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Abstract

Conformal prediction is a powerful tool for uncertainty quantification, but its ap-
plication to time-series data is constrained by the violation of the exchangeability
assumption. Current solutions for time-series prediction typically operate in the
output space and rely on manually selected weights to address distribution drift,
leading to overly conservative predictions. To enable dynamic weight learning
in the semantically rich latent space, we introduce a novel approach called Con-
formalized Time Series with Semantic Features (CT-SSF). CT-SSF utilizes the
inductive bias in deep representation learning to dynamically adjust weights, pri-
oritizing semantic features relevant to the current prediction. Theoretically, we
show that CT-SSF surpasses previous methods defined in the output space. Exper-
iments on synthetic and benchmark datasets demonstrate that CT-SSF significantly
outperforms existing state-of-the-art (SOTA) conformal prediction techniques in
terms of prediction efficiency while maintaining a valid coverage guarantee.

1 Introduction

Uncertainty quantification is essential for reliable predictions in time series data [34, 45]. The emer-
gence of ‘black-box’ models has intensified interest in conformal prediction (CP), a technique val-
ued for its model-agnostic and distribution-free properties [44, 57]. Under the assumption of data
exchangeability, the confidence bands provided by CP are theoretically guaranteed [43]. This relia-
bility has led to CP’s promising performance across various domains, e.g., image classification [1],
graph neural networks [56], anomaly detection [22], and natural language processing [37, 16].

The fundamental assumption of exchangeability in CP is often compromised in time series data due
to inherent temporal dependencies, as highlighted in studies such as [53] and [48]. This violation
poses significant challenges in directly applying CP to time series forecasting. Existing adapta-
tions of CP tailored for time series (e.g., [7]) tend to produce overly conservative prediction sets
or intervals too wide to provide practical insight, thus limiting their practical utility. These adapta-
tions often necessitate manually selected weights, which curtail their generalizability across various
datasets. Moreover, the practice of calculating non-conformity scores based on output space does
not take full advantage of the rich representational data available in the latent space. This oversight
is particularly critical given the prevalent use of neural networks (NN) in contemporary time series
forecasting, which are capable of capturing deep, complex patterns in data as discussed in [55] and
[39].
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The latent space in NN offers enhanced model interpretability and the ability to capture complex,
nonlinear relationships in the data that are often invisible in the original input space ([40]). By map-
ping input data into a latent feature space through the feature function, the resulting representation
not only supports the model in learning essential temporal patterns but also in generalizing better to
unseen data by focusing on the most informative features. To overcome the inherent challenges in
applying CP to time series data, our work presents a novel approach—Conformalized Time Series
with Semantic Features (CT-SSF)—which leverages latent semantic features of NN for time series.
Central to our methodology is the use of weighted errors for constructing non-conformity scores
in the latent space, drawing upon rich semantic features. The weights are dynamically adjusted to
prioritize semantic features more pertinent to the current prediction task. This approach ensures that
the weights adapt to the changing importance of different data aspects over time. By shifting CP
into the latent space of NN, our non-conformity scores achieve a deeper insight into the temporal dy-
namics. This not only maintains the requisite coverage of predictive intervals but also significantly
improves their prediction efficiency, offering a refined tool for time series forecasting that aligns
with the complexities of modern data structures.

Our contributions are summarized as follows:

• We propose CP in the latent space of the underlying time-series prediction model, enabling
the construction of non-conformity scores that encapsulate a more comprehensive under-
standing of the data and deliver tight prediction sets.

• We propose an adaptive weight adjustment scheme to refine the weight learning process in
the latent space, accounting for distribution shifts in time-series data by emphasizing data
points more relevant to the current time step.

• We conduct extensive experiments under both synthetic and realistic settings to corroborate
the effectiveness of the proposed algorithm, showing a 10%-20% improvement over the
SOTA approach for real-world data.

2 Related Work

CP with exchangeable data CP, pioneered by [43], has become a cornerstone in uncertainty quan-
tification due to its model-free and distribution-free property [35]. The work in this domain can be
summarized of CP into two branches: improve the efficiency of CP ([33, 13, 51, 36, 6, 27] ) and
generalize CP to different settings, such as quantile regression [32], decision tree [20], random for-
est [21]), survival analysis [11], k-nearest neighbor [30], online learning [8] and auction design [17].
Comprehensive insights into CP and its theoretical underpinnings are provided by [4].

Beyond Exchangeability The foundational works of [44] and the introductory reviews by [4] de-
scribe the evolution of CP to accommodate contexts "beyond exchangeability". Notable extensions
include [41] application to covariate shift, and innovative adaptations for dealing with label shift by
[31]. The work of [41] and [7] address calibration and test set shifts by reweighting data points. [25]
show how reweighting can be extended to causal inference setups for predictive inference on indi-
vidual treatment effects, and [11] show how to apply these ideas in the context of censored outcomes
in survival analysis.

CP for time series data CP for time series can be divided into two primary trends that deviate from
the traditional assumption of exchangeability. The first trend focuses on adaptively adjusting the
error rate α during the testing phase to enhance coverage accuracy. This approach is demonstrated
in works such as ([2, 3, 8, 14, 53, 26, 46, 52, 15, 38, 58]). The second trend (e.g., [41, 48, 49, 7, 23,
24, 47]) emphasizes manually assigning weights to historical non-conformity scores, giving greater
importance to those that reflect the current scenario more accurately. To address the limitation of
manual selection, the advanced HopCPT model, developed by [5], leverages the Modern Hopfield
Network to capture temporal structure and learn the weights. The work closest to ours is the HopCPT
([5]). We advance HopCPT in developing the non-conformity score in the latent space with rich
semantic features, enabling a deeper analysis and utilization of the inherent temporal patterns in
the data. Alternative probabilistic frameworks like Mixture Density Networks [10] and Gaussian
Processes [9] offer robust methodologies for time series forecasting beyond CP. However, these
methods frequently grapple with computational limitations and lack robust theoretical backing.
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3 Background

Split Conformal Prediction One of the most common approaches in CP is the split conformal
prediction method [29], which starts with a trained model and assesses its efficacy on a calibration
set of paired examples {(Xi, Yi)}ni=1. Central to split CP is the foundational assumption that the data
are exchangeable, ensuring that the errors observed in the test set will be consistent with those from
the calibration set. This allows for reliable empirical estimation of quantiles across both datasets.
Define a non-conformity score function s(x, y) that quantifies the disagreement between predicted
and ground-truth values. The coverage guarantee of CP is defined as follows:

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α, C(Xn+1) = {y : s(Xn+1, y) ≤ q̂}. (1)

where (Xn+1, Yn+1) is a new data point, q̂ is the ⌈(1 − α)(n + 1)⌉-th smallest elements among
{s(Xi, Yi)}ni=1 and α signifies a predefined miscoverage rate.

Non-exchangeable Conformal Prediction Real-world settings encounter challenges such as data
drift and inter-dependencies, necessitating further adaptations of CP to these non-exchangeable set-
tings. One common solution is to use reweighting [7, 5]. For example, given a set of pre-specified
weights {wi}ni=1, wi ∈ [0, 1], the coverage guarantee for seminal work NexCP [7] is articulated as
follows:

P (Yn+1 ∈ C(Xn+1)) ≥ 1− α−

n
∑

i=1

w̃idTV(Z,Z
i), w̃i =

wi

1 +
∑

N

i=1
wi

, (2)

where Z = (X1, Y1), . . . , (Xn, Yn), (Xn+1, Yn+1) represents a sequence of n calibration examples
along with a subsequent test example and w̃i is the normalized weight. The term Zi denotes the se-
quence Z after the i-th pair (Xi, Yi) is swapped with the test example (Xn+1, Yn+1), and dTV(Z,Z

i)
quantifies the dissimilarity introduced by this swap.

To construct prediction sets, NexCP determines the quantile threshold q̂ by the following equation:

q̂ = inf

{

q :
n
∑

i=1

w̃i1{si ≤ q} ≥ 1− α

}

. (3)

Eq. 3 is consistent with the standard CP when all weights {w̃i}ni=1 = 1. Intuitively, closer alignment
to exchangeable data minimizes the calibration terms dTV(Z,Z

i), allowing for more precise calibra-
tion. Strategic weight allocation—such as assigning larger weights to calibration points (xi, yi) that
have similar distributions in Z and Zi and smaller weights where distributions diverge—can yield
tighter bounds on the prediction sets. For time series data, this suggests that greater weights should
be assigned to more recent observations to reflect their increased relevance.

4 Methodology

In this section, we first formally define CP for time-series prediction and then propose our framework
that leverages rich semantic features in latent space modeling and employs a dynamic weighting
mechanism that adjusts to temporal dependencies based on these semantic features, simultaneously
achieving valid coverage and high efficiency.

4.1 Problem Definition

Given a multivariate time series Zt = (xt, yt) for t = 1, . . . , T , where each xt ∈ R
m is a feature

vector with m dimensions and yt is the corresponding real-valued target. The prediction model µ
utilizes these feature vectors to produce point predictions ŷt = µ(xt). The goal of CP is to construct
a prediction interval Ct

α(xt+1) that contain the true value yt+1 with a confidence level of 1− α:

P (Yt+1 ∈ Ct
α(xt+1)) ≥ 1− α, (4)

where the probability is over the randomness of {Zs}s≤t and xt+1. This interval aims to balance
reliability with informativeness—beyond ensuring the coverage, it is ideal that the prediction interval
is of short length.

A common choice of non-conformity score is the absolute errors |yt − µ(xt)| between observed
values and the model’s predictions [43, 32]. The prediction interval is then calculated based on the
empirical 1− α quantile Q1−α of the non-conformity scores:

Ct
α(xt+1) = µ(xt+1)±Q1−α

(

{|yi − µ(xi)|}ti=1 ∪ {∞}
)

. (5)
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4.2 Non-conformity Score in the Latent Space

Given the rich semantic information in the latent space, we investigate the effectiveness of using
semantic features for CP with time series data. Our base model architecture µ is a deep neural
network (e.g., RNN) which is structured around two key sub-neural networks comprised of linear
layers µ = g · f : The feature function f maps input data into a latent feature space, while the
prediction head g transforms these features into the forecasted outputs.

In typical supervised learning for time series, ground truth labels are available only in the output
space. The latent space, by contrast, is designed to capture abstract, non-obvious patterns in the data.
These features help the model’s learning but do not correspond directly to observable labels ([19]).
To address the lack of ground-truth labels in the latent space, we apply the surrogate feature [40] to
replace the ground-truth term when constructing the non-conformity score. Concretely, we define
the nonconformity score to be

s(X,Y, ĝ ◦ f̂) = inf
v∈V :ĝ(v)=Y

‖v − f̂(X)‖, (6)

where f̂ and ĝ are approximate f and g. This score measures the minimal discrepancy between
any latent representation v that could correctly predict Y when processed by ĝ and the actual latent

representation f̂(X) produced by the model from input X .

It is usually complicated to calculate the score in Equation 6 due to the infimum operator. One
solution is to directly apply the gradient descent mechanism in [40]: u ← u − η∇(ĝ(u) − Y )2,
however, this approach overlooks the characteristics of time series data and the adaptability of the
update process. Therefore, we propose a weighted gradient descent mechanism

u← u− ηw̃∇(ĝ(u)− Y )2, (7)

where w̃ represents a vector of weights specifically designed to enhance the adaptability of the
update process. These weights adjust the influence of each component of the gradient, enabling the
latent vector u to more effectively minimize the squared error between the predicted ĝ(u) and actual
targets Y . With learning rate η, these weighted adjustments prevent inefficient updates, fostering
better convergence and ensuring well-defined non-conformity scores in the semantic feature space.

4.3 Adaptive Weight Adjustment

To ensure precise calibration of our model for time series data, it is imperative to meticulously de-
fine the weight terms w̃ , thereby enabling the algorithm to concentrate on minimizing errors where
they are most critical. We propose an adaptive weight adjustment scheme in the latent space, funda-
mentally inspired by the intuition that weights should be dynamically adjusted to prioritize semantic
features more pertinent to the current prediction task. To effectively quantify this pertinence, we
employ the principle of proximity in error terms, where smaller discrepancies between predicted
and ground-truth values suggest higher relevance [5]. For time series data, the underlying processes
often exhibit consistent behaviors or trends. Similar errors reflect this consistency, making them
reliable indicators for future occurrences. As a result, we expect that similar errors should work
best to predict the current error. Note that these error terms are measured in the semantic feature
space, allowing us to leverage the rich representations of the base model. Our strategy to handle non-
exchangeable conditions in time series is to replace the quantile of in standard CP with a weighted
quantile:

Q1−α

(

t
∑

i=1

w̃i · δsi + w̃t+1 · δ∞
)

. (8)

Here, w̃i are weights assigned based on the similarity of their error terms to the current prediction er-
ror, si are the non-conformity score calculated in the latent space, t represents the size of calibration
data, and δa denotes a point mass at a which represents a discrete distribution:

P (X = x) =

{

1 if x = α,

0 if x 6= α.
(9)

In Eq. 8, we assign larger weights to more relevant data points which can significantly enhance
the lower bound of empirical coverage (as shown in Equation 2). This insight guides our adapta-
tion of the attention mechanism to assess and quantify the relevance of training data points to a

4



given test instance. The attention mechanism is designed to calculate weights based on the sim-
ilarity of error terms, which are then used to adjust the influence of each data point in the final
prediction model ([42]). The attention weights here are: w̃ ← AttentionWeights(ĝ(u), Y ), and
AttentionWeights(ĝ(u), Y ) represents the attention weights calculated by the Transformer model,
reflecting the similarity between the predicted output ĝ(u) and Y . Accordingly, the attention mecha-
nism in our approach actively assigns higher weights to these similar errors, thereby optimizing the
inference coverage. The adaptive weight adjustment bolsters our method’s capacity to consistently
meet the significant level, providing a robust guarantee for its performance.

4.4 Weighted Conformal Prediction with Semantic Features

Since the non-conformity score is initially constructed in the semantic space, it is necessary to trans-
late the prediction intervals to the output space for practical application. Our method incorporates
band estimation techniques [40] to estimate confidence or prediction intervals around the forecasts.
This approach allows for uniform uncertainty levels in the latent space, while effectively reflecting
varied levels of uncertainty in the output space based on the non-linear transformation. In this work,
we apply linear relaxation-based perturbation analysis (LiPRA) ([50]) to tackle this problem under
deep neural network regimes. LiPRA transforms the certification problem as a linear programming
problem, and solves it accordingly. Following [40], we model the Band Estimation problem as a
perturbation analysis one, where we regard the surrogate feature as a perturbation of the trained fea-
ture and analyze the output bounds of the prediction head. Since LiPRA results in a relatively looser
interval than the actual band, this method would give an upper bound estimation of the exact band
length.

We summarize our framework in Algorithm 1. First, it calculates non-conformity scores within the
latent space by splitting the base model into a feature function and a prediction head in step 3. By
doing so, our method can utilize the latent features to generate precise and efficient prediction sets
that are tailored to the specific dynamics of the data. During the calibration phase, the algorithm
integrates the attention mechanism in steps 7-10 to refine the learning process of weights. This
integration is crucial for dynamically prioritizing and adjusting the influence of specific features
based on their relevance to the prediction task. Lastly, step 14 applies a structured process to achieve
comprehensive coverage and maintain competitive intervals in our prediction sets. As a result, our
method can dynamically adjust weights in response to changes in data patterns.

Algorithm 1 Conformalized Time Series with Semantic Features

Require: Dataset {(Xt, Yt)}
T

t=1, test feature {Xi}i∈Ite , η, M , w̃, α;

1: Randomly split the dataset D into training Dtr = {(Xi, Yi)}i∈Itr and calibration Dca = {(Xi, Yi)}i∈Ica ;

2: Training with Dtr

3: Train a base deep NN model for time series µ = ĝ ◦ f̂(·) using the training fold Dtr;

4: Adaptive weight adjustment

5: u← {f̂(Xi)}i∈Ica∪Ite ; m← 0; n← |Ica|+ |Ite|; w̃ ← [1/n, . . . , 1/n]

6: while m < M do

7: predict ĝ(u)− {Yi}i∈Ite

8: update w̃

9: u← u− ηw̃∇
(

‖ĝ(u)− {Yi}i∈Ica∪Ite‖
2
)

10: m← m+ 1

11: end while

Ensure: s(X,Y, ĝ ◦ f̂) = ‖u− f̂(X)‖.

12: for i ∈ Ite do

13: Calibration with Dca

14: Calculate the (1− α)-th quantile Q1−α of the distribution 1

|Dca|+1

(
∑

i=1
w̃i · δsi + w̃n+1 · δ∞

)

.

15: Prediction

16: Apply LiPRA on f̂(Xi) with perturbation Q1−α and prediction head ĝ, which returns C1−α(Xi);

17: Dca ← Xi

18: end for

Ensure: C1−α(Xi) for each test input.
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4.5 Theoretical Guarantee

This section outlines the theoretical guarantees for CT-SSF with respect to coverage and prediction
interval length. Based on Theorem 4 in [40], we demonstrate that constructing non-conformity
scores in the latent space allows CT-SSF to surpass CP for time series in the output space (e.g.,
NexCP) in terms of average prediction interval length under the following mild assumption:

Assumption 1. In the output space, we define H(v,X) as the length associated with sample X ,
derived from the length v in the feature space. This is represented as H(v,X) = {g(u) ∈ R :

‖u− f̂(X)‖ ≤ v
2}. We assume a Hölder condition for H , stipulating that for any X , the inequality

|H(v,X)−H(u,X)| ≤ L|v − u|β holds, where β > 0 and L > 0 are constants.

The Hölder condition for H(u,X) ensures that small changes in the input lengths u or v result in
small and predictable changes in the length H . This is characterized by the constants α and L, which
control the sensitivity of H ([12]). In the context of CT-SSF, this condition helps maintain consistent
lengths when transforming from the feature space to the output space (length preservation), ensures
that differences between individual lengths and their quantiles are amplified (expansion), and guaran-
tees that the prediction intervals remain stable and reliable across both spaces for a given calibration
set (quantile stability). Below is an informal statement of the theoretical guarantee of CT-SSF. The
complete version of the theorem is in Appendix C.1.

Theorem 1. Under Assumption 1, if the following cubic conditions hold:

1. Length Preservation. CT-SSF method does not cost much loss in feature space.

2. Expansion. The Band Estimation operator expands the differences between individual
length and their quantiles.

3. Quantile Stability. The band length is stable in both the feature space and the output space
for a given calibration set.

Let w̃i denote the weights learned from Algorithm 1. Suppose that w̃i’s are independent of the
calibration and test nonconformity scores. Then CT-SSF outperforms CP approaches for time series
in the output space in terms of average band length while maintaining a valid coverage guarantee.

Here, length preservation ensures that the transformation from feature space to output space main-
tains consistent interval lengths, minimizing efficiency loss. Expansion plays a key role in reducing
inefficiency, as the latent space exhibits smaller distances between individual non-conformity scores
and their quantiles, reducing the computational cost of the quantile operation. Lastly, quantile stabil-
ity ensures that the interval is generalizable from the calibration set to the test samples. Since these
conditions primarily emphasize the properties of quantiles and transformation steps rather than the
reweighting, extending this framework to incorporate a weighted setting is a logical and justified
progression. Note that in our theoretical results (for both efficiency and coverage) essentially as-
sumes the weights to be fixed, where in implementation, the weights are learned from the data. It
remains an interesting question to establish a condescending theory for data-drive weights. The
detailed proofs can be found in Appendix C.1.

5 Experiments

5.1 Experimental Setup

Prediction Models for Time Series. CT-SSF is model agnostic, therefore, any NN-based predic-
tion models for time series.prediction models can be used as the base models. To better show the
advantage of our proposed method, we utilize a Recurrent Neural Network (RNN) model, which
can be replaced with more advanced models like Transformers ([42]).

Datasets. Our experiments encompass evaluations on both synthetic and four real-world benchmark
datasets, allowing for assessment under controlled and natural conditions. They are electricity, stock
of Amazon, weather, and wind data. The details of these datasets can be found in Appendix B.

Calibration Details. During calibration, to get the best value for the number of steps M , we take
a subset (e.g., one-fifth) of the calibration set as the additional validation set. We calculate the non-
conformity score on the rest of the calibration set with various values of step M and then evaluate
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the validation set to get the best M whose coverage is right above 1−α. The final trained surrogate
feature v is close to the true feature because ĝ(v) is sufficiently close to the ground truth Y . In
practice, the surrogate feature after optimization satisfies

‖ĝ(v)− Y ‖2
‖Y ‖2 < 1%. (10)

Eq. 10 indicates that the normalized error of predictions with the surrogate feature is less than 1%.
Therefore, the surrogate feature approximates ground truth feature in the latent space.

Compared Approaches. Baselines include state-of-the-art (SOTA) methods for CP under distribu-
tion drift and SOTA CP for time series: (1) Standard Split CP ([43]). This is the standard split
CP method outlined in Section 3; (2) NexCP ([7]). A refined CP method for handling distribution
drifts using manually selected weights. Details are outlined in Section 3; (3) FeatureCP (FCP)
([40]). Implementing CP within a latent feature space under the assumption of exchangeability; (4)
HopCPT ([5]). The current state-of-the-art CP for time series. HopCPT leverages Modern Hopfield
Networks to build prediction intervals by identifying and utilizing historical events with similar error
distributions.

Metrics. Our analysis employs two widely used metrics to assess the effectiveness of each CP
method ([4]): Empirical Coverage Rate (Coverage): Measures the effectiveness of CP in achieving
the theoretically guaranteed coverage. Average Prediction Set Size (Width): Evaluates the efficiency
of CP, reflecting the compactness of the prediction intervals.

All the standard deviations are obtained over five repeated runs with different random seeds under the
same base model. Code and data are available at https://github.com/baiting0522/CT-SSF.

5.2 Simulations

We adapt the simulation method in [7] and generate time series datasets that incorporate manu-
ally designed temporal dependency and heteroskedasticity. We generate n = 1, 000 data points
(Xi, Yi) ∈ R

M × R
N by sampling Xi from a Gaussian distribution, Xi ∼ N (0, IM ). We set

Yi ∼ AXi + BXi−1 + CXi−2 + ǫi. The coefficient matrix A,B,C are set to the identity matrix
IM and ǫi ∼ N (0,Σ) where Σ is a diagonal matrix and its elements are given by 0.5 + 0.1i.

Methods
Miscoverage error

0.05 0.1 0.15
Cov Width Cov Width Cov Width

CP 94.80±1.83 10.39±0.49 90.90±1.50 9.30±0.11 84.90±2.83 8.24±0.40
FCP 94.20±0.68 1.77±0.27 89.70±2.41 1.72±0.21 85.10±1.32 1.40±0.21

NexCP 95.30±1.57 9.60±0.44 91.50±0.63 9.10±0.40 85.50±2.90 7.66±0.39
HopCPT 95.10±3.27 1.54±0.87 91.28±3.40 1.43±0.78 85.10±4.04 1.10±0.72
CT-SSF 96.50±0.84 1.45±0.23 90.70±1.57 1.23±0.15 85.70±2.14 1.04±0.34

Table 1: Performance of the evaluated CP algorithms for the simulations dataset.

Table 1 presents the performance of the compared CP algorithms across three different levels of
miscoverage error (α): 0.05, 0.1, and 0.15. We observe from the results that CT-SSF consistently
outperforms other baselines across all tested scenarios. Specifically, at a miscoverage level of 0.05,
CT-SSF shows a 4.61% reduction in interval width compared to the SOTA approach, HopCPT. The
smallest width indicates that our method can produce the most informative prediction intervals while
maintaining valid empirical coverage. This efficiency is attributed to the innovative construction of
the non-conformity score within the latent space with adaptive weight adjustment, which enhances
the ability to leverage the underlying information of the base model. Meanwhile, the superior per-
formance of FCP compared to CP and NexCP aligns with the experimental results reported in [40].
However, since FCP operates under the assumption of exchangeability, it may occasionally result in
under-coverage, e.g., α = 0.05 and α = 0.10. On the other hand, NexCP tends to produce overly
conservative results, though it maintains robust coverage. This underscores the need for our adaptive
weight adjustments with semantic features to optimize performance.

Ablation Study. To further investigate the effectiveness of using semantic features and adaptive
weight adjustment in CT-SSF, we compare it with its three variants that use: (1) Manually selected
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weights in the Semantic space (CT-MS), (2) Manually selected weights in the Output space (CT-
MO). This variant reduces to the NexCP method and (3) Learned weights in the Output space (CT-
LO). The weights are learned using the same learning scheme in CT-SSF.
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Figure 1: Comparisons of the variants of CT-SSF. The blue bar chart represents Width and the gray
bar represents Coverage, the blue line represents target coverage.

Figure 1 demonstrates the effectiveness of the CT-SSF method compared to its variants across var-
ied miscoverage risks from 0.05 to 0.3. CT-SSF consistently outperforms the other methods in
terms of prediction interval width, indicating its superior efficiency in generating compact predic-
tion sets while maintaining robust empirical coverage. Relative to CT-MO and CT-LO, our method
achieves more than a 50% reduction in the width of the prediction intervals, a benefit derived from
exploiting the rich latent information in the feature space. Additionally, in comparison with CT-MS,
our method shows an approximate 10% reduction in interval width. These results demonstrate the
significant impact of adaptive weight adjustments on the efficiency of prediction intervals, further
establishing CT-SSF as a highly effective CP method for time series forecasting.

CT-SSF’s performance can be attributed to its specialized approach to learning weights in the la-
tent space. Unlike methods such as NexCP and CT-MS, which apply predefined weight schemes,
CT-SSF’s dynamic adaptation to the underlying data structure allows for more precise adaptation
of the model to the specific data characteristics. Unlike HopCPT, which learns the weights but con-
structs non-conformity scores in the output space, CT-SSF builds these scores directly within the
latent space to utilize underlying latent features effectively and better capture the data variability
and structural dependencies, resulting in more reliable and informative prediction intervals.

5.3 Real-world Data

Real-world experiments are conducted using benchmark time series data including electricity ([7]),
stock market ([14, 2]), weather ([28, 54]), and wind speed forecasting ([48]).

CT-SSF HopCPT NexCP FCP CP

Elec
Cov 90.59±1.74 90.88±2.39 91.67±0.79 91.26±0.99 91.26±1.15

Width 0.21±0.03 0.23±0.05 0.74±0.17 0.28±0.05 0.83±0.01

Stock
Cov 91.58±2.23 90.79±3.06 91.03±±2.37 91.58±2.07 91.74±1.98

Width 0.19±0.03 0.23±0.04 1.43±0.12 0.29±0.10 1.51±0.17

Weather
Cov 90.12±0.26 90.11±0.68 90.14±0.26 90.06±0.22 90.13±0.26

Width 0.012±0.002 0.017±0.004 0.034±0.006 0.023±0.004 0.034±0.007

Wind
Cov 90.32±1.51 90.06±2.49 90.06±2.08 90.19±1.75 89.54±1.75

width 0.52±0.03 0.54±0.04 2.76±0.11 0.59±0.13 2.65±0.14

Table 2: Performance of the evaluated CP algorithms for the real data. The specified miscoverage
level is α = 0.1 for all experiments. Results for different α can be found in Appendix B.
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Results in Table 2 reveal that CT-SSF maintains valid coverage rates while excelling in minimizing
prediction interval widths. Across all datasets, CT-SSF shows a 10%-20% reduction in prediction
intervals compared to the SOTA HopCPT. While NexCP is designed for non-exchangeable settings,
the need for manually selected weights limits its practical application. For instance, in the wind
dataset, improperly chosen weights result in larger prediction intervals compared to standard CP,
despite meeting theoretical coverage guarantees. We further conduct an ablation study to compare
the variants of CT-SSF, similar to that for synthetic data. Results in Appendix B show that CT-SSF
outperforms other variants. This demonstrates the effectiveness of utilizing semantic features and
implementing adaptive weight adjustments. While our experiments are based on RNN, we show in
Appendix B that using a different base model can lead to similar findings.

2nd 3rd 4th 5th 6th

Elec
Cov 89.75±1.96 90.94±1.02 90.59±1.74 90.22±2.02 90.21±1.92

Width 0.23±0.09 0.29±0.02 0.21±0.03 0.28±0.02 0.30±0.02

Stock
Cov 93.50±1.52 88.65±2.45 91.58±2.23 88.50±2.42 88.41±2.60

Width 0.39±0.12 0.26±0.09 0.19±0.03 0.21±0.07 0.21±0.07

Weather
Cov 90.12±0.31 90.07±0.34 90.12±0.26 90.06±0.56 90.06±0.54

Width 0.018±0.004 0.034±0.010 0.012±0.002 0.014±0.002 0.014±0.002

Wind
Cov 89.67±2.42 90.32±1.51 89.28±1.88 88.63±1.90 88.90±1.80

Width 1.00±.023 0.52±0.03 0.54±0.12 0.59±0.03 0.65±0.02

Table 3: Performance of the CT-SSF with different f and g configurations. The specified miscover-
age level is α = 0.1 for all experiments.

The impact of choosing f and g. Finally, we analyze the potential impact of the selection of the
semantic feature space on the performance of CT-SSF. Our base model is an 8-layer RNN, and we
conduct experiments on semantic spaces ranging from the 2nd to the 6th layer, i.e., using the first 2-6
layers as f and the rest as g. Results in Table 3 indicate that the performance of CT-SSF is influenced
by the configuration of f and g, as evidenced by the variation in the length of prediction intervals.
A key observation is that optimal performance typically arises from the middle layers (specifically,
the 3rd and 4th layers). This suggests that f with too few layers may not capture enough semantic
information, and g with a limited number of layers lacks adequate predictive strength. Additionally,
the coverage and interval length results are similar for the 5th and 6th layers across all four datasets.
This similarity may be due to the comparable level of information interpreted in these feature spaces.
Given all these observations, it is important to perform cross-validation to identify the best semantic
space for the highest efficiency when deployed in various applications.

6 Conclusions and Limitations

In this work, we introduce CT-SSF, a novel approach designed to overcome the challenges of apply-
ing CP directly to time-series data. Our method shifts the calculation of non-conformity scores to the
semantic feature space, effectively capturing the complex, nonlinear relationships in time-series data
that are often overlooked in the output space. By employing a reweighting scheme and dynamically
adjusting weights based on the importance of various semantic features, CT-SSF achieves valid cov-
erage with high efficiency. We provide theoretical analyses demonstrating that CT-SSF outperforms
CP methods that operate in the output space. Experimental results show that CT-SSF significantly
outperforms existing SOTA CP methods for time-series data.

Our approach to CP for time series forecasting presents certain limitations that warrant further explo-
ration and mitigation. Firstly, its reliance on NNs excludes simpler models like ridge regression or
random forests. This limitation, while justified by the prevalent use of NN in time series forecasting,
narrows the scope of our methodology’s wide applicability. Secondly, the robustness of our predic-
tion set lengths is sensitive to the configuration of the latent space to construct f and g. Our current
solution uses a validation set to help separate f and g, rendering less data for calibration. Future
enhancements could include the development of adaptive methods that dynamically refine the latent
space to enhance the stability of the predictions across diverse data scenarios, thereby addressing
the current limitations and expanding the utility of our approach.
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A Comparisons to existing methods

This section contains descriptions of the relationship of our method to existing approaches of con-
formal prediction for time series data. There are generally three primary approaches designed to
manage these challenges and enhance the reliability and validity of the CP in time series: reweight-
ing, updating non-conformity scores and updating miscoverage level. We introduce representative
work for each of these categories here. For a more detailed analysis of CP methods for time series,
please refer to [57].

Reweighting assigns relevance-based weights to data points to align the data distribution closer to a
target distribution. NexCP [7] exponentially decayed weights to emphasize recent observations, but
these lack adaptability. HopCPT [5] improves on this by using a Modern Hopfield Network (MHN)
for similarity-based reweighting. It assigns weights to past time steps based on their relevance to
the current time step. Encoded inputs are processed with learned weight matrices, and a hyperpa-
rameter adjusts the focus of the probabilistic distribution. These weights create weighted conformal
prediction intervals by discounting extremal quantiles of relative errors.

The second technique, updating non-conformity scores leverages the most recent T data points and
continuously updates prediction intervals as new data becomes available. For example, EnbPI [48]
updates the non-conformity score with sequential error patterns to adapt the intervals dynamically.
And SPCI [49] replaces the empirical quantile with an estimate by a conditional quantile estimator
to effectively address serial dependencies among residuals in sequential analysis.

The last main direction for CP in time series focuses on adaptively adjusting the significance level
α during test time to account for mis-coverage. This method can dynamically adjust the size of
prediction sets in an online setting where the data generating distribution is allowed to vary over
time in an unknown fashion. For example, the update rule for the quantile level α in ACI [14] is:

αt+1 = αt + γ(α− errt), (11)

where γ is a step size parameter, and errt indicates if Yt was not included in Ĉt(αt). The approach
ensures that the prediction intervals adjust over time to account for shifts in the data distribution,
maintaining the desired coverage probability.

Our work falls under a reweighting scheme, with a focus on weighted conformal prediction in the
latent feature space. This approach enables us to capture the underlying data structure more pre-
cisely, leading to tighter prediction intervals. We leverage the standard attention mechanism for its
simplicity and computational efficiency, while also allowing for dynamic adjustment of data point
significance. Furthermore, our method effectively integrates attention-based weight updates within
the latent feature space, where the learned rich representations capture the intrinsic characteristics
of the data with greater accuracy.

B Extended Experiments

Datasets Details

Datasets from four different domains are used in the experiments. Details are summarized below.

• Electricity. The Electricity Demand Forecasting dataset, introduced by Harries in 1999
([18]), tracks electricity usage and pricing in New South Wales and Victoria, Australia, with
half-hourly data from May 7, 1996, to December 5, 1998. For our experiment, we focus
on four key variables: nswprice and vicprice (electricity prices in New South Wales and
Victoria) and nswdemand and vicdemand (electricity demand in each state). Our response
variable, transfer, measures the electricity transferred between the two states. We select
data from 9:00 AM to 12:00 PM to reduce daily fluctuations and discard an initial period
with constant transfer values, resulting in 3,444 time points for analysis.

• Amazon Stock. The Amazon stock dataset provides detailed historical data on Amazon’s
stock performance. This dataset includes key financial metrics such as the opening price,
highest price, lowest price, closing price, and trading volume for each trading day. The
dataset captures daily stock prices at various intervals, providing a comprehensive view of
Amazon’s stock market behavior. These metrics are crucial for analyzing trends, volatility,
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and the overall performance of Amazon’s stock over time. The data is structured with
columns representing the opening price (open), the highest price during the day (high), the
lowest price during the day (low), the closing price (close), and the volume of shares traded
(volume).

• Weather. The weather dataset records meteorological data every 10 minutes throughout the
entire year of 2020, encompassing 21 key indicators that provide a comprehensive overview
of weather conditions. Key indicators include air temperature, humidity, wind direction,
rainfall, solar radiation. This dataset offers detailed, granular insights into weather patterns
and conditions, making it valuable for meteorological analysis and forecasting.

• Wind Speed. The wind speed data are collected at wind farms operated by the Midcon-
tinent Independent System Operator (MISO) in the US ([59]). The dataset records wind
speed measurements updated every 15 minutes over a one-week period in September 2020.
This high-frequency data provides detailed insights into wind speed variations and is crucial
for analyzing and modeling wind energy production.

Additional Experiments We conduct extended experiments on the real-world data for RNN and
a different base model for time series prediction, Transformer. Results with different miscoverage
levels can be seen in Table 4 and Table 5, respectively. We also perform an ablation study similar to
Section 5.2 for real data in Figure 2. CT-SSF consistently delivers the shortest prediction intervals
across all datasets and varying error rates when utilizing a Transformer as the base model. Although
it does not perform optimally for weather and wind data at a 0.05 error rate with an RNN base, CT-
SSF still achieves results comparable to the top-performing method, HopCPT. These experiments
support the conclusion that CT-SSF can produce competitive prediction intervals while maintaining
coverage guarantee.
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error rate CT-SSF HopCPT NexCP FCP CP

Elec

0.05
Cov 95.32±0.02 95.18±1.40 95.27±0.54 95.52±1.04 95.47±1.09

Width 0.23±0.04 0.26±0.07 0.98±0.04 0.34±0.06 0.99±0.02

0.15
Cov 84.87±1.81 84.90±1.75 85.57±0.70 86.67±1.48 86.27±1.47

Width 0.20±0.03 0.23±0.05 0.62±0.04 0.25±0.04 0.73±0.01

0.20
Cov 80.12±2.06 79.79±1.88 80.93±0.70 81.04±1.77 81.16±1.97

Width 0.19±0.03 0.20±0.04 0.60±0.03 0.22±0.04 0.65±0.01

Stock

0.05
Cov 95.47±1.51 95.32±2.21 95.23±1.27 95.31±1.33 95.23±1.35

Width 0.30±0.04 0.31±0.05 2.13±0.28 0.45±0.17 2.27±0.22

0.15
Cov 86.75±2.78 85.71±2.09 86.03±2.09 86.90±2.40 86.42±2.53

Width 0.18±0.03 0.20±0.04 1.18±0.12 0.24±0.07 1.21±.06

0.20
Cov 80.87±1.90 81.74±3.50 81.03±3.56 82.93±2.02 82.61±1.38

Width 0.15±0.02 0.18±0.04 0.87±0.09 0.20±0.06 1.07±0.02

Weather

0.05
Cov 95.08±0.20 94.96±0.66 95.14±0.20 95.01±0.17 94.97±0.17

Width 0.018±0.002 0.017±0.002 0.038±0.006 0.023±0.004 0.044±0.009

0.15
Cov 85.24±0.37 85.29±0.79 85.37±0.54 84.90±0.22 84.90±0.16

Width 0.012±0.002 0.014±0.002 0.032±0.005 0.015±0.003 0.029±0.006

0.20
Cov 80.31±0.26 80.38±0.78 80.20±0.50 79.89±0.21 79.89±0.28

Width 0.011±0.002 0.013±0.002 0.031±0.006 0.013±0.003 0.025±0.005

Wind

0.05
Cov 95.03±1.58 96.07±1.24 95.94±1.62 93.85±1.73 94.38±1.68

Width 0.67±0.06 0.66±0.10 3.28±0.24 0.69±0.14 3.15±0.28

0.15
Cov 84.18±2.90 85.36±2.63 85.75±3.07 84.96±1.43 83.13±2.59

Width 0.42±0.05 0.45±0.03 2.25±0.17 0.52±0.12 2.28±0.07

0.20
Cov 77.38±3.32 78.56±6.16 79.60±4.50 78.82±1.87 76.20±3.98

Width 0.37±0.05 0.40±0.06 1.98±0.09 0.46±0.10 2.05±0.12

Table 4: Performance of the evaluated CP algorithms for the real data of RNN. The standard devia-
tion is obtained over five repeated runs with different random seeds.

C Theoretical Guarantee

This section provides theoretical guarantees for CT-SSF regarding coverage and interval length (i.e.,
efficiency). We use the seminar work NexCP for illustration and the results below can be applied to
other CP for time series in the output space as well.

C.1 Efficiency

Notations. Let P denote the population distribution. Let Dca ∼ Pn denote the calibration set with
sample size n, where we overload the notation Pn to denote the distribution of a set with samples
drawn from a distribution P . Given the model g ◦ f with feature extractor f and prediction head g,
we assume g is continuous. We also overload the notation Q1−α(V ) to denote the (1− α)-quantile
of the set V ∪ {∞}. Here, the set V represents the empirical distribution after reweighting, i.e.,
∑t

i=1 w̃i · δvi
+ w̃t+1 · δ∞. Additionally, let M[·] denote the mean of a set, and let a set minus a real

number denote the broadcast operation.

NexCP. Let V o
Dca

= {voi }i∈Ica denote the individual lengths in the output space, given the calibra-

tion set Dca. Specifically, voi = 2|yi − ŷi|, where yi denotes the true response of sample i and ŷi
denotes the corresponding prediction. Since NexCP returns band length with the 1 − α quantile of
the non-conformity score, the resulting average band length is derived as Q1−α(V

o
Dca

).
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error rate CT-SSF HopCPT NexCP FCP CP

Elec

0.05
Cov 95.42±1.43 95.50±1.43 95.58±0.42 95.58±1.06 95.47±1.09

Width 0.19±0.06 0.26±0.07 0.78±0.03 0.28±0.05 0.98±0.02

0.10
Cov 90.59±1.74 90.88±2.39 90.22±2.02 91.23±0.86 91.26±1.00

Width 0.17±0.05 0.23±0.05 0.62±0.04 0.24±0.04 0.84±0.01

0.15
Cov 85.05±1.65 85.74±1.23 86.30±1.56 84.96±1.77 86.27±1.47

Width 0.15±0.04 0.21±0.04 0.58±.03 0.21±0.02 0.73±0.03

Stock

0.05
Cov 95.16±1.61 95.24±1.28 95.31±1.21 95.07±1.43 95.23±1.35

Width 0.21±0.04 0.30±0.05 1.83±0.05 0.35±0.11 2.27±0.21

0.10
Cov 91.67±2.07 90.79±2.09 91.27±1.91 91.42±2.14 91.74±1.98

Width 0.16±0.04 0.23±0.04 1.23±0.16 0.24±0.08 1.51±0.17

0.15
Cov 85.71±2.14 86.74±2.78 86.03±2.09 96.50±2.37 86.43±2.53

Width 0.14±0.03 0.20±0.04 0.89±0.05 0.19±0.05 1.21±0.06

Weather

0.05
Cov 94.97±0.17 95.04±0.24 95.08±0.24 94.96±0.16 94.97±0.17

width 0.019±0.004 0.020±0.006 0.038±0.004 0.023±0.003 0.044±0.009

0.10
Cov 90.11±0.19 90.20±0.50 90.23±0.37 90.19±3.72 90.13±0.26

Width 0.015±.003 0.017±0.005 0.032±0.006 0.021±0.003 0.035±0.007

0.15
Cov 84.89±0.21 85.29±0.48 85.37±0.55 85.24±0.37 84.90±0.16

Width 0.012±0.003 0.014±0.005 0.027±0.004 0.015±0.003 0.029±0.006

Wind

0.05
Cov 95.81±1.78 95.03±1.58 95.81±1.63 94.25±2.00 94.38±1.68

Width 0.47±0.04 0.67±0.05 3.76±0.15 0.55±0.12 3.15±0.28

0.10
Cov 89.80±2.50 90.06±1.72 90.12±1.23 90.33±1.51 89.54±1.75

Width 0.37±0.04 0.52±0.04 2.91±0.11 0.46±0.10 2.65±0.14

0.15
Cov 84.83±2.78 84.18±2.90 85.62±2.89 83.14±2.59 84.83±1.20

Width 0.39±0.03 0.42±0.04 2.68±0.37 0.41±0.09 2.28±0.07

Table 5: Performance of the evaluated CP algorithms for the real data with Transformer as the base
model. The standard deviation is obtained over five repeated runs with different random seeds.

CT-SSF. Let V
f
Dca

= {vfi }i∈Ica be the individual lengths in the semantic feature space
given the calibration set Dca. The resulting band length in CT-SSF is denoted by

EXtest,Ytest

[

H
(

Q1−α(V
f
Dca

), Xtest

)]

.

We propose a formal description of the cubic conditions and provide the proof following the structure
of [40].

Theorem 1. Assume Assumption 1 holds. Additionally, we assume that there exist constants ǫ > 0
and c > 0, such that the feature space satisfies the following cubic conditions:

1. Length Preservation. Semantic-Feature CP does not incur a significant loss in the feature
space in a quantile manner:

ED∼Pn
Q1−α(H(V f

D , D)) < ED∼Pn
Q1−α(V

o
D) + ǫ.

2. Expansion. The operator H(v,X) expands the differences between individual lengths and
their quantiles, namely,

LED∼Pn

[

M

[

Q1−α(V
f
D)− V

f
D

]α]

< ED∼Pn

[

M

[

Q1−α(H(V f
D))−H(V f

D)
]]

−ǫ− 2max{L, 1}
(

c√
n

)min{α,1}

.
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Figure 2: Comparisons of the variants of CT-SSF using the real datasets. The specified miscoverage
level is α = 0.1. The blue bar chart represents Width and the gray bar represents Coverage, the blue
line represents the target coverage.

3. Quantile Stability. Given a calibration set Dca, the quantile of the band length is stable in
both the feature space and output space, namely,

ED∼Pn

[

Q1−α(V
f
D)−Q1−α(V

f
Dca

)
]

≤ c√
n

and

ED∼Pn

[

Q1−α(V
o
D)−Q1−α(V

o
Dca

)
]

≤ c√
n
.

Let w̃i denote the weights learned from Algorithm 1. Suppose that w̃i’s are independent of the
calibration and test nonconformity scores. CT-SSF provably outperforms NexCP in terms of average
band length, namely,

E

[

H(Q1−α(V
f
Dca

), Xtest)
]

< Q1−α(V
o
Dca

),

where the expectation is taken over the calibration fold and the testing point (Xtest, Ytest).

Before proceeding with the proof, we note that Theorem 1 extends Theorem 4 from [40] to accom-
modate non-exchangeable settings. This adaptation is feasible because the foundational assumptions
and methodologies hinge primarily on quantile calculations rather than the specific characteristics
of the underlying distributions. Thus, we can leverage the framework of their proof to construct our
argument effectively.

Proof. By the expansion assumption,

LEDM

[

Q1−α(V
f
D)− V

f
D

]α

< EDM

[

Q1−α(H(V f
D , D))−H(V f

D , D)
]

−ǫ−2max{L, 1}
(

c√
n

)min{α,1}

.

We rewrite it as

EDMH(V f
D , D) < EDQ1−α(H(V f

D , D))−ǫ−2max{L, 1}
(

c√
n

)min{α,1}

−LEDM

[

Q1−α(V
f
D)− V

f
D

]α

.

Due to the Hölder condition, we have that

MH(Q1−α(V
f
D), D) < M(H(V f

D , D)) + LM
∣

∣

∣
Q1−α(V

f
D)− V

f
D

∣

∣

∣

α

,
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therefore

EDM

[

H(Q1−α(V
f
D), D)

]

< EDQ1−α

(

H(V f
D , D)

)

− ǫ− 2max{1, L}
(

c√
n

)min{1,α}

.

Therefore, due to Assumption 1, we have that

EDMH(Q1−α(V
f
D), D) < EDQ1−α(V

◦
D)− 2max{1, L}

(

c√
n

)min{1,α}

.

Additionally, according to the quantile stability assumption, we have that

EDM

∣

∣

∣
H(Q1−α(V

f
D), D)−H(Q1−α(V

f
Dca

), D)
∣

∣

∣
≤ L

(

c√
n

)α

and

ED

[

Q1−α(V
o
D)−Q1−α(V

o
Dca

)
]

≤ c√
n
.

Therefore,

EH(Q1−α(V
f
Dca

), X ′) = EDMH(Q1−α(V
f
Dca

), D)

< Q1−α(V
◦
Dca

)− 2max{1, L}
(

c√
n

)min{1,α}

+ L

(

c√
n

)α

+
c√
n

< Q1−α(V
◦
Dca

).

C.2 Coverage Guarantee

Since the coverage for CP depends on the ranking of the nonconformity measures rather than their
actual values ([35, 37]), we can extend the work of [7] to the semantic feature space, where we
construct the nonconformity score and compute the corresponding quantile value.

Theorem 2 (Coverage Gap; Adaptation from [7], Theorem 2). Let ∆Cov denote the coverage gap
between the empirical coverage and the desired coverage level. Let w̃i denote the weights learned
from Algorithm 1. Suppose that w̃i’s are independent of the calibration and test nonconformity
scores. Then,

∆Cov ≥ −
t
∑

i=1

w̃i · dTV(R(Z), R(Zi)),

where dTV represents the total variation distance, and R(Z) denotes the sequence of absolute
residuals on Z and Zi denotes a sequence where the test point Zt+1 is swapped with the
i-th calibration point. Note that these sequences are represented by the semantic features here.

This coverage gap suggests that assigning lower weights to time steps with high total variation
distance can help maintain small coverage gaps, reinforcing the theoretical foundation of our method.
CT-SSF employs an attention mechanism to allocate higher weights to data points from the same
error distribution as the current one and lower weights otherwise. According to Theorem 2, our
dynamic weighting strategy can effectively minimize the coverage gap.

D Potentional Social Impact

Our method significantly can enhance decision-making in finance, healthcare, and environmental
monitoring by improving the accuracy and reliability of time series predictions. The success of our
method, however, depends on the quality of training data used. This highlights the critical need for
robust data management to maintain data integrity in dynamic environments. By upholding high
data quality standards, our method ensures reliable support across these vital sectors, fostering trust
in automated decision-making systems.
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NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction introduce our contributions to enhance pre-
diction efficiency and coverage for time-series data by leveraging deep representations to
dynamically adjust weights in the semantic feature space.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of our work in section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We provide the assumptions and proof of the theory in section 5 and Appendix
C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theo-
rems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We discuss these information in section 5 and the appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our code in section 5.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more de-
tails.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: : We specify these conditions in section 5 and appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide standard errors for the experimental results with different random
seed.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss the information for computer resources to reproduce the experi-
ments in appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research upholds standards of research integrity, ensuring ethical con-
siderations in data handling and experimentation, promoting inclusivity, maintaining trans-
parency for reproducibility,

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential social impact of our research in appendix D.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper appropriately credits the creators and original owners of all assets
used, such as code, data, and models, and clearly mentions the license and terms of use for
each.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

26


	Introduction
	Related Work
	Background
	Methodology
	Problem Definition
	Non-conformity Score in the Latent Space
	Adaptive Weight Adjustment
	Weighted Conformal Prediction with Semantic Features
	Theoretical Guarantee

	Experiments
	Experimental Setup
	Simulations
	Real-world Data

	Conclusions and Limitations
	Comparisons to existing methods
	Extended Experiments
	Theoretical Guarantee
	Efficiency
	Coverage Guarantee

	Potentional Social Impact

