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ABSTRACT

Most computer vision datasets are composed of disconnected sets, such as images
of different objects. We prove that distributions of this type of data cannot be
represented with a continuous generative network without error, independent of the
learning algorithm used. Disconnected datasets can be represented in two ways:
with an ensemble of networks or with a single network using a truncated latent
space. We show that ensembles are more desirable than truncated distributions
for several theoretical and computational reasons. We construct a regularized
optimization problem that rigorously establishes the relationships between a single
continuous GAN, an ensemble of GANs, conditional GANs, and Gaussian Mixture
GANs. The regularization can be computed efficiently, and we show empirically
that our framework has a performance sweet spot that can be found via hyperpa-
rameter tuning. The ensemble framework provides better performance than a single
continuous GAN or cGAN while maintaining fewer total parameters.

1 INTRODUCTION

Generative networks, such as generative adversarial networks (GANs) (Goodfellow et al., 2014)
and variational autoencoders (Kingma & Welling, 2013), have shown impressive performance in
generating highly realistic images that were not observed in the training set (Karras et al., 2017;
2019a;b). However, even state of the art generative networks such as BigGAN (Brock et al., 2018)
generate poor quality imagery if conditioned on certain classes of ILSVRC2012 (Russakovsky et al.,
2015). We argue that this is due to the inherent disconnected structure of the data.

In this paper, we theoretically analyze the effects of disconnected data on GAN performance. By
disconnected, we mean that the data points are drawn from an underlying topological space that is
disconnected (the rigorous definition is provided below in Section 3.1). As an intuitive example,
consider the collection of all images of badgers and all images of zebras. These two sets are
disconnected, because images of badgers do not resemble images of zebras, and modeling the space
connecting these sets does not represent real images of animals.

We rigorously prove that one cannot use a single continuous generative network to learn a data
distribution perfectly under the disconnected data model. Because generative networks are continuous,
they cannot map a connected latent space (R`) into the disconnected image space, resulting in the
generation of data outside of the true data space. In related work, (Khayatkhoei et al., 2018) has
empirically studied disconnected data but does not formally prove the results in this paper. In addition,
the authors use a completely unsupervised approach to attempt to find the disconnected components
as a part of learning. In contrast, we use class labels and hence work in the supervised learning
regime.

Our suggested approach to best deal with disconnected data is to use ensembles of GANs. We
study GANs in particular for concreteness and because of their widespread application; however,
our methods can be extended to other generative networks with some modification. Ensembles of
GANs are not new, e.g., see (Nguyen et al., 2017; Ghosh et al., 2018; Tolstikhin et al., 2017; Arora
et al., 2017), but there has been limited theoretical study of their properties. We prove that ensembles
can learn the data distribution under the disconnected data assumption and study their relationship
to single GANs. Specifically, we develop a first-of-its-kind theoretic framework that relates single
GANs, ensembles of GANs, conditional GANs, and Gaussian mixture GANs. The framework makes
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it easy to, e.g., develop regularized GAN ensembles that encourage parameter sharing, which we
show outperform cGANs and single GANs.

While our primary focus here is on theoretical insight, we also conduct a range of experiments to
demonstrate empirically that the performance (measured in terms of FID (Heusel et al., 2017), MSE
to the training set (Metz et al., 2016), Precision, and Recall (Sajjadi et al., 2018)) increases when we
use an ensemble of WGANs over a single WGAN on the CIFAR-10 dataset (Krizhevsky & Hinton,
2009). The performance increase can be explained in terms of three contributing factors: 1) the
ensemble has more parameters and hence has higher capacity to learn complex distributions, 2) the
ensemble better captures the disconnected structure of the data, and 3) parameter sharing among
ensemble networks enables successful joint learning, which we observe can increase performance.

We summarize our contributions as follows:

• We prove that generative networks, which are continuous functions, cannot learn the data dis-
tribution if the data is disconnected (Section 3.2). The disconnected data model is defined in
Section 3.1, where we argue that it is satisfied in many common datasets, such as MNIST, CIFAR-
10, and ILSVRC2012. Restricting the generator to a disconnected subset of the domain is one
solution (Section 3.3), but we study a better solution: using ensembles.

• We demonstrate how single GANs and ensembles are related (Section 4.1). We then prove
that ensembles are able to learn the true data distribution under our disconnected data model
(Section 4.2). Finally, we demonstrate that there is an equivalence between ensembles of GANs
and common architectures such as cGANs and GM-GANs due to parameter sharing between
ensemble components (Section 4.3).

• We empirically show that, in general, an ensemble of GANs outperforms a single GAN (Sec-
tion 5.1). This is true even if we reduce the number of parameters used in an ensemble so that it
has fewer total parameters than a single GAN (Section 5.2). Finally, we empirically show that
parameter sharing among ensemble networks leads to better performance than a single GAN
(Section 5.3) or even a cGAN (Section 5.4).

2 BACKGROUND AND RELATED WORK

2.1 GENERATIVE ADVERSARIAL NETWORKS (GANS)

GANs are generative neural networks that use an adversarial loss, typically from another neural
network (Goodfellow et al., 2014). In other words, a GAN consists of two neural networks that
compete against each other. The generator G : R` Ñ Rp is a neural network that generates p-
dimensional images from an `-dimensional latent space. The discriminator D : Rp Ñ p0, 1q is
a neural network which is trained to classify between the training set and generated images. As
compositions of continuous functions (Goodfellow et al., 2016), both G and D are continuous.

G has parameters θG P R|θG|, where |θG| is the possibly infinite cardinality of θG. Similarly,
D has parameters θD P R|θD|. The latent, generated, and data distributions are Pz, PG, and PX ,
respectively. We train this network by solving the following optimization problem:

min
θG

max
θD

V pθG,θDq “ min
θG

max
θD

Ex„PX rlogDpxqs ` Ez„Pz rlogp1´DpGpzqqqs. (1)

Here we write min and max instead of minimize and maximize for notational compactness, but we
are referring to an optimization problem. The objective of this optimization is to learn the true data
distribution, i.e., PG “ PX . Alternatively, we can use the Wasserstein distance instead of the typical
cross-entropy loss: V pθG,θDq “ Ex„PXDpxq ´ Ez„PzDpGpzqq restricted to those θG,θD which
force D to be 1-Lipschitz as done in the WGAN paper (Arjovsky et al., 2017). Thus, we will use V
to denote either of these two objective functions.

2.2 GANS THAT TREAT SUBSETS OF DATA DIFFERENTLY

Ensembles of GANs. Datasets with many different classes, such as ILSVRC2012 (Russakovsky
et al., 2015), are harder to learn in part because the relationship between classes is difficult to quantify.
Some models, such as AC-GANs (Odena et al., 2017), tackle this complexity by training different
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models on different classes of data in a supervised fashion. In the AC-GAN paper, the authors train
100 GANs on the 1000 classes of ILSVRC2012. The need for these ensembles is not theoretically
studied or justified beyond their intuitive usefulness.

Several ensembles of GANs have been studied in the unsupervised setting, where the modes or
disconnected subsets of the latent space are typically learned (Pandeva & Schubert, 2019; Hoang
et al., 2018; Khayatkhoei et al., 2018) with some information theoretic regularization as done in (Chen
et al., 2016). These are unsupervised approaches which we do not study in this paper. Models such
as SGAN (Chavdarova & Fleuret, 2018) and standard GAN ensembles (Wang et al., 2016) use
several GANs in part to increase the capacity or expressibility of GANs. Other ensembles, such as
Dropout-GAN (Mordido et al., 2018), help increase robustness of the generative network.

Conditional GANs (cGANs). Conditional GANs (Mirza & Osindero, 2014) attempt to solve the
optimization problem in (1) by conditioning on the class y, a one-hot vector. The generator and
discriminator both take y as an additional input. This conditioning can be implemented by having the
latent variable be part of the input, e.g., the input to the generator will be rzT yT sT instead of just z.

Typically, conventional cGANs have the following architecture modification. The first layer has an
additive bias that depends on the class vector y and the rest is the same. For example, consider a
multilayer perceptron, with matrix W in the first layer. Converting this network to be conditional
would result in the following modification to the matrix in the first layer:

Wconditional

„

x
y



“ rW Bs

„

x
y



“Wx`By “Wx`B¨,k.

Hence, we can think ofB as a matrix with columnsB¨,k, k P t1, . . . ,Ku being bias vectors andW
being the same as before. We pick a bias vector B¨,k based on what class we are conditioning on but
the other parameters of the network are held the same, independent of k. This is done to both the
generator and the discriminator. Some cGANs condition on multiple layers, such as BigGAN (Brock
et al., 2018), or on different types of layers, such as convolutional layers, but our formulation here
extends clearly to those other architectures.

Gaussian Mixture GANs (GM-GANs). The latent distribution Pz is typically chosen to be either
uniform, isotropic Gaussian, or truncated isotropic Gaussian (Goodfellow et al., 2014; Radford
et al., 2015; Brock et al., 2018). We are not restricted to these distributions; research has been
conducted in extending and studying the affect of using different distributions, such as a mixture of
Gaussians (Ben-Yosef & Weinshall, 2018; Gurumurthy et al., 2017).

3 CONTINUOUS GENERATIVE NETWORKS CANNOT MODEL DISTRIBUTIONS
DRAWN FROM DISCONNECTED DATA

3.1 DISCONNECTED DATA MODEL

We begin by introducing a new data model that accounts for disconnected data. Typical datasets with
class labels satisfy this model; we provide additional examples below.
Definition 1 (Disconnected data model). We assume that the data lies on K disjoint, compact
sets Xk Ă Rp, k P t1, . . . ,Ku so that the whole data lies on the disjoint union of each component:
Ť

¨̈̈
K
k“1 Xk “ X . Moreover, we assume that each component Xk is connected (Rudin, 1964). We then

draw data points from these sets in order to construct our finite datasets.

In Definition 1, we let each Xk be compact in order to remove the degenerate case of having two
components Xk and Xj that are arbitrarily close to one another, which is possible if we only assume
that X is closed and disjoint. If that is the case, there are trivial counter-examples (see the appendix)
to the theorems proved below.
Lemma 1. X is a disconnected set, and Xj is disconnected from Xk for j ‰ k.

Disconnected datasets are ubiquitous in machine learning (Khayatkhoei et al., 2018; Hoang et al.,
2018; Pandeva & Schubert, 2019). For example, datasets with discrete labels (typical in classification
problems) will often be disconnected. We study this disconnected data property, because generative
networks are unable to learn the distribution supported on such a dataset, as we show below.
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3.2 CONTINUOUS GENERATIVE NETWORKS CANNOT REPRESENT A DISCONNECTED DATA
DISTRIBUTION EXACTLY

In this section, we prove that, under Definition 1, continuous generative networks cannot learn the
true data distribution exactly due to model misspecification.

Suppose that pΩ,F , Pzq is a probability space with Pz being the distribution of the random vector
z : Ω Ñ R`. We assume that Pz is equivalent to the Lebesgue measure λ. This just means that
λpzpAqq “ 0 if and only if PzpAq “ 0 for any set A P F . This is true for a Gaussian distribution,
for example, which is commonly used as a latent distribution in GANs (Arjovsky et al., 2017). The
transformed (via the generative network G) random vector x “ G ˝ z : Ω Ñ Rp is determined by
the original probability measure Pz but is defined on the induced probability space pΩ1,F 1, PGq.
Theorem 1. If G can generate from multiple components of X (say X1 and X2), then the probability
of generating samples outside of X is positive: PGpx P RpzX q ą 0. Otherwise if we can only
generate from one component (say X1), then PGpXiq “ 0 for x P t2, . . . ,Ku.

The continuity of G is the fundamental reason why Theorem 1 is true. A continuous function cannot
map a connected space to a disconnected space. This means that all generative networks must
generate samples outside of the dataset if the data satisfies Definition 1.

Suppose that our data is generated from the true random vector xdata : Ω1 Ñ Rp using the probability
distribution PX . Also, suppose that we learn PG by training a generative network.
Corollary 1. Under Definition 1, we have that dpPG, PX q ą 0 for any distance metric d and any
learned distribution PG.

From Corollary 1, we see that learning the data distribution will incur irreducible error under
Definition 1 because our data model and the model that we are trying to train do not match. Hence,
we need to change which models we consider when we train in order to best reflect the structure of
our data. At first thought a discontinuous G might be considered, but that would require training G
without backpropagation. Instead, we focus on restricting G to a discontinuous domain (Section 3.3)
and training an ensemble of GANs (Section 4.1) as two possible solutions.

3.3 RESTRICTING THE GENERATOR TO A DISCONNECTED SUBSET OF THE LATENT
DISTRIBUTION

In this section, we study how we can remove the irreducible error in Theorem 1 from our models
after training. Suppose that we train a generator G on some data so that GpR`q Ą X . Therefore, we
can actually generate points from the true data distribution. We know that the distributions cannot be
equal because of Theorem 1, implying that if we restrict the domain of G to the set Z “ G´1pX q
then GpZq “ X . The next theorem shows how the latent distribution is related to restricting the
domain of G.
Theorem 2 (Truncating the latent space reduces error). Suppose that PzpZq ą 0 and let the
generator G learn a proportionally correct distribution over X . In other words, there exists a real
number c P R so that

PGpAq “ cPX pAq A P F 1, A Ă X .
Then, we use the truncated latent distribution defined by PzT pBq “ 0 for all B P F that satisfy
B X Z “ H. This allows us to learn the data distribution exactly, i.e.

PG|Z pAq “ PX pAq A P F 1.

We write PG|Z because, by truncating the latent distribution, we effectively restrict G to the domain
Z. Theorem 2 shows that if we learn the data distribution approximately by learning a proportional
distribution, then we can learn the true data distribution by truncating our latent distribution. By 4.22
in (Rudin, 1964), Z must be disconnected, which implies that a disconnected latent distribution is a
solution to remove the irreducible error in Theorem 1.

Although Theorem 2 suggests that we truncate the latent distribution, there are several limitations
with this approach. First, the latent distribution cannot be truncated without knowing a closed form
expression for PG. Second, we may learn the disconnected set Z by training a mixture distribution
for Pz as is done in (Ben-Yosef & Weinshall, 2018; Gurumurthy et al., 2017). The problem with
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this is that the geometric shape of Z is restricted to be spherical or hyperellipsoidal. Third, before
truncating the latent space, we need to train a generative network to proportionally learn the data
distribution, which is impossible to confirm.

Given these limitations, we introduce the use of ensembles of generative networks in Section 4.1.
This class of models addresses the issues above as follows. First, we will not need to have access
to PG in any way before or after training. Second, knowing the geometric shape of Z is no longer
an issue because each network in the ensemble is trained on the connected set Xk instead of the
disconnected whole X . Finally, since the k-th network will only need to learn the distribution of Xk,
we reduce the complexity of the learned distribution and do not have to confirm that the distribution
learned is proportionally correct.

4 ENSEMBLES OF GANS AND PARAMETER SHARING

We demonstrate how to train ensembles of GANs practically and relate ensembles to single GANs,
cGANs, and GM-GANs. We focus on feedforward (Goodfellow et al., 2016) GANs in this section
for concreteness; therefore, we study an ensemble of discriminators as well as generators.

4.1 ENSEMBLE OF GANS VS. A SINGLE GAN

Given an ensemble of GANs, we will write Gk : R` Ñ Rp as the k-th generator with parameters
θGk P R|θG| for k P t1, . . . ,Ku, where K is the number of ensemble networks. We assume that each
of the generators has the same architecture, hence |θGi | “ |θGj | for all i, j; thus we drop the subscript
and write |θG|. Likewise, we write Dk : Rp Ñ r0, 1s for the k-th discriminator with parameters
θDk P R|θD| since the discriminators all have the same architecture. The latent distribution is the
same for each ensemble network: Pz . The generated distributions will be denoted PGk .

For concreteness, we assume that K is the number of classes in the data; for MNIST, CIFAR-10, and
ILSVRC2012, K would be 10, 10, and 1000, respectively. If K is unknown, then an unsupervised
approach (Hoang et al., 2018; Khayatkhoei et al., 2018) can be used. Define the parameter π P RK`
such that

řK
k“1 πk “ 1. We then draw a one-hot vector y „ Catpπq randomly and generate a sample

using the k-th generator if the k-th component of y is 1. Hence, we have that a generated sample is
given by x “ Gkpzq. This ensemble of GANs is trained by solving

min
θGk

max
θDk

V pθGk ,θDkq (2)

for k P t1, . . . ,Ku. Note that with an ensemble like this, the overall generated distribution PGpxq “
řK
k“1 πkPGkpxq is a mixture of the ensemble distributions. This makes comparing a single GAN to

an ensemble challenging; for example, consider comparing a Gaussian to a mixture of Gaussians.

In order to compare a single GAN to an ensemble of GANs, we define a new hybrid optimization

min
θG1

,...,θGK

¨

˚

˝

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDkq s.t.
K
ÿ

k“1
j“k

}θDj ´ θDk}0 ď t

˛

‹

‚

s.t.
K
ÿ

k“1
j“k

}θGj ´ θGk}0 ď t,

(3)

where } ¨ }0 “ 1 denotes the `0 "norm," which counts the number of non-zero values in a vector.
Thus, t ě 0 serves as a value indicating how many parameters are the same across different networks,
which is more general than having tied weights between networks (Ghosh et al., 2018). We penalize
the parameters because it is convenient, although it is not equivalent to, penalizing the functions
themselves. This is true because θGk ´ θGj “ 0 ùñ Gk ´Gj “ 0 but the converse is not true.
We analyze the behavior of (3) as we vary t in the next theorem.
Theorem 3. Let G and D be the generator and discriminator network in a GAN. Suppose that for
k P t1, . . . ,Ku we have that Gk and Dk have the same architectures as G and D, respectively.
Moreover, assume that PX pXjq “ PX pXkq for all j, k. Then,

i) Suppose that t ě max
!

KK´1
2 |θD|,K

K´1
2 |θG|

)

. Then for all k P t1, . . . ,Ku we have

that
`

θ˚Gk ,θ
˚
Dk

˘

is a solution to (3) if and only if
`

θ˚Gk ,θ
˚
Dk

˘

is a solution to (2).
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ii) Suppose that t “ 0. Then we have that pθ˚G,θ
˚
Dq is a solution to (3) for each k P t1, . . . ,Ku

if and only if pθ˚G,θ
˚
Dq is a solution to (1).

Informally, Theorem 3 shows that, when t “ 0, we essentially have a single GAN, because all of
the networks in the ensemble have the same parameters. If t is large then we have an unconstrained
problem such that the ensemble resembles the one in Equation (2). Therefore, this hybrid optimization
problem trades off the parameter sharing between ensemble components in a way that allows us to
compare performance of single GANs with ensembles.

Unfortunately, Equation (3) is a combinatorial optimization problem and is computationally in-
tractable. Experimentally, we relax Equation (3) to the following

min
θG1

,...,θGK

¨

˚

˝

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDkq ´ λ
K
ÿ

k“1
j“k

}θDj ´ θDk}1

˛

‹

‚

` λ
K
ÿ

k“1
j“k

}θGj ´ θGk}1 (4)

in order to promote parameter sharing and have an almost everywhere differentiable regularization
term that we can backpropagate through while training. Although Equation (4) is a relaxation
of Equation (3), we still have the same asymptotic behavior when we vary λ as when we vary t as
shown in Appendix A.

4.2 OPTIMALITY OF ENSEMBLES FO GANS

This next theorem shows that if we are able to learn each component’s distribution, PXk , then an
ensemble can learn the whole data distribution PX .

Theorem 4. Suppose that G˚k is the network that generates Xk for each k P t1, . . . ,Ku, i.e.
PG˚

k
“ PXk . Under Definition 1, we can learn each G˚k by solving (2) with V being the objective

function in Equation (1).

We know from (Goodfellow et al., 2014) that a globally optimal solution is achieved when the
distribution of the generated images equals PX . Hence, this theorem has an important consequence:
Training an ensemble of networks is optimal under our current data model.

It is important to note that the condition “Gk is the network that generates Xk” is necessary but not
too strong because we may have a distribution that cannot be learned by a generative network or
that our network does not have enough capacity to learn. We do not care about such cases however,
because we are studying the behavior of generative networks under Definition 1.

4.3 RELATION OF ENSEMBLES OF GANS TO OTHER GAN ARCHITECTURES

Relation to cGANs. We compare a cGAN to an ensemble of GANs. Recall from Section 2.2 that
a cGAN has parameters θG and θD that do not change with different labels but there are matricesBG

andBD that do depend on the labels. Specifically, they solve the optimization problem Theorem 3
with the additional constraint that the only parameters that can be different are the biases in the first
layer. For other variants of cGANs a similar result applies.

Theorem 5. A cGAN is equivalent to an ensemble of GANs with parameter sharing among all
parameters except for the biases in the first layer. Moreover, the optimization in (3) can be modified
so that it is equivalent to the cGAN optimization problem.

Relation to GM-GANs. Another generative network that is related to ensembles is the GM-GAN.
The first layer in GM-GANs transforms the latent distribution from isotropic Gaussian into a mixture
of Gaussians. This new layer plays a similar role as the B¨,k in the cGAN comparison above,
meaning that GM-GANs solve the optimization problem (3) with the additional constraint that the
only parameters that can be different are the parameters in the first layer.

Theorem 6. A GM-GAN is equivalent to an ensemble of GANs with parameter sharing among all
parameters except for the first layer. Moreover, the optimization in (3) can be modified so that it is
equivalent to the GM-GAN optimization problem.
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Figure 1: Ensembles of WGANs with fewer total parameters than a single WGAN perform better on CIFAR-10.
We do not have to sacrifice computation to achieve better performance, we just need models that capture the
underlying structure of the data. The dotted red line is the baseline WGAN, the solid blue line is the equivalent
ensemble, and the dashed black line is the full ensemble.

5 EXPERIMENTAL RESULTS

In this section, we study how ensembles of WGAN (Arjovsky et al., 2017) compare with a single
WGAN and a conditional WGAN. We use code from the authors’ official repository (Arjovsky et al.,
2018) to train the baseline model. We modified this code to implement our ensembles of GANs and
cGAN. For evaluating performance, we use the FID score (Heusel et al., 2017; 2020), average MSE
to the training data (Metz et al., 2016; Lipton & Tripathi, 2017), and precision/recall (Sajjadi et al.,
2018; 2019). More details about the experimental setup are discussed in Appendix C.

5.1 ENSEMBLES PERFORM BETTER THAN SINGLE NETWORKS

We consider a basic ensemble of WGANs where we simply copy over the WGAN architecture
10 times and train each network on the corresponding class of CIFAR-10; we call this the “full
ensemble”. We compare this ensemble to the baseline WGAN trained on CIFAR-10.

Figure 1 shows that the full ensemble of WGANs performs better than the single WGAN. It is not
immediately clear, however, whether this boost in performance is due to the functional difference of
having an ensemble or if it is happening because the ensemble has more parameters. The ensemble
has 10 times more parameters than the single WGAN, so the comparison is hard to make. Thus, we
consider constraining the ensemble so that it has fewer parameters than the single WGAN.

5.2 ENSEMBLES WITH FEWER TOTAL PARAMETERS STILL OUTPERFORM A SINGLE NETWORK

The “equivalent ensemble” (3,120,040 total generator parameters) in Figure 1 still outperforms the
single WGAN (3,476,704 generator parameters) showing that the performance increase comes from
using the ensemble rather than just having larger capacity. In other words, considering ensembles
of GANs allows for improved performance even though the ensemble is simpler than the original
network in terms of number of parameters.

We see a performance boost as a result of increasing the number of parameters, in Figure 1. Therefore,
we perform better because of having a better model (an ensemble) as well as by having more
parameters. Now, we investigate a way that we can further improve performance.

5.3 PARAMETER SHARING AMONG ENSEMBLE COMPONENTS LEADS TO BETTER
PERFORMANCE

We study how the regularization penalty λ affects performance. As discussed in Section 4.1, we can
learn a model that is somewhere between an ensemble and a single network by using `1 regularization.

In Figure 2, the performance increases when we increase λ in the equivalent ensemble from 0 to
0.001, implying that there is some benefit to regularization. Recall that by having λ ą 0, we force
parameter sharing between generator and discriminator networks. This performance increase is likely
data dependent and has to do with the structure of the underlying data X . For example, we can have
pictures of badgers pX1q and zebras pX2q in our dataset and they are disconnected. However, the
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Figure 2: Ensembles of WGANs have a performance sweet spot when we regularize the optimization problem
in expression (4) with different values of λ. Each curve is calculated using the equivalent ensemble of WGANs
discussed in Section 5.2. We see that as we increase λ to 0.001, the performance increases but then decreases
when we continue to increase λ to 0.01. This implies that there is an optimal value for λ that can be found via
hyperparameter tuning. The solid blue line is the equivalent ensemble with λ “ 0.01, the dotted red line is the
equivalent ensemble WGAN, and the dashed black line is the equivalent ensemble with λ “ 0.001.
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Figure 3: Regularized ensembles of WGANs using the optimization in (4) outperform cWGANs, even though
cGANs are a type of ensemble. Here, cWGAN actually performs similarly to the baseline WGAN even though it
takes into consideration class information. The solid blue line is the baseline, the dotted red line is the cWGAN,
and the dashed black line is the equivalent ensemble with λ “ 0.001.

backgrounds of these images are likely similar so that there is some benefit in G1 and G2 treating
these images similarly, if only to remove the background.

As we increase λ from 0.001 to 0.01 we notice that performance decreases. This means that there is
a sweet spot and we may be able to find an optimal 0 ă λ˚ ă 0.01 via hyperparameter tuning. We
know that the performance is not monotonic with respect to λ because it decreases and then increases
again; in other words, the performance has a minima that is not at λ “ 0 or λÑ8. The optimization
problem in expression (4) therefore can be used to find a better ensemble than the equivalent ensemble
used in Section 5.2 which still has fewer parameters than the baseline WGAN.

5.4 ENSEMBLES OUTPERFORM CGANS

We modify a WGAN to be conditional and call it cWGAN. This cWGAN is trained on CIFAR-10,
and we compare cWGAN to ensembles of WGANs. We do this because we showed in Section 4.3
that cGANs are an ensemble of GANs with a specific type of parameter sharing.

As can be seen from Figure 3, ensembles perform better than the cWGAN. The baseline WGAN
model actually performs similarly to the cWGAN, which implies that the conditioning is not helping
in this specific case. We hypothesize that our model (λ “ 0.001) performs better because there are
more parameters that are free in the optimization, instead of just the bias in the first layer. Thus,
although cGANs are widely used, an ensemble with the regularization described in Section 4.1 can
outperform them because the ensemble captures the disconnected structure of the data better.
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A PROOFS

We first show that under Definition 1, our data is disconnected.

Proof of Lemma 1. Since X j X X k “ Xj X Xk “ H, we see that X is disconnected.

Remark 1. Note that if our data is disconnected, it doesn’t necessarily follow Definition 1. This
means that Definition 1 is a stronger condition than just having disconnected data. This can be
seen by the following counter-example. We denote a truncated Gaussian as N pµ, σ2q|S , where the
distribution is non-zero on S. Let

PX “
1

2
PX1

`
1

2
PX2

“
1

2
N p0, 1q|p´8,0q `

1

2
N p0, 1q|p0,8q

be the true distributions. Note that p´8, 0q and p0,8q are disconnected but do not follow Definition 1
because they are not compact. Moreover, we can learn this distribution easily by letting G be the
identity function and having Pz “ N p0, 1q; it is trivial to show that this results in PG “ PX . Hence,
disconnected data is too weak of an assumption—we need there to be a non-zero distance between
our disconnected sets and that is what Definition 1 captures.

Proof of Theorem 1. Without loss of generality, we can assume that G can generate at least from
the two components X1 and X2. We define B “ G´1pX q and note that GpBq must be disconnected
because G can generate from at least X1 and X2 and they are disconnected. Since, X is disconnected
and closed in Rp, we have that B is disconnected and closed in R` because G is continuous (Theorem
4.8 and 4.22 in (Rudin, 1964)). Since B is closed in R`, this means that R`zB is an open set.
Moreover, R`zB is not empty because we know that R` is connected and B is not. We also know
that the Lebesgue measure λ of a nonempty, open set is positive, hence we have that

λpR`zBq ą 0.

Since λ is equivalent to Pz , we have that Pzpz P R`zBq ą 0. Thus,

PGpx P RpzX q “ Pzpz P G
´1pRpzX qq “ Pzpz P R`zBq ą 0,

as desired.

Proof of Corollary 1. Since the data lies only on X , we know that PX pxdata P RzX q “ 0 for any
valid probability measure. However, we have that PGpx P RpzX q ą 0. Hence, dpPG, PX q ą 0 for
any metric d.

Proof of Theorem 2. The truncated latent distribution is denoted PzT and is defined as

PzT pBq “
PzpB X Zq

PzpZq

for any set B P F . Hence, we have that

PG|Z pAq “ PzT pG
´1pAqq

“
PzpG

´1pAq X Zq

PzpZq

“
1

PzpZq
PzpG

´1pAq XG´1pX qq

“
1

PzpZq
PzpG

´1pAX X qq

“
1

PzpZq
PGpAX X q

“
c

PzpZq
PX pAX X q

“
c

PzpZq
PX pAq

11
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for any A P F 1. The last equality is true because PX pX q “ 1, so that any points outside of X have
zero probability. For the result above, set A “ Rp to see that c “ PzpZq, implying that

PG|Z pAq “ PX pAq A P F 1,

as desired.

Proof of Theorem 3. First we prove i). If t ě max
!

KK´1
2 |θD|,K

K´1
2 |θG|

)

then the constraints
on (3) are unnecessary so that the problem reduces to

min
θG1

,...,θGK

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDkq “ min
θG1

,...,θGK

K
ÿ

k“1

max
θDk

V pθGk ,θDkq

“

K
ÿ

k“1

min
θGk

max
θDk

V pθGk ,θDkq,

which is equivalent to solving the optimization problem

min
θGk

max
θDk

V pθGk ,θDkq, k P t1, . . . ,Ku.

Thus, i) is shown.

Next, we prove ii). Suppose that t “ 0. Note that given a distribution PX , we can restrict it to each
component Xk and normalize to get the restricted distributions

PXkpAq “
PX pAq

PX pXkq

for each A P F 1 and each k. Since we assume that PX pXjq “ PX pXkq for all j, k and that
PX pX q “

řK
k“1 PX pXkq “ 1, we see that PX pXkq “ 1

K for each k. This implies that for any
measurable function f : Rp Ñ R, we have that

K
ÿ

k“1

Ex„PXk
rfpxqs “

K
ÿ

k“1

ż

xPXk
fpxqPXkpdxq

“ K
K
ÿ

k“1

ż

xPXk
fpxqPX pdxq

“ K

ż

xPX
fpxqPX pdxq

˜

Since X “
K
ď

k“1

Xk

¸

“ KEx„PX rfpxqs .

Suppose that V is the standard cross entropy objective function. We will use the notation
V pθG,θD;P q to show that we are evaluating V pθG,θDq with the data distribution P . Then, we see
that

K
ÿ

k“1

V pθG,θD;PXkq “

K
ÿ

k“1

Ex„PXk
rlogDpxqs ` Ez„Pz rlogp1´DpGpzqqqs

“ KEx„PX rlogDpxqs `KEz„Pz rlogp1´DpGpzqqqs

“ KV pθG,θD;PX q.

Similarly, if V is the Wasserstein objective function, then

K
ÿ

k“1

V pθG,θD;PXkq “

K
ÿ

k“1

Ex„PXk
rDpxqs ´ Ez„Pz rDpGpzqqs

“ KEx„PX rDpxqs ´KEz„Pz rDpGpzqqs

“ KV pθG,θD;PX q.

12
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This means that

min
θG1

,...,θGK

¨

˚

˝

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDk ;PXkq s.t.
K
ÿ

k“1
j“k

}θDj ´ θDk}0 “ 0

˛

‹

‚

s.t.
K
ÿ

k“1
j“k

}θGj ´ θGk}0 “ 0

“ min
θG

max
θD

K
ÿ

k“1

V pθG,θD;PXkq

“ min
θG

max
θD

KV pθG,θD;PX q,

which is equivalent to the optimization problem in (1), as desired.

Theorem 7. Let G and D be the generator and discriminator network in a GAN. Suppose that for
k P t1, . . . ,Ku we have that Gk and Dk have the same architectures as G and D, respectively.
Moreover, assume that PX pXjq “ PX pXkq for all j, k. Then,

i) Suppose that λ “ 0. Then for all k P t1, . . . ,Ku we have that
`

θ˚Gk ,θ
˚
Dk

˘

is a solution
to (4) if and only if

`

θ˚Gk ,θ
˚
Dk

˘

is a solution to (2).

ii) Suppose that λ Ñ 8. Then we have that pθ˚G,θ
˚
Dq is a solution to (4) for each k P

t1, . . . ,Ku if and only if pθ˚G,θ
˚
Dq is a solution to (1).

Proof of Theorem 7. First we prove i). If λ “ 0 then we have that

λ
K
ÿ

k“1
j“k

}θDj ´ θDk}1 “ λ
K
ÿ

k“1
j“k

}θGj ´ θGk}1 “ 0

on (4). Hence, the problem reduces to the unconstrained problem of (2).

Next, we prove ii). Since λ Ñ 8, any solution where θDk ‰ θDj or θGk ‰ θGj for all j, k P
t1, . . . ,Ku is suboptimal. Consequently, it means that the optimization problem in (4) reduces to

min
θG1

,...,θGK

¨

˚

˝

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDk ;PXkq ´ λ
K
ÿ

k“1
j“k

}θDj ´ θDk}1

˛

‹

‚

` λ
K
ÿ

k“1
j“k

}θGj ´ θGk}1

“ min
θG

max
θD

KV pθG,θD;PX q,

which is equivalent to the optimization problem in (1). We mainly just outline the proof here because
it is so similar to the proof of Theorem 3.

Proof of Theorem 4. Note that PX is the total data distribution and that PXk is the distribution of
each disconnected set. This means that

PX “

K
ÿ

k“1

πkPXk

for some mixture coefficients αk ą 0 so that
řK
k“1 αk “ 1.

Fix an arbitrary k P t1, . . . ,Ku. Since PG˚
k
“ PXk , we have that

min
θGk

max
θDk

V pθG“k ,θDkq “ min
θGk

max
θDk

Ex„PXk
rlogDkpxqs ` Ez„Pz rlogp1´DkpGkpzqqqs

has a solution of PG˚
k
“ PXk from Theorem 1 of (Goodfellow et al., 2014). Since this is true for

every k and since PX “
řK
k“1 πkPXk , we learn the complete data distribution.
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Proof of Theorem 5. First we show that ensembles are equivalent to cGANs under the right condi-
tions.

Fix the architecture of the networks considered and only focus on the generator. We want to show
that cGANs and ensembles are equivalent, so we first focus on the generators in cGANs. We define
the set of functions which represent conditional versions of the fixed architecture as

GpKq “
"

Gθ,B : R` ˆ t1, . . . ,Ku Ñ Rp : B,θ are network parameters
*

,

whereB is a matrix with K columns and whose rows depend on the width of the first hidden layer
as discussed in Section 2.1. The rest of the parameters are represented as the vector θ above. It is
clear that for a function in GpKq, there could be many corresponding networks; some of these are
due to activation and weight symmetries (Bishop, 2006). This implicitly create an equivalence class
of networks; in particular, two networks are equivalent if they are the same mapping, regardless of
weights. These symmetries do not affect our argument but it a subtlety to keep in mind.

Obviously not every ensemble is the same as the generator in a cGAN; however, we focus on a very
specific type of ensemble. We define the set of all ensembles that have a variable bias in the first layer
as

GEpKq “
"

`

Gθ,bk : R` Ñ Rp
˘K

k“1
: bk,θ are network parameters for each k

*

,

which is a collection of K-tuples of functions that represent networks with our fixed architecture.
In the definition above, for j ‰ k, we see that Gθ,bj and Gθ,bk share the same parameter θ, but
the biases bj and bk may be different. Ensembles that are used in the construction of GEpKq are
essentially ensembles that have parameter sharing everywhere except in the bias term of the first
layer; these biases are not constrained to be similar at all.

Since a network that induces a function in GpKq is the conditional version of the networks in the
ensembles that are used to construct GEpKq, as described in Section 2.1, then parameter equality
implies functional equality. In other words, for Gθ,rb1,...,bK s P GpKq and pGθ,bkq

K
k“1 P GEpKq we

have that Gθ,rb1,...,bK spz, kq “ Gθ,bkpzq for all z P R`, k P t1, . . . ,Ku and all parameters θ, bk.

We will now show that there exists a one-to-one correspondence between these two sets. Suppose
that T : GEpKq Ñ GpKq is defined by

´

T
`

pGθ,bj q
K
j“1

˘

¯

pz, kq “ Gθ,bkpzq “ Gθ,rb1,...,bK spz, kq

for each z P R` and k P t1, . . . ,Ku. Informally, we map an ensemble to a single network by just
picking the k-th network in the ensemble. For a fixed θ and b1, . . . , bK we see that T

`

pGθ,bj q
K
j“1

˘

is
indeed a function from R` ˆ t1, . . . ,Ku to Rp. Moreover, T

`

pGθ,bj q
K
j“1

˘

is equal to (as a function)
to Gθ,rb1,...,bK s P GpKq so that T is well defined.

Let Gθ,B P GpKq be given. Then we just let b1, . . . , bK be the columns of B and we see that
T
`

pGθ,bj q
K
j“1

˘

“ Gθ,bk implies that T is surjective. Next suppose that Gθα,Bα “ Gθβ ,Bβ are
functions in GpKq withBα “ rbα1 , . . . , b

α
Ks andBβ “ rbβ1 , . . . , b

β
Ks. Then clearly we have that for

`

Gθα,bαk
˘K

k“1
and

`

Gθβ ,bβk

˘K

k“1
in GEpKq that

Gθα,bαk pzq “ Gθα,Bαpz, kq “ Gθβ ,Bβ pz, kq “ Gθβ ,bβk
pzq,

implying that T is injective.

Thus, T is a one-to-one correspondence between GEpKq and GpKq. Hence, for every ensemble of
networks defined above, we can find a cGAN which is equivalent to the ensemble. This equivalence
is defined as the equivalence of the functions induced by these networks. The above result holds for
any architecture and all K P Z`. Thus, it also holds for the discriminator networks.

Next, we want to show that a modified version of the optimization problem from (3) yields the cGAN
optimization problem.

14
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We begin with the generic optimization problem from (3) and see that it can be rewritten as

min
θG1

,...,θGK

¨

˚

˝

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDkq s.t.
K
ÿ

k“1
j“k

}θDj ´ θDk}0 ď t

˛

‹

‚

s.t.
K
ÿ

k“1
j“k

}θGj ´ θGk}0 ď t

“ min
θG1

,...,θGK

˜

max
θD1

,...,θDK

K
ÿ

k“1

V pθGk ,θDkq s.t. CD

¸

s.t. CG

“ min
θG1

,...,θGK

˜

max
θD1

,...,θDK

K
ÿ

k“1

V

ˆ„

θ1Gk
pBGq¨,k



,

„

θ1Dk
pBDq¨,k

˙

s.t. CD

¸

s.t. CG,

where we simply use the name CD for the constraint
řK
k“1
j“k

}θDj ´ θDk}0 ď t and similarly for CG.

This is purely for notational convenience. Likewise, we simply denote θGk as rpθ1Gkq
T pBGq

T
¨,ks

T

and similarly for θDk , for each k. Keep in mind that BG and BD are matrices such that the k-th
column is the the bias of the first layer of the k-th network in the ensemble. So far, we have only
introduced notational changes.

Consider what happens if we change the constraints to

C 1D “
K
ÿ

k“1
j“k

}θ1Dj ´ θ
1
Dk
}0 “ 0

C 1G “
K
ÿ

k“1
j“k

}θ1Gj ´ θ
1
Gk
}0 “ 0.

We have thatBG andBD are unconstrained and that θ1Gk is forced to be equal to θ1Gj for all k and j.
Similarly θ1Dk “ θ

1
Dj

for all k and j. Hence, we can say that the optimization problem above with
the new constraint is

min
θG1

,...,θGK

˜

max
θD1

,...,θDK

K
ÿ

k“1

V

ˆ„

θ1Gk
pBGq¨,k



,

„

θ1Dk
pBDq¨,k

˙

s.t. C 1D

¸

s.t. C 1G

“ min
θG1

,...,θGK

max
θD1

,...,θDK

K
ÿ

k“1

V

ˆ„

θG
pBGq¨,k



,

„

θD
pBDq¨,k

˙

,

which is equivalent to the cGAN optimization problem. Here, we just define θG to be shorthand for
any one of the θGk vectors, since they are all the same.

Hence, a cGAN is equivalent to solving the ensemble optimization problem in (3) with a modified
constraint.

Proof of Theorem 6. The proof for this is very similar to the proof for Theorem 5.

B ESTIMATION OF ENSEMBLE PARAMETERS

In Section 4.1, we assume that k „ pk is a multinomial distribution of degree K parameters: πi for
i “ 1, . . . ,K. Using the maximum likelihood estimator (Bishop, 2006) we obtain

π̂MLE
i “

1

N

N
ÿ

j“1

1pyj “ iq

for i “ t1, . . . ,Ku. For datasets like MNIST (LeCun et al., 1998) and CIFAR-10 (Krizhevsky &
Hinton, 2009), k is a uniformly distributed random variable. For others one may have to calculate pk
based on class imbalances.
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C EXPERIMENTAL DETAILS

In this section we describe the details of our experiments.

C.1 PERFORMANCE MEASURES

We use FID (Heusel et al., 2017), average MSE (Metz et al., 2016), precision, and recall (Sajjadi
et al., 2018) to evaluate our models.

For FID, precision, and recall we use the official repositories (Heusel et al., 2020; Sajjadi et al., 2019).
For each of these methods, we compare a set of generated images to a set of images from the training
set. For the FID calculation, we use the precalculated statistics for CIFAR-10 and compare to 10,000
generated images from our trained networks. For precision and recall, we compare 10,000 generated
images to 10,000 images in the training set. All other parameters are left the same.

For the average MSE calculation, we use the algorithm introduced in (Lipton & Tripathi, 2017),
which was empirically shown to work 100% of the time on DCGAN architecture, such as WGAN.
We modified the code in (Lao, 2017) so that it can be run with multiple restarts if desired. We ran our
experiments with 1000 iterations and 5 restarts. We ran the code on 100 training images.

C.2 BASELINE MODEL

For the baseline model, we ran the default WGAN code for 1000 epochs on CIFAR-10. All other
parameters are left at their default values.

C.3 FULL ENSEMBLE

To create the full ensemble, we just copied over the baseline model 10 times and trained each network
pair pGk, Dkq in the ensemble on a single class of CIFAR-10. The training also lasted for 1000
epochs. This is equivalent to solving the optimization problem in (2).

C.4 EQUIVALENT ENSEMBLE

Normally WGAN is trained with the following two architecture parameters: ngf = 64 and ndf = 64.
However, to get 10% of the parameters we trained each ensemble component with ngf = 15 and ndf =
20. The depth of the generator and discriminator in the equivalent ensemble are the same as in the
single WGAN, however, we modify the width of each corresponding layer so that the total parameters
are fewer in the ensemble than in the single WGAN. Specifically, the generator of the WGAN has
3, 576, 704 parameters and each generator of the equivalent ensemble has 312, 004 parameters. The
discriminator of the WGAN has 2, 765, 568 parameters and each discriminator of the equivalent
ensemble has 272, 880 parameters. Reducing the width of each layer is not necessarily the optimal
way to reducing parameters in a network. We do this because it is easy and effective, not because we
are trying to reduce parameters in an optimal way, which is out of the scope of this paper. This is
equivalent to solving the optimization problem in (2).

C.5 REGULARIZED ENSEMBLES

For all the ensembles with λ ą 0, we use the equivalent ensemble architecture, while solving (4).

C.6 THE CGAN MODEL

For this architecture, we modify the baseline architecture and concatenate the class label, represented
as a one-hot vector, to the input of the generator and discriminator networks.
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