

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GRL-SNAM: GEOMETRIC REINFORCEMENT LEARNING WITH DIFFERENTIAL HAMILTONIANS FOR NAVIGATION AND MAPPING IN UNKNOWN ENVIRONMENTS

Anonymous authors

Paper under double-blind review

ABSTRACT

We present GRL-SNAM, a geometric reinforcement learning framework for Simultaneous Navigation and Mapping in unknown environments. GRL-SNAM differs from traditional SLAM and other reinforcement learning methods by relying exclusively on local sensory observations without constructing a global map. Our approach formulates navigation and mapping as coupled dynamics on generalized Hamiltonian manifolds: sensory inputs are translated into local energy landscapes that encode reachability, obstacle barriers, and deformation constraints, while policies for sensing, planning, and reconfiguration evolve stagewise under Differential Policy Optimization (DPO). A reduced Hamiltonian serves as an adaptive score function, updating kinetic/potential terms, embedding barrier constraints, and continuously refining trajectories as new local information arrives. We evaluate GRL-SNAM on 2D deformable navigation tasks, where a hyperelastic robot learns to squeeze through narrow gaps, detour around obstacles, and generalize to unseen environments. We evaluate GRL-SNAM on procedurally generated 2D deformable-robot tasks (hyperelastic ring) with narrow gaps and clutter, comparing against *local reactive* baselines (PF, CBF, staged DWA) and *global* A* references (rigid, clearance-aware) under identical stagewise sensing constraints. GRL-SNAM matches near-CBF path quality while using the minimal map coverage of PF, preserves clearance, generalizes to unseen layouts, and demonstrates that Hamiltonian-structured RL enables high-quality navigation through *minimal exploration* via local energy refinement rather than global mapping.

1 INTRODUCTION

Reinforcement learning has achieved remarkable successes in high-dimensional control, yet its application to real-world continuous navigation remains fundamentally limited. Long-horizon reasoning, multi-scale decision making, and online adaptation pose challenges that overwhelm existing methods. Model-free RL consumes millions of interactions, while hierarchical variants introduce brittle complexity. In simultaneous navigation and mapping (SNAM), where agents must traverse and construct evolving environmental representations, these limitations become prohibitive.

At its core, the difficulty arises because conventional RL policies are *structureless*. They treat navigation as black-box optimization, ignoring the geometric and physical principles that make locomotion stable, adaptive, and safe. Without inductive bias, policies overfit training environments, fail under distribution shift, and collapse during long rollouts.

1.1 BEYOND BELLMAN OPTIMIZATION: PURELY FEEDFORWARD CONTROL:

Our framework does not optimize a value function via the Bellman equation. Standard RL algorithms hinge on recursive bootstrapping for estimating returns, propagating value updates, and iteratively improving policies. This induces high sample complexity, instability, and delayed credit assignment, especially in navigation with long horizons.

In contrast, our approach is **purely feedforward**: policies emerge as direct gradient flows of Hamiltonian energies, without value iteration. Navigation decisions are computed in a single pass from

054 local sensory input and the reference Hamiltonian, bypassing dynamic programming altogether.
 055 This eliminates the need for rollout-based value propagation, yielding stable training, low variance
 056 adaptation, and sample-efficient online updates.
 057

058 1.2 KEY INSIGHT: HAMILTONIAN STRUCTURE AS NAVIGATION INDUCTIVE BIAS 059

060 We propose addressing these limitations by grounding RL in **Hamiltonian mechanics**. Our central
 061 insight is that navigation can be framed as learning energy functionals:
 062

$$063 \quad \mathcal{H}(q, p) = K(p) + P(q) \quad (1)$$

064 where kinetic and potential energies encode control objectives, constraints, and adaptation strategies.
 065 This formulation introduces three structural advantages:
 066

067 (1) **Energy conservation** stabilizes long-horizon rollouts by preventing accumulation of numerical
 068 errors. (2) **Symplectic geometry** naturally separates fast reactive dynamics from slow strategic
 069 planning, addressing multi-scale temporal coordination. (3) **Barrier encoding** integrates safety and
 070 collision avoidance directly into potential functions, eliminating fragile reward shaping.

071 **Hamiltonian structure transforms policy optimization into Differential Policy Optimization (dfPO)**
 072 Nguyen & Bajaj (2025), where policies emerge as gradient flows of learned energies that respect
 073 geometry, conserve invariants, and generalize across environments. We not only compare our al-
 074 gorithm against standard deep reinforcement learning baselines but also focus our comparisons on
 075 task-specific navigation and mapping baselines such as PF, CBF, and A*.

077 1.3 OFFLINE-ONLINE HAMILTONIAN SYNERGY 078

079 We distinguish between complementary learning regimes that exploit this geometric structure:
 080

081 **Offline learning** discovers reference Hamiltonians h^{θ^*} trained on trajectory data, capturing funda-
 082 mental multi-scale navigation dynamics in local frames. These provide stable geometric priors
 083 encoding essential coupling between sensing, planning, and deformation.

084 **Online adaptation** fuses new environmental context into learned Hamiltonians through contextual
 085 corrections: $h^{\text{adapted}} = h^{\text{ref}} + \Delta h^{\text{context}}$. This creates conservative adaptation: systems default to
 086 learned physics-based behaviors while adding minimal corrections for environmental variations.

087 The synergy transforms every offline policy into a *reference Hamiltonian* and every online update
 088 into a *geometric alignment step*. Navigation emerges from meta-policies that parse environments,
 089 assemble energy landscapes, and integrate them through symplectic dynamics.

091 1.4 CONTRIBUTIONS: 092

093 This work establishes **GRL-SNAM** as a new approach beyond structureless policy learning. Our
 094 contributions are:
 095

- 096 1. **Hamiltonian RL framework:** Allows adaptable integration of classical mechanics into
 097 RL for navigation, treating rewards as energies and policies as symplectic flows.
- 098 2. **Multi-scale geometric coordination:** Differential policies for sensing, planning, and adap-
 099 tation unified through shared energy formulations, achieving temporal scale separation
 100 without manual hierarchy design.
- 102 3. **Physics-grounded adaptation:** Principled offline-online decomposition where stable ref-
 103 erence dynamics adapt through geometric alignment rather than catastrophic relearning.
- 104 4. **Theoretical guarantees:** Symplectic structure preservation ensures stability, while inde-
 105 pendent policy learning achieves linear sample complexity scaling.
- 106 5. **Empirical validation:** Hyperelastic ring navigation demonstrates superior sample effi-
 107 ciency and generalization compared to A* and CBF baselines.

2 RELATED WORK

We focus on structure-preserving, deployable navigation with deformable bodies. Our work intersects advances in geometric learning, safety-critical control, and deformable robot navigation.

Mathematical Foundations for RL Navigation. Most navigation RL methods operate in Euclidean spaces using standard PPO Schulman et al. (2017) or TD3 Fujimoto et al. (2018) formulations without geometric constraints. Geometric approaches include SE(3) equivariant policies Hoang et al. (2025) for manipulation and Riemannian safe navigation Klein et al. (2023) using tangent space projections. Hamiltonian neural networks Desai et al. (2021) demonstrate superior learning dynamics through symplectic structure but remain limited to simple control tasks.

Safety-Critical Navigation. Control Barrier Function (CBF) integration with RL achieves formal safety guarantees Li et al. (2023), but treats constraint satisfaction as orthogonal to navigation optimality, often resulting in conservative behaviors. Our Hamiltonian formulation integrates safety constraints directly within the energy structure.

Deformable Robot Navigation. Recent work demonstrates ring-like navigation through pre-programmed strategies: aerial gap navigation via fixed Liquid Crystal Elastomer responses Qi et al. (2024) and HAVEN Mulvey & Nanayakkara (2024) using predetermined shape-changing sequences. These approaches rely on offline parameter optimization followed by deterministic execution—they cannot adapt deformation strategies online as environmental conditions change.

Neural Scene Representations. NeRF-based SLAM methods like NICE-SLAM Zhu et al. (2022) provide rich environmental representations that complement our energy-based navigation formulation by supplying obstacle and free-space information for barrier and goal potential computation.

Simultaneous Navigation and Mapping: Most SNAM approaches prioritize building detailed maps before navigation. SGoLAM Kim et al. (2021) couples goal localization with occupancy mapping, CMP Gupta et al. (2019) integrates a differentiable planner into learned mapping, and CL-SLAM Vödisch et al. (2023) maintains maps for long-term adaptability. In contrast, our GRL-SNAM framework aims to *reach goals via high-quality, well-weighted paths while mapping as little of the environment as possible*. To our knowledge, no prior work explicitly targets minimal exploration; our method introduces progressive path refinement, continually improving least-cost trajectories as new observations arrive.

Positioning. GRL-SNAM addresses key gaps by extending Hamiltonian mechanics from simple control to complex navigation requiring sensing, planning, and deformation. Unlike existing methods that require manual task decomposition or rely on pre-programmed strategies, our differential multi-policy architecture learns specialized policies naturally coupled through shared Hamiltonian energy formulations. The symplectic structure ensures stable coordination across temporal scales with formal convergence guarantees, bridging theoretically principled geometric methods with practical navigation frameworks.

3 METHODOLOGY

We present GRL-SNAM (Geometric Reinforcement Learning for Spatial Navigation and Manipulation): a Hamiltonian-structured navigator that unifies offline physics learning with online adaptive correction through black-box modular policies. The code for this paper is available at: [Code](#)

We formulate navigation in unknown environments as iterative energy minimization with active response of dynamical constraints. Consider a deformable robot with state $q_t = (c_t, \theta_t, y_t, \psi_t) \in Q$ navigating from x_0 to x_g through unknown obstacles characterized by binary occupancy $I : \mathbb{R}^2 \rightarrow \{0, 1\}$. c_t and θ_t are robot frame coordinates and axis angle w.r.t. world coordinate, while y_t and ψ_t are robot sensory and object configuration state respectively. We denote each fixed local scenario as an environment configuration \mathcal{E} . The goal of GRL-SNAM is to i) identify response from three offline solvers ii) build a digital-twin style surrogate and give feedback of each black-box across stages (at the time scale when \mathcal{E} updates). To achieve both goals, we first address the Hamiltonian energy setup attached to each fixed scenario \mathcal{E} , then one explain what could be the connection between sensory, movement and reconfiguration solvers after integration of expected Hamiltonians. Lastly,

162 we explain what feedback one can provide via interaction with offline solvers that online correction
 163 can inject partially or fully by surgery of energy functionals.
 164

165 **3.1 ONLINE STAGEWISE ADAPTATION**
 166

167 Before turning to the experimental evaluation, we briefly summarize how the Hamiltonian structure
 168 (§3.2), the modular policy architecture (§3.3), and the meta-learning framework (§C.4) are combined
 169 at test time into a unified navigation system.
 170

171 **Overview.** At each navigation stage, the navigator sequentially queries the three offline-trained
 172 policies π_y (sensor), π_f (frame/FPE), and π_o (object/reconfig) to obtain state-dependent control
 173 proposals. The meta-policy g_ξ maps the current environment and policy responses to environment-
 174 dependent energy weights and friction, from which we assemble a surrogate Hamiltonian and inte-
 175 grate the corresponding port-Hamiltonian dynamics with dissipation and port correction. Observable
 176 quantities such as clearance, goal progress, and speed are then used to perform a short Jacobian-
 177 based update of the active energy weights and friction coefficients, yielding a stagewise adaptation
 178 loop. The full pseudo-code, including initialization, query protocols, energy assembly, integration
 179 details, and adaptation rules, is deferred to Algorithm 3 in Appendix E.
 180

181 **3.2 NAVIGATION AS HAMILTONIAN OPTIMIZATION**
 182

183 **From optimal control to Hamiltonian via Legendre–Fenchel conjugacy (fixed \mathcal{E}).** Fix an
 184 environment \mathcal{E} and consider the control-affine dynamics $\dot{q} = f(q) + A(q)u$ with stage cost
 185 $L(q, u; \mathcal{E}) = -\mathcal{R}(q; \mathcal{E}) + \varphi(u)$, where \mathcal{R} encodes goal/deflection/barrier terms and φ penalizes
 186 effort. Pontryagin’s principle introduces a costate p and the *control Hamiltonian* $\mathcal{H}(q, p, u; \mathcal{E}) :=$
 187 $p^\top(f(q) + A(q)u) - L(q, u; \mathcal{E})$. Eliminating u amounts to taking the Legendre–Fenchel conjugate
 188 of φ :

$$\begin{aligned} \mathcal{H}(q, p; \mathcal{E}) &= \sup_u \{p^\top A(q)u - \varphi(u)\} + p^\top f(q) + \mathcal{R}(q; \mathcal{E}) \\ &= \varphi^*(A(q)^\top p) + p^\top f(q) + \mathcal{R}(q; \mathcal{E}), \end{aligned} \quad (2)$$

191 provided φ is proper, closed, and strictly convex. The optimal feedback is $u^*(q, p) =$
 192 $\nabla \varphi^*(A(q)^\top p)$. In the common quadratic case $\varphi(u) = \frac{1}{2}u^\top \Phi u$ (with $\Phi \succ 0$ as a kinetic “term”),
 193 we have $\varphi^*(u) = \frac{1}{2}u^\top \Phi^{-1}u$, hence

$$\mathcal{H}(q, p; \mathcal{E}) = \frac{1}{2}p^\top(A(q)\Phi^{-1}A(q)^\top)p + p^\top f(q) + \mathcal{R}(q; \mathcal{E}). \quad (3)$$

194 Identifying the *inverse mass* as $M(q)^{-1} := A(q)\Phi^{-1}A(q)^\top$ and (optionally) absorbing $p^\top f(q)$ into
 195 a gauge term (or set $f(q) \equiv 0$) yields the mechanical form $\mathcal{H}(q, p; \mathcal{E}) = \frac{1}{2}p^\top M(q)^{-1}p + \mathcal{R}(q; \mathcal{E})$.
 196 The canonical equations, $\dot{q} = \nabla_p \mathcal{H}$ and $\dot{p} = -\nabla_q \mathcal{H}$, are therefore the *Hamiltonian outcome* of
 197 the fixed- \mathcal{E} optimal control problem. Soft constraints (barriers) simply contribute additively to \mathcal{R} ;
 198 nonconservative effects can be modeled as port inputs without altering the conjugate construction
 199 (esp. friction). Thus, for each scenario \mathcal{E} , the inner motion law is Hamiltonian with kinetic energy
 200 induced by the control penalty via conjugacy and potential shaped by the environment. Note that
 201 motion planning offline policy may or may not follow the surrogate Hamiltonian one wish to align
 202 but we calibrate the surrogate by interaction with response (and in this paper we particularly focus
 203 on discrete (q, p) dynamics via aggregations).
 204

205 **Search space for the Hamiltonian.** The goal of navigator is to learn to search in the energy space
 206 of \mathcal{H} . The Hamiltonian defined in 3 is a function on the cotangent bundle T^*Q :

$$H \in \mathcal{H} := \{H(q, p; \mathcal{E}) = \frac{1}{2}p^\top M(q)^{-1}p + \mathcal{R}(q; \mathcal{E}) \mid M : \mathcal{Q} \rightarrow \mathbb{S}_{++}^2, \mathcal{R} \in \mathcal{R}\}.$$

207 We regard \mathcal{R} as a Hilbert space of admissible potentials on \mathcal{Q} (and w.r.t. environmental configu-
 208 ration) (e.g. $L^2(\mathcal{Q} \times \mathcal{E})$). For planar navigation we *restrict* the search to the environment-indexed
 209 linear cone generated by task energies, where each policy governs a distinct energy term and a joint
 210 dynamical barrier term. We model the meta navigator by a parametrized map $\mathcal{E} \rightarrow \eta_\xi(\mathcal{E})$ producing
 211 nonnegative dual weights that shape the primal potential. In general, each energy term may itself be
 212 parametrized:
 213

$$H(q, p; \omega, \xi, \mathcal{E}) = \frac{1}{2}p^\top M(q; \omega_M)^{-1}p + \mathcal{R}(q; \omega, \eta_\xi(\mathcal{E})),$$

$$\begin{aligned}
216 \quad \mathcal{R}(q; \omega, \eta_\xi(\mathcal{E})) &= E_{\text{sensor}}(q; \mathcal{E}, \omega_y) + \beta(\mathcal{E}) E_{\text{goal}}(q; \mathcal{E}, \omega_g) + \lambda(\mathcal{E}) E_{\text{obj}}(q; \omega_d) \\
217 \quad &+ \sum_{i \in \mathcal{C}_t(\mathcal{E}, q)} \alpha_i(\mathcal{E}, t) b(d_i(q; \mathcal{E}); \omega_b),
\end{aligned} \tag{4}$$

221 with $\eta_\xi(\mathcal{E}) = (\beta(\mathcal{E}), \lambda_{\text{obj}}(\mathcal{E}), \{\alpha_i(\mathcal{E}, t)\}) \in \mathbb{R}_+^{m(\mathcal{E}, t)}$. Here $\omega = (\omega_y, \omega_M, \omega_g, \omega_d, \omega_b)$ are *intra-term* parameters (e.g. metric, goal shape, deformation model, barrier template), while η_ξ learns the *inter-term* tradeoffs by mapping the environment \mathcal{E} to dual weights. The cardinality $m(\mathcal{E}, t) = 2 + |\mathcal{C}_t(\mathcal{E}, q)|$ is environment/active-set dependent, so η_ξ is implemented with a permutation-invariant set encoder that outputs per-constraint scores $\alpha_i(\mathcal{E}, t) \geq 0$, together with scalars $\beta(\mathcal{E}), \lambda(\mathcal{E}) \geq 0$. The active set $\mathcal{C}_t(\mathcal{E}, q) := \{i \mid d_i(q, \mathcal{E}) \leq \hat{d}\}$ is discovered online by sensing.

3.3 NAVIGATOR'S SUBMODULAR ARCHITECTURE

230 Rather than learning monolithic navigation policies, we decompose the problem into three independent 231 score functions, each dedicated to a specific navigation aspect (we refer readers Figure 1 for 232 details):

233 **Definition 3.1** (Independent Score Functions). *Let $\mathcal{K} = \{y, f, o\}$ denote the set of policy indices 234 corresponding to sensor, frame, and object domains respectively. For each $k \in \mathcal{K}$, define:*

- 236 • $z_k \in \mathcal{Z}_k$: the phase space state for policy k , where $\mathcal{Z}_k = \mathcal{Q}_k \times \mathcal{P}_k$ with configuration 237 space \mathcal{Q}_k and momentum space \mathcal{P}_k
- 238 • $\theta_k \in \Theta_k$: the learnable parameters for policy k , where parameter sets satisfy disjointness: 239 $\Theta_i \cap \Theta_j = \emptyset$ for $i \neq j$
- 240 • $h_k^{\theta_k} : \mathcal{Z}_k \times \mathcal{E} \times \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}$: a learned energy functional parameterized by θ_k

243 Each policy π_k is defined as an independent score function: $s_k^{\theta_k}(z_k, \mathcal{E}, t) = S_k^{\theta_k}(\nabla_{z_k} h_k^{\theta_k}(z_k, \mathcal{E}, t))$

244 The parameter disjointness ensures independence: $\frac{\partial s_k^{\theta_k}}{\partial \theta_j} = 0$ for all $j \neq k$

245 allowing parallel training while maintaining coordination through shared constraints \mathcal{C}_t .

248 **Policy Abstraction.** Each policy is treated as a black box that:

- 250 • **Sensor Policy** (π_y): Adapts perception parameters \rightarrow energy gradients for information 251 gathering
- 252 • **Frame Policy** (π_f): Plans collision-free paths \rightarrow energy gradients for goal attraction
- 253 • **Shape Policy** (π_o): Controls robot deformation \rightarrow energy gradients for obstacle navigation

255 The key insight is that our Navigator is agnostic to policy implementation—our contribution is the 256 Hamiltonian structure binding them together through dynamic constraint sets \mathcal{C}_t .

258 Algorithm 3 details the online adaptation procedure, where the navigator issues sequential queries 259 to the sensor, frame, and reconfig policies, integrates their energy gradients into a Hamiltonian 260 update, and applies meta-corrections for contextual alignment to generate stable trajectories in novel 261 environments.

263 **Hamiltonian of modular sub-systems.** Let $\mathcal{K} = \{y, f, o\}$ index three Hamiltonian submodules 264 with local states $z_k = (q_k, p_k) \in T^*Q_k$ and local Hamiltonians

$$265 \quad H_k(q_k, p_k; \xi, \mathcal{E}) = \frac{1}{2} p_k^\top M_k(q_k)^{-1} p_k + \underbrace{\mathcal{R}_k(q_k; \mathcal{E})}_{\text{module potential}}.$$

268 The *navigator* represents the whole stack by a *surrogate* Hamiltonian on T^*Q , where $\eta(\mathcal{E}) =$ 269 $g_\xi(\mathcal{E}) \in \mathbb{R}_+^{m(\mathcal{E}, t)}$ is the meta policy(explorer) output for potential functional. For navigation, in

Figure 1: Independent score function architecture and query–response interface. The Navigator g_ξ issues queries containing local Hamiltonians H_k , initial states $z_{k,0}$, and time horizons T_k to each policy π_k ($k \in \{y, f, o\}$). Each policy computes score functions $s_k^{\theta_k}$ via energy gradients from learned Hamiltonians $h_k^{\theta_k}$, backed by spatial indices \mathcal{S}_k for efficient neighbor queries. Policies return standardized responses R_k containing state trajectories, score sequences, and QoIs. The Navigator aggregates these to update the surrogate Hamiltonian and generate meta-corrections $\eta_\xi(\mathcal{E})$, $\mu_\xi(\mathcal{E})$, and u_f^ξ for adaptive navigation.

particular the reference potential for each submodule is:

$$\mathcal{R}_y(q_y; \xi, \mathcal{E}) = E_{\text{sensor}}(q_y; \mathcal{E}, \omega_y) + \sum_{i \in \mathcal{C}_t(\mathcal{E}, q)} \alpha_i(\mathcal{E}, t) b(d_i(q; \mathcal{E}); \omega_b) \quad (5)$$

$$\mathcal{R}_f(q_f; \xi, \mathcal{E}) = \beta(\mathcal{E}) E_{\text{goal}}(q_f; \mathcal{E}, \omega_g) + \sum_{i \in \mathcal{C}_t(\mathcal{E}, q)} \alpha_i(\mathcal{E}, t) b(d_i(q; \mathcal{E}); \omega_b) \quad (6)$$

$$\mathcal{R}_o(q_o; \xi, \mathcal{E}) = \lambda(\mathcal{E}) E_{\text{obj}}(q_o; \omega_d) + \sum_{i \in \mathcal{C}_t(\mathcal{E}, q)} \alpha_i(\mathcal{E}, t) b(d_i(q; \mathcal{E}); \omega_b) \quad (7)$$

Remark. A black-box setup assume one cannot observe the potential components $\{\mathcal{R}_k\}$ yet can only observe kinetic terms by the integrated dynamics via policy π_k . A gray-box setup can allow navigator reshape potential (and possibly kinematics) so one do not need to calibrate surrogate energy equation 3 with local Hamiltonian aggregation $\hat{H} := \sum_{k \in \mathcal{K}} H_k^{\theta_k}$.

Hamiltonian Dynamics of modular sub-systems. Each submodule $k \in \mathcal{K}$ integrates its local dynamics for a short horizon and returns a standardized response R_k . Let the *effective module Hamiltonian* be $h_k^{\theta_k}(q_k, p_k, t)$ with initial condition $h_k^{\theta_k}(q_k, p_k, 0) = H_k(q_k, p_k; \mathcal{E})$. The local (port-)Hamiltonian flow with dissipation and remaining nonconservative input is

$$\dot{q}_k = \nabla_{p_k} h_k^{\theta_k}(q_k, p_k, t), \quad (8)$$

$$\dot{p}_k = -\nabla_{q_k} h_k^{\theta_k}(q_k, p_k, t) - \Gamma_k^\xi(q_k; \mathcal{E}) \nabla_{p_k} h_k^{\theta_k}(q_k, p_k, t) + G_k^\xi(q_k; \mathcal{E}) u_k^\xi(q_k, p_k, t, \mathcal{E}), \quad (9)$$

with $\Gamma_k \succeq 0$ a Rayleigh/viscous damping and $G_k^\xi u_k^\xi$ the *nonconservative* (non-potential) external input. We define the *score of dynamics* recorded by module k as the deterministic drift,

$$s_k(z_k, t) := \begin{bmatrix} \nabla_{p_k} h_k^{\theta_k} \\ -\nabla_{q_k} h_k^{\theta_k} \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ -\Gamma_k^\xi \nabla_{p_k} h_k^{\theta_k} + G_k^\xi u_k^\xi \end{bmatrix}}_{\text{non-Hamiltonian contributions (friction/ports)}}, \quad z_k = (q_k, p_k).$$

Navigator meta-learning details. For clarity of exposition, we defer the full formulation of the navigator as a meta-Hamiltonian learner including the construction of $\mathcal{R}(q; \eta_\xi(\mathcal{E}))$, the training objective in equation 48, and the QoI-based online adaptation scheme to Appendix C.4.

324 3.4 MULTI-SCALE TEMPORAL COORDINATION
325326 The policies operate at natural temporal hierarchies, creating stable multi-scale coordination:
327341 Figure 2: Temporal hierarchy. Sensor policy operates at low frequency (once per stage), estab-
342 lishing environmental constraints \mathcal{C}_t . Path policy operates at medium frequency within each stage,
343 computing waypoints \mathcal{W} . Shape policy operates at high frequency, continuously adapting at each in-
344 tegration step. This creates a natural hierarchy where slow sensor updates provide stable constraints
345 for faster path and shape adaptations.346
347 This temporal separation enables a **nested quasi-static approximation**: the fastest dynamics (re-
348 configuration) equilibrate within each frame update, and frame dynamics settle before the slower
349 sensor policy evolves. This hierarchy prevents destabilizing interactions across timescales while
350 preserving the necessary coupling for coherent, coordinated behavior.351 3.5 OFFLINE PHYSICS LEARNING VS ONLINE ADAPTIVE CORRECTION
352353 Our approach resolves the fundamental tension between learning complex dynamics and real-time
354 adaptation through principled decomposition:355 356 **Standard RL**357 **Our GRL-SNAM**366 Figure 3: Comparison between standard RL offline/online adaptation and our physics-grounded
367 approach. Standard methods learn arbitrary policies and struggle with transfer, while our approach
368 learns physically meaningful Hamiltonians that naturally adapt to environmental variations.371 3.6 THEORETICAL PROPERTIES
372

373 Our framework provides three key theoretical guarantees:

374 **Theorem 3.2** (Multi-Policy Stability). *Under temporal scale separation $T_{\text{sens}} \gg T_{\text{path}} \gg T_{\text{int}}$ and
375 bounded parameter updates, the coupled system maintains stability with error bound $\mathcal{E}_{\text{total}} \leq \epsilon$.*
376377 **Theorem 3.3** (Symplectic Preservation). *Each score function generates symplectic dynamics pre-
378 serving the canonical structure $\omega_k(z_{k,t+1}) = \omega_k(z_{k,t})$.*

378 **Theorem 3.4** (Linear Sample Complexity). *Independent training achieves total sample complexity*
 379 $N_{\text{total}} = \sum_{k \in \{y, f, o\}} O(\epsilon_k^{-(2d_k+4)})$, *linear in the sum of policy dimensions rather than exponential*
 380 *in joint dimensionality.*

382 We defer the proof of theorems in appendix. The system thinks in physics during offline training but
 383 adapts through energy corrections during online execution, combining principled dynamics stability
 384 with real-world deployment flexibility.

387 4 EXPERIMENTAL EVALUATION

389 We evaluate GRL-SNAM across multiple dimensions that highlight the unique capabilities of our
 390 geometric approach compared to standard reinforcement learning and classical navigation methods.
 391 Our evaluation encompasses task performance, safety guarantees, and learning efficiency under min-
 392 imal sensing constraints. For more detailed results and analysis, refer to Appendix I

393 **Experimental Setup:** We evaluate GRL-SNAM in procedurally generated 2D deformable navi-
 394 gation tasks, where a hyperelastic ring must traverse cluttered environments with narrow gaps and
 395 varying obstacle densities. The robot perceives only a local window of size $2\hat{d} \times 2\hat{d}$, from which we
 396 construct a Hamiltonian energy functional with goal-directed potential F_g , barrier potentials F_{bs} ,
 397 and adaptive coefficients (β, γ, α) modulated by context encoders.

399 **Baselines.** We compare against two classical categories under matched information constraints:
 400 **Global planning:** rigid A* (obstacle inflation) and deformable A* (clearance-aware penalty), and
 401 **Local reactive:** Potential Field (PF), Control Barrier Functions (CBF), and staged DWA using iden-
 402 tical local windows and stage management as GRL-SNAM. In addition, we include **learning-based**
 403 **deep RL baselines** (PPO, TRPO, SAC) trained on the same short-rollout dataset and observation
 404 space as GRL-SNAM.

406 **Metrics.** Success Rate, Success-weighted Path Length (SPL), Detour Ratio, Minimum Clearance,
 407 Path Smoothness, Collisions, and Mapping Ratio (fraction of environment observed).

409 4.1 MAIN RESULTS

411 **Q1. How efficiently does GRL-SNAM trade mapping for navigation quality?** Table 4 demon-
 412 strates that GRL-SNAM achieves CBF-level navigation quality (SPL = 0.95, Detour = 1.09) while
 413 using essentially the same minimal map coverage as PF (10.7% vs. CBF’s 11.2%). This validates
 414 that our stagewise Hamiltonian refinement extracts maximum value per sensed unit of the environ-
 415 ment.

416 For each deep RL algorithm (PPO, TRPO, SAC) we train three control parameterizations under
 417 the *same* short-rollout distribution and local observation space as GRL-SNAM: (i) a kinematic controller
 418 (policy outputs velocities), (ii) a dynamic controller (policy outputs forces integrated by a
 419 damped point-mass model), and (iii) a coefficient controller (policy outputs the Hamiltonian force-
 420 field coefficients (α, β, γ) used by GRL-SNAM). The aggregated PPO/TRPO/SAC rows in Table 4
 421 summarize the best-performing configuration for each family; even then, the best TRPO/SAC vari-
 422 ants reach at most SPL = 0.57 with almost grazing clearances ($\text{MinClear} \approx 0$) and require larger
 423 mapping ratios ($\approx 14\text{--}15\%$), while PPO collapses to SPL = 0.07 with negative effective clearance.
 424 In contrast, GRL-SNAM attains high SPL and positive clearance under a strictly smaller sensing
 425 budget.

427 **Q2. Does GRL-SNAM outperform classical, reactive, and RL planners in complex environ-
 428 ments?** Yes. Figure 9 shows GRL-SNAM achieves near-perfect success rates ($\approx 100\%$) across
 429 both in-distribution and out-of-distribution test cases, while all baselines degrade significantly. GRL-
 430 SNAM consistently maintains high SPL (≈ 1.0) with low variance and produces the smoothest tra-
 431 jectories with lowest turning angles. The Pareto frontier analysis confirms GRL-SNAM uniquely
 432 dominates the safety-performance trade-off.

Table 1: Navigation quality comparison (success-only runs). GRL-SNAM achieves near-CBF efficiency with minimal mapping budget, while deep RL baselines trained on the same short-rollout distribution and local observations yield lower SPL, larger detours, and smaller clearances.

Method	SPL \uparrow	Detour \downarrow	Min. Clearance (m) \uparrow	Mapping Ratio (%) \downarrow
PF	0.77	1.42	0.18	10.3
CBF	0.96	1.04	0.32	11.2
GRL-SNAM	0.95	1.09	0.26	10.7
PPO	0.07	1.65	-0.09	14.7
TRPO	0.57	1.44	0.004	14.3
SAC	0.57	1.53	0.004	14.6

Figure 4: Hamiltonian force field composition. Left: goal force F_g ; Middle: barrier forces F_{bs} ; Right: adaptive combination yielding safe, goal-directed trajectories.

Q3. How does the Hamiltonian formulation enable coherent navigation? Figure 4 illustrates how GRL-SNAM unifies goal attraction F_g and barrier repulsion F_{bs} into a coherent navigation field through adaptive coefficients. Unlike reactive methods that treat forces independently, our differential composition $F = \beta F_g + \gamma F_{bs}$ creates contextually balanced dynamics that simultaneously pursue goals and avoid obstacles, which aligns with the high SPL and positive clearances observed in Table 4.

Q4. What distinguishes GRL-SNAM’s online adaptation from standard RL approaches?
 Unlike standard deep RL policies that learn a fixed mapping from observations to actions (or coefficients), GRL-SNAM modifies the *entire local energy landscape* as new obstacles are sensed. Figure 10 demonstrates that the coefficients (β, γ, α) evolve dynamically to redefine the reduced Hamiltonian itself, ensuring energy-consistent posterior updates rather than heuristic reactive adjustments. This online reshaping of the Hamiltonian explains why GRL-SNAM maintains high success, SPL, and clearance under the same sensing budget where PPO/TRPO/SAC (in all three control variants) either collide, stall, or take inefficient detours.

Deep RL baselines. To contextualize the algorithmic contribution of GRL-SNAM, we additionally evaluate strong deep RL baselines (PPO, TRPO, and SAC) implemented under the *same* sensing pipeline, observation structure, action space, and Transformer encoder as our method. For fairness, all baselines operate on the identical short-rollout stagewise dataset derived from the dungeon environment of Liang et al. (2023), with horizon $H \in [2, 6]$, stage-exit goals, and locally reconstructed obstacles. Each agent outputs continuous 2D velocity actions and is trained with identical shaped rewards (goal progress, smoothness, and terminal imitation).

Table 2 summarizes performance under these matched conditions: despite millions of interaction steps, PPO/TRPO/SAC achieve only 18–26% success, whereas GRL-SNAM attains 87.5% with an order-of-magnitude fewer updates. This highlights that, even under identical data, sensing, and architectures, GRL-SNAM’s Hamiltonian force-learning offers a substantially more reliable and sample-efficient mechanism for local navigation.

486	Method	Success (%) \uparrow	Mean State Error (m) \downarrow	Mean Goal Dist. (m) \downarrow
487	PPO	26.1	1.8	1.2
488	TRPO	21.7	2.1	1.5
489	SAC	18.4	2.4	1.9
490	GRL-SNAM	87.5	0.3	0.1
491				

492 Table 2: Short-rollout navigation performance under identical sensing, rollouts, and architecture.
493494
495 4.2 ADDITIONAL EVALUATIONS
496497 We conducted comprehensive ablation studies on loss components ($\mathcal{L}_{\text{friction}}$, $\mathcal{L}_{\text{multi}}$) confirming that
498 friction matching is critical for stability while multi-start robustness prevents over-conservatism. Ro-
499 bustness evaluations under sensor noise and dynamics perturbations show graceful degradation (87%
500 success under severe noise vs 99% nominal) due to our adaptive Hamiltonian framework. Sam-
501 ple efficiency analysis demonstrates faster convergence than RL baselines due to physics-informed
502 structure.503
504 4.3 KEY INSIGHTS
505506 **Minimal mapping suffices:** GRL-SNAM achieves optimal navigation quality using $\sim 10\%$ environ-
507 ment coverage, validating the core SNAM principle that local geometric structure contains sufficient
508 information for global navigation tasks.509 **Hamiltonian unification:** The differential geometric formulation naturally balances competing ob-
510 jectives (goal-seeking, obstacle avoidance, smoothness) through principled energy minimization
511 rather than heuristic weight tuning.512 **Principled online adaptation:** By modifying the energy landscape itself rather than just policy
513 outputs, GRL-SNAM maintains physical consistency while adapting to new sensory information,
514 enabling robust performance across diverse environments.515 **Superior performance:** GRL-SNAM consistently outperforms classical planning and reactive con-
516 trol methods across all metrics (success, efficiency, safety, smoothness) while requiring minimal
517 computational overhead and sensing budget.518 These results establish GRL-SNAM as the first method to successfully unify global navigation objec-
519 tives with local safety constraints in hyperelastic navigation through principled geometric learning.
520521
522 5 CONCLUSION
523524 We introduced GRL-SNAM, a reinforcement learning framework that leverages Hamiltonian struc-
525 ture to couple sensing, planning, and deformation into a unified energy-based policy. Our formu-
526 lation enables stable, feedforward navigation updates and achieves near-optimal path quality with
527 minimal mapping effort in challenging deformable-robot tasks. The results highlight that incorpo-
528 rating geometric priors into RL can yield both efficiency and robustness, even under noisy sensing
529 and out-of-distribution layouts. Future work will extend the approach to richer sensing modalities
530 and more complex environments, with the goal of validating its scalability to real robotic systems.531
532 REFERENCES533 J. I. Alora, Moses C. Beard, Thomas Libby, Philipp Rothemund, et al. Discovering dominant dy-
534 namics for nonlinear continuum robot control. *npj Robotics*, 3(1):5, 2025.
535536 Karl Johan Åström and Björn Wittenmark. *Adaptive Control*. Courier Corporation, 2010.
537538 Atılım Güneş Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
539 Automatic differentiation in machine learning: a survey. *Journal of Machine Learning Research*,
18(153):1–43, 2018.

540 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 541 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian
 542 Ichter, Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalash-
 543 nikov, Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deek-
 544 sha Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez,
 545 Karl Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi,
 546 Kevin Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vin-
 547 cent Vanhoucke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu,
 548 and Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023. URL
 549 <https://arxiv.org/abs/2212.06817>.

550 Brandon Caasenbrood, Alexander Pogromsky, and Henk Nijmeijer. Control-oriented models for
 551 hyperelastic soft robots through differential geometry of curves. *Soft Robotics*, 9(2):346–361,
 552 2022.

553 Devendra Singh Chaplot, Ruslan Salakhutdinov, Abhinav Gupta, and Saurabh Gupta. Neural topo-
 554 logical slam for visual navigation. In *Proceedings of the IEEE/CVF Conference on Computer*
 555 *Vision and Pattern Recognition*, pp. 12875–12884, 2020.

556 Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
 557 equations. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2018.

558 Mohammad Dehghani Tezerjani et al. A survey on reinforcement learning applications in slam.
 559 *arXiv preprint arXiv:2408.14518*, 2024.

560 Shaan A Desai, Marios Mattheakis, David A Roberts, and Pavlos Protopapas. Port-hamiltonian
 561 neural networks for learning explicit time-dependent dynamical systems. *Physical Review E*, 104
 562 (3):034312, 2021.

563 Aditya S Ellendula and Chandrajit Bajaj. Self-balancing, memory efficient, dynamic metric space
 564 data maintenance, for rapid multi-kernel estimation, 2025. URL <https://arxiv.org/abs/2504.18003>.

565 Zhan Feng et al. Safer gap: A gap-based local planner for safe navigation with nonholonomic mobile
 566 robots. *arXiv preprint arXiv:2303.08243*, 2023.

567 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
 568 critic methods. In *International conference on machine learning*, pp. 1587–1596, 2018.

569 Saurabh Gupta, Varun Tolani, James Davidson, Sergey Levine, Rahul Sukthankar, and Jitendra
 570 Malik. Cognitive mapping and planning for visual navigation, 2019. URL <https://arxiv.org/abs/1702.03920>.

571 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
 572 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
 573 ence on machine learning*, pp. 1861–1870, 2018.

574 Tai Hoang, Huy Le, Philipp Becker, Vien Anh Ngo, and Gerhard Neumann. Geometry-aware rl for
 575 manipulation of varying shapes and deformable objects. *arXiv preprint arXiv:2502.07005*, 2025.

576 Junwoo Jang and Maani Ghaffari. Social zone as a barrier function for socially-compliant robot
 577 navigation, 2024. URL <https://arxiv.org/abs/2405.15101>.

578 Eshagh Kargar and Ville Kyrki. Macrpo: Multi-agent cooperative recurrent policy optimization,
 579 2021. URL <https://arxiv.org/abs/2109.00882>.

580 Nikhil Keetha, Jay Karhade, Krishna Murthy Jatavallabhula, Gengshan Yang, Sebastian Scherer,
 581 et al. Splatam: Splat, track & map 3d gaussians for dense rgb-d slam. In *Proceedings of the*
 582 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, 2024.

583 Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Efficient and accurate gradients for
 584 neural sdes. *Advances in Neural Information Processing Systems (NeurIPS)*, 2021.

594 Junho Kim, Eun Sun Lee, Mingi Lee, Donsu Zhang, and Young Min Kim. Sgolam: Simultaneous
 595 goal localization and mapping for multi-object goal navigation, 2021. URL <https://arxiv.org/abs/2110.07171>.

596

597 Donald E Kirk. *Optimal Control Theory: An Introduction*. Dover Publications, 2004.

598

599 Holger Klein, Noémie Jaquier, Andre Meixner, and Tamim Asfour. On the design of region-avoiding
 600 metrics for collision-safe motion generation on riemannian manifolds, 2023. URL <https://arxiv.org/abs/2307.15440>.

601

602

603 Hengyuan Lai et al. Roboballet: Planning for multirobot reaching with graph neural networks and
 604 reinforcement learning. *Science Robotics*, 2025.

605

606 Kywoon Lee, Seongun Kim, and Jaesik Choi. Adaptive and explainable deployment of navigation
 607 skills via hierarchical deep reinforcement learning. In *International Conference on Robotics and*
 608 *Automation*, 2023.

609

610 Chengshu Li et al. Hrl4in: Hierarchical reinforcement learning for interactive navigation with mo-
 611 bile manipulators. In *Conference on Robot Learning*, 2020.

612

613 Junjie Li et al. Learn with imagination: Safe set guided state-wise constrained policy optimization.
 arXiv preprint arXiv:2308.13140, 2023.

614

615 Jingsong Liang, Zhichen Wang, Yuhong Cao, Jimmy Chiun, Mengqi Zhang, and Guillaume Adrien
 616 Sartoretti. Context-aware deep reinforcement learning for autonomous robotic navigation in un-
 617 known area. In *Conference on Robot Learning*, pp. 1425–1436. PMLR, 2023.

618

619 Elisabetta Liu and Cosimo Della Santina. Physics-informed neural networks to model and control
 620 robots: a theoretical and experimental investigation. *Advanced Intelligent Systems*, 2024.

621

622 David Martínez-Rubio and Sebastian Pokutta. Accelerated riemannian optimization: Handling con-
 623 straints with a prox to bound geometric penalties. In *The Thirty Sixth Annual Conference on*
 624 *Learning Theory*, pp. 359–393. PMLR, 2023.

625

626 Nicholas Mohammad and Nicola Bezzo. Soft actor-critic-based control barrier adaptation for robust
 627 autonomous navigation in unknown environments, 2025. URL <https://arxiv.org/abs/2503.08479>.

628

629 Barry W Mulvey and Thrishantha Nanayakkara. Haven: haptic and visual environment navigation
 630 by a shape-changing mobile robot with multimodal perception. *Scientific Reports*, 14(1):27018,
 2024.

631

632 Minh Nguyen and Chandrajit Bajaj. A differential and pointwise control approach to reinforcement
 633 learning, 2025. URL <https://arxiv.org/abs/2404.15617>.

634

635 Tariq Patanam, Eli Shayer, and Younes Bensouda Mourri. Deep dagger imitation learning for indoor
 636 scene navigation.

637

638 L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze, and E.F. Mishchenko. *The Mathematical*
Theory of Optimal Processes. Interscience, 1962.

639

640 Doina Precup. *Temporal abstraction in reinforcement learning*. University of Massachusetts
 Amherst, 2000.

641

642 F. Qi, C. Zhou, H. Qing, H. Sun, and J. Yin. Aerial track-guided autonomous soft ring robot.
 Advanced Science, 2024.

643

644 Mohammad Roshanfar, Javad Dargahi, and Amir Hooshiar. Hyperelastic modeling and validation
 645 of hybrid-actuated soft robot with pressure-stiffening. *Micromachines*, 14(5):1001, 2023.

646

647 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 648 optimization algorithms. 2017.

648 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 649 Poole. Score-based generative modeling through stochastic differential equations. In *International
 650 Conference on Learning Representations (ICLR)*, 2021.

651

652 Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J Davison. imap: Implicit mapping and po-
 653 sitioning in real-time. In *Proceedings of the IEEE/CVF International Conference on Computer
 654 Vision*, pp. 6229–6238, 2021.

655 Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: Learning,
 656 planning, and representing knowledge at multiple temporal scales. Technical report, Technical
 657 Report 98-74, University of Massachusetts, Amherst, 1998.

658

659 Hamid Taheri et al. Deep reinforcement learning with enhanced ppo for safe mobile robot naviga-
 660 tion. *arXiv preprint arXiv:2405.16266*, 2024.

661

662 Lei Tai, Jingwei Zhang, Ming Liu, and Wolfram Burgard. Socially compliant navigation through
 663 raw depth inputs with generative adversarial imitation learning, 2018. URL <https://arxiv.org/abs/1710.02543>.

664

665 Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg, David
 666 Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning. In
 667 *International conference on machine learning*, pp. 3540–3549. PMLR, 2017.

668

669 Niclas Vödisch, Daniele Cattaneo, Wolfram Burgard, and Abhinav Valada. *Continual SLAM: Be-
 670 yond Lifelong Simultaneous Localization and Mapping Through Continual Learning*, pp. 19–35.
 671 Springer Nature Switzerland, 2023. ISBN 9783031255557. doi: 10.1007/978-3-031-25555-7_3.
 672 URL http://dx.doi.org/10.1007/978-3-031-25555-7_3.

673

674 Tianhao Wang et al. Pinn-ray: A physics-informed neural network to model soft robotic fin ray
 675 fingers. *arXiv preprint arXiv:2407.08222*, 2024.

676

677 Weizheng Wang et al. Multi-agent llm actor-critic framework for social robot navigation. *arXiv
 678 preprint arXiv:2503.09758*, 2025.

679

680 Chi Yan, Delin Qu, Dan Wang, Dan Xu, Zhigang Wang, et al. Gs-slam: Dense visual slam with 3d
 681 gaussian splatting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 682 Recognition*, 2024.

683

684 Songyuan Zhang, Zhangjie Cao, Dorsa Sadigh, and Yanan Sui. Confidence-aware imitation learn-
 685 ing from demonstrations with varying optimality, 2022. URL <https://arxiv.org/abs/2110.14754>.

686

687 Chao Zheng et al. Semantic slam system for mobile robots based on large visual model in complex
 688 environments. *Scientific Reports*, 15(1):1–15, 2025.

689

690 Jun Zhu, Zihao Du, Haotian Xu, Fengbo Lan, Zilong Zheng, Bo Ma, Shengjie Wang, and Tao
 691 Zhang. Navi2gaze: Leveraging foundation models for navigation and target gazing, 2024. URL
 692 <https://arxiv.org/abs/2407.09053>.

693

694 Zihan Zhu, Songyou Peng, Viktor Laehner, Weiyang Xu, Michael Niemeyer, et al. Nice-slam:
 695 Neural implicit scalable encoding for slam. In *Proceedings of the IEEE/CVF Conference on
 696 Computer Vision and Pattern Recognition*, pp. 12786–12796, 2022.

697

698

699

700

701

702 A EXTENDED INTRODUCTION AND MOTIVATION
703704
705 This section provides expanded context for the challenges addressed by GRL-SNAM and detailed
706 justification for our geometric approach.
707708 A.1 COMPREHENSIVE ANALYSIS OF RL LIMITATIONS IN NAVIGATION
709710 Contemporary reinforcement learning methods face several critical limitations that become particu-
711 larly pronounced in continuous navigation tasks:
712713 **Sample Efficiency Bottlenecks.** Standard RL algorithms like SAC Haarnoja et al. (2018) and PPO
714 Schulman et al. (2017) require millions of environment interactions to learn effective navigation
715 policies. This inefficiency stems from the curse of dimensionality in continuous control settings
716 where the action space is infinite-dimensional and policies must simultaneously master fine-grained
717 motor control and high-level strategic reasoning. In real-world deployment scenarios where data
718 collection is expensive and potentially dangerous, this sample complexity becomes prohibitive.
719720 The problem is exacerbated by the need for exploration in high-dimensional spaces. Unlike discrete
721 control problems where systematic exploration strategies like ϵ -greedy or UCB can provide theo-
722 retical guarantees, continuous control requires sophisticated exploration mechanisms that often rely
723 on injected noise or entropy bonuses. These mechanisms frequently lead to unsafe or inefficient
724 exploration behaviors that are unsuitable for real-world navigation tasks.
725726 **Generalization Failures.** Policies trained in specific environments exhibit catastrophic performance
727 degradation when deployed in novel settings, even when new environments share similar structure.
728 This brittleness stems from the lack of inductive bias in standard neural network architectures. With-
729 out explicit encoding of physical principles or geometric structure, learned policies tend to memorize
730 environment-specific features rather than discovering generalizable navigation principles.
731732 The generalization problem is particularly acute in navigation because environmental variations can
733 affect multiple aspects of the task simultaneously: obstacle configurations change collision con-
734 straints, surface properties affect dynamics, and lighting conditions influence perception. Standard
735 RL approaches learn monolithic mappings that cannot decompose these variations into their con-
736 stituent factors, leading to brittle behaviors that fail when any component deviates from training
737 conditions.
738739 **Temporal Decomposition Challenges.** Navigation inherently requires coordination across multiple
740 timescales: immediate obstacle avoidance operates on millisecond timescales, local path planning
741 unfolds over seconds, and strategic goal-directed behavior spans minutes or hours. Standard RL al-
742 gorithms struggle to learn policies that reason effectively across these scales, often getting trapped in
743 locally optimal behaviors that satisfy short-term objectives while failing to make long-term progress.
744745 Existing approaches to multi-scale reasoning such as hierarchical RL Sutton et al. (1998), options
746 frameworks Precup (2000), or feudal networks Vezhnevets et al. (2017), typically require manual
747 decomposition of the task space and careful engineering of reward functions for different levels.
748 These methods introduce additional complexity without fundamentally addressing the structural
749 issues that make multi-scale learning difficult.
750751 A.2 THE SNAM CHALLENGE: WHY STRUCTURE MATTERS
752753 Simultaneous Navigation and Mapping (SNAM) represents a particularly challenging instance of the
754 navigation problem where agents must build environmental representations online while traversing
755 unknown spaces. This challenge amplifies the limitations of conventional RL approaches in several
756 ways:
757758 **Memory and Representation Learning.** SNAM requires policies to maintain and update spatial
759 representations based on sensory observations. This places enormous demands on the policy’s mem-
760 ory architecture, requiring it to simultaneously master memory management, spatial reasoning, and
761 motor control. Standard recurrent architectures like LSTMs or GRUs struggle with this multifaceted
762 learning problem, often failing to maintain coherent spatial representations over long episodes.
763

756 **Exploration-Exploitation Tradeoffs.** In SNAM, exploration serves dual purposes: gathering information about the environment for mapping and discovering navigation strategies. This creates complex exploration-exploitation tradeoffs that standard RL exploration mechanisms cannot handle effectively. Random exploration may discover new regions but fails to systematically map environmental structure, while directed exploration based on current maps may miss critical environmental features.

762 **Dynamic Environmental Coupling.** Unlike traditional navigation where environments are static, SNAM requires reasoning about how the agent’s actions affect both its position and its knowledge of the environment. This creates a coupled learning problem where navigation decisions influence future mapping accuracy, and mapping quality affects navigation performance. Standard RL frameworks treat these as separate problems, missing the critical coupling that enables efficient SNAM.

767 Recent approaches in simultaneous navigation and mapping (SNAM) have coupled local mapping with policy learning to improve navigation performance. For example, SGOLAM Kim et al. (2021) interleaves goal localization with occupancy mapping to enable point-goal navigation, while Cognitive Mapping and Planning (CMP) Gupta et al. (2019) integrates a differentiable planner into a learned mapping framework. Continual SLAM (CL-SLAM) Vödisch et al. (2023) further emphasizes long-term adaptability by maintaining and updating maps during navigation. However, these methods rely on progressively constructing detailed maps of the environment before exploiting them for navigation. In contrast, our objective is to *reach the goal along high-quality, well-weighted paths while mapping as little of the unknown environment as possible*. To the best of our knowledge, no prior work explicitly formulates navigation with minimal exploration as the central goal. Our proposed GRL-SNAM framework achieves this by progressively refining paths: from observed environmental variations, the policy differentially learns to identify the least-cost trajectory, such that the path improves continuously as new local information is revealed.

780

781

782 A.3 GEOMETRIC STRUCTURE: THE INEVITABLE SOLUTION

783

784 The limitations outlined above are not merely implementation details but fundamental consequences of treating navigation as unstructured optimization. Several lines of evidence suggest that geometric structure is not just helpful but inevitable for solving complex navigation problems:

788 **Physical Realizability.** Real robotic systems operate under physical constraints imposed by conservation laws, kinematic limitations, and actuator dynamics. Policies that violate these constraints 789 cannot be implemented on physical systems, yet standard RL approaches have no mechanism to 790 enforce such constraints during learning. Geometric formulations naturally incorporate physical 791 constraints through the mathematical structure of the problem.

793 **Stability Requirements.** Long-horizon navigation requires numerical stability over extended rollouts. Standard neural network policies accumulate errors over time, leading to unstable behaviors 794 in long episodes. Hamiltonian formulations with symplectic structure preserve important invariants 795 (energy, momentum) that ensure stability over arbitrarily long rollouts.

797 **Compositionality Needs.** Complex navigation tasks require composing simpler behaviors: obstacle 798 avoidance, path following, goal seeking, and environmental adaptation. Standard RL approaches 799 learn monolithic policies that cannot decompose into interpretable components. Geometric 800 formulations enable natural decomposition through energy terms that can be composed, weighted, and 801 adapted independently.

802

803

804 A.4 DIFFERENTIAL POLICY OPTIMIZATION: BEYOND FIXED POLICIES

805

807 Traditional RL optimizes fixed policy parameters θ to maximize expected returns over discrete 808 timesteps. Differential Policy Optimization Nguyen & Bajaj (2025) approach fundamentally reconceptualizes 809 this by learning dynamics operators through a continuous-time differential dual formulation.

Mathematical Foundation. Rather than directly learning policies, DPO reformulates RL through continuous-time optimal control. By approximating discrete reward sums with time integrals:

$$\max_{\pi} \mathbb{E} \left[\sum_{k=0}^{H-1} r(s_k, a_k) \right] \approx \max_{\pi} \mathbb{E} \left[\int_0^T r(s_t, a_t) dt \right] \quad (10)$$

Applying Pontryagin’s Maximum Principle introduces adjoint variables p and defines the Hamiltonian function:

$$HF(p, s, a) := p^T f(s, a) - r(s, a) \quad (11)$$

The key insight is that optimal actions can be implicitly represented through the stationarity condition $\frac{\partial HF}{\partial a} = 0$, yielding the reduced Hamiltonian:

$$hf(s, p) := HF(s, p, a^*(s, p)) \quad (12)$$

Score Function Learning. DPO learns a score function $g(x) \approx hf(x)$ where $x = (s, p)$ combines state and adjoint variables. The dynamics operator is constructed as:

$$G(x) = x + \Delta S \nabla g(x) \quad (13)$$

where $S = \begin{bmatrix} 0 & I \\ -I & 0 \end{bmatrix}$ is the canonical symplectic matrix and Δ is the discretization step.

Stagewise Learning Advantages. Unlike methods requiring backward-in-time adjoint calculations (as in Pontryagin’s Maximum Principle), DPO enables feedforward learning where each stage t defines a local Hamiltonian \mathcal{H}_t integrated forward in time:

$$\theta_{t+1} = \theta_t - \eta \nabla_{\theta} \mathcal{H}_t \quad (14)$$

This avoids the computational complexity and numerical instability of adjoint methods while maintaining theoretical guarantees through the geometric structure of the Hamiltonian formulation.

Figure 5: Policy-aligned energy decomposition. Each policy governs a distinct energy component: the Sensor Policy minimizes sensor cost, the FPE balances goal attraction and collision barriers, and the Reconfig Policy adapts size through deformation energy. Together these terms define the Hamiltonian reward \mathcal{R} .

A.5 MULTI-POLICY ARCHITECTURE DETAILS

Our multi-policy decomposition addresses temporal scale separation through three specialized components operating at different timescales:

Sensor Policy (π_y): Operates at slow timescales to adapt perception strategies based on stagewise environmental feedback. This policy learns to focus attention on relevant environmental features, adjust sensor parameters for optimal information gain, and filter sensory noise. The sensor policy outputs constraints \mathcal{C}_t that inform slower planning processes.

Frame Policy (π_f): Operates at medium timescales to plan collision-free trajectories in local coordinate frames. This policy takes constraints from the sensor policy and generates waypoints \mathcal{W}_t for shape control. The frame policy handles local obstacle avoidance and path optimization within a limited spatial horizon.

864 **Shape Policy** (π_o): Operates at fast timescales to control robot morphological adaptation. For
 865 deformable robots, this includes shape changes, stiffness modulation, and configuration updates. For
 866 conventional robots, this might include gait transitions, tool selection, or behavioral mode switches.
 867

868 The key insight is that these policies are not manually designed hierarchies but emerge naturally
 869 from the temporal structure of the Hamiltonian dynamics. Fast variables (sensor adaptation) reach
 870 quasi-equilibrium before slower variables (shape changes) evolve significantly, creating natural scale
 871 separation without manual decomposition.

872 This extended analysis demonstrates that geometric structure is not merely a useful inductive bias but
 873 a necessary foundation for solving complex navigation problems that require multi-scale reasoning,
 874 online adaptation, and long-horizon stability.

876 B EXTENDED RELATED WORK SURVEY

877 B.1 GEOMETRY AND MECHANICS PRIMER

878 Navigation learning methods can be categorized by their underlying mathematical spaces, with sig-
 879 nificant implications for performance and theoretical guarantees:

880 **Euclidean Space Methods** (\mathbb{R}^n): Standard RL treats navigation as optimization in flat spaces using
 881 Euclidean distance metrics. Enhanced PPO Taheri et al. (2024) demonstrate improved collision
 882 avoidance but ignore inherent geometric structure of robotic systems. Sample efficiency remains
 883 poor, typically requiring millions of environment interactions Dehghani Tezerjani et al. (2024).

884 **Lie Group Methods:** Recognition of orientation constraints has led to SE(2) and SE(3) formula-
 885 tions using equivariant neural architectures. These preserve rotational and translational symmetries
 886 but remain primarily limited to manipulation rather than navigation tasks.

887 **Riemannian Manifold Approaches:** Advanced geometric formulations employ differential geo-
 888 metry for constraint handling through tangent space projections. Martínez-Rubio & Pokutta
 889 (2023) demonstrates constraint satisfaction through geometric structure rather than penalty meth-
 890 ods, achieving superior theoretical properties but limited practical deployment.

891 **Hamiltonian and Symplectic Methods:** Port-Hamiltonian neural networks show significant per-
 892 formance improvements through symplectic integrators, proving that respecting geometric structure
 893 fundamentally improves learning dynamics. However, applications remain confined to simple con-
 894 trol problems.

895 B.2 SAFETY-CRITICAL NAVIGATION TAXONOMY

896 **External Safety Projection:** Control Barrier Functions create safe action spaces through constraint
 897 projection. Neural Network Zeroing Barrier Functions Feng et al. (2023) enable collision-free nav-
 898 igation, while adaptive safety constraints Mohammad & Bezzo (2025) handle dynamic environ-
 899 ments. Social navigation approaches Jang & Ghaffari (2024) extend CBFs to human-robot interac-
 900 tion. These methods achieve formal safety guarantees but often exhibit conservative behaviors due
 901 to the separation between safety and optimality.

902 **Energy-Integrated Safety:** Our approach incorporates safety directly within the Hamiltonian en-
 903 ergy structure via barrier potentials. This enables aggressive navigation while maintaining formal
 904 guarantees through symplectic structure preservation, avoiding the conservatism of external projec-
 905 tion methods.

906 B.3 DEFORMABLE AND SOFT ROBOT NAVIGATION

907 **Hyperelastic Material Models:** Recent advances include pressure-stiffening control with 6.40%
 908 maximum error validation Roshanfar et al. (2023) and passivity-based control using differential
 909 geometry of curves Caasenbrood et al. (2022). Spectral Submanifold Reduction Alora et al. (2025)
 910 achieves computational speedup for real-time hyperelastic control with stability guarantees.

911 **Ring and Circular Robots:** Liquid Crystal Elastomer responses enable aerial gap navigation Qi
 912 et al. (2024) through predetermined actuation patterns. HAVEN Mulvey & Nanayakkara (2024)

navigates constrained spaces via fixed shape-changing sequences based on multimodal perception. These approaches use offline parameter optimization with deterministic execution, lacking online adaptation capabilities.

Physics-Informed Learning: PINN-Ray Wang et al. (2024) achieves state-of-the-art hyperelastic displacement prediction, while extensions to non-conservative effects Liu & Della Santina (2024) provide experimental validation. However, these remain primarily modeling tools rather than adaptive control frameworks.

B.4 NEURAL SCENE REPRESENTATIONS FOR NAVIGATION

NeRF-Based SLAM: Real-time dense reconstruction through NICE-SLAM Zhu et al. (2022) and keyframe-free tracking via iMAP Sucar et al. (2021) provide rich environmental representations. Neural Topological SLAM Chaplot et al. (2020) combines learning with classical planning, while semantic approaches Zheng et al. (2025) integrate large vision models.

3D Gaussian Splatting: GS-SLAM Yan et al. (2024) and SplatAM Keetha et al. (2024) demonstrate state-of-the-art reconstruction quality with real-time performance, offering dense 3D representations suitable for navigation applications.

Integration with Energy Terms: Scene representations feed our energy formulation through:

$$\text{Barrier Energy: } \mathcal{U}_{\text{barrier}} = \sum_{\text{obstacles}} b(\text{SDF}(\mathbf{x})) \quad (15)$$

$$\text{Free-Space Energy: } \mathcal{U}_{\text{free}} = - \sum_{\text{free regions}} w(\mathbf{x}) \quad (16)$$

$$\text{Goal Energy: } \mathcal{U}_{\text{goal}} = \|\mathbf{x} - \mathbf{x}_{\text{goal}}\|^2 \quad (17)$$

B.5 MULTI-SCALE AND HIERARCHICAL METHODS

Hierarchical RL: Task decomposition approaches like HRL4IN Li et al. (2020) handle heterogeneous navigation phases, while Lee et al. (2023) learns specialized policy families with high-level coordination. These require manual decomposition and struggle with principled coordination, often leading to ad-hoc design choices without theoretical guarantees.

Multi-Agent Coordination: RoboBallet Lai et al. (2025) achieves coordination for 8 robots across 40 tasks using graph neural networks. MACRPO Kargar & Kyrki (2021) enhances information sharing beyond parameter sharing. However, these approaches lack the geometric structure preservation critical for deformable robot coordination.

B.6 IMITATION LEARNING FOR NAVIGATION

Behavioral Cloning: RT-1 Brohan et al. (2023) demonstrates impressive generalization across 700+ tasks using 130k demonstration episodes with transformer architectures achieving significant zero-shot performance improvements.

Inverse Reinforcement Learning: GAIL for Safe Navigation Tai et al. (2018) combines generative adversarial imitation with safety constraints. DAgger for Continuous Navigation Patanam et al. iteratively improves policies through expert querying.

Sub-Optimal Demonstrations: Confident Imitation Learning Zhang et al. (2022) handles demonstration uncertainty through confidence-aware training, addressing distribution shift in novel environments.

These approaches excel with high-quality demonstrations but assume expert availability and struggle with the full behavioral range needed for adaptive deformation strategies.

B.7 FOUNDATION MODEL INTEGRATION

Large-scale models for navigation reasoning Zhu et al. (2024); Wang et al. (2025) focus on high-level semantic understanding and multi-agent coordination at the symbolic level. Foundation models

972 excel at reasoning and semantic understanding, while our GRL-SNAM provides principled low-level
 973 geometric control.

974 **Integration Pathway:** Foundation models could generate high-level objectives encoded as potential
 975 energy terms in our energy functional $\mathcal{R}(q_t)$. The geometric structure preservation ensures high-
 976 level semantic goals translate into physically consistent behaviors, addressing the critical gap where
 977 foundation model outputs often lack grounding in physical dynamics.

979 B.8 PARADIGM COMPARISON

981 Table 3: Extended paradigm-level comparison of learning frameworks. Scoring: \checkmark = comprehensive
 982 support, \triangle = limited support, \times = not supported.

984 Capability	985 GRL-SNAM	986 Standard RL	987 Geometric RL	988 Imitation Learning	989 Semi/Unsupervised	990 CBF Methods	991 Hierarchical RL	992 Foundation Models
Energy Conservation	\checkmark	\times	\triangle	\times	\times	\times	\times	\times
Geometric Structure	\checkmark	\times	\checkmark	\times	\triangle	\triangle	\times	\times
Constraint Integration	\checkmark	\triangle	\checkmark	\times	\times	\checkmark	\triangle	\triangle
Online Adaptation	\checkmark	\triangle	\triangle	\times	\checkmark	\triangle	\checkmark	\checkmark
Multi-Scale Coordination	\checkmark	\times	\times	\times	\times	\times	\checkmark	\triangle
Sample Efficiency	\checkmark	\times	\triangle	\checkmark	\triangle	\triangle	\triangle	\checkmark
Zero-Shot Generalization	\checkmark	\times	\triangle	\times	\checkmark	\times	\times	\checkmark
Real-World Deployment	\checkmark	\checkmark	\triangle	\checkmark	\triangle	\checkmark	\checkmark	\triangle
Deformable Robot Support	\checkmark	\times	\times	\times	\times	\times	\times	\times

Scoring Criteria:

- **Energy Conservation:** Explicit conservation laws in dynamics
- **Geometric Structure:** Preservation of manifold properties
- **Constraint Integration:** Safety/task constraints within optimization
- **Online Adaptation:** Real-time policy modification during deployment
- **Multi-Scale Coordination:** Principled coordination across temporal scales
- **Sample Efficiency:** Learning with minimal environment interaction
- **Zero-Shot Generalization:** Performance in unseen environments
- **Real-World Deployment:** Practical implementation feasibility
- **Deformable Robot Support:** Explicit modeling of shape change

1003 This comprehensive survey positions GRL-SNAM as uniquely addressing the intersection of geo-
 1004 metric structure preservation, multi-scale coordination, and deformable robot control—capabilities
 1005 that existing approaches handle separately or incompletely.

1006 B.9 KEY INSIGHTS

1008 Our framework builds upon a set of Hamiltonian and reinforcement learning principles, unifying
 1009 offline reference dynamics with online adaptive updates. Below, we summarize the six key insights
 1010 that form the backbone of GRL-SNAM.

1012 1. Hamiltonian energy as task reward.

$$1013 \quad \mathcal{H}(q, p) = K(p) + P(q), \quad (18)$$

1015 with kinetic energy K and task-specific potential P . In our setup, P encodes navigation objectives
 1016 (goal attraction, barrier avoidance, deformation penalties). Following Pontryagin et al. (1962); ?,
 1017 the Hamiltonian coincides with the surrogate objective in policy gradient methods, i.e.

$$1018 \quad \nabla_{\theta} J(\pi_{\theta}) \approx \nabla_{\theta} \mathbb{E}_{\pi_{\theta}}[-\mathcal{H}(q, p)], \quad (19)$$

1019 linking task reward to the Hamiltonian gradient flow. This equivalence grounds the DPO surrogate
 1020 in a physical structure.

1022 **2. Offline Hamiltonian vs. Online task reward.** In offline training, the agent minimizes trajec-
 1023 tories under a fixed \mathcal{H} constructed from synthetic local patches. Online, the environment is sensed,
 1024 and task rewards \mathcal{R}_{env} are parsed into Hamiltonian subtasks. By interpreting

$$1025 \quad \mathcal{H}_{\text{online}} = \mathcal{H}_{\text{offline}} + \Delta \mathcal{R}_{\text{env}}, \quad (20)$$

1026 we align local sensory updates with the reference offline Hamiltonian. This mirrors the adaptive
 1027 control interpretation in Åström & Wittenmark (2010).
 1028

1029 **3. Offline policy as reference Hamiltonian.** Every offline policy π_{ref} is equivalent to a reference
 1030 Hamiltonian \mathcal{H}_{ref} , where the score function $s^\theta = \nabla \mathcal{H}_{\text{ref}}$ defines canonical dynamics:
 1031

$$1032 \quad \dot{q} = \frac{\partial \mathcal{H}_{\text{ref}}}{\partial p}, \quad \dot{p} = -\frac{\partial \mathcal{H}_{\text{ref}}}{\partial q}. \quad (21)$$

1034 Online adaptation then minimizes the divergence
 1035

$$1036 \quad D(\pi_{\text{online}} \parallel \pi_{\text{ref}}) \propto \mathbb{E}[\|\nabla \mathcal{H}_{\text{online}} - \nabla \mathcal{H}_{\text{ref}}\|^2], \quad (22)$$

1037 a structure exploited in score-based models (Song et al., 2021).
 1038

1039 **4. Advantages of stagewise updates.** Rather than solving adjoint equations as in Pontryagin’s
 1040 Maximum Principle, we adopt a stagewise decomposition. Each stage defines a local \mathcal{H}_t and is
 1041 integrated feedforward:
 1042

$$\theta_{t+1} = \theta_t - \eta \nabla_\theta \mathcal{H}_t. \quad (23)$$

1043 This avoids backward-in-time adjoint calculations and recovers the efficiency noted in adjoint-free
 1044 feedforward networks (Chen et al., 2018; Kidger et al., 2021).
 1045

1046 **5. Universality of the pipeline.** Our pipeline
 1047

$$1048 \quad \text{Environment} \xrightarrow{\text{Encoder}} \text{Context} \xrightarrow{\text{Setup}} \mathcal{H}_{\text{adapted}} \quad (24)$$

1050 is universal. As long as \mathcal{H} is differentiable, adaptation reduces to evaluating its gradients, regardless
 1051 of whether the system is white-box (explicit potentials) or black-box (sensor-level inputs). This
 1052 follows from the variational formulation of differentiable programming (Baydin et al., 2018).
 1053

1054 **6. Navigator as meta-controller.** The navigator policy π_{nav} interacts with three black boxes: the
 1055 offline Hamiltonian \mathcal{H}_{ref} , the online sensed reward \mathcal{R}_{env} , and the adaptive fusion $\mathcal{H}_{\text{adapt}}$. Its role is to
 1056 formulate and solve
 1057

$$\mathcal{H}_{\text{adapt}} = \alpha \mathcal{H}_{\text{ref}} + (1 - \alpha) \mathcal{R}_{\text{env}}, \quad (25)$$

1058 where α is dynamically updated by the context encoder (e.g., LSTM). This positions the navigator
 1059 as a meta-controller that continually reforms the Hamiltonian problem, a principle consistent with
 1060 adaptive RL formulations in Kirk (2004).
 1061

1062 B.10 SECANT GAUSS-NEWTON CONTROLLER WITH IMPLICIT OBSERVABLE TRANSITION

1063 In the online setting, policy parameters ($\Theta = [\beta, \gamma, \{\alpha_i\}]$) do not act directly on target observables
 1064 y_{tgt} . Instead, there exists an implicit transition chain:
 1065

$$1066 \quad \Theta \xrightarrow{\text{policy-induced energy}} \mathcal{E}_\Theta \xrightarrow{\text{dynamics rollout}} z \mapsto f(\Theta) \xrightarrow{\text{task map}} y_{\text{tgt}}, \quad (26)$$

1068 where $f(\Theta)$ denotes observables (e.g., clearance, progress, admissible speed) produced after sym-
 1069 plectic updates under the reshaped Hamiltonian \mathcal{E}_Θ .
 1070

1071 **Implicit Jacobian.** The true Jacobian of observables with respect to policy parameters is
 1072

$$1073 \quad \frac{\partial f}{\partial \Theta} = \frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial \Theta}, \quad (27)$$

1075 which is expensive to evaluate through full rollouts. Instead, we maintain a rank-1 secant estimate
 1076

$$1077 \quad \hat{J}_t \approx \frac{f(\Theta^t) - f(\Theta^{t-1})}{\Theta^t - \Theta^{t-1}}, \quad (28)$$

1078 smoothed via exponential moving average to reduce noise. This captures the *implicit effect* of
 1079 parameter changes on observables.
 1080

1080 **Energy Reshaping Step.** With the secant Jacobian, the Gauss–Newton update becomes
 1081

$$1082 \Delta\Theta = -\widehat{G}^{-1}\widehat{J}^\top W(f(\Theta) - y_{\text{tgt}}), \quad \widehat{G} = \widehat{J}^\top W\widehat{J} + \varepsilon I, \quad (29)$$

1083 followed by projection and per-head learning rates:
 1084

$$1085 \Theta^{t+1} = \text{Proj}_{\Theta \geq 0}(\Theta^t + \text{diag}(\eta_b, \eta_g, \eta_\alpha) \Delta\Theta). \quad (30)$$

1087 Here, W is a weighting matrix over observables, and εI stabilizes inversion.
 1088

1089 **Meta-Learning View.** The Navigator maintains a meta-objective
 1090

$$1091 \mathcal{L}_{\text{nav}}(\Theta; \phi) = \ell(f(\Theta; z), y_{\text{tgt}}), \quad (31)$$

1092 with context-dependent parameters ϕ (e.g., encoder weights for α). The implicit gradient is
 1093

$$1094 \nabla_\Theta \mathcal{L}_{\text{nav}} = \widehat{J}^\top W(f(\Theta) - y_{\text{tgt}}), \quad (32)$$

1095 which coincides with the secant Gauss–Newton step above. Thus, meta-learning is implemented not
 1096 by direct regression on Θ , but by observable alignment through the implicit policy \rightarrow observables
 1097 \rightarrow targets chain.
 1098

1099 **Interpretation.** This formulation clarifies that the controller does not operate in parameter space
 1100 alone. Instead, it continuously reshapes Hamiltonian parameters so that the *induced observables*
 1101 approach task targets, effectively coupling multiple energy components (safety, progress, speed)
 1102 without additional rollouts.
 1103

1104 **Sequential Query–Response (as ports).** At each t the Navigator issues queries \mathcal{Q}_k^t and receives
 1105 responses \mathcal{R}_k^t , which determine $y_{\text{tgt}}(\mathcal{R}_k^t)$ and any weights in \mathbf{W} ; the update equation ?? (with the
 1106 secant $\widehat{\mathbf{J}}$) is then applied to each block $k \in \{y, f, o\}$:

$$1107 \theta_k^{t+1} = \theta_k^t + h \Delta\theta_k^t, \quad \Delta\theta_k^t = -\widehat{\mathbf{G}}_k^{-1}\widehat{\mathbf{J}}_k^\top \mathbf{W}_k(f_k(\theta_k^t) - y_{\text{tgt},k}(\mathcal{R}_k^t)).$$

1109 **State Evolution.** With updated parameters, each policy advances its state as before,
 1110

$$1111 z_k^{t+1} = z_k^t + \tau_k J_k s_k^{\theta_k^{t+1}}(z_k^t, \mathcal{C}_t^{\text{updated}}, t).$$

1112 *Remark.* If a strict port-Hamiltonian view is desired, the $\mathbf{J}^\top \mathbf{W}(y_{\text{tgt}} - f(\Theta))$ term enters $\dot{\Pi}$ as
 1113 an external port (input) rather than being baked into the potential; the resulting discrete update is
 1114 identical to the secant Gauss–Newton step above.
 1115

1116 C HYPERELASTIC RING ROBOT MODEL

1117 We model the deformable robot as a closed hyperelastic ring with reduced-order dynamics to enable
 1118 efficient navigation while capturing essential deformation behaviors.
 1119

1120 Figure 6: Hyperelastic ring robot model showing generalized coordinates (s, o, θ) , spline sample
 1121 points \mathbf{X}_j , and external force fields.
 1122

1134 C.1 GEOMETRIC REPRESENTATION
11351136 The robot boundary is defined by a periodic cubic B-spline curve with n_{ctrl} control points:
1137

1138
$$\mathbf{S}(u) = \sum_{i=1}^{n_{\text{ctrl}}} N_{i,3}(u) \mathbf{P}_i, \quad u \in [0, 1] \quad (33)$$

1139

1140 where $N_{i,3}(u)$ are degree-3 B-spline basis functions with C^2 continuity. The base shape is a unit
1141 circle:
1142

1143
$$\mathbf{P}_{0,i} = r_{\text{base}} \begin{bmatrix} \cos(2\pi i / n_{\text{ctrl}}) \\ \sin(2\pi i / n_{\text{ctrl}}) \end{bmatrix} \quad (34)$$

1144

1145 World coordinates are computed via similarity transformation:
1146

1147
$$\mathbf{P}_i(t) = \mathbf{o}(t) + s(t) \mathbf{R}(\theta(t)) \mathbf{P}_{0,i} \quad (35)$$

1148

1149 where $s(t)$ is uniform scale, $\mathbf{o}(t) \in \mathbb{R}^2$ is center position, $\theta(t)$ is orientation.
11501151 For physics computation, we sample K points on the curve using B-spline evaluation matrix $B \in \mathbb{R}^{K \times n_{\text{ctrl}}}$:
1152

1153
$$\mathbf{X}_j = \sum_{i=1}^{n_{\text{ctrl}}} B_{ji} \mathbf{P}_i, \quad j = 1, \dots, K \quad (36)$$

1154

1155 **Algorithm 1** Hyperelastic Ring Deformation Policy

1156 1: **Input:** State $(s, \dot{s}, \mathbf{o}, \dot{\mathbf{o}}, \theta, \omega)$, obstacles $\{\mathbf{c}_k, r_k\}$, target $\mathbf{x}_{\text{target}}$
 1157 2: **Output:** Updated state $(s', \dot{s}', \mathbf{o}', \dot{\mathbf{o}}', \theta', \omega')$
 1158 3: Update geometry: $\mathbf{X}_j \leftarrow$ sample curve at current state
 1159 4: Compute distances: $d_{jk} \leftarrow \|\mathbf{X}_j - \mathbf{c}_k\| - r_k$, clearance: $d_{\min} \leftarrow \min_{j,k} d_{jk}$
 1160 5: ▷ — Conservative Forces —
 1161 6: IPC barriers: $\mathbf{g}_j \leftarrow \sum_k \frac{\partial b_{\text{IPC}}(d_{jk})}{\partial \mathbf{X}_j}$
 1162 7: Adaptive bulk: $F_{s,\text{bulk}} \leftarrow -\frac{\partial \mathcal{U}_{\text{bulk}}}{\partial s}$ with $A_{\text{target}}(d_{\min})$
 1163 8: ▷ — Non-Conservative Forces —
 1164 9: Stage forces: $\mathbf{F}_{\text{stage},j} \leftarrow$ goal + radial + tangential components
 1165 10: Friction: $\mathbf{F}_{\text{friction},j} \leftarrow -\mu \text{contact_pressure} \cdot \text{tangent_velocity}$
 1166 11: ▷ — Generalized Force Mapping —
 1167 12: Map to coordinates: $F_s, \mathbf{F}_o, \tau \leftarrow$ virtual work from $\{\mathbf{g}_j + \mathbf{F}_{\text{stage},j} + \mathbf{F}_{\text{friction},j}\}$
 1168 13: ▷ — Integration —
 1169 14: Update velocities: $\dot{s}' \leftarrow \dot{s} + \Delta t \cdot F_s / M_s$, etc.
 1170 15: Update positions: $s' \leftarrow \text{clamp}(s + \Delta t \cdot \dot{s}'), \mathbf{o}' \leftarrow \mathbf{o} + \Delta t \cdot \dot{\mathbf{o}}'$, etc.
 1171 16: **return** updated state

1172 C.2 ENERGY FORMULATION
11731174 The total Hamiltonian combines kinetic and potential components:
1175

1176
$$\mathcal{H} = \frac{1}{2} M_s \dot{s}^2 + \frac{1}{2} M_o \|\dot{\mathbf{o}}\|^2 + \frac{1}{2} I \omega^2 + \mathcal{U}_{\text{barrier}} + \mathcal{U}_{\text{bulk}} \quad (37)$$

1177

1178 **IPC Barrier Energy:** Collision avoidance using Incremental Potential Contact barriers:
1179

1180
$$\mathcal{U}_{\text{barrier}} = \sum_{j=1}^K w_j \ell_j \sum_{k=1}^{N_{\text{obs}}} b_{\text{IPC}}(d_{jk}) \quad (38)$$

1181

1182 where $w_j = 1/K$, $\ell_j = \|\mathbf{X}'_j\|$, d_{jk} is distance from sample j to obstacle k :
1183

1184
$$b_{\text{IPC}}(d) = \begin{cases} -(d - \hat{d})^2 (\log d - \log \hat{d}) & \text{if } 0 < d < \hat{d} \\ 0 & \text{if } d \geq \hat{d} \\ V_{\text{penalty}} & \text{if } d \leq 0 \end{cases} \quad (39)$$

1185
1186
1187

1188 **Adaptive Bulk Energy:** Area conservation with clearance-dependent target:
 1189

$$1190 \quad \mathcal{U}_{\text{bulk}} = \frac{k_{\text{bulk}}}{2} (A(s) - A_{\text{target}})^2 \quad (40)$$

1192 where $A(s) = s^2 A_{\text{ref}}$ and:
 1193

$$1194 \quad A_{\text{target}} = [\alpha + (1 - \alpha) \tanh(\beta \cdot \max(d_{\text{min}}, 0))] A_{\text{ref}} \quad (41)$$

1195 with $\alpha = 0.25$, $\beta = 2.5$ encouraging compression in tight spaces.
 1196

1197 C.3 GENERALIZED FORCE MAPPING

1199 Forces on spline samples map to generalized coordinates via virtual work:
 1200

$$1201 \quad F_s = -\frac{\partial \mathcal{U}}{\partial s} + \sum_{j=1}^K \mathbf{F}_{\text{ext}}(\mathbf{X}_j) \cdot \frac{\partial \mathbf{X}_j}{\partial s} - \gamma_s \dot{s} \quad (42)$$

$$1204 \quad \mathbf{F}_o = -\frac{\partial \mathcal{U}}{\partial \mathbf{o}} + \sum_{j=1}^K w_j \mathbf{F}_{\text{ext}}(\mathbf{X}_j) - \gamma_o \dot{\mathbf{o}} \quad (43)$$

$$1207 \quad \tau = -\frac{\partial \mathcal{U}}{\partial \theta} + \sum_{j=1}^K w_j \mathbf{F}_{\text{ext}}(\mathbf{X}_j) \cdot (\mathbf{J}(\mathbf{X}_j - \mathbf{o})) - \gamma_{\theta} \omega \quad (44)$$

1210 where $\mathbf{J} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ generates rotation and $\frac{\partial \mathbf{X}_j}{\partial s} = \mathbf{R}(\theta) \mathbf{P}_{0,j}$.
 1211

1213 C.4 NAVIGATOR AS META-HAMILTONIAN LEARNER

1215 The GRL-SNAM operates as a meta-learning system that coordinates multi-scale policies by learning
 1216 how to update their Hamiltonian energy functions rather than directly manipulating phase space
 1217 states.
 1218

1219 **Navigation specialization.** Throughout the paper we further simplify our navigator’s Hamiltonian
 1220 surrogate by assuming fixed ω throughout all environment when we primarily focus on learning to
 1221 optimize the environment-indexed linear cone generated by task energies. The potential energy is
 1222 denoted as follows and is shown in Figure 5:
 1223

$$1224 \quad \mathcal{R}(q; \eta(\mathcal{E})) = \underbrace{\|\mathbf{y}\|_S^2}_{\text{Sensor Cost } (E_{\text{sensor}})} + \underbrace{\beta \|\mathbf{c} - \mathbf{x}_g\|_2^2}_{\text{Goal Attraction } (E_{\text{goal}})} \\ 1225 \\ 1226 \quad + \underbrace{\lambda E_{\text{obj}}(q(t))}_{\text{Deformation Energy } (E_{\text{obj}})} + \underbrace{\sum_{i \in \mathcal{C}_t(\mathcal{E}, q)} \alpha_i b(d_i, \hat{d})}_{\text{Collision Barriers } (\text{FPE})}. \quad (45)$$

1230 The *Sensor Policy* contributes the sensor cost E_{sensor} , regularizing information acquisition. The
 1231 *FPE (Free Path Extractor)* governs goal attraction and path-planning in current environment \mathcal{E} via
 1232 goal attraction force E_{goal} and barrier potentials, balancing reachability with safety. The *Reconfig*
 1233 *Policy* governs deformation, enabling radius modulation for narrow passages. This decomposition
 1234 highlights that the total Hamiltonian is not a monolithic reward but a structured sum of physically
 1235 interpretable energies, each attached to a specialized policy. In addition, we assume friction and
 1236 additional forces (e.g. derived from safety constraints) are happened in FPE submodule only, and
 1237 we pick a particular parametrization as:
 1238

$$1239 \quad \Gamma_y^\xi \equiv 0, \quad G_y^\xi \equiv 0, \quad u_y^\xi \equiv 0, \\ 1240 \quad \Gamma_f^\xi = \mu_\xi(\mathcal{E}) \mathbf{I}, \quad G_f^\xi = \mathbf{I}, \quad u_f^\xi \neq 0, \quad (46) \\ 1241 \quad \Gamma_o^\xi \equiv 0, \quad G_o^\xi \equiv 0, \quad u_o^\xi \equiv 0,$$

1242 Thus the meta policy g_ξ *directly* produces the cone coordinates of potentials and non-conservative
 1243 forces correction in FPE module as a friction and a port correction term:
 1244

$$1245 \quad g_\xi(\mathcal{E}) = [\eta_\xi(\mathcal{E}), \mu_\xi(\mathcal{E}), u_f^\xi],$$

1246 which defines the potential—and therefore the generalized force—for the stagewise motion-
 1247 planning Hamiltonian rollouts. Learning g_ξ gives a *meta-policy* that maps environments to energy
 1248 weights, i.e. a stagewise bilevel scheme where the inner layer optimizes motion under H_k and the
 1249 outer layer trains ξ so that scenario-level QoIs/constraints are satisfied across environments.
 1250

1251 **Learning $\eta_\xi(\mathcal{E}), \mu_\xi(\mathcal{E})$ throughout “Module→surrogate reduction”.** Each submodule exposes
 1252 a response map that provides integrated dynamics rollout and additional quantity of interests (QoI)
 1253 as the feedback:
 1254

$$1255 \quad R_k : (H_k; \theta_k, \mathcal{E}, \xi) \mapsto \{z_t^{(k)}, s_t^{(k)}, \text{QoI}_k\}_{t=0}^{T_k}, \quad k \in \mathcal{K},$$

1256 where T_k refers time scale for each submodule. To be more specific:

$$1257 \quad \text{QoI}_y = \Delta\mathcal{E}, \quad \text{QoI}_f = \{v_t^{(f)} := M_f^{-1} p_t^{(f)}\}_{t=0}^{T_f}, \quad \text{QoI}_o = \{\min_{i \in \mathcal{C}_t(\mathcal{E}, q)} d_i(q_t^{(o)}; \mathcal{E})\}_{t=0}^{T_o}. \quad (47)$$

1260 Namely, feedback QoIs are: environmental update, velocity observation, and min distance clearance
 1261 (and thus collision violation). Additional QoIs, that can be deduced from $z_t^{(k)}, s_t^{(k)}$, are not stated
 1262 here explicitly. To train a policy that output $\eta(\mathcal{E})$ and $\mu_\xi(\mathcal{E})$ with different environments, we propose
 1263 to minimize

$$1264 \quad \mathcal{L}(\eta_\xi, \mu_\xi) = \mathbb{E}_{\mathcal{E}} \left[w_q \|\mathbf{q} - \mathbf{q}_{ref}\|_2^2 + w_v \|\mathbf{v} - \mathbf{v}_{ref}\|_2^2 + w_\mu \|\mu - \mu_{ref}\|_2^2 + w_d \mathcal{L}_{\text{multi}} \right]. \quad (48)$$

1266 where $\mathcal{L}_{\text{multi}}$ is a short multi-start robustness penalty that re-rolls from perturbed $q_t^{(k)}$ seeds near
 1267 obstacles to discourage brittle $\eta_\xi(\mathcal{E})$ and $\mu_\xi(\mathcal{E})$ (details are addressed in Algorithm 2), and $w_\bullet \geq 0$
 1268 are user-input hyperparameters. The training via equation 48 can be conducted offline, component-
 1269 wise, or even fine-tuned online, but we state that it is important to fully utilize the instantaneous
 1270 response from a real navigation scenario which provides the scheme of per-scenario online cor-
 1271 rection even when $\eta_\xi(\mathcal{E})$ and $\mu_\xi(\mathcal{E})$ are properly trained under large-scale simulated dataset with
 1272 reference potentials.
 1273

1274 **Online Adaptation of $g_\xi(\mathcal{E})$ via QoIs** We state how response map for each environment can yield
 1275 a correction term under online navigation scenario. Given response R_k at time t we construct an
 1276 *observable* measurement vector and its reference goal:

$$1277 \quad y_t = \begin{bmatrix} -\text{clr}_t \\ \text{dist}_t \\ -\text{speed}_t \end{bmatrix} \in \mathbb{R}^3, \quad y_t^* = \begin{bmatrix} -m_{\text{safe}} \\ \text{dist}_t - \varepsilon_{\text{prog}} \\ -\max(\text{speed}_t, \mathbf{1}_{\{\text{clr}_t \geq m_{\text{safe}}\}} v_{\text{min}}) \end{bmatrix},$$

1281 where clr is the minimum clearance to inflated obstacles, dist is goal distance (to the global goal
 1282 point), and $\text{speed} = \|\mathbf{v}\|$. We update only the *active* barrier weights by selecting an index set \mathcal{I}_t that
 1283 represents nearby obstacles. Define the parameter vector

$$1284 \quad \tilde{\eta}_t = \begin{bmatrix} \beta_t \\ \lambda_t \\ \alpha_{t, \mathcal{I}_t} \end{bmatrix} \in \mathbb{R}_+^{2+|\mathcal{I}_t|}, \quad \zeta_t = [\tilde{\eta}_t, \mu_t].$$

1288 We denote an estimator of Jacobian $J_t = \frac{\partial y}{\partial \zeta_t}$ as

$$1290 \quad \tilde{J}_t = \frac{(y_t - y_{t-1})(\zeta_t - \zeta_{t-1})^\top}{\|\zeta_t - \zeta_{t-1}\|_2^2 + \varepsilon}, \quad J_t = \rho J_{t-1} + (1 - \rho) \tilde{J}_t,$$

1293 with smoothing $\rho \in [0, 1)$ and $\varepsilon > 0$. Then, given the desired observable change $\Delta y_t^{\text{des}} := y_t^* - y_t$,
 1294 one can update meta-policy parameter via a Tiknhoov-regularized least square steps:

$$1295 \quad \Delta \zeta_t = \arg \min_{\Delta \zeta} \|J_t \Delta \zeta - \Delta y_t^{\text{des}}\|_2^2 + \lambda \|\Delta \zeta\|_2^2, \quad \Rightarrow \quad \Delta \zeta_t = (J_t^\top J_t + \lambda I)^{-1} J_t^\top \Delta y_t^{\text{des}}.$$

1296 **Algorithm 2** Meta-policy training of $\eta(\mathcal{E})$ and $\mu_\xi(\mathcal{E})$

1297 **Require:** dataset of different environments $\{\mathcal{E}, \alpha_{ref}, \beta_{ref}, \lambda_{ref}, \mu_{ref}\} \in \mathcal{D}$, step range $T \in$
1298 $\{2, 3, 4, 5, 6\}$, short rollout trials M , time step Δt , weights w_\bullet

1299

1300 1: Initialize ξ

1301 2: **for** epoch = 1, 2, ... **do**

1302 3: **for** batch $\mathcal{B} \subset \mathcal{D}$ **do**

1303 4: Sample (q_0, p_0) per scene \mathcal{E} in \mathcal{B}

1304 5: Build **tokens** from active constraints $\mathcal{C}_t(\mathcal{E}, q_0)$, goal x_g , and current (q_0, p_0)

1305 6: $(\{\alpha_j\}, \beta) \leftarrow \eta_\xi(\mathbf{tokens})$, $\mu \leftarrow \mu_\xi(\mathbf{tokens})$

1306 7: **for** $m = 1, 2, \dots, M$ **do**

1307 8: Sample a near obstacle point \tilde{q}_0 , initialize \tilde{p}_0 towards nearest obstacle at \tilde{q}_0 .

1308 9: Integrate equation 8 and equation 9 for T steps from $(\tilde{q}_0, \tilde{p}_0)$.
1309 10: ▷ e.g. Symplectic Euler

1310 11: Compute $clr \leftarrow \min_{i,t} d_i(\tilde{q}_t; \mathcal{E})$

1311 12: Compute $\mathcal{L}_{multi} \leftarrow \mathcal{L}_{multi} + \frac{1}{M} \text{softplus}\left(\frac{r_{min} - clr}{\hat{d}}\right)$.
1312 13: ▷ r_{min} refers minimal radius of robot object.

1313 14: **end for**

1314 15: Integrate equation 8 and equation 9 for T_k steps from (q_0, p_0)

1315 16: Evaluate loss $\mathcal{L}(\eta_\xi, \mu_\xi)$ in equation 48

1316 17: Update η_ξ, μ_ξ using $\nabla_{\eta_\xi} \mathcal{L}$ and $\nabla_{\mu_\xi} \mathcal{L}$

1317 18: E.g. Adam Optimizer

1318 19: **end for**

20: **end for**

This yields updated β_{t+1} , γ_{t+1} , and $\alpha_{t+1,i}$ for $i \in \mathcal{I}_t$ (inactive weights keep their previous values).

$$\zeta_{t+1} = \Pi_{\mathbb{R}_+}((1-\kappa)\zeta_t + \kappa \Delta \zeta_t), \quad \kappa_i \in [0, 1).$$

Since the update is a result of least square step, there exists residual:

$$r_t = \Delta y_t^{\text{des}} - J_t \Delta \zeta_t.$$

The online port correction term can amend the energy change by solving another least square problem given port-observable sensitivity $P_t \approx \partial y / \partial u_f$:

$$u_{f,t}^\xi = \arg \min_{u \in \mathcal{U}} \|P_t u - r_t\|_2^2 + \lambda_u \|u\|_2^2 = (P_t^\top P_t + \lambda_u I)^{-1} P_t^\top r_t,$$

followed by componentwise clipping to a feasible box \mathcal{U} . A simple choice is to use $P_t = \text{diag}(0, 0, \kappa_v)$ so that the port primarily regulates speed while the energy weights steer clearance and goal progress; richer P_t can be learned online by the same secant recipe as J_t .

D DOMAIN-SPECIFIC POLICY IMPLEMENTATIONS

D.1 SENSOR POLICY (π_y) DETAILS

The sensor policy maintains spatial index \mathcal{T}_y of observations $(\mathbf{x}_i, \text{type}_i, \text{attr}_i)$ and derives three energy components from single neighbor queries:

Barrier Potential: Repulsion from obstacles

$$b_{\Sigma}(z_y, \mathcal{C}_t) = \sum_{i \in \mathcal{N}_{\text{obs}}} w_i \exp \left(-\frac{\|\mathbf{x}_i - \mathbf{c}_y\|^2}{2\sigma_b^2} \right) \quad (49)$$

Free-Space Potential: Attraction to open regions

$$\mathcal{V}_{\text{free}}(z_y, \mathcal{C}_t) = - \sum_{j \in \mathcal{N}_{\text{enc}}} w_j \exp \left(- \frac{\|\mathbf{x}_j - \mathbf{c}_y\|^2}{2\sigma_f^2} \right) \quad (50)$$

1350 **Density Potential:** Information-theoretic density measure
 1351

$$1352 \quad 1353 \quad 1354 \quad \rho(z_y, \mathcal{C}_t) = - \sum_{k \in \mathcal{N}_{\text{all}}} w_k \log \left(1 + \frac{n_k}{|\mathcal{N}_{\text{all}}|} \right) \quad (51)$$

1355 The complete sensor score function is:
 1356

$$1357 \quad 1358 \quad 1359 \quad s_y^{\theta_y}(z_y, \mathcal{C}_t, t) = \nabla_{z_y} \left[\frac{1}{2} \|p_y\|_{M_y^{-1}}^2 + \alpha_b b_{\Sigma} + \alpha_f \mathcal{V}_{\text{free}} + \alpha_d \rho \right] \quad (52)$$

1360 **D.2 FRAME POLICY (π_f) DETAILS**
 1361

1362 The frame policy uses \mathcal{T}_f storing path samples with safety/contact distances and goal influence:
 1363

1364 **Safety Field:** Distance-based safety measure
 1365

$$1366 \quad 1367 \quad S(z_f, \mathcal{C}_t) = \sum_{i=1}^{N_s} w_i \max(0, d_{\text{safe}}^{\text{threshold}} - d_{\text{safe}}^i)^2 \quad (53)$$

1368 **Contact Field:** Proximity to obstacles
 1369

$$1370 \quad 1371 \quad 1372 \quad C(z_f, \mathcal{C}_t) = \sum_{i=1}^{N_c} w_i \exp \left(-\frac{(d_{\text{contact}}^i)^2}{2\sigma_c^2} \right) \quad (54)$$

1373 **Goal Field:** Directional bias toward target
 1374

$$1375 \quad 1376 \quad 1377 \quad G(z_f, \mathcal{C}_t) = -\|c_f - \mathbf{x}_g\|^2 + \sum_{i=1}^{N_g} w_i g_i \cos(\theta_i) \quad (55)$$

1378 The frame score function integrates these fields:
 1379

$$1380 \quad 1381 \quad 1382 \quad s_f^{\theta_f}(z_f, \mathcal{C}_t, t) = \nabla_{z_f} \left[\frac{1}{2} \|p_f\|_{M_f^{-1}}^2 + \alpha_s S + \alpha_c C + \alpha_g G \right] \quad (56)$$

1383 **D.3 SHAPE POLICY (π_o) DETAILS**
 1384

1385 The shape policy controls deformation through reduced coordinates $z_o = (s, \dot{s}, \mathbf{o}, \dot{\mathbf{o}}, \theta, \omega)$:
 1386

1387 **Smoothness Energy:** Curvature regularization
 1388

$$1389 \quad 1390 \quad 1391 \quad \mathcal{E}_{\text{smooth}} = \int_0^1 \|\kappa(u)\|^2 du \approx \sum_{j=1}^K w_j \|\kappa_j\|^2 \quad (57)$$

1392 **Stretching Energy:** Arc length preservation
 1393

$$1394 \quad 1395 \quad 1396 \quad \mathcal{E}_{\text{stretch}} = \int_0^1 (\|\mathbf{S}'(u)\| - \ell_{\text{ref}})^2 du \approx \sum_{j=1}^K w_j (\ell_j - \ell_{\text{ref}})^2 \quad (58)$$

1397 **Target Energy:** Configuration constraints
 1398

$$1399 \quad \mathcal{E}_{\text{target}} = \|\mathbf{P} - \mathbf{P}_{\text{target}}\|_F^2 + \|(s, \mathbf{o}, \theta) - (s_{\text{target}}, \mathbf{o}_{\text{target}}, \theta_{\text{target}})\|^2 \quad (59)$$

1400 The complete shape score function is:
 1401

$$1402 \quad 1403 \quad s_o^{\theta_o}(z_o, \mathcal{C}_t, t) = \nabla_{z_o} \left[\frac{1}{2} M_s \dot{s}^2 + \frac{1}{2} M_o \|\dot{\mathbf{o}}\|^2 + \frac{1}{2} I \omega^2 + \alpha_{sm} \mathcal{E}_{\text{smooth}} + \alpha_{st} \mathcal{E}_{\text{stretch}} + \alpha_{tg} \mathcal{E}_{\text{target}} \right] \quad (60)$$

1404 **E ALGORITHM IMPLEMENTATION DETAILS**
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414

This section provides comprehensive implementation details for Algorithm 3 presented in §3.1. We explain each algorithmic component, including parameter initialization, policy query protocols, Hamiltonian composition, integration schemes, observable extraction procedures, and online adaptation mechanisms. These details are essential for reproducible implementation but are deferred to the appendix to maintain focus on the core methodological contributions in the main text.

1415 **Algorithm 3** Online GRL-SNAM: Navigator-Driven Hamiltonian Composition
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

1: **Input:** Goal \mathbf{x}_g , initial $z_0 = (q_0, 0)$, step τ , horizons (T_y, T_f, T_o) $\triangleright \S E.1$
2: **Init:** $t \leftarrow 0$, $\mathcal{C}_0 \leftarrow \emptyset$, meta-policy g_ξ , Jacobians J_0, P_0 $\triangleright \S E.2$
3: **while** $\neg \text{REACHEDGOAL}(c_t, \mathbf{x}_g)$ **and** $t < T_{\max}$ **do** $\triangleright \S E.3$
4: **Query policies & collect responses:** $\triangleright \S E.4$
5: **if** $t \equiv 0 \pmod{T_y}$ **then**
6: $\mathcal{R}_y^t \leftarrow \pi_y(H_y; \theta_y, \mathcal{E}, \xi)$ returns $\{z_{0:T_y}^{(y)}, s_{0:T_y}^{(y)}, \Delta\mathcal{E}\}$ $\triangleright \S E.5$
7: $\mathcal{E} \leftarrow \mathcal{E} \cup \Delta\mathcal{E}$; $\mathcal{C}_t \leftarrow \{i \mid d_i(q_t; \mathcal{E}) \leq \hat{d}\}$
8: **end if**
9: **if** $t \equiv 0 \pmod{T_f}$ **then**
10: $\mathcal{R}_f^t \leftarrow \pi_f(H_f; \theta_f, \mathcal{E}, \xi)$ returns $\{z_{0:T_f}^{(f)}, s_{0:T_f}^{(f)}, \{v_\ell^{(f)}\}_{\ell=0}^{T_f}\}$ $\triangleright \S E.6$
11: **end if**
12: $\mathcal{R}_o^t \leftarrow \pi_o(H_o; \theta_o, \mathcal{E}, \xi)$ returns $\{z_{0:T_o}^{(o)}, s_{0:T_o}^{(o)}, \{\min_i d_i(q_\ell^{(o)}; \mathcal{E})\}_{\ell=0}^{T_o}\}$ $\triangleright \S E.7$
13: **Meta-policy proposal:** $\triangleright \S E.8$
14: Build tokens \mathcal{T}_t from $(\mathcal{C}_t, q_t, \mathbf{x}_g)$
15: $[\eta_\xi^t, \mu_\xi^t, u_f^{\xi, t}] \leftarrow g_\xi(\mathcal{T}_t; \xi)$ with $\eta_\xi^t = (\beta^t, \lambda^t, \{\alpha_i^t\}_{i \in \mathcal{C}_t})$
16: **Compose surrogate Hamiltonian:** $\triangleright \S E.9$
 $\mathcal{R}(q_t; \eta_\xi^t, \mathcal{E}) = E_{\text{sensor}} + \beta^t E_{\text{goal}} + \lambda^t E_{\text{obj}} + \sum_{i \in \mathcal{C}_t} \alpha_i^t b(d_i)$
 $H(q_t, p_t; \omega, \xi, \mathcal{E}) = \frac{1}{2} p_t^\top M(q_t)^{-1} p_t + \mathcal{R}(q_t; \eta_\xi^t, \mathcal{E})$
17: **Integrate dynamics:** $\triangleright \S E.10$
18: $\nabla_p H|_t = M(q_t)^{-1} p_t; \nabla_q H|_t = \nabla_q E_{\text{sensor}} + \beta^t \nabla_q E_{\text{goal}} + \lambda^t \nabla_q E_{\text{obj}} + \sum_{i \in \mathcal{C}_t} \alpha_i^t \nabla_q b(d_i)$
19: $p_{t+\tau} = p_t - \tau \nabla_q H|_t - \tau \mu_\xi^t \nabla_p H|_t + \tau u_f^{\xi, t}$
20: $q_{t+\tau} = q_t + \tau M(q_t)^{-1} p_{t+\tau}$
21: **Extract observables:** $\triangleright \S E.11$
22: $\text{clr}_t = \min\{\min_i d_i(q_{t+\tau}; \mathcal{E}), \min_{\ell, i} d_i(q_\ell^{(o)}; \mathcal{E})\}; \text{dist}_t = \|c_{t+\tau} - \mathbf{x}_g\|; \text{speed}_t = \|M^{-1} p_{t+\tau}\|$
23: $y_t = [-\text{clr}_t, \text{dist}_t, -\text{speed}_t]^\top; y_t^* = [-m_{\text{safe}}, \text{dist}_t - \varepsilon_{\text{prog}}, -\max(\text{speed}_t, \mathbf{1}_{\{\text{clr}_t \geq m_{\text{safe}}\}} v_{\min})]^\top$
24: **Parameter adaptation:** $\triangleright \S E.12$
25: Select $\mathcal{I}_t \subset \mathcal{C}_t$; $\zeta_t = [\beta^t, \lambda^t, \{\alpha_i^t\}_{i \in \mathcal{I}_t}, \mu_\xi^t]^\top$
26: $\tilde{J}_t = (y_t - y_{t-\tau})(\zeta_t - \zeta_{t-\tau})^\top / (\|\zeta_t - \zeta_{t-\tau}\|^2 + \varepsilon); J_t = \rho J_{t-\tau} + (1 - \rho) \tilde{J}_t$
27: $\Delta y_t^{\text{des}} = y_t^* - y_t; \Delta \zeta_t = (J_t^\top J_t + \lambda_\zeta I)^{-1} J_t^\top \Delta y_t^{\text{des}}$
28: $\zeta_{t+\tau} = \Pi_{\mathbb{R}_+}((1 - \boldsymbol{\kappa}) \odot \zeta_t + \boldsymbol{\kappa} \odot (\zeta_t + \Delta \zeta_t))$
29: Unpack to $[\beta^{t+\tau}, \lambda^{t+\tau}, \{\alpha_i^{t+\tau}\}_{i \in \mathcal{I}_t}, \mu_\xi^{t+\tau}]$
30: **Port correction:** $\triangleright \S E.13$
31: $r_t = \Delta y_t^{\text{des}} - J_t \Delta \zeta_t; u_f^{\xi, t+\tau} = \text{clip}((P_t^\top P_t + \lambda_u I)^{-1} P_t^\top r_t, \mathcal{U})$
32: $\tilde{P}_t = (y_t - y_{t-\tau})(u_f^{\xi, t} - u_f^{\xi, t-\tau})^\top / (\|u_f^{\xi, t} - u_f^{\xi, t-\tau}\|^2 + \varepsilon); P_t = \rho_P P_{t-\tau} + (1 - \rho_P) \tilde{P}_t$
33: $t \leftarrow t + \tau$
34: **end while**
35: **Return:** Trajectory $\{z_\ell\}_{\ell=0}^T$, parameters $\{\eta_\xi^\ell, \mu_\xi^\ell, u_f^{\xi, \ell}\}_{\ell=0}^T$ $\triangleright \S E.14$

1458
1459

E.1 INITIALIZATION

1460
1461
1462

Robot State. Initialize phase-space coordinates $z_0 = (q_0, p_0)$ where $q_0 = (c_0, \theta_0, s_0, \psi_0)$ contains the starting position c_0 , orientation θ_0 , scale $s_0 = 1.0$, and shape parameters ψ_0 (e.g., B-spline control points initialized as a circle). The initial momentum is $p_0 = 0$.

1463
1464
1465
1466
1467

Time Step and Horizons. The integration time step τ is typically set to 0.01–0.05 seconds. Query horizons (T_y, T_f, T_o) determine how frequently each policy is queried: sensor policy every T_y steps, frame policy every T_f steps, and shape policy every step (or every T_o steps). Typical values: $T_y = 10, T_f = 5, T_o = 1$.

1468
1469
1470

Maximum Time Horizon. T_{\max} is the maximum number of integration steps allowed before timeout, typically 5000–10000 steps corresponding to 50–500 seconds of simulated time.

1471
1472

E.2 PARAMETER STRUCTURE AND INITIALIZATION

1473
1474

Meta-Policy Network. The meta-policy $g_\xi : \mathcal{E} \rightarrow [\eta_\xi, \mu_\xi, u_f^\xi]$ can be either:

1475
1476
1477
1478

- A learned neural network trained offline via Algorithm 2
- Fixed constant values: $\beta^0 = 2.0, \lambda^0 = 1.0, \alpha_i^0 = 1.5, \mu^0 = 0.1$

1479
1480

If using a learned network, ξ are the network parameters. If using fixed values, g_ξ simply returns constants.

1481
1482
1483
1484

Jacobian Initialization. Initialize $J_0 \in \mathbb{R}^{3 \times (2+|C_0|+1)}$ as a small random matrix or identity-scaled matrix. Initialize port Jacobian $P_0 \in \mathbb{R}^{3 \times \dim(u_f)}$ similarly. These will be refined online via secant updates.

1485
1486
1487

Environment and Context. Initial environment \mathcal{E}_0 contains known static obstacles. Active constraint set $\mathcal{C}_0 = \emptyset$ starts empty and will be populated by the sensor policy’s first query.

1488
1489

E.3 TERMINATION CONDITIONS

1490
1491

The algorithm terminates when any of the following conditions is met:

1492
1493

Success: Goal Reached. $\|c_t - \mathbf{x}_g\| < \epsilon_{\text{goal}}$ where $\epsilon_{\text{goal}} = 0.05$ m (5 cm tolerance).

1494
1495

Failure: Timeout. $t \geq T_{\max}$ without reaching the goal.

1496
1497

Failure: Collision. $\min_i d_i(q_t; \mathcal{E}) < 0$, indicating penetration into an obstacle.

1498
1499
1500

Failure: Stuck. $\|c_t - c_{t-50\tau}\| < \epsilon_{\text{stuck}}$ where $\epsilon_{\text{stuck}} = 0.01$ m, indicating the robot has not moved more than 1 cm in the last 50 steps (indicating entrapment in a local minimum).

1501
1502
1503

E.4 HIERARCHICAL QUERY FLOW

1504
1505

Policies are queried in a specific sequence with information flowing forward:

Sensor Policy Query (Line 5). Executed every T_y steps. Takes as input the previous context \mathcal{C}_{t-T_y} , current state $z_y^t = (c_t, \dot{c}_t)$, and goal \mathbf{x}_g . Performs ray-casting from the robot’s position to detect new obstacles within sensing range.

1509
1510
1511

Frame Policy Query (Line 8). Executed every T_f steps. Takes as input the updated context \mathcal{C}_t from the sensor policy, current full state $z_f^t = (q_t, p_t)$, and goal \mathbf{x}_g . Plans a short-horizon path considering known obstacles.

1512 **Shape Policy Query (Line 10).** Executed every step. Takes as input the context \mathcal{C}_t from sensor
 1513 and the current shape state $z_o^t = (s_t, \psi_t, \dot{s}_t, \dot{\psi}_t)$. Computes deformation forces to navigate through
 1514 constrained spaces.
 1515

1516 **Information Flow.**

1518 **E.5 SENSOR RESPONSE**

1520 **Response Structure.** $\mathcal{R}_y^t = \{z_{0:T_y}^{(y)}, s_{0:T_y}^{(y)}, \Delta\mathcal{E}\}$ where:

1522 • $z_{0:T_y}^{(y)} = \{(q_\ell^{(y)}, p_\ell^{(y)})\}_{\ell=0}^{T_y}$ is the integrated trajectory of the sensor policy's local Hamiltonian H_y
 1523 • $s_{0:T_y}^{(y)} = \{s_\ell^{(y)}\}_{\ell=0}^{T_y}$ is the score function (dynamics drift) at each step
 1524 • $\Delta\mathcal{E}$ contains newly detected obstacles: $\Delta\mathcal{E} = \{(\mathbf{x}_j, r_j, \text{type}_j)\}$ with positions, radii, and
 1525 types
 1526 • $\Delta\mathcal{E}$ contains newly detected obstacles: $\Delta\mathcal{E} = \{(\mathbf{x}_j, r_j, \text{type}_j)\}$ with positions, radii, and
 1527 types
 1528 • $\Delta\mathcal{E}$ contains newly detected obstacles: $\Delta\mathcal{E} = \{(\mathbf{x}_j, r_j, \text{type}_j)\}$ with positions, radii, and
 1529 types

1530 **Environment Update (Line 6).** Merge new detections: $\mathcal{E} \leftarrow \mathcal{E} \cup \Delta\mathcal{E}$. Update active constraint
 1531 set: $\mathcal{C}_t \leftarrow \{i \mid d_i(q_t; \mathcal{E}) \leq \hat{d}\}$ where \hat{d} is the sensing/activation radius (typically 0.5–1.0 m).
 1532

1533 **Policy Hamiltonian (not directly observed).** The sensor policy operates on $H_y(q_y, p_y; \xi, \mathcal{E}) =$
 1534 $\frac{1}{2}p_y^\top M_y(q_y)^{-1}p_y + \mathcal{R}_y(q_y; \xi, \mathcal{E})$ where $\mathcal{R}_y = E_{\text{sensor}}(q; \mathcal{E}, \omega_y) + \sum_{i \in \mathcal{C}_t} \alpha_i b(d_i)$ as defined in the
 1535 methodology.

1536 **E.6 FRAME RESPONSE**

1539 **Response Structure.** $\mathcal{R}_f^t = \{z_{0:T_f}^{(f)}, s_{0:T_f}^{(f)}, \{v_\ell^{(f)}\}_{\ell=0}^{T_f}\}$ where:

1541 • $z_{0:T_f}^{(f)} = \{(q_\ell^{(f)}, p_\ell^{(f)})\}_{\ell=0}^{T_f}$ is the short-horizon rollout under H_f
 1542 • $s_{0:T_f}^{(f)}$ are the score functions
 1543 • $\{v_\ell^{(f)} = M_f^{-1}p_\ell^{(f)}\}_{\ell=0}^{T_f}$ are velocity observations used for extracting speed in observable
 1544 computation
 1545 • $\{v_\ell^{(f)} = M_f^{-1}p_\ell^{(f)}\}_{\ell=0}^{T_f}$ are velocity observations used for extracting speed in observable
 1546 computation

1547 **Policy Hamiltonian.** $H_f(q_f, p_f; \xi, \mathcal{E}) = \frac{1}{2}p_f^\top M_f(q_f)^{-1}p_f + \mathcal{R}_f(q_f; \xi, \mathcal{E})$ where $\mathcal{R}_f =$
 1548 $\beta(\mathcal{E})E_{\text{goal}} + \sum_{i \in \mathcal{C}_t} \alpha_i b(d_i)$.
 1549

1551 **Dissipation and Port in Frame Policy.** The frame policy integrates with dissipation $\Gamma_f^\xi = \mu_\xi(\mathcal{E})\mathbf{I}$
 1552 and port input $G_f^\xi u_f^\xi$ as per the port-Hamiltonian equations (5-6) in the methodology. This is re-
 1553 flected in the Navigator's integration step (Line 16).
 1554

1555 **E.7 SHAPE RESPONSE**

1557 **Response Structure.** $\mathcal{R}_o^t = \{z_{0:T_o}^{(o)}, s_{0:T_o}^{(o)}, \{\min_i d_i(q_\ell^{(o)}; \mathcal{E})\}_{\ell=0}^{T_o}\}$ where:

1559 • $z_{0:T_o}^{(o)} = \{(q_\ell^{(o)}, p_\ell^{(o)})\}_{\ell=0}^{T_o}$ is the deformation trajectory
 1560 • $s_{0:T_o}^{(o)}$ are score functions
 1561 • $\{\min_i d_i(q_\ell^{(o)}; \mathcal{E})\}_{\ell=0}^{T_o}$ tracks minimum clearance at each step of the shape rollout

1564 **Policy Hamiltonian.** $H_o(q_o, p_o; \xi, \mathcal{E}) = \frac{1}{2}p_o^\top M_o(q_o)^{-1}p_o + \mathcal{R}_o(q_o; \xi, \mathcal{E})$ where $\mathcal{R}_o =$
 1565 $\lambda(\mathcal{E})E_{\text{obj}} + \sum_{i \in \mathcal{C}_t} \alpha_i b(d_i)$.

1566 **Usage in Clearance.** The clearance values from the shape rollout are used in Line 18 to compute
 1567 clr_t , accounting for the robot's actual deformed geometry when assessing collision risk.
 1568

1569 **E.8 META-POLICY PROPOSAL**

1570 **Token Construction (Line 12).** Build input tokens \mathcal{T}_t from current environment state:

- Obstacle features: positions, radii, types for each $i \in \mathcal{C}_t$
- Robot state: position \mathbf{c}_t , velocity $M^{-1}p_t$, current scale s_t
- Goal information: relative position $\mathbf{x}_g - \mathbf{c}_t$, distance $\|\mathbf{x}_g - \mathbf{c}_t\|$

1571 These are typically encoded as a permutation-invariant set representation (e.g., using attention mech-
 1572 anisms over obstacle features).

1573 **Meta-Policy Output (Line 13).** $g_\xi(\mathcal{T}_t; \xi) = [\eta_\xi^t, \mu_\xi^t, u_f^{\xi, t}]$ produces:

- Energy weights: $\eta_\xi^t = (\beta^t, \lambda^t, \{\alpha_i^t\}_{i \in \mathcal{C}_t}) \in \mathbb{R}_+^{2+|\mathcal{C}_t|}$
- Friction coefficient: $\mu_\xi^t \in \mathbb{R}_+$
- Initial port suggestion: $u_f^{\xi, t} \in \mathbb{R}^{\text{dim}(u_f)}$ (will be refined online)

1579 **Fixed vs Learned.** If g_ξ is not trained, simply return fixed values: $\beta^t = 2.0, \lambda^t = 1.0, \alpha_i^t =$
 1580 $1.5 \forall i, \mu^t = 0.1, u_f^{\xi, t} = 0$. The online adaptation (Lines 22-28) will refine these values regardless
 1581 of initialization.

1582 **E.9 HAMILTONIAN ASSEMBLY**

1583 **Energy Component Definitions.** The potential energy is decomposed as:

$$E_{\text{sensor}}(q; \mathcal{E}, \omega_y) = \|\mathbf{y}_t\|_S^2 \quad (\text{sensor configuration cost}) \quad (61)$$

$$E_{\text{goal}}(q; \mathcal{E}, \omega_g) = \|\mathbf{c}_t - \mathbf{x}_g\|_2^2 \quad (\text{goal attraction}) \quad (62)$$

$$E_{\text{obj}}(q; \omega_d) = \text{deformation energy of shape } \psi_t \quad (63)$$

$$b(d_i(q; \mathcal{E}); \omega_b) = \text{barrier function, e.g., } \frac{\hat{d}^2}{d_i^2} \text{ or IPC log-barrier} \quad (64)$$

1607 **Total Potential (Line 15).** $\mathcal{R}(q_t; \eta_\xi^t, \mathcal{E}) = E_{\text{sensor}} + \beta^t E_{\text{goal}} + \lambda^t E_{\text{obj}} + \sum_{i \in \mathcal{C}_t} \alpha_i^t b(d_i)$

1608 This is the **surrogate potential** that aggregates contributions from all three policy domains,
 1609 weighted by the meta-policy outputs $\eta_\xi^t = (\beta^t, \lambda^t, \{\alpha_i^t\})$.

1612 **Surrogate Hamiltonian (Line 15).** $H(q_t, p_t; \omega, \xi, \mathcal{E}) = \frac{1}{2} p_t^\top M(q_t; \omega_M)^{-1} p_t + \mathcal{R}(q_t; \eta_\xi^t, \mathcal{E})$

1613 The kinetic energy uses a (possibly state-dependent) mass matrix $M(q_t)$. For planar navigation, this
 1614 is often constant: $M = \text{diag}(m, m, I_{zz}, m_s, \dots)$ for translation, rotation, scale, and shape degrees
 1615 of freedom.

1618 **Fixed Parameters ω .** As stated in the methodology section, the intra-term parameters $\omega =$
 1619 $(\omega_y, \omega_M, \omega_g, \omega_d, \omega_b)$ are assumed **fixed** throughout all environments. Only the dual weights η_ξ
 1620 are adapted online.

1620 **E.10 SYMPLECTIC INTEGRATION WITH PORT-HAMILTONIAN DYNAMICS**
 1621

1622 **Gradient Computation (Line 16).** Compute the Hamiltonian gradients:
 1623
$$\nabla_p H|_t = M(q_t)^{-1} p_t \quad (65)$$

 1624
$$\nabla_q H|_t = \nabla_q \mathcal{R}(q_t; \eta_\xi^t, \mathcal{E}) \quad (66)$$

 1625
$$= \nabla_q E_{\text{sensor}} + \beta^t \nabla_q E_{\text{goal}} + \lambda^t \nabla_q E_{\text{obj}} + \sum_{i \in \mathcal{C}_t} \alpha_i^t \nabla_q b(d_i) \quad (67)$$

 1626

1627 Each gradient $\nabla_q b(d_i)$ is computed using the chain rule: $\nabla_q b(d_i) = \frac{\partial b}{\partial d_i} \cdot \nabla_q d_i(q; \mathcal{E})$
 1628

1629 **Symplectic Euler with Dissipation and Port (Lines 17-18).** The integration follows the port-
 1630 Hamiltonian structure from methodology equations (5-6):
 1631

1632
$$p_{t+\tau} = p_t - \tau \nabla_q H|_t - \tau \underbrace{\mu_\xi^t \mathbf{I}}_{\Gamma_f^\xi} \cdot \nabla_p H|_t + \tau \underbrace{\mathbf{I}}_{\mathbf{G}_f^\xi} \cdot u_f^{\xi, t} \quad (68)$$

 1633

1634
$$q_{t+\tau} = q_t + \tau M(q_t)^{-1} p_{t+\tau} \quad (69)$$

 1635

1636 The dissipation term $-\mu_\xi^t \mathbf{I} \cdot \nabla_p H|_t = -\mu_\xi^t M(q_t)^{-1} p_t$ acts as velocity-proportional damping. The
 1637 port input $u_f^{\xi, t}$ provides non-conservative forcing to correct for residual errors.
 1638

1639 **Frame Policy Only.** As clarified, the dissipation μ_ξ^t and port $u_f^{\xi, t}$ apply **only** to the frame pol-
 1640 icy dynamics. The sensor and shape policies have $\Gamma_y^\xi \equiv 0, \Gamma_o^\xi \equiv 0$, and no port inputs in their
 1641 local dynamics. However, since the Navigator integrates the **full robot state** using the composed
 1642 Hamiltonian, the dissipation and port appear in the full-state integration.
 1643

1644 **E.11 OBSERVABLE EXTRACTION**
 1645

1646 **Frame-Based but Multi-Module (Line 18-19).** The observable vector y_t is constructed from
 1647 quantities that are **primarily** derived from the frame trajectory** but require information from all
 1648 three modules:
 1649

1650 **Clearance** (uses sensor + shape):
 1651

1652
$$\text{clr}_t = \min \left\{ \min_i d_i(q_{t+\tau}; \mathcal{E}), \min_{\ell=0, \dots, T_o} \min_i d_i(q_\ell^{(o)}; \mathcal{E}) \right\} \quad (70)$$

 1653

1654 This takes the minimum over both the integrated Navigator state $q_{t+\tau}$ and all states from the shape
 1655 policy rollout $\{q_\ell^{(o)}\}$. Computing $d_i(q; \mathcal{E})$ requires:
 1656

1657

- Environment \mathcal{E} from sensor policy
- Robot geometry (radius, shape) from shape policy

 1658

1659 **Distance** (frame position):
 1660

1661
$$\text{dist}_t = \|\mathbf{c}_{t+\tau} - \mathbf{x}_g\| \quad (71)$$

 1662 Directly from the frame component of $q_{t+\tau}$.
 1663

1664 **Speed** (frame velocity):
 1665

1666
$$\text{speed}_t = \|M(q_{t+\tau})^{-1} p_{t+\tau}\| \quad (72)$$

 1667 Computed from the updated momentum $p_{t+\tau}$.
 1668

1669 **Observable Vector and Target (Line 19).**
 1670

1671
$$y_t = \begin{bmatrix} -\text{clr}_t \\ \text{dist}_t \\ -\text{speed}_t \end{bmatrix}, \quad y_t^* = \begin{bmatrix} -m_{\text{safe}} \\ \text{dist}_t - \varepsilon_{\text{prog}} \\ -\max(\text{speed}_t, \mathbf{1}_{\{\text{clr}_t \geq m_{\text{safe}}\}} v_{\min}) \end{bmatrix} \quad (73)$$

 1672

1673 Target parameters: $m_{\text{safe}} = 0.15$ m (desired minimum clearance), $\varepsilon_{\text{prog}} > 0$ (desired progress per
 1674 step), $v_{\min} = 0.3$ m/s (minimum speed when safe).

1674
1675**Physical Interpretation.**1676
1677
1678
1679
1680
1681
1682
1683

- $y_t[0] = -\text{clr}_t$: negative clearance (larger value = closer to obstacles)
- Target $y_t^*[0] = -0.15$ means we want to maintain at least 15 cm clearance
- $y_t[1] = \text{dist}_t$: current distance to goal
- Target $y_t^*[1] = \text{dist}_t - \varepsilon_{\text{prog}}$ means we want to make progress (reduce distance)
- $y_t[2] = -\text{speed}_t$: negative speed
- Target encourages minimum speed v_{\min} when clearance is safe

1684
1685**E.12 PARAMETER ADAPTATION VIA OBSERVABLE FEEDBACK**1686
1687
1688

Active Parameter Selection (Line 21). Select a subset $\mathcal{I}_t \subset \mathcal{C}_t$ of nearby obstacles (e.g., within 0.5 m) to limit the parameter vector size. Assemble:

1689
1690

$$\zeta_t = [\beta^t, \lambda^t, \{\alpha_i^t\}_{i \in \mathcal{I}_t}, \mu_\xi^t]^\top \in \mathbb{R}_+^{2+|\mathcal{I}_t|+1} \quad (74)$$

1691
1692

For obstacles not in \mathcal{I}_t , their α_i values remain unchanged from the previous step.

1693
1694

Secant Jacobian Update (Line 22). Approximate the Jacobian $J_t \approx \partial y / \partial \zeta$ using a rank-1 secant update:

1695
1696
1697

$$\tilde{J}_t = \frac{(y_t - y_{t-\tau})(\zeta_t - \zeta_{t-\tau})^\top}{\|\zeta_t - \zeta_{t-\tau}\|^2 + \varepsilon} \in \mathbb{R}^{3 \times (2+|\mathcal{I}_t|+1)} \quad (75)$$

1698

Apply exponential moving average for smoothing:

1699
1700

$$J_t = \rho J_{t-\tau} + (1 - \rho) \tilde{J}_t, \quad \rho \in [0, 1] \quad (76)$$

1701
1702

Typical value: $\rho = 0.9$.

1703
1704

Tikhonov-Regularized Least Squares (Line 23). Compute the desired observable change:

1705
1706

$$\Delta y_t^{\text{des}} = y_t^* - y_t \quad (77)$$

1707
1708

Solve the regularized least-squares problem:

1709
1710

$$\Delta \zeta_t = \arg \min_{\Delta \zeta} \|J_t \Delta \zeta - \Delta y_t^{\text{des}}\|_2^2 + \lambda_\zeta \|\Delta \zeta\|_2^2 \quad (78)$$

1711

Closed-form solution:

1712
1713

$$\Delta \zeta_t = (J_t^\top J_t + \lambda_\zeta I)^{-1} J_t^\top \Delta y_t^{\text{des}} \quad (79)$$

1714
1715

Regularization parameter: $\lambda_\zeta = 10^{-4}$ ensures numerical stability.

1716
1717

Parameter Update with Step Sizes (Line 24). Apply the update with componentwise step sizes $\kappa = [\kappa_\beta, \kappa_\lambda, \{\kappa_{\alpha_i}\}, \kappa_\mu]^\top$ where each $\kappa_j \in [0, 1]$:

1718
1719

$$\zeta_{t+\tau} = \Pi_{\mathbb{R}_+}((1 - \kappa) \odot \zeta_t + \kappa \odot (\zeta_t + \Delta \zeta_t)) \quad (80)$$

1720
1721

The projection $\Pi_{\mathbb{R}_+}$ enforces non-negativity: $[\zeta_{t+\tau}]_j = \max(0, [\zeta_{t+\tau}]_j)$.

1722
1723

Typical step sizes: $\kappa_\beta = 0.05, \kappa_\lambda = 0.05, \kappa_{\alpha_i} = 0.1, \kappa_\mu = 0.02$.

1724
1725

Unpacking (Line 25). Extract the updated parameters:

1726
1727

$$[\beta^{t+\tau}, \lambda^{t+\tau}, \{\alpha_i^{t+\tau}\}_{i \in \mathcal{I}_t}, \mu_\xi^{t+\tau}] \leftarrow \zeta_{t+\tau} \quad (81)$$

1728

For obstacles $j \notin \mathcal{I}_t$, retain previous values: $\alpha_j^{t+\tau} = \alpha_j^t$.

1728 E.13 PORT CORRECTION FROM RESIDUAL
17291730 **Residual Computation (Line 27).** After the Jacobian-based parameter update, there may remain
1731 a residual error:

1732
$$r_t = \Delta y_t^{\text{des}} - J_t \Delta \zeta_t \in \mathbb{R}^3 \quad (82)$$

1733 This residual captures observable errors that cannot be corrected by reshaping the energy weights
1734 alone (e.g., due to model mismatch or unmodeled dynamics).1735
1736 **Port Correction via Least Squares (Line 27).** Solve a second least-squares problem to find a port
1737 input that addresses the residual:

1738
1739
$$u_f^{\xi, t+\tau} = \arg \min_{u \in \mathbb{R}^{\text{dim}(u_f)}} \|P_t u - r_t\|_2^2 + \lambda_u \|u\|_2^2 \quad (83)$$

1740
1741 Closed-form solution:

1742
1743
$$u_f^{\xi, t+\tau} = (P_t^\top P_t + \lambda_u I)^{-1} P_t^\top r_t \quad (84)$$

1744 Clip to feasible box: $u_f^{\xi, t+\tau} \leftarrow \text{clip}(u_f^{\xi, t+\tau}, \mathcal{U})$ where $\mathcal{U} = [-u_{\text{max}}, u_{\text{max}}]^{\text{dim}(u_f)}$.1745
1746 **Port-Observable Jacobian (Line 28).** Estimate $P_t \approx \partial y / \partial u_f$ using secant method:

1747
1748
$$\tilde{P}_t = \frac{(y_t - y_{t-\tau})(u_f^{\xi, t} - u_f^{\xi, t-\tau})^\top}{\|u_f^{\xi, t} - u_f^{\xi, t-\tau}\|^2 + \varepsilon} \quad (85)$$

1749
1750 Apply smoothing:

1751
1752
$$P_t = \rho_P P_{t-\tau} + (1 - \rho_P) \tilde{P}_t, \quad \rho_P \in [0, 1] \quad (86)$$

1753
1754 **Simplified Port Jacobian.** If full P_t estimation is noisy, use a simple diagonal form:

1755
1756
$$P_t = \text{diag}(0, 0, \kappa_v) \quad (87)$$

1757 where $\kappa_v > 0$ means the port primarily affects the speed observable (third component of y_t), while
1758 clearance and distance are controlled via energy weights.1759
1760 **Role of Port Correction.** The port correction $u_f^{\xi, t+\tau}$ provides **non-conservative forcing** that can-
1761 not be represented by a potential function. It acts as a "corrective impulse" applied at each step to
1762 handle:1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24

1782 **Optional Diagnostics.** Additional outputs may include:
 1783

- 1784 • Clearance history: $\{\text{clr}_\ell\}_{\ell=0}^T$
- 1785 • Observable errors: $\{\Delta y_\ell^{\text{des}}\}_{\ell=0}^T$
- 1786 • Hamiltonian values: $\{H(q_\ell, p_\ell)\}_{\ell=0}^T$
- 1787 • Residuals: $\{r_\ell\}_{\ell=0}^T$

1790 F THEORETICAL ANALYSIS AND PROOFS

1791 F.1 MULTI-POLICY STABILITY ANALYSIS

1792 **Theorem F.1** (Multi-Policy Stability - Complete Statement). *Consider the coupled multi-policy system with score functions $\{s_y^{\theta_y}, s_f^{\theta_f}, s_o^{\theta_o}\}$ operating at temporal scales $\{T_{\text{sens}}, T_{\text{path}}, T_{\text{int}}\}$ satisfying:*

$$1798 \quad \frac{T_{\text{sens}}}{T_{\text{path}}} \geq \sigma_1 > 1, \quad \frac{T_{\text{path}}}{T_{\text{int}}} \geq \sigma_2 > 1 \quad (89)$$

1800 Let each policy have Lipschitz constant L_k with respect to state and parameter variations:

$$1802 \quad \|s_k^{\theta_k}(z_1, \mathcal{C}, t) - s_k^{\theta_k}(z_2, \mathcal{C}, t)\| \leq L_k \|z_1 - z_2\| \quad (90)$$

$$1804 \quad \|s_k^{\theta_k^1}(z, \mathcal{C}, t) - s_k^{\theta_k^2}(z, \mathcal{C}, t)\| \leq L_k \|\theta_k^1 - \theta_k^2\| \quad (91)$$

1806 If the parameter updates during training satisfy:

$$1808 \quad \max_{k \in \{y, f, o\}} \|\theta_k^{t+1} - \theta_k^t\| \leq \frac{\epsilon}{L_{\max} \cdot \min(\sigma_1, \sigma_2)} \quad (92)$$

1810 where $L_{\max} = \max_k L_k$, then:

1811 1. **Stability:** The coupled system state remains bounded: $\|z_t\| \leq C(1 + \|z_0\|)$ for some constant C .

1812 2. **Error Bound:** The total navigation error satisfies: $\mathcal{E}_{\text{total}} \leq \epsilon$ with probability $1 - \delta$.

1814 3. **Convergence:** The system converges to a neighborhood of the optimal trajectory:
 1815 $\lim_{t \rightarrow \infty} \text{dist}(z_t, \mathcal{P}^*) \leq \epsilon$.

1817 *Proof.* The proof proceeds in three steps:

1818 The scale separation assumption ensures that fast dynamics (sensor) reach approximate equilibrium
 1819 before slower dynamics change significantly. For the sensor policy operating on timescale T_{sens} , the
 1820 quasi-static approximation gives:

$$1822 \quad \dot{z}_y \approx -\gamma_y \nabla_{z_y} h_y^{\theta_y}(z_y, \mathcal{C}_t^{\text{fixed}}, t) \quad (93)$$

1824 where $\mathcal{C}_t^{\text{fixed}}$ represents slowly varying constraints from path and shape policies.

1825 Under the Lipschitz conditions, each policy defines a contraction mapping on its domain. The
 1826 composed system inherits this property with contraction factor:

$$1828 \quad \rho = \max_k \frac{L_k \tau_k}{1 + \gamma_k \tau_k} < 1 \quad (94)$$

1830 provided step sizes τ_k are chosen appropriately.

1831 Parameter update bounds ensure that training perturbations don't destabilize the system. The error
 1832 propagates according to:

$$1834 \quad \|\mathcal{E}_{t+1}\| \leq \rho \|\mathcal{E}_t\| + \epsilon \frac{L_{\max}}{\min(\sigma_1, \sigma_2)} \quad (95)$$

1835 which converges to the stated bound under the given conditions. \square

1836
1837

F.2 SYMPLECTIC STRUCTURE PRESERVATION

1838
1839
1840
1841
1842
1843
1844**Theorem F.2** (Symplectic Preservation - Complete Statement). *Let (z_k, ω_k) be phase space coordinates with canonical symplectic form $\omega_k = \sum_i dq_k^i \wedge dp_k^i$. The score function update:*

$$z_{k,t+1} = z_{k,t} + \tau_k J_k s_k^{\theta_k}(z_{k,t}, \mathcal{C}_t, t) \quad (96)$$

1845
1846
1847
1848
1849*where $J_k = \begin{bmatrix} 0 & I_{d_k} \\ -I_{d_k} & 0 \end{bmatrix}$ and $s_k^{\theta_k} = \nabla h_k^{\theta_k}$, preserves the symplectic structure:*

$$\omega_k(z_{k,t+1}) = \omega_k(z_{k,t}) + O(\tau_k^2) \quad (97)$$

1847
1848
1849*Proof.* Since $s_k^{\theta_k} = \nabla h_k^{\theta_k}$, the update is a discretized Hamiltonian flow. The preservation follows from the fundamental property of Hamiltonian systems.1850
1851
1852
1853For the continuous flow $\dot{z}_k = J_k \nabla h_k^{\theta_k}(z_k, t)$, we have:

$$\frac{d}{dt} \omega_k = \mathcal{L}_{X_{H_k}} \omega_k = 0 \quad (98)$$

1854
1855
1856
1857where \mathcal{L} is the Lie derivative and $X_{H_k} = J_k \nabla h_k^{\theta_k}$ is the Hamiltonian vector field.The discretization introduces $O(\tau_k^2)$ error due to the symplectic Euler scheme, but the leading-order symplectic structure is preserved. \square 1858
1859

F.3 SAMPLE COMPLEXITY ANALYSIS

1860
1861
1862
1863**Theorem F.3** (Sample Complexity - Complete Statement). *For error tolerance $\epsilon > 0$ and failure probability $\delta \in (0, 1)$, consider training three independent score functions $\{s_k^{\theta_k}\}_{k \in \{y, f, o\}}$ with phase space dimensions $\{d_y, d_f, d_o\}$.*1864
1865
1866
1867*Under standard smoothness and concentration assumptions, the total sample complexity is:*

$$N_{total} = \sum_{k \in \{y, f, o\}} N_k \quad (99)$$

1868
1869
1870
1871*where each policy requires:*

$$N_k = O\left(\frac{d_k^2 L_k^2}{\epsilon_k^2} \log\left(\frac{3}{\delta}\right)\right) \quad (100)$$

1872
1873
1874
1875*with Lipschitz constants L_k and error allocation ϵ_k satisfying $\sum_k \epsilon_k \leq \epsilon$.**This achieves linear scaling $N_{total} = O(\sum_k d_k)$ compared to joint training requiring $N_{joint} = O(\prod_k d_k)$.*1876
1877
1878
1879*Proof.* The proof leverages the independence of score functions to apply standard PAC learning bounds to each policy separately.For each policy k , the empirical risk minimization:

$$\hat{\theta}_k = \arg \min_{\theta_k} \frac{1}{N_k} \sum_{i=1}^{N_k} \|h_k^{\theta_k}(z_{k,i}) - \hat{h}_{k,i}^{\text{ref}}\|^2 \quad (101)$$

1883
1884
1885achieves generalization error ϵ_k with probability $1 - \delta/3$ when $N_k \geq C \frac{d_k^2 L_k^2}{\epsilon_k^2} \log(3/\delta)$ for some universal constant C .1886
1887
1888The union bound over three policies gives total failure probability δ , and the error allocation ensures total error $\sum_k \epsilon_k \leq \epsilon$.

1889

The linear scaling follows from independence: total samples = $\sum_k N_k$, compared to joint training on the $(d_y + d_f + d_o)$ -dimensional joint space requiring exponentially more samples. \square

1890 **G IMPLEMENTATION DETAILS**

1891 **G.1 SPATIAL DATA STRUCTURES**

1892 Each policy maintains a spatial index \mathcal{T}_k , can be implemented as a dynamic octree Ellendula &
1893 Bajaj (2025), which supports the following operations and has been proved to be the optimal structure
1894 for spatio-temporal maintenance:

1895

- **Insert:** $\mathcal{O}(\log n)$ insertion of new spatial data.
1896
- **Query:** $\mathcal{O}(\log n + k)$ for k -nearest neighbor queries.
1897
- **Update:** $\mathcal{O}(\log n)$ modification of existing entries.
1898
- **Rebalance:** $\mathcal{O}(n \log n)$ periodic rebalancing for efficiency.

1899 The spatial indices enable multi-kernel evaluation: each score function query reuses the same
1900 $\mathcal{O}(\log n + k)$ neighbor search across multiple energy kernels, reducing computational complexity
1901 from $\mathcal{O}(n^2)$ dense evaluation to $\mathcal{O}(n \log n)$ sparse computation.

1902 **G.2 BASELINE IMPLEMENTATIONS (DETAILED)**

1903 We provide here the full technical details of all baseline planners evaluated.

1904 **Rigid A*.** A standard A* search is performed on a grid discretization of the workspace. Obstacles
1905 are inflated by the nominal rest radius r_{rest} of the deformable ring, such that the resulting path is
1906 collision-free for a rigid disc of radius r_{rest} . This serves as a conservative reference planner.

1907 **Deformable A*.** Clearance at each grid cell x is defined as $c(x)$, the distance to the nearest obstacle
1908 boundary. Feasibility requires $c(x) \geq r_{\min}$. The edge cost between cells u, v is augmented by a
1909 deformation penalty:

1910
$$\text{cost}(u, v) = \ell(u, v) + \frac{\beta}{2} (\phi(c(u)) + \phi(c(v))) \ell(u, v), \quad \phi(c) = \lambda \max\left(0, \frac{r_{\text{rest}}}{c+\epsilon} - 1\right)^2,$$

1911 where $\ell(u, v)$ is the Euclidean distance, and β, λ control penalty strength. This formulation allows
1912 the planner to compress through tight gaps when unavoidable, while encoding an energetic cost.

1913 **Potential Field (Stagewise).** Navigation is driven by an attractive force toward the stage exit (or
1914 final goal in the last stage), combined with repulsive forces from local obstacles and soft penalties
1915 for leaving the stage bounds. Speed saturation and emergency braking near obstacles are applied for
1916 stability.

1917 **CBF (Stagewise).** At each step, a nominal control toward the stage exit is filtered through a Con-
1918 trol Barrier Function (CBF) quadratic program:

1919
$$u^* = \arg \min_u \|u - u_{\text{nom}}\|^2 \quad \text{s.t. } \nabla h(x) \cdot u + \gamma h(x) \geq 0,$$

1920 where $h(x)$ encodes the clearance from visible obstacles. This ensures forward invariance of the
1921 safe set within each stage.

1922 **DWA (Stagewise).** We implement a Dynamic Window Approach (DWA) adapted to the stagewise
1923 setting. Candidate (v, ω) velocity pairs are sampled within dynamics limits, trajectories are rolled
1924 out over a prediction horizon, and scored based on heading alignment, distance to target, velocity,
1925 and clearance with respect to *local obstacles only*. Stage boundary penalties are also included. This
1926 contrasts with the conventional *global* DWA, which assumes full obstacle visibility; here we show
1927 the stagewise variant for fairness, though it is known to underperform due to rigid-body kinematic
1928 assumptions.

1944

Categories.

1945

1946

- **Global planning:** Rigid A*, Deformable A*.
- **Local reactive:** Potential Field (staged), CBF (staged), DWA (staged).
- **Ours:** GRL-SNAM (local staged).

1948

1949

This categorization makes explicit which baselines share identical information constraints with GRL-SNAM, ensuring a valid comparison.

1950

1951

1952

1953

1954

H EXAMPLE:

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

Figure 7: Online navigation of the hyperelastic ring through cluttered environments. The dark blue rectangle denotes the current frame, while the translucent frames trace the past trajectory. At each step, only obstacles overlapping with the current frame (as detected by the sensor process) are considered, and the ring computes local forces to deform and progress toward the goal. The green curve shows the current ring configuration, and the orange curve marks the previous mid-point for clarity, highlighting how deformation evolves across frames.

1971

1972

1973

1974

1975

1976

1977

1978

1979

I EXPERIMENTAL EVALUATION

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

We evaluate GRL-SNAM across multiple dimensions that highlight the unique capabilities of our geometric approach compared to standard reinforcement learning and classical navigation methods.

Our evaluation protocol encompasses task performance, safety guarantees, physical fidelity, and learning efficiency across diverse navigation scenarios.

I.1 BASELINE PLANNERS

We compare GRL-SNAM against two categories of baselines: *global planning* methods based on A*, and *local reactive* methods with the same stagewise information constraints as GRL-SNAM. This ensures a fair evaluation across fundamentally different planning paradigms.

Global Planning Methods

1992

1993

1994

1995

1996

1997

- **Rigid A*:** The deformable ring is replaced with a rigid disc of radius r_{rest} . Obstacles are inflated by r_{rest} , and a standard 8-connected A* is run on the occupancy grid. This produces feasible shortest paths for a rigid robot.
- **Deformable A*:** A clearance-aware variant of A* augments the step cost with deformation penalties that increase as clearance approaches the minimum admissible radius r_{min} . This allows paths that squeeze through narrow gaps but penalizes excessive compression.

1998 **Local Reactive Methods** To ensure fairness, all reactive methods use the same stage manager as
 1999 GRL-SNAM: identical stage size, overlap, obstacle visibility, and advancement logic. Each method
 2000 navigates stage exit to stage exit until the goal is reached:
 2001

- 2002 • **Potential Field (Staged):** Attractive force toward stage exit plus repulsive forces from
 2003 local obstacles and stage boundaries.
- 2004 • **CBF (Staged):** Quadratic-program filter enforces safety constraints with respect to visible
 2005 obstacles at each timestep.
- 2006 • **DWA (Staged):** Velocity samples (v, ω) are rolled out over a short horizon using only local
 2007 obstacles and stage bounds. Unlike the global DWA, which assumes full obstacle visibility,
 2008 this stagewise variant ensures equal information constraints, though it performs poorly due
 2009 to rigid-body assumptions.

2010 **Categorization** Rigid and Deformable A* form the *global planning* references, providing L_{ref} for
 2011 SPL and detour calculations. The stagewise Potential Field, CBF, and DWA baselines constitute the
 2012 *local reactive* category under identical information constraints. GRL-SNAM belongs to the same
 2013 local category, enabling a fair head-to-head comparison.

2014 I.2 EXPERIMENTAL SETUP

2015 We evaluate GRL-SNAM in procedurally generated 2D deformable navigation tasks, where a hyper-
 2016 elastic ring must traverse cluttered environments with narrow gaps and varying obstacle densities.
 2017 Each environment is randomized in obstacle positions, radii, and densities to span a spectrum of
 2018 navigation difficulty. The robot perceives only a local window of size $2\hat{d} \times 2\hat{d}$, from which we
 2019 construct a Hamiltonian energy functional.

2020 **Hamiltonian Decomposition** The energy functional decomposes into:

- 2021 1. Goal-directed quadratic potential F_g
- 2022 2. Barrier potentials F_{bs} from signed distance fields
- 2023 3. Friction/regularization terms with adaptive coefficients (β, γ, α) modulated by context en-
 2024 coders (LSTM)

2025 Offline, GRL-SNAM integrates reduced Hamiltonian gradients to generate local trajectories. Online,
 2026 it fuses newly sensed rewards R_{env} with the offline surrogate, adaptively refining navigation.

2027 **Evaluation Metrics** We evaluate all methods using:

- 2028 • **Success Rate:** Fraction of episodes reaching the goal
- 2029 • **SPL:** Success weighted path efficiency relative to A*
- 2030 • **Detour Ratio:** Executed path length relative to A*
- 2031 • **Minimum and Mean Clearance:** Distance to nearest obstacle along the trajectory
- 2032 • **Smoothness:** Average turning cost (mean absolute change in heading)
- 2033 • **Collisions:** Number of obstacle intersections
- 2034 • **Sample Efficiency:** Normalized area under curve (AUC) for success and SPL, and steps
 2035 required to reach 80% success or $\text{SPL} \geq 0.7$

2036 Results are presented in a *question–answer* format, emphasizing experimental questions and the
 2037 corresponding insights.

2038 I.3 RESULTS: NAVIGATION QUALITY UNDER MINIMAL SENSING

2039 We first evaluate GRL-SNAM against two representative baselines: (i) **Potential Fields (PF)**,
 2040 a purely reactive controller that maps obstacle proximity into repulsive forces, and (ii) **Control**

2052 Table 4: Comparison of navigation quality across methods (success-only runs). GRL-SNAM
 2053 achieves near-CBF path efficiency while consuming the same minimal mapping budget as PF. SPL
 2054 = Success weighted by Path Length; Detour = executed path length / shortest path length.
 2055

Method	SPL \uparrow	Detour \downarrow	Min. Clearance (m) \uparrow	Mapping Ratio (%) \downarrow
PF	0.77	1.42	0.18	10.3
CBF	0.96	1.04	0.32	11.2
GRL-SNAM	0.95	1.09	0.26	10.7

2061
 2062 **Barrier Functions (CBF)**, a model-based method that enforces hard safety constraints via online
 2063 quadratic programs. Both baselines use the same sensing budget as GRL-SNAM.
 2064

2065 Environments consist of cluttered 2D workspaces with obstacles of varying density. Each trial starts
 2066 from a random initial pose with a fixed goal. Performance is averaged across 50 runs per environ-
 2067 ment. Results focus on *successful runs only* to highlight navigation quality rather than raw failure
 2068 rates.

2069 **Q1: How efficiently do we trade mapping for navigation quality?** Table 4 shows that GRL-
 2070 SNAM matches the SPL and detour ratios of CBF despite using the same minimal map coverage
 2071 as PF. This demonstrates that our stagewise Hamiltonian refinement extracts more value per sensed
 2072 unit of the environment, trading mapping effort for near-optimal navigation.
 2073

2074 **Q2: What is the minimal mapping needed to reliably solve tasks?** With \sim 10–11% map cov-
 2075 erage, GRL-SNAM already achieves $SPL \geq 0.95$ and detour within 9% of the A* shortest path.
 2076 PF fails under the same budget, while CBF requires identical map coverage. Thus, GRL-SNAM
 2077 reliably solves tasks under minimal sensing, validating the *minimal mapping suffices* principle.
 2078

2079 **Q3: Is the mapped information aligned with the subtask?** Unlike PF, which produces repul-
 2080 sions indiscriminately, or CBF, which enforces constraints globally, GRL-SNAM’s mapping is task-
 2081 aligned: local patches are encoded into Hamiltonian terms that directly drive subtasks (goal at-
 2082 traction, barrier avoidance). The result is that every bit of mapped information yields functional
 2083 guidance, as evidenced by SPL and detour staying close to CBF even under tight sensing budgets.
 2084

2085 **Key Insight** GRL-SNAM shows that Hamiltonian-structured policies can achieve CBF-level nav-
 2086 igation quality while retaining the lightweight sensing footprint of PF. The slight clearance gap
 2087 relative to CBF reflects a deliberate trade-off: we sacrifice hard feasibility for adaptability and feed-
 2088 forward inference, enabling real-time deployment in SNAM settings.
 2089

2090 I.4 RESULTS: COMPREHENSIVE NAVIGATION COMPARISON

2091 **Q4: Does GRL-SNAM outperform classical and reactive planners in both in-distribution**
 2092 **(Test-ID) and out-of-distribution (Test-OOD) settings?** Yes. Figure 9 summarizes the compari-
 2093 son between our method and five baselines: Rigid A*, Deformable A*, Potential Field, Control Bar-
 2094 rier Functions (CBF), and Dynamic Window Approach (DWA). GRL-SNAM achieves near-perfect
 2095 success rates ($\approx 100\%$) across both Test-ID and Test-OOD cases, while all baselines degrade signif-
 2096 icantly in cluttered or novel environments. Rigid A* succeeds moderately but requires inflated radii
 2097 and yields jerky, piecewise paths. Deformable A* is less stable and highly sensitive to parameteri-
 2098 zation. Reactive baselines (Potential Field, CBF, DWA) frequently fail to reach the goal, producing
 2099 oscillatory or unsafe behaviors. Qualitative rollouts (Figure 8) further illustrate the superiority of
 2100 GRL-SNAM in complex cluttered environments.
 2101

2102 **Q5: Does GRL-SNAM yield more efficient and smoother trajectories?** Yes. The Success-
 2103 weighted Path Length (SPL) distributions (Figure 9, top-middle) show that GRL-SNAM consis-
 2104 tently stays near optimal efficiency ($SPL \approx 1.0$) with low variance. In contrast, A* variants incur
 2105 detours, while reactive baselines either collapse to zero SPL (failures) or take excessively long paths.
 Furthermore, GRL-SNAM generates the smoothest trajectories, with the lowest average turning an-

Figure 8: **Qualitative path comparison on a representative Test-OOD environment.** Each panel shows a single rollout with success and SPL annotated in the title. GRL-SNAM produces a smooth, short, and clearance-preserving path that threads the narrow passage. Kinematic and dynamic RL policies (PPO/TRPO/SAC-Kin/Dyn) typically stall, collide, or wander far from the goal, while the best coefficient-based variants (PPO/TRPO/SAC-Coeff) reach the goal but hug obstacles and exhibit lower path efficiency than GRL-SNAM. Global planners (RigidA*, DeformA*) succeed but follow jagged or overly conservative routes, and reactive baselines (Potential Field, CBF, DWA) either oscillate, graze obstacles, or take longer, less structured paths.

Figure 9: **Main comparison on Test-ID and Test-OOD.** GRL-SNAM achieves near-perfect success, high SPL, smooth and safe trajectories. Classical (Rigid/Deform A*) and reactive (Potential Field, CBF, DWA) baselines are either unsafe, inefficient, or fail completely.

gles (Figure 9, bottom-middle), ensuring physically realizable motions compatible with hyperelastic ring constraints.

Figure 10: **Quantitative validation of GRL-SNAM.** Top: clearance stays above collision threshold, ensuring safety. Middle: force magnitudes adapt to environment complexity. Bottom: coefficients (β, γ, α) evolve dynamically, confirming online adaptation and stagewise refinement of the Hamiltonian.

Q6: Does GRL-SNAM preserve safety margins? Yes. The minimum clearance analysis (Figure 9, bottom-left) shows that GRL-SNAM maintains consistently positive obstacle clearance, whereas A* occasionally cuts too close and reactive baselines often enter collision regimes. The Pareto frontier plot (Figure 9, bottom-right) highlights that GRL-SNAM uniquely dominates the safety–performance trade-off, achieving both high SPL and high clearance, while all baselines are Pareto-dominated.

I.5 RESULTS: HAMILTONIAN FIELD ANALYSIS

Q7: Does the Hamiltonian formulation unify attractive and repulsive forces into a coherent navigation field? Yes. Figure 4 shows the isolated goal force F_g (left), the barrier force F_{bs} (middle), and their differential composition $F = \beta F_g + \gamma F_{bs}$ (right). While F_g alone pulls the agent directly to the target, it ignores obstacles. Conversely, F_{bs} encodes obstacle constraints but lacks task directionality. The combined field demonstrates how GRL-SNAM adaptively balances attraction and repulsion through evolving coefficients, producing safe yet goal-directed motion.

Q8: How does GRL-SNAM differ from ordinary online adaptation? Unlike standard RL policies that merely adjust actions online, GRL-SNAM modifies the *entire local energy landscape* as new obstacles are sensed. Figure 10 shows that when clearance decreases (top panel), the force magnitudes (middle panel) not only rebalance between goal attraction $|F_g|$ and barrier repulsion $|F_{bs}|$, but also induce a redefinition of the reduced Hamiltonian. This is reflected in the evolving coefficients (β, γ, α) (bottom panel), which do not act as heuristic gains but as dual variables governing stagewise refinement. Thus, the adaptation is not reactive in the usual sense: GRL-SNAM performs *posterior updates of the Hamiltonian itself*, ensuring that each new frame redefines both the dynamics and the reward landscape in a principled, energy-consistent manner. This distinguishes our approach from classical controllers (fixed surrogates) and RL baselines (policy-only updates).

Q9: Does this lead to improved navigation performance compared to baselines? Yes. Across procedurally generated test cases, GRL-SNAM consistently achieves higher success and SPL while maintaining larger clearances than rigid A* (fixed radius assumption), deformable A* (static squeezing penalty), and reactive controllers (DWA, CBF).

Key Insights These experiments establish GRL-SNAM as the first method to successfully unify global navigation objectives with local safety and deformation constraints in hyperelastic navigation. Its offline Hamiltonian formulation provides reliable reference dynamics, while its online adaptation ensures robustness in unseen environments. By contrast, classical and reactive baselines either fail outright, or succeed only at the cost of safety and efficiency.

Variant	Collisions ↓	MinClr ↑	Barrier Viol. ↓	Progress/SPL ↑	Smoothness ↓	Observed behavior
$w_{\text{fric}} = 0, w_{\text{multi}} = 0$	High (✗)	< 0	High	Poor	Poor	Penetrates obstacles
$w_{\text{fric}} = 0, w_{\text{multi}} = 0.5$	Low (✓)	High	Low	Low	OK	Very slow, conservative
$w_{\text{fric}} = 0.1, w_{\text{multi}} = 0$	None (✓)	High	Low	High	Best	Smooth, stable, fast
$w_{\text{fric}} = 0.1, w_{\text{multi}} = 0.5$	None (✓)	Slightly lower	Low	High	Good	Stable; tighter margins

Table 5: **Ablation of loss terms.** Qualitative summary from consistent runs on Test-ID/OOD. Arrows denote desired direction. Numeric means \pm std can replace the icons once collected.

I.6 ABLATION STUDY: LOSS COMPONENTS

Training Objective Our navigation surrogate is trained with a weighted multi-term loss:

$$\mathcal{L} = w_{\text{traj}}\mathcal{L}_{\text{traj}} + w_{\text{vel}}\mathcal{L}_{\text{vel}} + w_{\text{friction}}\mathcal{L}_{\text{friction}} + w_{\text{multi}}\mathcal{L}_{\text{multi}}, \quad (102)$$

where $\mathcal{L}_{\text{traj}}$ and \mathcal{L}_{vel} supervise trajectory and velocity matching, $\mathcal{L}_{\text{friction}} = \|\gamma - \gamma_o\|_2^2$ encourages the learned damping to match the stagewise reference, and $\mathcal{L}_{\text{multi}}$ penalizes failures under short rollouts from perturbed near-obstacle starts.

Ablated Settings We toggle $\mathcal{L}_{\text{friction}}$ and $\mathcal{L}_{\text{multi}}$ to analyze their contribution:

- **No friction, no multi** ($w_{\text{fric}} = 0, w_{\text{multi}} = 0$): Agent penetrates obstacles due to under-damped, unstable dynamics.
- **Multi only** ($w_{\text{fric}} = 0, w_{\text{multi}} = 0.5$): Agent avoids collisions but moves very slowly, sacrificing progress.
- **Friction only** ($w_{\text{fric}} = 0.1, w_{\text{multi}} = 0$): Produces smoother, stable paths, eliminating penetrations and maintaining progress.
- **Friction + Multi** ($w_{\text{fric}} = 0.1, w_{\text{multi}} = 0.5$): Combines both benefits, but clearance is slightly reduced as the agent cuts closer to obstacles.

Analysis $\mathcal{L}_{\text{friction}}$ is critical for stability and smoothness, while $\mathcal{L}_{\text{multi}}$ improves robustness in clutter but can damp progress if over-weighted. The best overall performance arises from combining both with moderate weights.

$\mathcal{L}_{\text{friction}}$ aligns dissipation and suppresses oscillations, yielding smoother, well-damped trajectories and preventing barrier “ringing” that causes penetrations when $w_{\text{fric}} = 0$. $\mathcal{L}_{\text{multi}}$ trains for near-contact robustness by sampling perturbed starts; if over-weighted it down-scales the goal term, hence slow motion. Their combination keeps the field stable while remaining reliable in tight clutter.

I.7 ROBUSTNESS ANALYSIS

Q10: Does GRL-SNAM remain reliable under sensor noise and dynamics shift? Yes. To evaluate robustness, we systematically varied sensing fidelity (position jitter, radius estimation error, missed obstacles, and false positives) and dynamics fidelity (velocity perturbation, damping coefficient γ). Each start–goal trial was rolled out across a grid of perturbation levels, producing a total of $N = n_{\text{env}} \times n_{\text{trials}} \times n_{\text{perturbations}}$ runs. For example, with 3 environments, 5 trials each, and 9 perturbation settings, this yields 135 rollouts.

Table 6: Robustness of GRL-SNAM to sensing noise and dynamics perturbations. Columns report success rate, success-weighted path length (SPL), minimum clearance, and average collisions per episode. Arrows indicate direction of improvement.

Perturbation Level	Success (%)	SPL ↑	Min. Clearance (m) ↑	Collisions ↓
Nominal (0.0, 1.0)	98.7	0.82	0.36	0.3
Mild Noise (0.05, 0.9)	91.3	0.79	0.33	0.7
Severe Noise (0.10, 0.7)	87.1	0.72	0.29	1.1

2268 **Key Insights** Despite significant perturbations, GRL-SNAM maintains high success rates and
2269 graceful degradation in SPL and clearance. Unlike fixed surrogate approaches that can fail catastrophically
2270 under noise, our differential Hamiltonian adaptation continuously re-weights local
2271 forces, enabling stability even when sensing is imperfect or dynamics deviate from training. This
2272 highlights the feedforward, stagewise advantage of GRL-SNAM: it can adjust online without requiring
2273 adjoint or MPC-style corrections, ensuring reliable navigation in real-world uncertain conditions.
2274

2275 USE OF LARGE LANGUAGE MODELS (LLMs)

2276 All content of the paper was written by the authors. LLMs were used for the aid of code implemen-
2277 tation, formatting LaTeX tables/figures, and spelling/grammar checking.
2278

2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321