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ABSTRACT

Fine-tuning a task-specific multilingual large language model (LLM) involves
training the model on a multilingual dataset with examples in all the required lan-
guages. Updating one or more supported languages with additional data or adding
support for a new language involves retraining the model, which can be computa-
tionally inefficient. Recent research on merging multiple task-specific models has
shown promise in terms of both computational efficiency and improved perfor-
mance. These approaches only consider multiple tasks in a single language, but
their effectiveness in merging language-specific models trained on a single task
is underexplored. In this work, we explore existing model merging approaches
in a multilingual setting for three independent tasks. Our experiments show that
model merging approaches achieve performance on par with models trained on
a combined dataset of multiple languages, as well as the language-specific fine-
tuned models. Our analysis indicates that training efficiency improves by reducing
the training time of adding or updating new languages by 2.5 times and reducing
training costs by 3 times.

1 INTRODUCTION

Large Language Models (LLMs) have gained significant attention in many NLP applications. Al-
though these models have shown exceptional zero-shot and few-shot capabilities in tasks like text
classification, summarization, and reasoning, among others, their performance can be enhanced fur-
ther by fine-tuning them with task-specific datasets. In particular, parameter-efficient fine-tuning
(PEFT) approaches such as LoRA (Hu et al., 2021) are frequently used, as they drastically reduce
the number of trainable parameters, resulting in faster training and reduced memory usage. The
adapter obtained via LoRA fine-tuning can be merged with the base model to get the final fine-tuned
model. To ensure multilingual support when fine-tuning models for a specific task, two approaches
can be used: (1) fine-tuning a language-specific LoRA adapter, creating multiple language-specific
models for each task, (2) fine-tuning a single multilingual adapter with a multilingual task-specific
dataset.

Both these approaches have some limitations. Individual language-specific models give the best
performance for the specific language, however, using multiple language-specific models during
inference can be resource-intensive and computationally expensive. Whereas, multilingual model
training may require high-quality task-specific training data, as well as higher computational re-
sources. Furthermore, adding and/or updating language support in a multilingual model requires
model retraining, which is an expensive process. Recently, model merging has been explored for
multitask models. This involves fine-tuning task-specific models with high-quality training data and
merging the individual models to obtain a single multitask model. Several approaches to merge
multiple task-specific models have been proposed recently (Ortiz-Jimenez et al., 2023; Yadav et al.,
2023; Yu et al., 2024). These model merging techniques have not only improved the task-specific
performance (Yadav et al., 2023), but they are also shown to be resource efficient.

While model merging has been extensively applied in a multitask setting, multilingual model merg-
ing is underexplored. Few works have considered multilingual model merging (Parović et al., 2024;
Tao et al., 2024; Zhao et al., 2025); however, these works extensively consider transfer learning to
improve the performance of a task from a source language to a target language. These techniques
are often not directly applicable in an enterprise application because we do not have a priori knowl-
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(a) Traditional Approach (b) Merging Approach

Figure 1: Comparison of multilingual model fine-tuning and Language-specific model merging. (a)
shows the traditional approach, where a multilingual adapter is trained with a combined dataset
and further merged with the base model. (b) shows the language-specific merging where language-
specific adapters are first trained and merged to get a single multilingual adapter, which is then
merged with the base model

edge of the source language. Moreover, when multiple geographies are involved, we frequently deal
with texts that contain more than one language making automated language detection based routing
vague and unreliable. Hence, we need a single multilingual model capable of supporting all required
languages. In this work, we leverage existing model merging techniques in a multilingual setting to
create such a multilingual model (Figure 1). Specifically, we experiment with three merging tech-
niques, TIES (Yadav et al., 2023), DARE (Yu et al., 2024), and KnOTS (Stoica et al., 2024). To
understand their generalizability, we consider three different tasks: Sentiment Analysis, Abstractive
Summarization, and Commonsense Reasoning. Through extensive experiments and several abla-
tions, we seek to answer the following questions: (1) How does the performance of the merged
model compare to language-specific models and a single multilingual model? (2) Do independent
language updates improve the performance on the specific language and translate to other languages
in the merged model? Does this improve training efficiency? (3) How does language cluster-based
model merging influence the performance quality of each language?

2 RELATED WORK

Multilingual Fine-tuning: Expanding language support for any task involves fine-tuning a multi-
lingual base model on task-specific multilingual data (Eisenschlos et al., 2019; Ladhak et al., 2020;
Choenni et al., 2023; Muennighoff et al., 2023; Indurthi et al., 2024). Some works propose strate-
gies to select the most relevant examples to maximize performance for a task or improve model
generalization across languages. Muennighoff et al. (2023) show that fine-tuning multilingual lan-
guage models on English instruction datasets improves their performance in zero-shot settings, and
generalizes on unseen languages. Choenni et al. (2023) propose using only the training examples
most influential for test predictions. They further show that during fine-tuning, the training samples
across languages enhances knowledge sharing. In the same vein, our experiments aim to show that,
similar to fine-tuning on a combined language dataset, merging individually fine-tuned models on
different languages also acquires task–specific knowledge from different languages.

Model Merging: With the increasing language model size, model merging has gained popularity to
improve multitask model performance and model generalization (Wortsman et al., 2022; Matena &
Raffel, 2022; Choshen et al., 2022; Ilharco et al., 2023; Yadav et al., 2023; Ortiz-Jimenez et al., 2023;
Tang et al., 2024; Jin et al., 2025; Ram et al., 2024; Yu et al., 2024; Stoica et al., 2024). Some initial
approaches involve averaging the model weights with techniques like standard averaging (Choshen
et al., 2022), Fisher-weight averaging (Matena & Raffel, 2022), and RegMean (Jin et al., 2025).
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Further enhancements to model merging were introduced by Ilharco et al. (2023), who proposed
Task Arithmetic, a merging technique using arithmetic operations like addition and subtraction, to
add and remove tasks, respectively. They observed improved performance on individual tasks with
the merged model. Other approaches like TIES (Yadav et al., 2023) and DARE (Yu et al., 2024)
prune the individual fine-tuned models to improve merged model efficiency. However, with merging
PEFT fine-tuned models, task alignment issues were introduced. Hence, some works introduced
techniques to improve the task alignment (Tang et al., 2024; Stoica et al., 2024). Apart from these
merging techniques, other works introduced dynamically selecting relevant task-specific adapters at
inference time, where a router layer is further trained to select the relevant adapter (Pfeiffer et al.,
2021; Feng et al., 2024; Buehler & Buehler, 2024; Li et al., 2024).

Crosslingual Merging and Transfer: Most of the recent model merging techniques have been
used for multiple tasks. However, there has been limited research in cross-lingual model merging.
Some earlier works have used transfer learning for a specific task, where the language-specific or
multilingual adapters are trained on two languages, and a task-specific adapter is trained on top of
one of the languages, with data for that specific language. The learnings are then transferred to
other languages by changing the language adapters (Pfeiffer et al., 2020; Parović et al., 2022; 2023).
Parović et al. (2024) proposed using Task Arithmetic to transfer task-specific knowledge from a
source language to a target language. While Tao et al. (2024) use continual training with language-
specific data, followed by task-specific English SFT training and further model merging with TIES
or weight averaging to obtain a task-specific model in a target language. Apart from these works,
other approaches like AdaMergeX (Zhao et al., 2025) that perform cross-lingual transfer learning
by leveraging model merging have been proposed. Unlike these works, which use transfer learning,
our work aims to determine the effectiveness of model merging techniques in a multilingual setting
to solve a specific task, while analyzing their computational efficiency.

3 APPROACH

3.1 PRELIMINARIES

In this section, we give an overview of the merging techniques used in our experiments, namely
TIES, DARE, and KnOTS.

TIES: Yadav et al. (2023) proposed Trim, Elect Sign, and Merge (TIES), a three step approach for
merging models fine-tuned on multiple tasks. The first step retains top-k percent of the model
weights for each of the fine-tuned models to be merged. A sign is elected in the second step,
where the summation of all the positive signed values for the specific weight position is computed.
Similarly the summation for all the negative weight values is computed for the same weight position.
The sign with the maximum magnitude is selected as the final sign for the weight position under
consideration. A disjoint merge is then performed as the last step, where the mean of the selected
sign values is computed to get the merged weight value.

DARE: Drop And REscale (DARE) (Yu et al., 2024) is an approach introduced to prune the redun-
dant weights from the fine-tuned models. This simple approach first randomly sets certain weight
values to 0, determined by a drop-rate p, unlike TIES, where the lowest weight values are dropped.
This adds sparsity to the model weights. The remaining weights are further scaled by a factor of
p/(1−p). The pruned fine-tuned models can then be merged using any existing merging techniques.
It is considered a plug-and-play module for existing merging techniques, with minimal performance
loss.

KnOTS: Stoica et al. (2024) proposed Knowledge Orientation Through SVD (KnOTS), a precursor
to model merging. They observe that transforming the weights of the fine-tuned models to a com-
mon space leads to better alignment during model merging. This approach makes use of SVD for
this transformation. SVD better aligns the representations between different LoRA adapters. The
approach works by first concatenating the individual fine-tuned model weights layer by layer and
then applying SVD over it to obtain a set of task-specific concatenated matrices. These matrices are
then merged using an existing merging technique.
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3.2 EXPERIMENTAL SETUP

3.2.1 DATASETS

To evaluate the effectiveness and generalization of multilingual model merging, we considered three
tasks: sentiment analysis, abstractive summarization, and commonsense reasoning. For each of
the three tasks, we experimented with five languages: English (EN), German (DE), French (FR),
Japanese (JA), and Chinese (ZH). We used the MultilingualSentiment (clapAI, 2024) dataset for
sentiment analysis, mCSQA (Sakai et al., 2024) for reasoning and WikiLingua (Ladhak et al.,
2020) dataset for summarization. We use 5,000 training, 500 validation, and 500 test examples
for sentiment analysis and reasoning tasks, whereas, for summarization, 3,000 training, and 500
validation and test examples are used.

3.2.2 BASELINES

For each task and language, we use two baselines: a model fine-tuned with a combined task-
specific dataset of all languages, and an individual model trained on a task-specific, language-
specific dataset. The combined dataset for a task includes the examples from the five individual
language datasets. We use Llama-3.1-8b-Instruct (Grattafiori et al., 2024) as the base model for
all tasks and languages. Each model was fine-tuned using LoRA (Hu et al., 2021) with r=64 and
alpha=64. A learning rate of 2e-5 was used with a training batch size of 8 and a maximum sequence
length of 8196.

3.2.3 MERGING

We experimented with several combinations of the three merging techniques mentioned in Sec-
tion 3.1. More specifically, we used the following combinations: TIES, TIES-KnOTS, DARE-
TIES, and DARE-TIES-KnOTS. Since DARE and KnOTS are preliminary tasks to other merging
techniques, they cannot be used as a standalone merging technique. Two hyperparameters are used:
weights, which are a vector that determines the amount of weight to be given to each fine-tuned
model, and density, which determines the percentage of weights’ values to be pruned. For each of
these combinations, we use two sets of hyperparameters: (weights=1, density=1) and (weights=1,
density=0.5). This resulted in 8 merged models for each task.

3.2.4 METRICS

We compute the macro-average F1-score, Precision and Recall for the sentiment analysis task to ac-
count for class imbalance. The commonsense reasoning task is evaluated using multi-class accuracy,
and summarization is evaluated using ROUGE-1, ROUGE-L, and Bert-Score.

Figure 2: Overall performance of the baselines and the merged models on the summarization, com-
monsense reasoning, and sentiment analysis tasks. For the three tasks, we plot the BertScore, Accu-
racy, and F1 scores, respectively.
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Table 1: The language-specific metric scores for each task. We show the baselines along with
the best merged model for each merging technique (D=DARE, T=TIES, S=KnOTS). For summa-
rization, we report the mean BertScore, while for reasoning and sentiment analysis, we report the
Accuracy and F1 scores, respectively.

Model Summarization (BertScore) Reasoning (Accuracy) Sentiment (F1)
EN DE FR JA ZH EN DE FR JA ZH EN DE FR JA ZH

L8bCOMB 0.839 0.834 0.837 0.830 0.835 0.896 0.840 0.754 0.754 0.732 0.759 0.791 0.756 0.768 0.675
L8bINDV 0.837 0.817 0.835 0.814 0.836 0.876 0.836 0.770 0.758 0.724 0.791 0.755 0.525 0.775 0.509
L8b DTSd=1.0 0.840 0.833 0.836 0.836 0.838 0.898 0.824 0.756 0.758 0.736 0.641 0.773 0.762 0.758 0.682
L8b DTd=1.0 0.811 0.792 0.797 0.811 0.813 0.874 0.822 0.752 0.776 0.708 0.470 0.747 0.769 0.769 0.474
L8b TSd=1.0 0.840 0.833 0.836 0.836 0.838 0.898 0.824 0.756 0.758 0.736 0.641 0.773 0.762 0.758 0.682
L8b Td=0.5 0.836 0.824 0.828 0.830 0.832 0.908 0.832 0.760 0.774 0.724 0.651 0.756 0.774 0.778 0.659

4 RESULTS AND DISCUSSION

For the summarization task, we see that the overall performance of the merged models is comparable
to both the baselines, as seen in Figure 2. Among the merged models, Llama-8b merged with TIES-
KnOTS(TS) and DARE-TIES-KnOTS(DTS) have the best performance, followed by TIES(T) and
DARE-TIES(DT). Across the languages, the merged models outperformed the baselines on English,
Japanese, and Chinese with BertScore improving between 0.1 to 0.6%, as seen in Table 1. While the
BertScores of the merged models were on par with the baselines, we see that merging can improve
the ROUGE scores for some of the languages, as indicated in Appendix A.1

For the Commonsense reasoning task, we see that the overall accuracy of the merged models is com-
parable to that of the baseline models. Similar to summarization, the baselines showed a slightly
better accuracy for German and French, while for English, Japanese, and Chinese, the merged mod-
els slightly outperformed the baselines. The difference in accuracy between the baselines and the
best merged models ranges from 0.4 to 2.2% absolute difference. The TIES model with a density of
0.5 outperforms the multilingual baseline by 0.5%.

Unlike the other two tasks, for sentiment analysis, the model trained on combined multilingual
data achieves the best performance, while some of the merged models outperform the language-
specific model. Considering the language-specific performance, the merged model performance
for French, Japanese, and Chinese is slightly higher than both the individual and the multilingual
models. However, there is a 1.7% absolute difference between the multilingual baseline and the
best merged model for German, while for English, there is a significant performance difference, of
the magnitude of 15% between the best merged model and the best baseline. The overall lower
performance of the merged models can be attributed to the lower performance of these models on
English. Furthermore, the effect of merging can also be task-specific; in tasks with limited label
space, the influence of merging is not as effective, while for tasks like summarization and reasoning,
where the label set is varied, merging may have more influence on the performance.

From Table 1 we see that the models merged with DARE-TIES and TIES with density 1 have similar
metric scores across all tasks. Since none of the weights are pruned with density 1, and due to the
later merging steps being similar for both DARE and TIES, we see a similar performance for these
two approaches. We further compare the efficiency of model merging with the multilingual model
fine-tuned on the summarization task. As shown in Figure 3, we see that fine-tuning individual
language models is time-efficient compared to fine-tuning the model on a combined dataset of all
languages, as it enables parallel training. We also see that updating an individual language model
and merging it with the other language-specific models is computationally more efficient compared
to retraining a single multilingual model on the updated dataset. This suggests that, multilingual
model merging may achieve on-par performance to fine-tuning a model on a combined dataset of all
the languages, but can be computationally efficient, especially when a new language is to be added
to an existing model or a language-specific model is to be updated.

5 ABLATIONS

To further understand the advantages and disadvantages of language-specific model merging, we
conduct additional ablations on the tasks. More specifically, we try to understand the impact of
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Figure 3: Comparison of Training Speed and Cost with fine-tuning LLMs on language-specific data
for the abstractive summarization task.

language grouping on model merging, language-specific updates, and the performance difference of
merging smaller LLMs. We also merge task-specific language-specific models to evaluate how the
performance is affected across the tasks and languages.

Table 2: Results for the merged model with updated EN adapter and the language cluster-based
merged models

Model Summarization Reasoning Sentiment
EN DE FR JA ZH EN DE FR JA ZH EN DE FR JA ZH

MERGEDBest 0.840 0.833 0.836 0.836 0.838 0.908 0.832 0.760 0.774 0.724 0.651 0.756 0.774 0.778 0.659
TIESEN−Updated - - - - - - - - - - 0.684 0.781 0.771 0.782 0.666
TIESEN−DE−FR 0.840 0.834 0.835 - - 0.900 0.838 0.770 - - 0.651 0.738 0.746 - -
TIESJA−ZH - - - 0.836 0.838 - - - 0.740 0.732 - - - 0.771 0.667

5.1 LANGUAGE SPECIFIC UPDATE

To understand the impact of updating the adapter for a single language on the merged model, we
retrain the adapter of a specific language using additional data. We use sentiment analysis as a case
study for this experiment. For this task, since English had the lowest performance among all the
languages, we retrain the English adapter with an additional 5,000 examples. Merging the updated
English adapter with the adapters for the other four languages showed an improved F1 score on
English compared to the best merged model. We further observe that updating the English adapter
not only improved the performance of the merged model for English, but we also see a performance
improvement in three other languages, as seen in Table 2. The results suggest that updating a single
language adapter can improve the performance not only on the updated language but also on other
languages under consideration; however despite the improvements we were not able to surpass the
baseline performance for sentiment analysis.

5.2 IMPACT OF MODEL SIZE

With model merging, the Llama-8b model achieves on-par results with the baselines. We investigate
the impact of merging with a smaller LLMs via tha Llama-3b model. Similar to the Llama-8b exper-
iments, we train language-specific models for sentiment analysis and summarization. For each task,
we merge the language-specific models using the best hyperparameters and merging methods from
the initial experiments. The Llama-3b model showed similar behavior as the Llama-8b model on
merging, as seen in Figure 4. For summarization, the merged Llama-3b model achieved BertScore
on par with the combined Llama-3b model trained on all languages together, and for sentiment anal-
ysis, the F1 score of the Llama-3b merged model is slightly lower than the combined Llama-3b
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model. For both these tasks, this pattern is consistent with what we observed with the Llama-8b
model. The Llama-3b model is slightly worse when compared to the Llama-8b model, which is
expected given that the Llama-3b model has significantly lower number of parameters. Hence, this
experiment indicates that model merging is size agnostic and can be applied to LLMs of different
sizes, however, the absolute performance may vary depending on how small or large the LLM is.

Figure 4: Performance comparison across model sizes

5.3 LANGUAGE CLUSTER-BASED MERGING

To understand if merging the models based on shared language properties improves the task per-
formance, we cluster the languages based on their shared vocabulary. Specifically we group them
in two clusters: European languages, namely English, German, and French, and East Asian Lan-
guages, Japanese and Chinese. As seen in Table 2, for sentiment analysis, we observe a decrease
in performance for German and French compared to the best merged model, while the performance
was on par for the other three languages. For summarization we observed that the language cluster
based merging achieved on-par performance to the best merged model. On the commonsense rea-
soning task, we see an increase in accuracy for German, French, and Chinese, while for there was a
slight decrease in accuracy for English. For Japanese however, we saw that the accuracy decreased
by 3.4%. We can attribute this performance difference to the knowledge transfer during merging.
When merging all languages, the merged models may inherit features from all the languages, while
this transfer is limited with fewer languages. Moreover, the observations vary across tasks, indicat-
ing that merging the models based on language clusters may influence the performance differently
based on the task under consideration. Overall, we did not observe a significant improvement with
the language cluster-based model merging.

5.4 MULTITASK-MULTILINGUAL MERGING

Previous works on model merging show that merging task-specific models overall improves the
performance on all tasks. We therefore investigate how multilingual-multitask merging impact the
performance across different tasks. To this end we merge language-specific and task-specific mod-
els. We consider two scenarios: merging all language-specific models across all tasks together, and
first merging language-specific models for a task, followed by merging across tasks. In both these
scenarios, the overall performance degrades for all the tasks, as shown in Table 3. The performance
decrease is between 2-5% for summarization and commonsense reasoning while for sentiment anal-
ysis, the F1 score drops by more than 5%. Comparing the two scenarios, merging all the language
models together performs best for summarization and reasoning, while for sentiment analysis, merg-
ing language-specific models followed by task-specific merging works best. While the results gen-
erally indicate lower performance, hyperparameter tuning for task-specific and language-specific
merging can improve the overall performance, and we leave this for future exploration.
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Table 3: Multitask Multilingual Merging, TIESAll refers to merging all language and task adapters
together; TIESEach refers to merging language adapters for each task creating a single task adapter
followed by merging independent task adapters together

Model Summarization (BertScore) Reasoning (Accuracy) Sentiment (F1)
BESTMerged 0.836 0.800 0.724
TIESAll 0.812 0.763 0.600
TIESEach 0.810 0.755 0.665

6 CASE STUDY

To understand the effectiveness of this technique for enterprises, we undertake a case study using
a proprietary dataset. This task is similar to summarization, where an LLM processes unstructured
data to identify relevant themes and provide supporting examples extracted from the input. It is sup-
ported in five languages, English, Spanish, German, French, and Japanese. The primary metric used
is Aggregated Hallucination Rate1, which computes the proportion of the number of LLM-generated
examples that are not in the input. Similar to prior experiments, we first fine-tune language-specific
models and a single multilingual model. We use the individual and the multilingual models as the
baselines. Llama-3.1-8b-Instruct is used as the base model.

Figure 5: The aggregated hallucination rate across the languages (lower is better). The plot shows
the scores for four models, two baselines, and the best performing merged model TIES. The scores
for the model merged with updated Japanese data are also reported. The ’mix’ language refers to
having more than 1 language in the input that needs to be summarized

We merge the language-specific models using the three techniques described in Section 3.1. For
this experiment, we assign differing weights to each language model based on some pre-defined
condition. As seen in Figure 5, experimental results showed that the merged models achieved a
comparable performance or improved the performance over the baselines for all languages except
Japanese. We observed that Japanese had the highest hallucination rate among all the languages.
Hence we retrained the Japanese model with more training data. Merging the retrained Japanese
model with other language adapters not only improved the performance of the merged model on
Japanese, but we also observed improved performance for other languages like English and German.
This supports our initial observation from Section 5.1 that performance improvement may propagate
across languages.

The experiment further demonstrates the effectiveness of language-specific model merging. As seen
in Figure 5 and Figure 6 model merging allows us to save on training time and eventual training costs
without compromising on the model performance. We were able to update the Japanese adapter at
37.5% of the cost via model merging as compared to the traditional method. Apart from compu-
tational efficiency, merging allows the hyperparameters for each language to be tuned separately
depending on the business needs, giving more language-specific control.

1Lower hallucination rate is better.
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Figure 6: Training Speed and Cost Improvements

7 CONCLUSION

In this work we utilize existing language model merging techniques in a multilingual setting. Specif-
ically, we use three techniques TIES, DARE, and KnOTS, and experiment on three tasks. Results
indicate that TIES merging overall had the best performance across the three tasks. We further
perform several ablations to evaluate the influence of merging based on language clusters, under-
stand the impact of merging on model size, and identify the merits of merging across languages
and models simultaneously. Through our experiments, we aimed to answer three research ques-
tions. We revisit and answer them here. For RQ1, our experiments showed that on two of the three
tasks evaluated, multilingual model merging achieved comparable performance. While perform-
ing language-specific updates is more efficient with model merging compared to combined model
retraining, it also improves the performance on languages other than the updated language, answer-
ing RQ2. Whereas for RQ3, we find that language cluster-based merging does not improve the
performance over the model merged with all languages.

While the experiments show that multilingual model merging can be efficient in terms of training
and achieve comparable performance to combined dataset training on most tasks, the results can
be further improved through hyperparameter tuning and using other merging techniques. As a part
of the future work, we plan to explore additional LLM sizes and families, as well as investigate
ways to improve individual adapter weight selection, while further improving multitask-multilingual
merging performance.
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Marinela Parović, Ivan Vulić, and Anna Korhonen. Investigating the potential of task arithmetic
for cross-lingual transfer. In Proceedings of the 18th Conference of the European Chapter of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 124–137, 2024.
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A APPENDIX

A.1 ADDITIONAL RESULTS

This section provides Table 4 showing the values of all the computed metrics for each of the merging
techniques and hyperparameter combinations we experimented with, and Figure 7 that showcases
the language wise model performance of the best merged model per task against the combined and
individual baselines, highlighting the on par performance observed for Summarization and Reason-
ing and the exceptions with Sentiment Analysis.

A.2 LANGUAGE VECTOR ORTHOGONALITY

Ilharco et al. (2023) shows that the improved performance of the merged model on different tasks
can be attributed to lower interference among the merged task vectors. Hence to investigate if there
is interference between the vectors for the different languages, we check the orthogonality among
the language vectors for all three tasks. Language vector for a specific language is obtained by
computing the difference between the weights of the fine-tuned model and the base model. In our
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Table 4: Overall metric scores of all models for Summarization, Reasoning, and Sentiment Analysis

Model Summarization Reasoning Sentiment
ROUGE-1 ROUGE-2 ROUGE-L BertScore Accuracy Precision Recall F1

L8bCOMB 0.012 0.002 0.012 0.835 0.795 0.750 0.751 0.750
L8bINDV 0.011 0.001 0.010 0.828 0.793 0.691 0.670 0.671
L8b DTSd=1.0 0.012 0.001 0.012 0.836 0.794 0.731 0.727 0.723
L8b DTSd=0.5 0.010 0.001 0.010 0.830 0.800 0.720 0.717 0.712
L8b DTd=1.0 0.007 0.001 0.007 0.805 0.786 0.654 0.646 0.646
L8b DTd=0.5 0.007 0.001 0.007 0.798 0.768 0.673 0.670 0.666
L8b TSd=1.0 0.012 0.001 0.012 0.836 0.794 0.731 0.727 0.723
L8b TSd=0.5 0.014 0.002 0.013 0.835 0.793 0.719 0.717 0.711
L8b Td=1.0 0.007 0.001 0.007 0.805 0.786 0.654 0.646 0.646
L8b Td=0.5 0.011 0.001 0.010 0.830 0.800 0.729 0.727 0.724

Figure 7: Language Wise Model Performance of the best merged model vs combined vs individually
trained

case, since we use LoRA, that do not directly update the base model weights, we consider the
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product of the weight matrics A and B obtained after fine-tuning as the language vector for the
specific language. The cosine similarity between any two language vectors is computed to check the
orthogonality between them. The similarity matrices are shown in Figure 8.

We hypothesized that since all the languages are trained on the same task, the language vectors
would be similar and hence they may not be orthogonal to each other. However, the cosine similarity
computations revealed that the language vectors for any two languages have comparatively lower
similarity, especially for related languages like English and German. This indicates that although
all languages learn the same task, they may have different semantic learning spaces to adapt to a
specific task. Another possible factor in the lower similarity between the language vectors can be
the amount of pre-training data used per language. While the Llama-3 pretraining data contained
a significant amount of English data, the data for other languages was minimal. Hence, to adapt
to a specific task, during fine-tuning, the weight updates required for English compared to other
languages are smaller. Other factors like language-specific semantics, syntactic structures, as well
as model tokenization, can also influence the similarity between the vectors. For sentiment analysis
and reasoning, the similarities are comparatively lower than those for summarization, indicating the
task influence.

(a) (b) (c)

Figure 8: Cosine similarity between language vectors for each task. The similarity score is computed
between each language pair

A.3 LLM USAGE

LLMs were only used as writing assistants to help with grammar correction and rephrasing a few
passages in this paper.
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