries. Policies return
standardized responses Rk containing state trajectories, score sequences, and QoIs. The Navigator
aggregates these to update the surrogate Hamiltonian and generate meta-corrections ηξ(E), µξ(E),
and uξf for adaptive navigation.

particular the reference potential for each submodule is:

Ry(qy; ξ, E) = Esensor(qy; E , ωy) +
∑

i∈Ct(E,q)

αi(E , t) b
(
di(q; E);ωb

)
(5)

Rf (qf ; ξ, E) = β(E)Egoal(qf ; E , ωg) +
∑

i∈Ct(E,q)

αi(E , t) b
(
di(q; E);ωb

)
(6)

Ro(qo; ξ, E) = λ(E)Eobj(qo;ωd) +
∑

i∈Ct(E,q)

αi(E , t) b
(
di(q; E);ωb

)
(7)

Remark. A black-box setup assume one cannot observe the potential components {Rk} yet can
only observe kinectic terms by the integrated dynamics via policy πk. A gray-box setup can allow
navigator reshape potential (and possibly kinectics) so one do not need to caliberate surrogate
energy equation 3 with local Hamiltonian aggregation Ĥ :=

∑
k∈KH

θk
k .

Hamiltonian Dynamics of modular sub-systems. Each submodule k ∈ K integrates its local
dynamics for a short horizon and returns a standardized response Rk. Let the effective module
Hamiltonian be hθkk (qk, pk, t) with initial condition hθkk (qk, pk, 0) = Hk(qk, pk; E). The local (port-
)Hamiltonian flow with dissipation and remaining nonconservative input is

q̇k = ∇pk
hθkk (qk, pk, t), (8)

ṗk = −∇qkh
θk
k (qk, pk, t)− Γξ

k(qk; E)∇pk
hθkk (qk, pk, t) +Gξ

k(qk; E)u
ξ
k(qk, pk, t, E), (9)

with Γk ⪰ 0 a Rayleigh/viscous damping and Gξ
ku

ξ
k the nonconservative (non-potential) external

input. We define the score of dynamics recorded by module k as the deterministic drift,

sk(zk, t) :=

[
∇pk

hθkk
−∇qkh

θk
k

]
+

[
0

−Γξ
k∇pk

hθkk +Gξ
k u

ξ
k

]
︸ ︷︷ ︸

non-Hamiltonian contributions (friction/ports)

, zk = (qk, pk).

Navigator meta-learning details. For clarity of exposition, we defer the full formulation of the
navigator as a meta-Hamiltonian learner including the construction of R(q; ηξ(E)), the training
objective in equation 48, and the QoI-based online adaptation scheme to Appendix C.4.
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3.4 MULTI-SCALE TEMPORAL COORDINATION

The policies operate at natural temporal hierarchies, creating stable multi-scale coordination:

Time
0 2 4 6 8

Stage Stage Stage

Sensor Ct computation Ct+1 computation

Path

Shape

Ct

W

fshape ≫ fpath ≫ fsensor
Tsens ≫ Tpath ≫ Tint

Figure 2: Temporal hierarchy. Sensor policy operates at low frequency (once per stage), estab-
lishing environmental constraints Ct. Path policy operates at medium frequency within each stage,
computing waypointsW . Shape policy operates at high frequency, continuously adapting at each in-
tegration step. This creates a natural hierarchy where slow sensor updates provide stable constraints
for faster path and shape adaptations.

This temporal separation enables a nested quasi-static approximation: the fastest dynamics (re-
configuration) equilibrate within each frame update, and frame dynamics settle before the slower
sensor policy evolves. This hierarchy prevents destabilizing interactions across timescales while
preserving the necessary coupling for coherent, coordinated behavior.

3.5 OFFLINE PHYSICS LEARNING VS ONLINE ADAPTIVE CORRECTION

Our approach resolves the fundamental tension between learning complex dynamics and real-time
adaptation through principled decomposition:

Standard RL

Offline: Learn Policy
π(a|s) from dataset

Online: Fine-tune policy
on new environment

Challenge: Policy transfer
across domains

Our GRL-SNAM

Offline: Learn Hamiltonian
hθ(z, C, t) from trajectories

Online: Contextual alignment
∆hcontext to sensed Ct

Advantage: Physics structure
ensures stable adaptation

Figure 3: Comparison between standard RL offline/online adaptation and our physics-grounded
approach. Standard methods learn arbitrary policies and struggle with transfer, while our approach
learns physically meaningful Hamiltonians that naturally adapt to environmental variations.

3.6 THEORETICAL PROPERTIES

Our framework provides three key theoretical guarantees:

Theorem 3.2 (Multi-Policy Stability). Under temporal scale separation Tsens ≫ Tpath ≫ Tint and
bounded parameter updates, the coupled system maintains stability with error bound Etotal ≤ ϵ.
Theorem 3.3 (Symplectic Preservation). Each score function generates symplectic dynamics pre-
serving the canonical structure ωk(zk,t+1) = ωk(zk,t).

7
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Theorem 3.4 (Linear Sample Complexity). Independent training achieves total sample complexity
Ntotal =

∑
k∈{y,f,o}O(ϵ

−(2dk+4)
k ), linear in the sum of policy dimensions rather than exponential

in joint dimensionality.

We defer the proof of theorems in appendix. The system thinks in physics during offline training but
adapts through energy corrections during online execution, combining principled dynamics stability
with real-world deployment flexibility.

4 EXPERIMENTAL EVALUATION

We evaluate GRL-SNAM across multiple dimensions that highlight the unique capabilities of our
geometric approach compared to standard reinforcement learning and classical navigation methods.
Our evaluation encompasses task performance, safety guarantees, and learning efficiency under min-
imal sensing constraints. For more detailed results and analysis, refer to Appendix I

Experimental Setup: We evaluate GRL-SNAM in procedurally generated 2D deformable navi-
gation tasks, where a hyperelastic ring must traverse cluttered environments with narrow gaps and
varying obstacle densities. The robot perceives only a local window of size 2d̂× 2d̂, from which we
construct a Hamiltonian energy functional with goal-directed potential Fg , barrier potentials Fbs,
and adaptive coefficients (β, γ, α) modulated by context encoders.

Baselines. We compare against two classical categories under matched information constraints:
Global planning: rigid A* (obstacle inflation) and deformable A* (clearance-aware penalty), and
Local reactive: Potential Field (PF), Control Barrier Functions (CBF), and staged DWA using iden-
tical local windows and stage management as GRL-SNAM. In addition, we include learning-based
deep RL baselines (PPO, TRPO, SAC) trained on the same short-rollout dataset and observation
space as GRL-SNAM.

Metrics. Success Rate, Success-weighted Path Length (SPL), Detour Ratio, Minimum Clearance,
Path Smoothness, Collisions, and Mapping Ratio (fraction of environment observed).

4.1 MAIN RESULTS

Q1. How efficiently does GRL-SNAM trade mapping for navigation quality? Table 4 demon-
strates that GRL-SNAM achieves CBF-level navigation quality (SPL = 0.95, Detour = 1.09) while
using essentially the same minimal map coverage as PF (10.7% vs. CBF’s 11.2%). This validates
that our stagewise Hamiltonian refinement extracts maximum value per sensed unit of the environ-
ment.

For each deep RL algorithm (PPO, TRPO, SAC) we train three control parameterizations under
the same short-rollout distribution and local observation space as GRL-SNAM: (i) a kinematic con-
troller (policy outputs velocities), (ii) a dynamic controller (policy outputs forces integrated by a
damped point-mass model), and (iii) a coefficient controller (policy outputs the Hamiltonian force-
field coefficients (α, β, γ) used by GRL-SNAM). The aggregated PPO/TRPO/SAC rows in Table 4
summarize the best-performing configuration for each family; even then, the best TRPO/SAC vari-
ants reach at most SPL = 0.57 with almost grazing clearances (MinClear ≈ 0) and require larger
mapping ratios (≈ 14–15%), while PPO collapses to SPL = 0.07 with negative effective clearance.
In contrast, GRL-SNAM attains high SPL and positive clearance under a strictly smaller sensing
budget.

Q2. Does GRL-SNAM outperform classical, reactive, and RL planners in complex environ-
ments? Yes. Figure 9 shows GRL-SNAM achieves near-perfect success rates (≈ 100%) across
both in-distribution and out-of-distribution test cases, while all baselines degrade significantly. GRL-
SNAM consistently maintains high SPL (≈ 1.0) with low variance and produces the smoothest tra-
jectories with lowest turning angles. The Pareto frontier analysis confirms GRL-SNAM uniquely
dominates the safety-performance trade-off.
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Table 1: Navigation quality comparison (success-only runs). GRL-SNAM achieves near-CBF ef-
ficiency with minimal mapping budget, while deep RL baselines trained on the same short-rollout
distribution and local observations yield lower SPL, larger detours, and smaller clearances.

Method SPL ↑ Detour ↓ Min. Clearance (m) ↑ Mapping Ratio (%) ↓
PF 0.77 1.42 0.18 10.3
CBF 0.96 1.04 0.32 11.2
GRL-SNAM 0.95 1.09 0.26 10.7
PPO 0.07 1.65 -0.09 14.7
TRPO 0.57 1.44 0.004 14.3
SAC 0.57 1.53 0.004 14.6

Figure 4: Hamiltonian force field composition. Left: goal force Fg; Middle: barrier forces Fbs;
Right: adaptive combination yielding safe, goal-directed trajectories.

Q3. How does the Hamiltonian formulation enable coherent navigation? Figure 4 illustrates
how GRL-SNAM unifies goal attraction Fg and barrier repulsion Fbs into a coherent navigation
field through adaptive coefficients. Unlike reactive methods that treat forces independently, our dif-
ferential composition F = βFg + γFbs creates contextually balanced dynamics that simultaneously
pursue goals and avoid obstacles, which aligns with the high SPL and positive clearances observed
in Table 4.

Q4. What distinguishes GRL-SNAM’s online adaptation from standard RL approaches?
Unlike standard deep RL policies that learn a fixed mapping from observations to actions (or co-
efficients), GRL-SNAM modifies the entire local energy landscape as new obstacles are sensed.
Figure 10 demonstrates that the coefficients (β, γ, α) evolve dynamically to redefine the reduced
Hamiltonian itself, ensuring energy-consistent posterior updates rather than heuristic reactive ad-
justments. This online reshaping of the Hamiltonian explains why GRL-SNAM maintains high
success, SPL, and clearance under the same sensing budget where PPO/TRPO/SAC (in all three
control variants) either collide, stall, or take inefficient detours.

Deep RL baselines. To contextualize the algorithmic contribution of GRL-SNAM, we addition-
ally evaluate strong deep RL baselines (PPO, TRPO, and SAC) implemented under the same sensing
pipeline, observation structure, action space, and Transformer encoder as our method. For fairness,
all baselines operate on the identical short-rollout stagewise dataset derived from the dungeon envi-
ronment of Liang et al. (2023), with horizon H ∈ [2, 6], stage-exit goals, and locally reconstructed
obstacles. Each agent outputs continuous 2D velocity actions and is trained with identical shaped
rewards (goal progress, smoothness, and terminal imitation).

Table 2 summarizes performance under these matched conditions: despite millions of interaction
steps, PPO/TRPO/SAC achieve only 18–26% success, whereas GRL-SNAM attains 87.5% with
an order-of-magnitude fewer updates. This highlights that, even under identical data, sensing, and
architectures, GRL-SNAM’s Hamiltonian force-learning offers a substantially more reliable and
sample-efficient mechanism for local navigation.
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Method Success (%) ↑ Mean State Error (m) ↓ Mean Goal Dist. (m) ↓
PPO 26.1 1.8 1.2
TRPO 21.7 2.1 1.5
SAC 18.4 2.4 1.9

GRL-SNAM 87.5 0.3 0.1

Table 2: Short-rollout navigation performance under identical sensing, rollouts, and architecture.

4.2 ADDITIONAL EVALUATIONS

We conducted comprehensive ablation studies on loss components (Lfriction, Lmulti) confirming that
friction matching is critical for stability while multi-start robustness prevents over-conservatism. Ro-
bustness evaluations under sensor noise and dynamics perturbations show graceful degradation (87%
success under severe noise vs 99% nominal) due to our adaptive Hamiltonian framework. Sam-
ple efficiency analysis demonstrates faster convergence than RL baselines due to physics-informed
structure.

4.3 KEY INSIGHTS

Minimal mapping suffices: GRL-SNAM achieves optimal navigation quality using∼10% environ-
ment coverage, validating the core SNAM principle that local geometric structure contains sufficient
information for global navigation tasks.

Hamiltonian unification: The differential geometric formulation naturally balances competing ob-
jectives (goal-seeking, obstacle avoidance, smoothness) through principled energy minimization
rather than heuristic weight tuning.

Principled online adaptation: By modifying the energy landscape itself rather than just policy
outputs, GRL-SNAM maintains physical consistency while adapting to new sensory information,
enabling robust performance across diverse environments.

Superior performance: GRL-SNAM consistently outperforms classical planning and reactive con-
trol methods across all metrics (success, efficiency, safety, smoothness) while requiring minimal
computational overhead and sensing budget.

These results establish GRL-SNAM as the first method to successfully unify global navigation objec-
tives with local safety constraints in hyperelastic navigation through principled geometric learning.

5 CONCLUSION

We introduced GRL-SNAM, a reinforcement learning framework that leverages Hamiltonian struc-
ture to couple sensing, planning, and deformation into a unified energy-based policy. Our formu-
lation enables stable, feedforward navigation updates and achieves near-optimal path quality with
minimal mapping effort in challenging deformable-robot tasks. The results highlight that incorpo-
rating geometric priors into RL can yield both efficiency and robustness, even under noisy sensing
and out-of-distribution layouts. Future work will extend the approach to richer sensing modalities
and more complex environments, with the goal of validating its scalability to real robotic systems.

REFERENCES

J. I. Alora, Moses C. Beard, Thomas Libby, Philipp Rothemund, et al. Discovering dominant dy-
namics for nonlinear continuum robot control. npj Robotics, 3(1):5, 2025.
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A EXTENDED INTRODUCTION AND MOTIVATION

This section provides expanded context for the challenges addressed by GRL-SNAM and detailed
justification for our geometric approach.

A.1 COMPREHENSIVE ANALYSIS OF RL LIMITATIONS IN NAVIGATION

Contemporary reinforcement learning methods face several critical limitations that become particu-
larly pronounced in continuous navigation tasks:

Sample Efficiency Bottlenecks. Standard RL algorithms like SAC Haarnoja et al. (2018) and PPO
Schulman et al. (2017) require millions of environment interactions to learn effective navigation
policies. This inefficiency stems from the curse of dimensionality in continuous control settings
where the action space is infinite-dimensional and policies must simultaneously master fine-grained
motor control and high-level strategic reasoning. In real-world deployment scenarios where data
collection is expensive and potentially dangerous, this sample complexity becomes prohibitive.

The problem is exacerbated by the need for exploration in high-dimensional spaces. Unlike discrete
control problems where systematic exploration strategies like ϵ-greedy or UCB can provide theo-
retical guarantees, continuous control requires sophisticated exploration mechanisms that often rely
on injected noise or entropy bonuses. These mechanisms frequently lead to unsafe or inefficient
exploration behaviors that are unsuitable for real-world navigation tasks.

Generalization Failures. Policies trained in specific environments exhibit catastrophic performance
degradation when deployed in novel settings, even when new environments share similar structure.
This brittleness stems from the lack of inductive bias in standard neural network architectures. With-
out explicit encoding of physical principles or geometric structure, learned policies tend to memorize
environment-specific features rather than discovering generalizable navigation principles.

The generalization problem is particularly acute in navigation because environmental variations can
affect multiple aspects of the task simultaneously: obstacle configurations change collision con-
straints, surface properties affect dynamics, and lighting conditions influence perception. Standard
RL approaches learn monolithic mappings that cannot decompose these variations into their con-
stituent factors, leading to brittle behaviors that fail when any component deviates from training
conditions.

Temporal Decomposition Challenges. Navigation inherently requires coordination across multiple
timescales: immediate obstacle avoidance operates on millisecond timescales, local path planning
unfolds over seconds, and strategic goal-directed behavior spans minutes or hours. Standard RL al-
gorithms struggle to learn policies that reason effectively across these scales, often getting trapped in
locally optimal behaviors that satisfy short-term objectives while failing to make long-term progress.

Existing approaches to multi-scale reasoning such as hierarchical RL Sutton et al. (1998), options
frameworks Precup (2000), or feudal networks Vezhnevets et al. (2017), typically require manual
decomposition of the task space and careful engineering of reward functions for different levels.
These methods introduce additional complexity without fundamentally addressing the structural
issues that make multi-scale learning difficult.

A.2 THE SNAM CHALLENGE: WHY STRUCTURE MATTERS

Simultaneous Navigation and Mapping (SNAM) represents a particularly challenging instance of the
navigation problem where agents must build environmental representations online while traversing
unknown spaces. This challenge amplifies the limitations of conventional RL approaches in several
ways:

Memory and Representation Learning. SNAM requires policies to maintain and update spatial
representations based on sensory observations. This places enormous demands on the policy’s mem-
ory architecture, requiring it to simultaneously master memory management, spatial reasoning, and
motor control. Standard recurrent architectures like LSTMs or GRUs struggle with this multifaceted
learning problem, often failing to maintain coherent spatial representations over long episodes.
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Exploration-Exploitation Tradeoffs. In SNAM, exploration serves dual purposes: gathering in-
formation about the environment for mapping and discovering navigation strategies. This creates
complex exploration-exploitation tradeoffs that standard RL exploration mechanisms cannot handle
effectively. Random exploration may discover new regions but fails to systematically map environ-
mental structure, while directed exploration based on current maps may miss critical environmental
features.

Dynamic Environmental Coupling. Unlike traditional navigation where environments are static,
SNAM requires reasoning about how the agent’s actions affect both its position and its knowledge
of the environment. This creates a coupled learning problem where navigation decisions influence
future mapping accuracy, and mapping quality affects navigation performance. Standard RL frame-
works treat these as separate problems, missing the critical coupling that enables efficient SNAM.

Recent approaches in simultaneous navigation and mapping (SNAM) have coupled local mapping
with policy learning to improve navigation performance. For example, SGoLAM Kim et al. (2021)
interleaves goal localization with occupancy mapping to enable point-goal navigation, while Cog-
nitive Mapping and Planning (CMP) Gupta et al. (2019) integrates a differentiable planner into a
learned mapping framework. Continual SLAM (CL-SLAM) Vödisch et al. (2023) further empha-
sizes long-term adaptability by maintaining and updating maps during navigation. However, these
methods rely on progressively constructing detailed maps of the environment before exploiting them
for navigation. In contrast, our objective is to reach the goal along high-quality, well-weighted paths
while mapping as little of the unknown environment as possible. To the best of our knowledge, no
prior work explicitly formulates navigation with minimal exploration as the central goal. Our pro-
posed GRL-SNAM framework achieves this by progressively refining paths: from observed envi-
ronmental variations, the policy differentially learns to identify the least-cost trajectory, such that
the path improves continuously as new local information is revealed.

A.3 GEOMETRIC STRUCTURE: THE INEVITABLE SOLUTION

The limitations outlined above are not merely implementation details but fundamental consequences
of treating navigation as unstructured optimization. Several lines of evidence suggest that geometric
structure is not just helpful but inevitable for solving complex navigation problems:

Physical Realizability. Real robotic systems operate under physical constraints imposed by con-
servation laws, kinematic limitations, and actuator dynamics. Policies that violate these constraints
cannot be implemented on physical systems, yet standard RL approaches have no mechanism to
enforce such constraints during learning. Geometric formulations naturally incorporate physical
constraints through the mathematical structure of the problem.

Stability Requirements. Long-horizon navigation requires numerical stability over extended roll-
outs. Standard neural network policies accumulate errors over time, leading to unstable behaviors
in long episodes. Hamiltonian formulations with symplectic structure preserve important invariants
(energy, momentum) that ensure stability over arbitrarily long rollouts.

Compositionality Needs. Complex navigation tasks require composing simpler behaviors: obsta-
cle avoidance, path following, goal seeking, and environmental adaptation. Standard RL approaches
learn monolithic policies that cannot decompose into interpretable components. Geometric formu-
lations enable natural decomposition through energy terms that can be composed, weighted, and
adapted independently.

A.4 DIFFERENTIAL POLICY OPTIMIZATION: BEYOND FIXED POLICIES

Traditional RL optimizes fixed policy parameters θ to maximize expected returns over discrete
timesteps. Differential Policy Optimization Nguyen & Bajaj (2025) approach fundamentally recon-
ceptualizes this by learning dynamics operators through a continuous-time differential dual formu-
lation.
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Mathematical Foundation. Rather than directly learning policies, DPO reformulates RL through
continuous-time optimal control. By approximating discrete reward sums with time integrals:

max
π

E

[
H−1∑
k=0

r(sk, ak)

]
≈ max

π
E

[∫ T

0

r(st, at)dt

]
(10)

Applying Pontryagin’s Maximum Principle introduces adjoint variables p and defines the Hamilto-
nian function:

HF (p, s, a) := pT f(s, a)− r(s, a) (11)

The key insight is that optimal actions can be implicitly represented through the stationarity condi-
tion ∂HF

∂a = 0, yielding the reduced Hamiltonian:

hf(s, p) := HF (s, p, a∗(s, p)) (12)

Score Function Learning. DPO learns a score function g(x) ≈ hf(x) where x = (s, p) combines
state and adjoint variables. The dynamics operator is constructed as:

G(x) = x+∆S∇g(x) (13)

where S =

[
0 I
−I 0

]
is the canonical symplectic matrix and ∆ is the discretization step.

Stagewise Learning Advantages. Unlike methods requiring backward-in-time adjoint calculations
(as in Pontryagin’s Maximum Principle), DPO enables feedforward learning where each stage t
defines a local HamiltonianHt integrated forward in time:

θt+1 = θt − η∇θHt (14)

This avoids the computational complexity and numerical instability of adjoint methods while main-
taining theoretical guarantees through the geometric structure of the Hamiltonian formulation.

Goal Attraction

robot

goal

−∥c − xg∥2

Sensor Cost

sensor region

−∥y∥2
A

Deformation

−Eobj(q)

Collision Barriers

−
∑

b(d̃i, d̂)

Figure 5: Policy-aligned energy decomposition. Each policy governs a distinct energy component:
the Sensor Policy minimizes sensor cost, the FPE balances goal attraction and collision barriers,
and the Reconfig Policy adapts size through deformation energy. Together these terms define the
Hamiltonian rewardR.

A.5 MULTI-POLICY ARCHITECTURE DETAILS

Our multi-policy decomposition addresses temporal scale separation through three specialized com-
ponents operating at different timescales:

Sensor Policy (πy): Operates at slow timescales to adapt perception strategies based on stagewise
environmental feedback. This policy learns to focus attention on relevant environmental features,
adjust sensor parameters for optimal information gain, and filter sensory noise. The sensor policy
outputs constraints Ct that inform slower planning processes.

Frame Policy (πf ): Operates at medium timescales to plan collision-free trajectories in local co-
ordinate frames. This policy takes constraints from the sensor policy and generates waypointsWt

for shape control. The frame policy handles local obstacle avoidance and path optimization within
a limited spatial horizon.
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Shape Policy (πo): Operates at fast timescales to control robot morphological adaptation. For
deformable robots, this includes shape changes, stiffness modulation, and configuration updates. For
conventional robots, this might include gait transitions, tool selection, or behavioral mode switches.

The key insight is that these policies are not manually designed hierarchies but emerge naturally
from the temporal structure of the Hamiltonian dynamics. Fast variables (sensor adaptation) reach
quasi-equilibrium before slower variables (shape changes) evolve significantly, creating natural scale
separation without manual decomposition.

This extended analysis demonstrates that geometric structure is not merely a useful inductive bias but
a necessary foundation for solving complex navigation problems that require multi-scale reasoning,
online adaptation, and long-horizon stability.

B EXTENDED RELATED WORK SURVEY

B.1 GEOMETRY AND MECHANICS PRIMER

Navigation learning methods can be categorized by their underlying mathematical spaces, with sig-
nificant implications for performance and theoretical guarantees:

Euclidean Space Methods (Rn): Standard RL treats navigation as optimization in flat spaces using
Euclidean distance metrics. Enhanced PPO Taheri et al. (2024) demonstrate improved collision
avoidance but ignore inherent geometric structure of robotic systems. Sample efficiency remains
poor, typically requiring millions of environment interactions Dehghani Tezerjani et al. (2024).

Lie Group Methods: Recognition of orientation constraints has led to SE(2) and SE(3) formula-
tions using equivariant neural architectures. These preserve rotational and translational symmetries
but remain primarily limited to manipulation rather than navigation tasks.

Riemannian Manifold Approaches: Advanced geometric formulations employ differential ge-
ometry for constraint handling through tangent space projections. Martı́nez-Rubio & Pokutta
(2023) demonstrates constraint satisfaction through geometric structure rather than penalty meth-
ods, achieving superior theoretical properties but limited practical deployment.

Hamiltonian and Symplectic Methods: Port-Hamiltonian neural networks show significant per-
formance improvements through symplectic integrators, proving that respecting geometric structure
fundamentally improves learning dynamics. However, applications remain confined to simple con-
trol problems.

B.2 SAFETY-CRITICAL NAVIGATION TAXONOMY

External Safety Projection: Control Barrier Functions create safe action spaces through constraint
projection. Neural Network Zeroing Barrier Functions Feng et al. (2023) enable collision-free nav-
igation, while adaptive safety constraints Mohammad & Bezzo (2025) handle dynamic environ-
ments. Social navigation approaches Jang & Ghaffari (2024) extend CBFs to human-robot interac-
tion. These methods achieve formal safety guarantees but often exhibit conservative behaviors due
to the separation between safety and optimality.

Energy-Integrated Safety: Our approach incorporates safety directly within the Hamiltonian en-
ergy structure via barrier potentials. This enables aggressive navigation while maintaining formal
guarantees through symplectic structure preservation, avoiding the conservatism of external projec-
tion methods.

B.3 DEFORMABLE AND SOFT ROBOT NAVIGATION

Hyperelastic Material Models: Recent advances include pressure-stiffening control with 6.40%
maximum error validation Roshanfar et al. (2023) and passivity-based control using differential
geometry of curves Caasenbrood et al. (2022). Spectral Submanifold Reduction Alora et al. (2025)
achieves computational speedup for real-time hyperelastic control with stability guarantees.

Ring and Circular Robots: Liquid Crystal Elastomer responses enable aerial gap navigation Qi
et al. (2024) through predetermined actuation patterns. HAVEN Mulvey & Nanayakkara (2024)
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navigates constrained spaces via fixed shape-changing sequences based on multimodal perception.
These approaches use offline parameter optimization with deterministic execution, lacking online
adaptation capabilities.

Physics-Informed Learning: PINN-Ray Wang et al. (2024) achieves state-of-the-art hyperelastic
displacement prediction, while extensions to non-conservative effects Liu & Della Santina (2024)
provide experimental validation. However, these remain primarily modeling tools rather than adap-
tive control frameworks.

B.4 NEURAL SCENE REPRESENTATIONS FOR NAVIGATION

NeRF-Based SLAM: Real-time dense reconstruction through NICE-SLAM Zhu et al. (2022) and
keyframe-free tracking via iMAP Sucar et al. (2021) provide rich environmental representations.
Neural Topological SLAM Chaplot et al. (2020) combines learning with classical planning, while
semantic approaches Zheng et al. (2025) integrate large vision models.

3D Gaussian Splatting: GS-SLAM Yan et al. (2024) and SplaTAM Keetha et al. (2024) demon-
strate state-of-the-art reconstruction quality with real-time performance, offering dense 3D repre-
sentations suitable for navigation applications.

Integration with Energy Terms: Scene representations feed our energy formulation through:

Barrier Energy: Ubarrier =
∑

obstacles

b(SDF(x)) (15)

Free-Space Energy: Ufree = −
∑

free regions

w(x) (16)

Goal Energy: Ugoal = ∥x− xgoal∥2 (17)

B.5 MULTI-SCALE AND HIERARCHICAL METHODS

Hierarchical RL: Task decomposition approaches like HRL4IN Li et al. (2020) handle heteroge-
neous navigation phases, while Lee et al. (2023) learns specialized policy families with high-level
coordination. These require manual decomposition and struggle with principled coordination, often
leading to ad-hoc design choices without theoretical guarantees.

Multi-Agent Coordination: RoboBallet Lai et al. (2025) achieves coordination for 8 robots across
40 tasks using graph neural networks. MACRPO Kargar & Kyrki (2021) enhances information shar-
ing beyond parameter sharing. However, these approaches lack the geometric structure preservation
critical for deformable robot coordination.

B.6 IMITATION LEARNING FOR NAVIGATION

Behavioral Cloning: RT-1 Brohan et al. (2023) demonstrates impressive generalization across 700+
tasks using 130k demonstration episodes with transformer architectures achieving significant zero-
shot performance improvements.

Inverse Reinforcement Learning: GAIL for Safe Navigation Tai et al. (2018) combines generative
adversarial imitation with safety constraints. DAgger for Continuous Navigation Patanam et al.
iteratively improves policies through expert querying.

Sub-Optimal Demonstrations: Confident Imitation Learning Zhang et al. (2022) handles demon-
stration uncertainty through confidence-aware training, addressing distribution shift in novel envi-
ronments.

These approaches excel with high-quality demonstrations but assume expert availability and struggle
with the full behavioral range needed for adaptive deformation strategies.

B.7 FOUNDATION MODEL INTEGRATION

Large-scale models for navigation reasoning Zhu et al. (2024); Wang et al. (2025) focus on high-
level semantic understanding and multi-agent coordination at the symbolic level. Foundation models
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excel at reasoning and semantic understanding, while our GRL-SNAM provides principled low-level
geometric control.

Integration Pathway: Foundation models could generate high-level objectives encoded as potential
energy terms in our energy functional R(qt). The geometric structure preservation ensures high-
level semantic goals translate into physically consistent behaviors, addressing the critical gap where
foundation model outputs often lack grounding in physical dynamics.

B.8 PARADIGM COMPARISON

Table 3: Extended paradigm-level comparison of learning frameworks. Scoring: ✓= comprehensive
support,△= limited support, ×= not supported.

Capability GRL-SNAM Standard RL Geometric RL Imitation Learning Semi/Unsupervised CBF Methods Hierarchical RL Foundation Models
Energy Conservation ✓ × △ × × × × ×
Geometric Structure ✓ × ✓ × △ △ × ×
Constraint Integration ✓ △ ✓ × × ✓ △ △
Online Adaptation ✓ △ △ × ✓ △ ✓ ✓
Multi-Scale Coordination ✓ × × × × × ✓ △
Sample Efficiency ✓ × △ ✓ △ △ △ ✓
Zero-Shot Generalization ✓ × △ × ✓ × × ✓
Real-World Deployment ✓ ✓ △ ✓ △ ✓ ✓ △
Deformable Robot Support ✓ × × × × × × ×

Scoring Criteria:
• Energy Conservation: Explicit conservation laws in dynamics
• Geometric Structure: Preservation of manifold properties
• Constraint Integration: Safety/task constraints within optimization
• Online Adaptation: Real-time policy modification during deployment
• Multi-Scale Coordination: Principled coordination across temporal scales
• Sample Efficiency: Learning with minimal environment interaction
• Zero-Shot Generalization: Performance in unseen environments
• Real-World Deployment: Practical implementation feasibility
• Deformable Robot Support: Explicit modeling of shape change

This comprehensive survey positions GRL-SNAM as uniquely addressing the intersection of geo-
metric structure preservation, multi-scale coordination, and deformable robot control—capabilities
that existing approaches handle separately or incompletely.

B.9 KEY INSIGHTS

Our framework builds upon a set of Hamiltonian and reinforcement learning principles, unifying
offline reference dynamics with online adaptive updates. Below, we summarize the six key insights
that form the backbone of GRL-SNAM.

1. Hamiltonian energy as task reward. We define the Hamiltonian

H(q, p) = K(p) + P (q), (18)

with kinetic energy K and task-specific potential P . In our setup, P encodes navigation objectives
(goal attraction, barrier avoidance, deformation penalties). Following Pontryagin et al. (1962); ?,
the Hamiltonian coincides with the surrogate objective in policy gradient methods, i.e.

∇θJ(πθ) ≈ ∇θEπθ
[−H(q, p)], (19)

linking task reward to the Hamiltonian gradient flow. This equivalence grounds the DPO surrogate
in a physical structure.

2. Offline Hamiltonian vs. Online task reward. In offline training, the agent minimizes trajec-
tories under a fixed H constructed from synthetic local patches. Online, the environment is sensed,
and task rewardsRenv are parsed into Hamiltonian subtasks. By interpreting

Honline = Hoffline +∆Renv, (20)
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we align local sensory updates with the reference offline Hamiltonian. This mirrors the adaptive
control interpretation in Åström & Wittenmark (2010).

3. Offline policy as reference Hamiltonian. Every offline policy πref is equivalent to a reference
HamiltonianHref, where the score function sθ = ∇Href defines canonical dynamics:

q̇ =
∂Href

∂p
, ṗ = −∂Href

∂q
. (21)

Online adaptation then minimizes the divergence

D(πonline ∥ πref) ∝ E
[
∥∇Honline −∇Href∥2

]
, (22)

a structure exploited in score-based models (Song et al., 2021).

4. Advantages of stagewise updates. Rather than solving adjoint equations as in Pontryagin’s
Maximum Principle, we adopt a stagewise decomposition. Each stage defines a local Ht and is
integrated feedforward:

θt+1 = θt − η∇θHt. (23)

This avoids backward-in-time adjoint calculations and recovers the efficiency noted in adjoint-free
feedforward networks (Chen et al., 2018; Kidger et al., 2021).

5. Universality of the pipeline. Our pipeline

Environment Encoder−−−−−→ Context
Setup−−−−→ Hadapted (24)

is universal. As long asH is differentiable, adaptation reduces to evaluating its gradients, regardless
of whether the system is white-box (explicit potentials) or black-box (sensor-level inputs). This
follows from the variational formulation of differentiable programming (Baydin et al., 2018).

6. Navigator as meta-controller. The navigator policy πnav interacts with three black boxes: the
offline HamiltonianHref, the online sensed rewardRenv, and the adaptive fusionHadapt. Its role is to
formulate and solve

Hadapt = αHref + (1− α)Renv, (25)

where α is dynamically updated by the context encoder (e.g., LSTM). This positions the navigator
as a meta-controller that continually reforms the Hamiltonian problem, a principle consistent with
adaptive RL formulations in Kirk (2004).

B.10 SECANT GAUSS–NEWTON CONTROLLER WITH IMPLICIT OBSERVABLE TRANSITION

In the online setting, policy parameters (Θ = [β, γ, {αi}]) do not act directly on target observables
ytgt. Instead, there exists an implicit transition chain:

Θ
policy-induced energy−−−−−−−−−−−−−→ EΘ

dynamics rollout−−−−−−−−−−→ z 7→ f(Θ)
task map−−−−−−→ ytgt, (26)

where f(Θ) denotes observables (e.g., clearance, progress, admissible speed) produced after sym-
plectic updates under the reshaped Hamiltonian EΘ.

Implicit Jacobian. The true Jacobian of observables with respect to policy parameters is

∂f

∂Θ
=
∂f

∂z
· ∂z
∂Θ

, (27)

which is expensive to evaluate through full rollouts. Instead, we maintain a rank-1 secant estimate

Ĵt ≈
f(Θt)− f(Θt−1)

Θt −Θt−1
, (28)

smoothed via exponential moving average to reduce noise. This captures the *implicit effect* of
parameter changes on observables.
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Energy Reshaping Step. With the secant Jacobian, the Gauss–Newton update becomes

∆Θ = − Ĝ−1Ĵ⊤W
(
f(Θ)− ytgt

)
, Ĝ = Ĵ⊤WĴ + εI, (29)

followed by projection and per-head learning rates:

Θt+1 = ProjΘ≥0

(
Θt + diag(ηb, ηg, ηα)∆Θ

)
. (30)

Here, W is a weighting matrix over observables, and εI stabilizes inversion.

Meta-Learning View. The Navigator maintains a meta-objective

Lnav(Θ;ϕ) = ℓ
(
f(Θ; z), ytgt

)
, (31)

with context-dependent parameters ϕ (e.g., encoder weights for α). The implicit gradient is

∇ΘLnav = Ĵ⊤W
(
f(Θ)− ytgt

)
, (32)

which coincides with the secant Gauss–Newton step above. Thus, meta-learning is implemented not
by direct regression on Θ, but by observable alignment through the implicit policy→ observables
→ targets chain.

Interpretation. This formulation clarifies that the controller does not operate in parameter space
alone. Instead, it continuously reshapes Hamiltonian parameters so that the induced observables
approach task targets, effectively coupling multiple energy components (safety, progress, speed)
without additional rollouts.

Sequential Query–Response (as ports). At each t the Navigator issues queries Qt
k and receives

responses Rt
k, which determine ytgt(Rt) and any weights in W; the update equation ?? (with the

secant Ĵ) is then applied to each block k ∈ {y, f, o}:

θt+1
k = θtk + h∆θtk, ∆θtk = − Ĝ−1

k Ĵ⊤
k Wk

(
fk(θ

t
k)− ytgt,k(Rt

k)
)
.

State Evolution. With updated parameters, each policy advances its state as before,

zt+1
k = ztk + τk Jk s

θt+1
k

k (ztk, C
updated
t , t).

Remark. If a strict port-Hamiltonian view is desired, the J⊤W(ytgt − f(Θ)) term enters Π̇ as
an external port (input) rather than being baked into the potential; the resulting discrete update is
identical to the secant Gauss–Newton step above.

C HYPERELASTIC RING ROBOT MODEL

We model the deformable robot as a closed hyperelastic ring with reduced-order dynamics to enable
efficient navigation while capturing essential deformation behaviors.

o(t)

s(t)
θ(t)

Xj
Fext

obstacles
x

y

Figure 6: Hyperelastic ring robot model showing generalized coordinates (s,o, θ), spline sample
points Xj , and external force fields.
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C.1 GEOMETRIC REPRESENTATION

The robot boundary is defined by a periodic cubic B-spline curve with nctrl control points:

S(u) =

nctrl∑
i=1

Ni,3(u)Pi, u ∈ [0, 1] (33)

where Ni,3(u) are degree-3 B-spline basis functions with C2 continuity. The base shape is a unit
circle:

P0,i = rbase

[
cos(2πi/nctrl)
sin(2πi/nctrl)

]
(34)

World coordinates are computed via similarity transformation:

Pi(t) = o(t) + s(t)R(θ(t))P0,i (35)

where s(t) is uniform scale, o(t) ∈ R2 is center position, θ(t) is orientation.

For physics computation, we sample K points on the curve using B-spline evaluation matrix B ∈
RK×nctrl :

Xj =

nctrl∑
i=1

BjiPi, j = 1, . . . ,K (36)

Algorithm 1 Hyperelastic Ring Deformation Policy

1: Input: State (s, ṡ,o, ȯ, θ, ω), obstacles {(ck, rk)}, target xtarget
2: Output: Updated state (s′, ṡ′,o′, ȯ′, θ′, ω′)
3: Update geometry: Xj ← sample curve at current state
4: Compute distances: djk ← ∥Xj − ck∥ − rk, clearance: dmin ← minj,k djk
5: ▷ — Conservative Forces —
6: IPC barriers: gj ←

∑
k

∂bIPC(djk)
∂Xj

7: Adaptive bulk: Fs,bulk ← −∂Ubulk
∂s with Atarget(dmin)

8: ▷ — Non-Conservative Forces —
9: Stage forces: Fstage,j ← goal + radial + tangential components

10: Friction: Ffriction,j ← −µcontact pressure · tangent velocity
11: ▷ — Generalized Force Mapping —
12: Map to coordinates: Fs,Fo, τ ← virtual work from {gj + Fstage,j + Ffriction,j}
13: ▷ — Integration —
14: Update velocities: ṡ′ ← ṡ+∆t · Fs/Ms, etc.
15: Update positions: s′ ← clamp(s+∆t · ṡ′), o′ ← o+∆t · ȯ′, etc.
16: return updated state

C.2 ENERGY FORMULATION

The total Hamiltonian combines kinetic and potential components:

H =
1

2
Msṡ

2 +
1

2
Mo∥ȯ∥2 +

1

2
Iω2 + Ubarrier + Ubulk (37)

IPC Barrier Energy: Collision avoidance using Incremental Potential Contact barriers:

Ubarrier =

K∑
j=1

wjℓj

Nobs∑
k=1

bIPC(djk) (38)

where wj = 1/K, ℓj = ∥X′
j∥, djk is distance from sample j to obstacle k:

bIPC(d) =


−(d− d̂)2(log d− log d̂) if 0 < d < d̂

0 if d ≥ d̂
Vpenalty if d ≤ 0

(39)
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Adaptive Bulk Energy: Area conservation with clearance-dependent target:

Ubulk =
kbulk

2
(A(s)−Atarget)

2 (40)

where A(s) = s2Aref and:

Atarget = [α+ (1− α) tanh(β ·max(dmin, 0))]Aref (41)

with α = 0.25, β = 2.5 encouraging compression in tight spaces.

C.3 GENERALIZED FORCE MAPPING

Forces on spline samples map to generalized coordinates via virtual work:

Fs = −
∂U
∂s

+

K∑
j=1

Fext(Xj) ·
∂Xj

∂s
− γsṡ (42)

Fo = −∂U
∂o

+

K∑
j=1

wjFext(Xj)− γoȯ (43)

τ = −∂U
∂θ

+

K∑
j=1

wjFext(Xj) · (J(Xj − o))− γθω (44)

where J =

[
0 −1
1 0

]
generates rotation and ∂Xj

∂s = R(θ)P0,j .

C.4 NAVIGATOR AS META-HAMILTONIAN LEARNER

The GRL-SNAM operates as a meta-learning system that coordinates multi-scale policies by learn-
ing how to update their Hamiltonian energy functions rather than directly manipulating phase space
states.

Navigation specialization. Throughout the paper we further simplify our navigator’s Hamiltonian
surrogate by assuming fixed ω throughout all environment when we primarily focus on learning to
optimize the environment-indexed linear cone generated by task energies. The potential energy is
denoted as follows and is shown in Figure 5:

R(q; η(E)) = ∥y∥2S︸ ︷︷ ︸
Sensor Cost (Esensor)

+ β∥c− xg∥22︸ ︷︷ ︸
Goal Attraction (Egoal)

+ λEobj(q(t))︸ ︷︷ ︸
Deformation Energy (Eobj )

+
∑

i∈Ct(E,q)

αib(di, d̂)︸ ︷︷ ︸
Collision Barriers (FPE)

. (45)

The Sensor Policy contributes the sensor cost Esensor, regularizing information acquisition. The
FPE (Free Path Extractor) governs goal attraction and path-planning in current environment E via
goal attraction force Egoal and barrier potentials, balancing reachability with safety. The Reconfig
Policy governs deformation, enabling radius modulation for narrow passages. This decomposition
highlights that the total Hamiltonian is not a monolithic reward but a structured sum of physically
interpretable energies, each attached to a specialized policy. In addition, we assume friction and
additional forces (e.g. derived from safety constraints) are happened in FPE submodule only, and
we pick a particular parametrization as:

Γξ
y ≡ 0, Gξ

y ≡ 0, uξy ≡ 0,

Γξ
f = µξ(E)I, Gξ

f = I, uξf ̸= 0,

Γξ
o ≡ 0, Gξ

o ≡ 0, uξo ≡ 0,

(46)
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Thus the meta policy gξ directly produces the cone coordinates of potentials and non-conservative
forces correction in FPE module as a friction and a port correction term:

gξ(E) =
[
ηξ(E), µξ(E), uξf ],

which defines the potential—and therefore the generalized force —for the stagewise motion-
planning Hamiltonian rollouts. Learning gξ gives a meta-policy that maps environments to energy
weights, i.e. a stagewise bilevel scheme where the inner layer optimizes motion under Hk and the
outer layer trains ξ so that scenario-level QoIs/constraints are satisfied across environments.

Learning ηξ(E), µξ(E) throughout “Module→surrogate reduction”. Each submodule exposes
a response map that provides integrated dynamics rollout and additional quantity of interests (QoI)
as the feedback:

Rk :
(
Hk; θk, E , ξ) 7−→ {z(k)t , s

(k)
t ,QoIk}

Tk
t=0, k ∈ K,

where Tk refers time scale for each submodule. To be more specific:

QoIy = ∆E , QoIf = {v(f)t :=M−1
f p

(f)
t }

Tf

t=0, QoIo = { min
i∈Ct(E,q)

di(q
(o)
t ; E)}To

t=0. (47)

Namely, feedback QoIs are: environmental update, velocity observation, and min distance clearance
(and thus collision violation). Additional QoIs, that can be deduced from z

(k)
t , s

(k)
t , are not stated

here explicitly. To train a policy that output η(E) and µξ(E) with different environments, we propose
to minimize

L(ηξ, µξ) = EE

[
wq

∥∥q − qref
∥∥2
2
+ wv

∥∥v − vref

∥∥2
2
+ wµ

∥∥µ− µref

∥∥2
2
+ wd Lmulti

]
. (48)

where Lmulti is a short multi-start robustness penalty that re-rolls from perturbed q(k)t seeds near
obstacles to discourage brittle ηξ(E) and µξ(E) (details are addressed in Algorithm 2), and w•≥ 0
are user-input hyperparameters. The training via equation 48 can be conducted offline, component-
wise, or even fine-tuned online, but we state that it is important to fully utilize the instantaneous
response from a real navigation scenario which provides the scheme of per-scneario online cor-
rection even when ηξ(E) and µξ(E) are properly trained under large-scale simulated dataset with
reference potentials.

Online Adaptation of gξ(E) via QoIs We state how response map for each environment can yield
a correction term under online navigation scenario. Given response Rk at time t we construct an
observable measurement vector and its reference goal:

yt =

 − clrt
distt
− speedt

 ∈ R3, y⋆t =

 −msafe

distt − εprog
− max

(
speedt, 1{clrt≥msafe} vmin

)
 ,

where clr is the minimum clearance to inflated obstacles, dist is goal distance (to the global goal
point), and speed = ∥v∥. We update only the active barrier weights by selecting an index set It that
represents nearby obstacles. Define the parameter vector

η̃t =

[
βt
λt
αt,It

]
∈ R2+|It|

+ , ζt = [η̃t, µt].

We denote an estimator of Jabocian Jt = ∂y
∂ζt

as

J̃t =
(yt − yt−1)(ζt − ζt−1)

⊤

∥ζt − ζt−1∥22 + ε
, Jt = ρ Jt−1 + (1− ρ) J̃t,

with smoothing ρ ∈ [0, 1) and ε > 0. Then, given the desired observable change ∆ydest := y⋆t − yt,
one can upate meta-policy parameter via a Tiknohov-regularized least square steps:

∆ζt = argmin
∆ζ

∥∥Jt∆ζ −∆ydest

∥∥2
2
+ λ∥∆ζ∥22, ⇒ ∆ζt = (J⊤

t Jt + λI)−1J⊤
t ∆ydest .
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Algorithm 2 Meta-policy training of η(E) and µξ(E)
Require: dataset of different environments {E , αref , βref , λref , µref} ∈ D, step range T ∈
{2, 3, 4, 5, 6}, short rollout trials M , time step ∆t, weights w•

1: Initialize ξ
2: for epoch = 1, 2, . . . do
3: for batch B ⊂ D do
4: Sample (q0, p0) per scene E in B
5: Build tokens from active constraints Ct(E , q0), goal xg , and current (q0, p0)
6: ({αj}, β)← ηξ(tokens), µ← µξ(tokens)
7: for m = 1, 2, . . . ,M do
8: Sample a near obstacle point q̃0, initialize p̃0 towards nearest obstacle at q̃0.
9: Integrate equation 8 and equation 9 for T steps from (q̃0, p̃0).

10: ▷ e.g. Symplectic Euler
11: Compute clr ← mini,t di(q̃t; E)
12: Compute Lmulti ← Lmulti +

1
M softplus

(
rmin−clr

d̂

)
.

13: ▷ rmin refers minimal radius of robot object.
14: end for
15: Integrate equation 8 and equation 9for Tk steps from (q0, p0)
16: Evaluate loss L(ηξ, µξ) in equation 48
17: Update ηξ, µξ using∇ηξ

L and ∇µξ
L

18: E.g. Adam Optimizer
19: end for
20: end for

This yields updated βt+1, γt+1, and αt+1,i for i ∈ It (inactive weights keep their previous values).

ζt+1 = ΠR+

(
(1− κ) ζt + κ∆ζt

)
, κi ∈ [0, 1).

Since the update is a result of least square step, there exists residual:

rt = ∆ydest − Jt ∆ζt.

The online port correction term can amend the energy change by solving another least square prob-
lem given port–observable sensitivity Pt ≈ ∂y/∂uf :

uξf,t = argmin
u∈U

∥∥Ptu− rt
∥∥2
2
+ λu∥u∥22 = (P⊤

t Pt + λuI)
−1P⊤

t rt,

followed by componentwise clipping to a feasible box U . A simple choice is to use Pt =
diag(0, 0, κv) so that the port primarily regulates speed while the energy weights steer clearance
and goal progress; richer Pt can be learned online by the same secant recipe as Jt.

D DOMAIN-SPECIFIC POLICY IMPLEMENTATIONS

D.1 SENSOR POLICY (πy ) DETAILS

The sensor policy maintains spatial index Ty of observations (xi, typei, attri) and derives three en-
ergy components from single neighbor queries:

Barrier Potential: Repulsion from obstacles

bΣ(zy, Ct) =
∑

i∈Nobs

wi exp

(
−∥xi − cy∥2

2σ2
b

)
(49)

Free-Space Potential: Attraction to open regions

Vfree(zy, Ct) = −
∑

j∈Nfree

wj exp

(
−∥xj − cy∥2

2σ2
f

)
(50)
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Density Potential: Information-theoretic density measure

ρ(zy, Ct) = −
∑

k∈Nall

wk log

(
1 +

nk
|Nall|

)
(51)

The complete sensor score function is:

sθyy (zy, Ct, t) = ∇zy

[
1

2
∥py∥2M−1

y
+ αbbΣ + αfVfree + αdρ

]
(52)

D.2 FRAME POLICY (πf ) DETAILS

The frame policy uses Tf storing path samples with safety/contact distances and goal influence:

Safety Field: Distance-based safety measure

S(zf , Ct) =
Ns∑
i=1

wi max(0, dthreshold
safe − disafe)

2 (53)

Contact Field: Proximity to obstacles

C(zf , Ct) =
Nc∑
i=1

wi exp

(
− (dicontact)

2

2σ2
c

)
(54)

Goal Field: Directional bias toward target

G(zf , Ct) = −∥cf − xg∥2 +
Ng∑
i=1

wigi cos(θi) (55)

The frame score function integrates these fields:

s
θf
f (zf , Ct, t) = ∇zf

[
1

2
∥pf∥2M−1

f

+ αsS + αcC + αgG

]
(56)

D.3 SHAPE POLICY (πo) DETAILS

The shape policy controls deformation through reduced coordinates zo = (s, ṡ,o, ȯ, θ, ω):

Smoothness Energy: Curvature regularization

Esmooth =

∫ 1

0

∥κ(u)∥2du ≈
K∑
j=1

wj∥κj∥2 (57)

Stretching Energy: Arc length preservation

Estretch =

∫ 1

0

(∥S′(u)∥ − ℓref)
2du ≈

K∑
j=1

wj(ℓj − ℓref)
2 (58)

Target Energy: Configuration constraints

Etarget = ∥P−Ptarget∥2F + ∥(s,o, θ)− (starget,otarget, θtarget)∥2 (59)

The complete shape score function is:

sθoo (zo, Ct, t) = ∇zo

[
1

2
Msṡ

2 +
1

2
Mo∥ȯ∥2 +

1

2
Iω2 + αsmEsmooth + αstEstretch + αtgEtarget

]
(60)
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E ALGORITHM IMPLEMENTATION DETAILS

This section provides comprehensive implementation details for Algorithm 3 presented in §3.1.
We explain each algorithmic component, including parameter initialization, policy query protocols,
Hamiltonian composition, integration schemes, observable extraction procedures, and online adap-
tation mechanisms. These details are essential for reproducible implementation but are deferred to
the appendix to maintain focus on the core methodological contributions in the main text.

Algorithm 3 Online GRL–SNAM: Navigator-Driven Hamiltonian Composition

1: Input: Goal xg , initial z0 = (q0, 0), step τ , horizons (Ty, Tf , To) ▷ §E.1
2: Init: t← 0, C0 ← ∅, meta-policy gξ, Jacobians J0, P0 ▷ §E.2
3: while ¬REACHEDGOAL(ct,xg) and t < Tmax do ▷ §E.3
4: Query policies & collect responses: ▷ §E.4
5: if t ≡ 0 (mod Ty) then
6: Rt

y ← πy(Hy; θy, E , ξ) returns {z(y)0:Ty
, s

(y)
0:Ty

,∆E} ▷ §E.5

7: E ← E ∪∆E ; Ct ← {i | di(qt; E) ≤ d̂}
8: end if
9: if t ≡ 0 (mod Tf ) then

10: Rt
f ← πf (Hf ; θf , E , ξ) returns {z(f)0:Tf

, s
(f)
0:Tf

, {v(f)ℓ }
Tf

ℓ=0} ▷ §E.6
11: end if
12: Rt

o ← πo(Ho; θo, E , ξ) returns {z(o)0:To
, s

(o)
0:To

, {mini di(q
(o)
ℓ ; E)}To

ℓ=0} ▷ §E.7
13: Meta-policy proposal: ▷ §E.8
14: Build tokens Tt from (Ct, qt,xg)

15: [ηtξ, µ
t
ξ, u

ξ,t
f ]← gξ(Tt; ξ) with ηtξ = (βt, λt, {αt

i}i∈Ct
)

16: Compose surrogate Hamiltonian: ▷ §E.9
R(qt; ηtξ, E) = Esensor + βtEgoal + λtEobj +

∑
i∈Ct

αt
ib(di)

H(qt, pt;ω, ξ, E) = 1
2p

⊤
t M(qt)

−1pt +R(qt; ηtξ, E)
17: Integrate dynamics: ▷ §E.10
18: ∇pH|t =M(qt)

−1pt;∇qH|t = ∇qEsensor+β
t∇qEgoal+λ

t∇qEobj+
∑

i∈Ct
αt
i∇qb(di)

19: pt+τ = pt − τ∇qH|t − τµt
ξ∇pH|t + τuξ,tf

20: qt+τ = qt + τM(qt)
−1pt+τ

21: Extract observables: ▷ §E.11
22: clrt = min{mini di(qt+τ ; E),minℓ,i di(q

(o)
ℓ ; E)}; distt = ∥ct+τ − xg∥; speedt =

∥M−1pt+τ∥
23: yt = [−clrt,distt,−speedt]⊤; y⋆t = [−msafe,distt −

εprog,−max(speedt,1{clrt≥msafe}vmin)]
⊤

24: Parameter adaptation: ▷ §E.12
25: Select It ⊂ Ct; ζt = [βt, λt, {αt

i}i∈It
, µt

ξ]
⊤

26: J̃t = (yt − yt−τ )(ζt − ζt−τ )
⊤/(∥ζt − ζt−τ∥2 + ε); Jt = ρJt−τ + (1− ρ)J̃t

27: ∆ydest = y⋆t − yt; ∆ζt = (J⊤
t Jt + λζI)

−1J⊤
t ∆ydest

28: ζt+τ = ΠR+
((1− κ)⊙ ζt + κ⊙ (ζt +∆ζt))

29: Unpack to [βt+τ , λt+τ , {αt+τ
i }i∈It

, µt+τ
ξ ]

30: Port correction: ▷ §E.13
31: rt = ∆ydest − Jt∆ζt; uξ,t+τ

f = clip((P⊤
t Pt + λuI)

−1P⊤
t rt,U)

32: P̃t = (yt − yt−τ )(u
ξ,t
f − u

ξ,t−τ
f )⊤/(∥uξ,tf − u

ξ,t−τ
f ∥2 + ε); Pt = ρPPt−τ + (1− ρP )P̃t

33: t← t+ τ
34: end while
35: Return: Trajectory {zℓ}Tℓ=0, parameters {ηℓξ, µℓ

ξ, u
ξ,ℓ
f }Tℓ=0 ▷ §E.14
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E.1 INITIALIZATION

Robot State. Initialize phase-space coordinates z0 = (q0, p0) where q0 = (c0, θ0, s0, ψ0) contains
the starting position c0, orientation θ0, scale s0 = 1.0, and shape parameters ψ0 (e.g., B-spline
control points initialized as a circle). The initial momentum is p0 = 0.

Time Step and Horizons. The integration time step τ is typically set to 0.01–0.05 seconds. Query
horizons (Ty, Tf , To) determine how frequently each policy is queried: sensor policy every Ty steps,
frame policy every Tf steps, and shape policy every step (or every To steps). Typical values: Ty =
10, Tf = 5, To = 1.

Maximum Time Horizon. Tmax is the maximum number of integration steps allowed before
timeout, typically 5000–10000 steps corresponding to 50–500 seconds of simulated time.

E.2 PARAMETER STRUCTURE AND INITIALIZATION

Meta-Policy Network. The meta-policy gξ : E → [ηξ, µξ, u
ξ
f ] can be either:

• A learned neural network trained offline via Algorithm 2

• Fixed constant values: β0 = 2.0, λ0 = 1.0, α0
i = 1.5, µ0 = 0.1

If using a learned network, ξ are the network parameters. If using fixed values, gξ simply returns
constants.

Jacobian Initialization. Initialize J0 ∈ R3×(2+|C0|+1) as a small random matrix or identity-scaled
matrix. Initialize port Jacobian P0 ∈ R3×dim(uf ) similarly. These will be refined online via secant
updates.

Environment and Context. Initial environment E0 contains known static obstacles. Active con-
straint set C0 = ∅ starts empty and will be populated by the sensor policy’s first query.

E.3 TERMINATION CONDITIONS

The algorithm terminates when any of the following conditions is met:

Success: Goal Reached. ∥ct − xg∥ < ϵgoal where ϵgoal = 0.05 m (5 cm tolerance).

Failure: Timeout. t ≥ Tmax without reaching the goal.

Failure: Collision. mini di(qt; E) < 0, indicating penetration into an obstacle.

Failure: Stuck. ∥ct − ct−50τ∥ < ϵstuck where ϵstuck = 0.01 m, indicating the robot has not moved
more than 1 cm in the last 50 steps (indicating entrapment in a local minimum).

E.4 HIERARCHICAL QUERY FLOW

Policies are queried in a specific sequence with information flowing forward:

Sensor Policy Query (Line 5). Executed every Ty steps. Takes as input the previous context
Ct−Ty , current state zty = (ct, ċt), and goal xg . Performs ray-casting from the robot’s position to
detect new obstacles within sensing range.

Frame Policy Query (Line 8). Executed every Tf steps. Takes as input the updated context Ct
from the sensor policy, current full state ztf = (qt, pt), and goal xg . Plans a short-horizon path
considering known obstacles.
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Shape Policy Query (Line 10). Executed every step. Takes as input the context Ct from sensor
and the current shape state zto = (st, ψt, ṡt, ψ̇t). Computes deformation forces to navigate through
constrained spaces.

Information Flow. Sensor Ct−→ Frame
implicit−−−−→ Shape

all responses−−−−−−→ Navigator

E.5 SENSOR RESPONSE

Response Structure. Rt
y = {z(y)0:Ty

, s
(y)
0:Ty

,∆E} where:

• z(y)0:Ty
= {(q(y)ℓ , p

(y)
ℓ )}Ty

ℓ=0 is the integrated trajectory of the sensor policy’s local Hamilto-
nian Hy

• s(y)0:Ty
= {s(y)ℓ }

Ty

ℓ=0 is the score function (dynamics drift) at each step

• ∆E contains newly detected obstacles: ∆E = {(xj , rj , typej)} with positions, radii, and
types

Environment Update (Line 6). Merge new detections: E ← E ∪ ∆E . Update active constraint
set: Ct ← {i | di(qt; E) ≤ d̂} where d̂ is the sensing/activation radius (typically 0.5–1.0 m).

Policy Hamiltonian (not directly observed). The sensor policy operates on Hy(qy, py; ξ, E) =
1
2p

⊤
y My(qy)

−1py +Ry(qy; ξ, E) where Ry = Esensor(q; E , ωy) +
∑

i∈Ct
αib(di) as defined in the

methodology.

E.6 FRAME RESPONSE

Response Structure. Rt
f = {z(f)0:Tf

, s
(f)
0:Tf

, {v(f)ℓ }
Tf

ℓ=0} where:

• z(f)0:Tf
= {(q(f)ℓ , p

(f)
ℓ )}Tf

ℓ=0 is the short-horizon rollout under Hf

• s(f)0:Tf
are the score functions

• {v(f)ℓ = M−1
f p

(f)
ℓ }

Tf

ℓ=0 are velocity observations used for extracting speed in observable
computation

Policy Hamiltonian. Hf (qf , pf ; ξ, E) = 1
2p

⊤
f Mf (qf )

−1pf + Rf (qf ; ξ, E) where Rf =

β(E)Egoal +
∑

i∈Ct
αib(di).

Dissipation and Port in Frame Policy. The frame policy integrates with dissipation Γξ
f = µξ(E)I

and port input Gξ
fu

ξ
f as per the port-Hamiltonian equations (5-6) in the methodology. This is re-

flected in the Navigator’s integration step (Line 16).

E.7 SHAPE RESPONSE

Response Structure. Rt
o = {z(o)0:To

, s
(o)
0:To

, {mini di(q
(o)
ℓ ; E)}To

ℓ=0} where:

• z(o)0:To
= {(q(o)ℓ , p

(o)
ℓ )}To

ℓ=0 is the deformation trajectory

• s(o)0:To
are score functions

• {mini di(q
(o)
ℓ ; E)}To

ℓ=0 tracks minimum clearance at each step of the shape rollout

Policy Hamiltonian. Ho(qo, po; ξ, E) = 1
2p

⊤
o Mo(qo)

−1po + Ro(qo; ξ, E) where Ro =
λ(E)Eobj +

∑
i∈Ct

αib(di).
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Usage in Clearance. The clearance values from the shape rollout are used in Line 18 to compute
clrt, accounting for the robot’s actual deformed geometry when assessing collision risk.

E.8 META-POLICY PROPOSAL

Token Construction (Line 12). Build input tokens Tt from current environment state:

• Obstacle features: positions, radii, types for each i ∈ Ct

• Robot state: position ct, velocity M−1pt, current scale st

• Goal information: relative position xg − ct, distance ∥xg − ct∥

These are typically encoded as a permutation-invariant set representation (e.g., using attention mech-
anisms over obstacle features).

Meta-Policy Output (Line 13). gξ(Tt; ξ) = [ηtξ, µ
t
ξ, u

ξ,t
f ] produces:

• Energy weights: ηtξ = (βt, λt, {αt
i}i∈Ct) ∈ R2+|Ct|

+

• Friction coefficient: µt
ξ ∈ R+

• Initial port suggestion: uξ,tf ∈ Rdim(uf ) (will be refined online)

Fixed vs Learned. If gξ is not trained, simply return fixed values: βt = 2.0, λt = 1.0, αt
i =

1.5 ∀i, µt = 0.1, uξ,tf = 0. The online adaptation (Lines 22-28) will refine these values regardless
of initialization.

E.9 HAMILTONIAN ASSEMBLY

Energy Component Definitions. The potential energy is decomposed as:

Esensor(q; E , ωy) = ∥yt∥2S (sensor configuration cost) (61)

Egoal(q; E , ωg) = ∥ct − xg∥22 (goal attraction) (62)
Eobj(q;ωd) = deformation energy of shape ψt (63)

b(di(q; E);ωb) = barrier function, e.g.,
d̂2

d2i
or IPC log-barrier (64)

Total Potential (Line 15). R(qt; ηtξ, E) = Esensor + βtEgoal + λtEobj +
∑

i∈Ct
αt
ib(di)

This is the surrogate potential that aggregates contributions from all three policy domains,
weighted by the meta-policy outputs ηtξ = (βt, λt, {αt

i}).

Surrogate Hamiltonian (Line 15). H(qt, pt;ω, ξ, E) = 1
2p

⊤
t M(qt;ωM )−1pt +R(qt; ηtξ, E)

The kinetic energy uses a (possibly state-dependent) mass matrix M(qt). For planar navigation, this
is often constant: M = diag(m,m, Izz,ms, . . .) for translation, rotation, scale, and shape degrees
of freedom.

Fixed Parameters ω. As stated in the methodology section, the intra-term parameters ω =
(ωy, ωM , ωg, ωd, ωb) are assumed fixed throughout all environments. Only the dual weights ηξ
are adapted online.
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E.10 SYMPLECTIC INTEGRATION WITH PORT-HAMILTONIAN DYNAMICS

Gradient Computation (Line 16). Compute the Hamiltonian gradients:
∇pH|t =M(qt)

−1pt (65)

∇qH|t = ∇qR(qt; ηtξ, E) (66)

= ∇qEsensor + βt∇qEgoal + λt∇qEobj +
∑
i∈Ct

αt
i∇qb(di) (67)

Each gradient ∇qb(di) is computed using the chain rule: ∇qb(di) =
∂b
∂di
· ∇qdi(q; E)

Symplectic Euler with Dissipation and Port (Lines 17-18). The integration follows the port-
Hamiltonian structure from methodology equations (5-6):

pt+τ = pt − τ∇qH|t − τ µt
ξI︸︷︷︸
Γξ
f

·∇pH|t + τ I︸︷︷︸
Gξ

f

·uξ,tf (68)

qt+τ = qt + τM(qt)
−1pt+τ (69)

The dissipation term −µt
ξI · ∇pH|t = −µt

ξM(qt)
−1pt acts as velocity-proportional damping. The

port input uξ,tf provides non-conservative forcing to correct for residual errors.

Frame Policy Only. As clarified, the dissipation µt
ξ and port uξ,tf apply only to the frame pol-

icy dynamics. The sensor and shape policies have Γξ
y ≡ 0,Γξ

o ≡ 0, and no port inputs in their
local dynamics. However, since the Navigator integrates the full robot state using the composed
Hamiltonian, the dissipation and port appear in the full-state integration.

E.11 OBSERVABLE EXTRACTION

Frame-Based but Multi-Module (Line 18-19). The observable vector yt is constructed from
quantities that are **primarily derived from the frame trajectory** but require information from all
three modules:

Clearance (uses sensor + shape):

clrt = min

{
min
i
di(qt+τ ; E), min

ℓ=0,...,To

min
i
di(q

(o)
ℓ ; E)

}
(70)

This takes the minimum over both the integrated Navigator state qt+τ and all states from the shape
policy rollout {q(o)ℓ }. Computing di(q; E) requires:

• Environment E from sensor policy
• Robot geometry (radius, shape) from shape policy

Distance (frame position):
distt = ∥ct+τ − xg∥ (71)

Directly from the frame component of qt+τ .

Speed (frame velocity):
speedt = ∥M(qt+τ )

−1pt+τ∥ (72)
Computed from the updated momentum pt+τ .

Observable Vector and Target (Line 19).

yt =

[ −clrt
distt
−speedt

]
, y⋆t =

[ −msafe

distt − εprog
−max(speedt,1{clrt≥msafe}vmin)

]
(73)

Target parameters: msafe = 0.15 m (desired minimum clearance), εprog > 0 (desired progress per
step), vmin = 0.3 m/s (minimum speed when safe).

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Physical Interpretation.

• yt[0] = −clrt: negative clearance (larger value = closer to obstacles)

• Target y⋆t [0] = −0.15 means we want to maintain at least 15 cm clearance

• yt[1] = distt: current distance to goal

• Target y⋆t [1] = distt − εprog means we want to make progress (reduce distance)

• yt[2] = −speedt: negative speed

• Target encourages minimum speed vmin when clearance is safe

E.12 PARAMETER ADAPTATION VIA OBSERVABLE FEEDBACK

Active Parameter Selection (Line 21). Select a subset It ⊂ Ct of nearby obstacles (e.g., within
0.5 m) to limit the parameter vector size. Assemble:

ζt = [βt, λt, {αt
i}i∈It , µ

t
ξ]

⊤ ∈ R2+|It|+1
+ (74)

For obstacles not in It, their αi values remain unchanged from the previous step.

Secant Jacobian Update (Line 22). Approximate the Jacobian Jt ≈ ∂y/∂ζ using a rank-1 secant
update:

J̃t =
(yt − yt−τ )(ζt − ζt−τ )

⊤

∥ζt − ζt−τ∥2 + ε
∈ R3×(2+|It|+1) (75)

Apply exponential moving average for smoothing:

Jt = ρJt−τ + (1− ρ)J̃t, ρ ∈ [0, 1) (76)

Typical value: ρ = 0.9.

Tikhonov-Regularized Least Squares (Line 23). Compute the desired observable change:

∆ydest = y⋆t − yt (77)

Solve the regularized least-squares problem:

∆ζt = argmin
∆ζ
∥Jt∆ζ −∆ydest ∥22 + λζ∥∆ζ∥22 (78)

Closed-form solution:
∆ζt = (J⊤

t Jt + λζI)
−1J⊤

t ∆ydest (79)

Regularization parameter: λζ = 10−4 ensures numerical stability.

Parameter Update with Step Sizes (Line 24). Apply the update with componentwise step sizes
κ = [κβ , κλ, {καi

}, κµ]⊤ where each κj ∈ [0, 1):

ζt+τ = ΠR+

(
(1− κ)⊙ ζt + κ⊙ (ζt +∆ζt)

)
(80)

The projection ΠR+
enforces non-negativity: [ζt+τ ]j = max(0, [ζt+τ ]j).

Typical step sizes: κβ = 0.05, κλ = 0.05, καi
= 0.1, κµ = 0.02.

Unpacking (Line 25). Extract the updated parameters:

[βt+τ , λt+τ , {αt+τ
i }i∈It

, µt+τ
ξ ]← ζt+τ (81)

For obstacles j /∈ It, retain previous values: αt+τ
j = αt

j .
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E.13 PORT CORRECTION FROM RESIDUAL

Residual Computation (Line 27). After the Jacobian-based parameter update, there may remain
a residual error:

rt = ∆ydest − Jt∆ζt ∈ R3 (82)

This residual captures observable errors that cannot be corrected by reshaping the energy weights
alone (e.g., due to model mismatch or unmodeled dynamics).

Port Correction via Least Squares (Line 27). Solve a second least-squares problem to find a port
input that addresses the residual:

uξ,t+τ
f = arg min

u∈Rdim(uf )
∥Ptu− rt∥22 + λu∥u∥22 (83)

Closed-form solution:
uξ,t+τ
f = (P⊤

t Pt + λuI)
−1P⊤

t rt (84)

Clip to feasible box: uξ,t+τ
f ← clip(uξ,t+τ

f ,U) where U = [−umax, umax]
dim(uf ).

Port-Observable Jacobian (Line 28). Estimate Pt ≈ ∂y/∂uf using secant method:

P̃t =
(yt − yt−τ )(u

ξ,t
f − u

ξ,t−τ
f )⊤

∥uξ,tf − u
ξ,t−τ
f ∥2 + ε

(85)

Apply smoothing:
Pt = ρPPt−τ + (1− ρP )P̃t, ρP ∈ [0, 1) (86)

Simplified Port Jacobian. If full Pt estimation is noisy, use a simple diagonal form:
Pt = diag(0, 0, κv) (87)

where κv > 0 means the port primarily affects the speed observable (third component of yt), while
clearance and distance are controlled via energy weights.

Role of Port Correction. The port correction uξ,t+τ
f provides non-conservative forcing that can-

not be represented by a potential function. It acts as a ”corrective impulse” applied at each step to
handle:

• Residual errors after parameter adaptation
• Transient disturbances
• Model mismatch between surrogate and actual dynamics

This is computed online and is not part of the trained meta-policy gξ.

E.14 OUTPUT FORMAT

Trajectory. Return the sequence of states {zℓ = (qℓ, pℓ)}Tℓ=0 where T = tfinal is the final time step
when termination occurred.

Meta-Policy History. Return the time series of adapted parameters:

{ηℓξ, µℓ
ξ, u

ξ,ℓ
f }

T
ℓ=0 = {(βℓ, λℓ, {αℓ

i}), µℓ, uξ,ℓf }
T
ℓ=0 (88)

This enables post-hoc analysis of:

• How energy weights evolved during navigation
• Which obstacles required stronger repulsion (large αi)
• When goal attraction was increased/decreased (β)
• Friction and port correction patterns
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Optional Diagnostics. Additional outputs may include:

• Clearance history: {clrℓ}Tℓ=0

• Observable errors: {∆ydesℓ }Tℓ=0

• Hamiltonian values: {H(qℓ, pℓ)}Tℓ=0

• Residuals: {rℓ}Tℓ=0

F THEORETICAL ANALYSIS AND PROOFS

F.1 MULTI-POLICY STABILITY ANALYSIS

Theorem F.1 (Multi-Policy Stability - Complete Statement). Consider the coupled multi-policy sys-
tem with score functions {sθyy , sθff , sθoo } operating at temporal scales {Tsens, Tpath, Tint} satisfying:

Tsens

Tpath
≥ σ1 > 1,

Tpath

Tint
≥ σ2 > 1 (89)

Let each policy have Lipschitz constant Lk with respect to state and parameter variations:

∥sθkk (z1, C, t)− sθkk (z2, C, t)∥ ≤ Lk∥z1 − z2∥ (90)

∥sθ
1
k

k (z, C, t)− sθ
2
k

k (z, C, t)∥ ≤ Lk∥θ1k − θ2k∥ (91)

If the parameter updates during training satisfy:

max
k∈{y,f,o}

∥θt+1
k − θtk∥ ≤

ϵ

Lmax ·min(σ1, σ2)
(92)

where Lmax = maxk Lk, then:

1. Stability: The coupled system state remains bounded: ∥zt∥ ≤ C(1 + ∥z0∥) for some constant C.

2. Error Bound: The total navigation error satisfies: Etotal ≤ ϵ with probability 1− δ.

3. Convergence: The system converges to a neighborhood of the optimal trajectory:
limt→∞ dist(zt,P∗) ≤ ϵ.

Proof. The proof proceeds in three steps:

The scale separation assumption ensures that fast dynamics (sensor) reach approximate equilibrium
before slower dynamics change significantly. For the sensor policy operating on timescale Tsens, the
quasi-static approximation gives:

ży ≈ −γy∇zyh
θy
y (zy, Cfixed

t , t) (93)

where Cfixed
t represents slowly varying constraints from path and shape policies.

Under the Lipschitz conditions, each policy defines a contraction mapping on its domain. The
composed system inherits this property with contraction factor:

ρ = max
k

Lkτk
1 + γkτk

< 1 (94)

provided step sizes τk are chosen appropriately.

Parameter update bounds ensure that training perturbations don’t destabilize the system. The error
propagates according to:

∥Et+1∥ ≤ ρ∥Et∥+ ϵ
Lmax

min(σ1, σ2)
(95)

which converges to the stated bound under the given conditions.
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F.2 SYMPLECTIC STRUCTURE PRESERVATION

Theorem F.2 (Symplectic Preservation - Complete Statement). Let (zk, ωk) be phase space coor-
dinates with canonical symplectic form ωk =

∑
i dq

i
k ∧ dpik. The score function update:

zk,t+1 = zk,t + τkJks
θk
k (zk,t, Ct, t) (96)

where Jk =

[
0 Idk

−Idk
0

]
and sθkk = ∇hθkk , preserves the symplectic structure:

ωk(zk,t+1) = ωk(zk,t) +O(τ2k ) (97)

Proof. Since sθkk = ∇hθkk , the update is a discretized Hamiltonian flow. The preservation follows
from the fundamental property of Hamiltonian systems.

For the continuous flow żk = Jk∇hθkk (zk, t), we have:

d

dt
ωk = LXHk

ωk = 0 (98)

where L is the Lie derivative and XHk
= Jk∇hθkk is the Hamiltonian vector field.

The discretization introduces O(τ2k ) error due to the symplectic Euler scheme, but the leading-order
symplectic structure is preserved.

F.3 SAMPLE COMPLEXITY ANALYSIS

Theorem F.3 (Sample Complexity - Complete Statement). For error tolerance ϵ > 0 and failure
probability δ ∈ (0, 1), consider training three independent score functions {sθkk }k∈{y,f,o} with
phase space dimensions {dy, df , do}.
Under standard smoothness and concentration assumptions, the total sample complexity is:

Ntotal =
∑

k∈{y,f,o}

Nk (99)

where each policy requires:

Nk = O

(
d2kL

2
k

ϵ2k
log

(
3

δ

))
(100)

with Lipschitz constants Lk and error allocation ϵk satisfying
∑

k ϵk ≤ ϵ.
This achieves linear scaling Ntotal = O(

∑
k dk) compared to joint training requiring Njoint =

O(
∏

k dk).

Proof. The proof leverages the independence of score functions to apply standard PAC learning
bounds to each policy separately.

For each policy k, the empirical risk minimization:

θ̂k = argmin
θk

1

Nk

Nk∑
i=1

∥hθkk (zk,i)− ĥref
k,i∥2 (101)

achieves generalization error ϵk with probability 1 − δ/3 when Nk ≥ C
d2
kL

2
k

ϵ2k
log(3/δ) for some

universal constant C.

The union bound over three policies gives total failure probability δ, and the error allocation ensures
total error

∑
k ϵk ≤ ϵ.

The linear scaling follows from independence: total samples =
∑

kNk, compared to joint training
on the (dy + df + do)-dimensional joint space requiring exponentially more samples.
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G IMPLEMENTATION DETAILS

G.1 SPATIAL DATA STRUCTURES

Each policy maintains a spatial index Tk, can be implemented as a dynamic octree Ellendula &
Bajaj (2025), which supports the following operations and has been proved to the optimal structure
for spatio-temporal maintenance:

• Insert: O(log n) insertion of new spatial data.

• Query: O(log n+ k) for k-nearest neighbor queries.

• Update: O(log n) modification of existing entries.

• Rebalance: O(n log n) periodic rebalancing for efficiency.

The spatial indices enable multi-kernel evaluation: each score function query reuses the same
O(log n + k) neighbor search across multiple energy kernels, reducing computational complexity
from O(n2) dense evaluation to O(n log n) sparse computation.

G.2 BASELINE IMPLEMENTATIONS (DETAILED)

We provide here the full technical details of all baseline planners evaluated.

Rigid A*. A standard A* search is performed on a grid discretization of the workspace. Obstacles
are inflated by the nominal rest radius rrest of the deformable ring, such that the resulting path is
collision-free for a rigid disc of radius rrest. This serves as a conservative reference planner.

Deformable A*. Clearance at each grid cell x is defined as c(x), the distance to the nearest obsta-
cle boundary. Feasibility requires c(x) ≥ rmin. The edge cost between cells u, v is augmented by a
deformation penalty:

cost(u, v) = ℓ(u, v) + β
2

(
ϕ(c(u)) + ϕ(c(v))

)
ℓ(u, v), ϕ(c) = λmax

(
0, rrest

c+ϵ − 1
)2
,

where ℓ(u, v) is the Euclidean distance, and β, λ control penalty strength. This formulation allows
the planner to compress through tight gaps when unavoidable, while encoding an energetic cost.

Potential Field (Stagewise). Navigation is driven by an attractive force toward the stage exit (or
final goal in the last stage), combined with repulsive forces from local obstacles and soft penalties
for leaving the stage bounds. Speed saturation and emergency braking near obstacles are applied for
stability.

CBF (Stagewise). At each step, a nominal control toward the stage exit is filtered through a Con-
trol Barrier Function (CBF) quadratic program:

u⋆ = argmin
u
∥u− unom∥2 s.t. ∇h(x) · u+ γh(x) ≥ 0,

where h(x) encodes the clearance from visible obstacles. This ensures forward invariance of the
safe set within each stage.

DWA (Stagewise). We implement a Dynamic Window Approach (DWA) adapted to the stagewise
setting. Candidate (v, ω) velocity pairs are sampled within dynamics limits, trajectories are rolled
out over a prediction horizon, and scored based on heading alignment, distance to target, velocity,
and clearance with respect to local obstacles only. Stage boundary penalties are also included. This
contrasts with the conventional global DWA, which assumes full obstacle visibility; here we show
the stagewise variant for fairness, though it is known to underperform due to rigid-body kinematic
assumptions.
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Categories.

• Global planning: Rigid A*, Deformable A*.

• Local reactive: Potential Field (staged), CBF (staged), DWA (staged).

• Ours: GRL-SNAM (local staged).

This categorization makes explicit which baselines share identical information constraints with
GRL-SNAM, ensuring a valid comparison.

H EXAMPLE:

Figure 7: Online navigation of the hyperelastic ring through cluttered environments. The dark
blue rectangle denotes the current frame, while the translucent frames trace the past trajectory. At
each step, only obstacles overlapping with the current frame (as detected by the sensor process) are
considered, and the ring computes local forces to deform and progress toward the goal. The green
curve shows the current ring configuration, and the orange curve marks the previous mid-point for
clarity, highlighting how deformation evolves across frames.

I EXPERIMENTAL EVALUATION

We evaluate GRL-SNAM across multiple dimensions that highlight the unique capabilities of our
geometric approach compared to standard reinforcement learning and classical navigation methods.
Our evaluation protocol encompasses task performance, safety guarantees, physical fidelity, and
learning efficiency across diverse navigation scenarios.

I.1 BASELINE PLANNERS

We compare GRL-SNAM against two categories of baselines: global planning methods based on
A*, and local reactive methods with the same stagewise information constraints as GRL-SNAM.
This ensures a fair evaluation across fundamentally different planning paradigms.

Global Planning Methods

• Rigid A*: The deformable ring is replaced with a rigid disc of radius rrest. Obstacles are
inflated by rrest, and a standard 8-connected A* is run on the occupancy grid. This produces
feasible shortest paths for a rigid robot.

• Deformable A*: A clearance-aware variant of A* augments the step cost with deformation
penalties that increase as clearance approaches the minimum admissible radius rmin. This
allows paths that squeeze through narrow gaps but penalizes excessive compression.
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Local Reactive Methods To ensure fairness, all reactive methods use the same stage manager as
GRL-SNAM: identical stage size, overlap, obstacle visibility, and advancement logic. Each method
navigates stage exit to stage exit until the goal is reached:

• Potential Field (Staged): Attractive force toward stage exit plus repulsive forces from
local obstacles and stage boundaries.

• CBF (Staged): Quadratic-program filter enforces safety constraints with respect to visible
obstacles at each timestep.

• DWA (Staged): Velocity samples (v, ω) are rolled out over a short horizon using only local
obstacles and stage bounds. Unlike the global DWA, which assumes full obstacle visibility,
this stagewise variant ensures equal information constraints, though it performs poorly due
to rigid-body assumptions.

Categorization Rigid and Deformable A* form the global planning references, providing Lref for
SPL and detour calculations. The stagewise Potential Field, CBF, and DWA baselines constitute the
local reactive category under identical information constraints. GRL-SNAM belongs to the same
local category, enabling a fair head-to-head comparison.

I.2 EXPERIMENTAL SETUP

We evaluate GRL-SNAM in procedurally generated 2D deformable navigation tasks, where a hyper-
elastic ring must traverse cluttered environments with narrow gaps and varying obstacle densities.
Each environment is randomized in obstacle positions, radii, and densities to span a spectrum of
navigation difficulty. The robot perceives only a local window of size 2d̂ × 2d̂, from which we
construct a Hamiltonian energy functional.

Hamiltonian Decomposition The energy functional decomposes into:

1. Goal-directed quadratic potential Fg

2. Barrier potentials Fbs from signed distance fields

3. Friction/regularization terms with adaptive coefficients (β, γ, α) modulated by context en-
coders (LSTM)

Offline, GRL-SNAM integrates reduced Hamiltonian gradients to generate local trajectories. Online,
it fuses newly sensed rewards Renv with the offline surrogate, adaptively refining navigation.

Evaluation Metrics We evaluate all methods using:

• Success Rate: Fraction of episodes reaching the goal

• SPL: Success weighted path efficiency relative to A*

• Detour Ratio: Executed path length relative to A*

• Minimum and Mean Clearance: Distance to nearest obstacle along the trajectory

• Smoothness: Average turning cost (mean absolute change in heading)

• Collisions: Number of obstacle intersections

• Sample Efficiency: Normalized area under curve (AUC) for success and SPL, and steps
required to reach 80% success or SPL ≥ 0.7

Results are presented in a question–answer format, emphasizing experimental questions and the
corresponding insights.

I.3 RESULTS: NAVIGATION QUALITY UNDER MINIMAL SENSING

We first evaluate GRL-SNAM against two representative baselines: (i) Potential Fields (PF),
a purely reactive controller that maps obstacle proximity into repulsive forces, and (ii) Control
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Table 4: Comparison of navigation quality across methods (success-only runs). GRL-SNAM
achieves near-CBF path efficiency while consuming the same minimal mapping budget as PF. SPL
= Success weighted by Path Length; Detour = executed path length / shortest path length.

Method SPL ↑ Detour ↓ Min. Clearance (m) ↑ Mapping Ratio (%) ↓
PF 0.77 1.42 0.18 10.3
CBF 0.96 1.04 0.32 11.2
GRL-SNAM 0.95 1.09 0.26 10.7

Barrier Functions (CBF), a model-based method that enforces hard safety constraints via online
quadratic programs. Both baselines use the same sensing budget as GRL-SNAM.

Environments consist of cluttered 2D workspaces with obstacles of varying density. Each trial starts
from a random initial pose with a fixed goal. Performance is averaged across 50 runs per environ-
ment. Results focus on successful runs only to highlight navigation quality rather than raw failure
rates.

Q1: How efficiently do we trade mapping for navigation quality? Table 4 shows that GRL-
SNAM matches the SPL and detour ratios of CBF despite using the same minimal map coverage
as PF. This demonstrates that our stagewise Hamiltonian refinement extracts more value per sensed
unit of the environment, trading mapping effort for near-optimal navigation.

Q2: What is the minimal mapping needed to reliably solve tasks? With ∼10–11% map cov-
erage, GRL-SNAM already achieves SPL ≥ 0.95 and detour within 9% of the A* shortest path.
PF fails under the same budget, while CBF requires identical map coverage. Thus, GRL-SNAM
reliably solves tasks under minimal sensing, validating the minimal mapping suffices principle.

Q3: Is the mapped information aligned with the subtask? Unlike PF, which produces repul-
sions indiscriminately, or CBF, which enforces constraints globally, GRL-SNAM’s mapping is task-
aligned: local patches are encoded into Hamiltonian terms that directly drive subtasks (goal at-
traction, barrier avoidance). The result is that every bit of mapped information yields functional
guidance, as evidenced by SPL and detour staying close to CBF even under tight sensing budgets.

Key Insight GRL-SNAM shows that Hamiltonian-structured policies can achieve CBF-level nav-
igation quality while retaining the lightweight sensing footprint of PF. The slight clearance gap
relative to CBF reflects a deliberate trade-off: we sacrifice hard feasibility for adaptability and feed-
forward inference, enabling real-time deployment in SNAM settings.

I.4 RESULTS: COMPREHENSIVE NAVIGATION COMPARISON

Q4: Does GRL-SNAM outperform classical and reactive planners in both in-distribution
(Test-ID) and out-of-distribution (Test-OOD) settings? Yes. Figure 9 summarizes the compari-
son between our method and five baselines: Rigid A*, Deformable A*, Potential Field, Control Bar-
rier Functions (CBF), and Dynamic Window Approach (DWA). GRL-SNAM achieves near-perfect
success rates (≈ 100%) across both Test-ID and Test-OOD cases, while all baselines degrade signif-
icantly in cluttered or novel environments. Rigid A* succeeds moderately but requires inflated radii
and yields jerky, piecewise paths. Deformable A* is less stable and highly sensitive to parameteri-
zation. Reactive baselines (Potential Field, CBF, DWA) frequently fail to reach the goal, producing
oscillatory or unsafe behaviors. Qualitative rollouts (Figure 8) further illustrate the superiority of
GRL-SNAM in complex cluttered environments.

Q5: Does GRL-SNAM yield more efficient and smoother trajectories? Yes. The Success-
weighted Path Length (SPL) distributions (Figure 9, top-middle) show that GRL-SNAM consis-
tently stays near optimal efficiency (SPL ≈ 1.0) with low variance. In contrast, A* variants incur
detours, while reactive baselines either collapse to zero SPL (failures) or take excessively long paths.
Furthermore, GRL-SNAM generates the smoothest trajectories, with the lowest average turning an-
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Figure 8: Qualitative path comparison on a representative Test-OOD environment. Each panel
shows a single rollout with success and SPL annotated in the title. GRL-SNAM produces a smooth,
short, and clearance-preserving path that threads the narrow passage. Kinematic and dynamic RL
policies (PPO/TRPO/SAC-Kin/Dyn) typically stall, collide, or wander far from the goal, while the
best coefficient-based variants (PPO/TRPO/SAC-Coef) reach the goal but hug obstacles and exhibit
lower path efficiency than GRL-SNAM. Global planners (RigidA*, DeformA*) succeed but follow
jagged or overly conservative routes, and reactive baselines (Potential Field, CBF, DWA) either
oscillate, graze obstacles, or take longer, less structured paths.

Figure 9: Main comparison on Test-ID and Test-OOD. GRL-SNAM achieves near-perfect suc-
cess, high SPL, smooth and safe trajectories. Classical (Rigid/Deform A*) and reactive (Potential
Field, CBF, DWA) baselines are either unsafe, inefficient, or fail completely.

gles (Figure 9, bottom-middle), ensuring physically realizable motions compatible with hyperelastic
ring constraints.

40



2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Figure 10: Quantitative validation of GRL-SNAM. Top: clearance stays above collision threshold,
ensuring safety. Middle: force magnitudes adapt to environment complexity. Bottom: coefficients
(β, γ, α) evolve dynamically, confirming online adaptation and stagewise refinement of the Hamil-
tonian.

Q6: Does GRL-SNAM preserve safety margins? Yes. The minimum clearance analysis (Fig-
ure 9, bottom-left) shows that GRL-SNAM maintains consistently positive obstacle clearance,
whereas A* occasionally cuts too close and reactive baselines often enter collision regimes. The
Pareto frontier plot (Figure 9, bottom-right) highlights that GRL-SNAM uniquely dominates the
safety–performance trade-off, achieving both high SPL and high clearance, while all baselines are
Pareto-dominated.

I.5 RESULTS: HAMILTONIAN FIELD ANALYSIS

Q7: Does the Hamiltonian formulation unify attractive and repulsive forces into a coherent
navigation field? Yes. Figure 4 shows the isolated goal force Fg (left), the barrier force Fbs

(middle), and their differential composition F = βFg + γFbs (right). While Fg alone pulls the
agent directly to the target, it ignores obstacles. Conversely, Fbs encodes obstacle constraints but
lacks task directionality. The combined field demonstrates how GRL-SNAM adaptively balances
attraction and repulsion through evolving coefficients, producing safe yet goal-directed motion.

Q8: How does GRL-SNAM differ from ordinary online adaptation? Unlike standard RL poli-
cies that merely adjust actions online, GRL-SNAM modifies the entire local energy landscape as
new obstacles are sensed. Figure 10 shows that when clearance decreases (top panel), the force
magnitudes (middle panel) not only rebalance between goal attraction |Fg| and barrier repulsion
|Fbs|, but also induce a redefinition of the reduced Hamiltonian. This is reflected in the evolving
coefficients (β, γ, α) (bottom panel), which do not act as heuristic gains but as dual variables gov-
erning stagewise refinement. Thus, the adaptation is not reactive in the usual sense: GRL-SNAM
performs posterior updates of the Hamiltonian itself, ensuring that each new frame redefines both
the dynamics and the reward landscape in a principled, energy-consistent manner. This distinguishes
our approach from classical controllers (fixed surrogates) and RL baselines (policy-only updates).

Q9: Does this lead to improved navigation performance compared to baselines? Yes. Across
procedurally generated test cases, GRL-SNAM consistently achieves higher success and SPL while
maintaining larger clearances than rigid A* (fixed radius assumption), deformable A* (static squeez-
ing penalty), and reactive controllers (DWA, CBF).

Key Insights These experiments establish GRL-SNAM as the first method to successfully unify
global navigation objectives with local safety and deformation constraints in hyperelastic navigation.
Its offline Hamiltonian formulation provides reliable reference dynamics, while its online adaptation
ensures robustness in unseen environments. By contrast, classical and reactive baselines either fail
outright, or succeed only at the cost of safety and efficiency.
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Variant Collisions ↓ MinClr ↑ Barrier Viol. ↓ Progress/SPL ↑ Smoothness ↓ Observed behavior

wfric = 0, wmulti = 0 High (×) < 0 High Poor Poor Penetrates obstacles
wfric = 0, wmulti = 0.5 Low (✓) High Low Low OK Very slow, conservative
wfric = 0.1, wmulti = 0 None (✓) High Low High Best Smooth, stable, fast
wfric = 0.1, wmulti = 0.5 None (✓) Slightly lower Low High Good Stable; tighter margins

Table 5: Ablation of loss terms. Qualitative summary from consistent runs on Test-ID/OOD. Ar-
rows denote desired direction. Numeric means±std can replace the icons once collected.

I.6 ABLATION STUDY: LOSS COMPONENTS

Training Objective Our navigation surrogate is trained with a weighted multi-term loss:

L = wtrajLtraj + wvelLvel + wfrictionLfriction + wmultiLmulti, (102)

where Ltraj and Lvel supervise trajectory and velocity matching, Lfriction = ∥γ−γo∥22 encourages the
learned damping to match the stagewise reference, and Lmulti penalizes failures under short rollouts
from perturbed near-obstacle starts.

Ablated Settings We toggle Lfriction and Lmulti to analyze their contribution:

• No friction, no multi (wfric = 0, wmulti = 0): Agent penetrates obstacles due to under-
damped, unstable dynamics.

• Multi only (wfric = 0, wmulti = 0.5): Agent avoids collisions but moves very slowly,
sacrificing progress.

• Friction only (wfric = 0.1, wmulti = 0): Produces smoother, stable paths, eliminating
penetrations and maintaining progress.

• Friction + Multi (wfric = 0.1, wmulti = 0.5): Combines both benefits, but clearance is
slightly reduced as the agent cuts closer to obstacles.

Analysis Lfriction is critical for stability and smoothness, whileLmulti improves robustness in clutter
but can damp progress if over-weighted. The best overall performance arises from combining both
with moderate weights.

Lfriction aligns dissipation and suppresses oscillations, yielding smoother, well-damped trajectories
and preventing barrier “ringing” that causes penetrations when wfric = 0. Lmulti trains for near-
contact robustness by sampling perturbed starts; if over-weighted it down-scales the goal term, hence
slow motion. Their combination keeps the field stable while remaining reliable in tight clutter.

I.7 ROBUSTNESS ANALYSIS

Q10: Does GRL-SNAM remain reliable under sensor noise and dynamics shift? Yes. To
evaluate robustness, we systematically varied sensing fidelity (position jitter, radius estimation er-
ror, missed obstacles, and false positives) and dynamics fidelity (velocity perturbation, damping
coefficient γ). Each start–goal trial was rolled out across a grid of perturbation levels, producing a
total of N = nenv × ntrials × nperturbations runs. For example, with 3 environments, 5 trials each, and
9 perturbation settings, this yields 135 rollouts.

Table 6: Robustness of GRL-SNAM to sensing noise and dynamics perturbations. Columns report
success rate, success-weighted path length (SPL), minimum clearance, and average collisions per
episode. Arrows indicate direction of improvement.

Perturbation Level Success (%) SPL ↑ Min. Clearance (m) ↑ Collisions ↓
Nominal (0.0, 1.0) 98.7 0.82 0.36 0.3
Mild Noise (0.05, 0.9) 91.3 0.79 0.33 0.7
Severe Noise (0.10, 0.7) 87.1 0.72 0.29 1.1
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Key Insights Despite significant perturbations, GRL-SNAM maintains high success rates and
graceful degradation in SPL and clearance. Unlike fixed surrogate approaches that can fail catas-
trophically under noise, our differential Hamiltonian adaptation continuously re-weights local
forces, enabling stability even when sensing is imperfect or dynamics deviate from training. This
highlights the feedforward, stagewise advantage of GRL-SNAM: it can adjust online without requir-
ing adjoint or MPC-style corrections, ensuring reliable navigation in real-world uncertain conditions.

USE OF LARGE LANGUAGE MODELS (LLMS)

All content of the paper was written by the authors. LLMs were used for the aid of code implemen-
tation, formatting LaTeX tables/figures, and spelling/grammar checking.
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