
Under review as submission to TMLR

State-Constrained Offline Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Traditional offline reinforcement learning (RL) methods predominantly operate in a batch-
constrained setting. This confines the algorithms to a specific state-action distribution
present in the dataset, reducing the effects of distributional shift but restricting the policy
to seen actions. In this paper, we alleviate this limitation by introducing state-constrained
offline RL, a novel framework that focuses solely on the dataset’s state distribution. This
approach allows the policy to take high-quality out-of-distribution actions that lead to in-
distribution states, significantly enhancing learning potential. The proposed setting not only
broadens the learning horizon but also improves the ability to combine different trajecto-
ries from the dataset effectively, a desirable property inherent in offline RL. Our research
is underpinned by theoretical findings that pave the way for subsequent advancements in
this area. Additionally, we introduce StaCQ, a deep learning algorithm that achieves state-
of-the-art performance on the D4RL benchmark datasets and aligns with our theoretical
propositions. StaCQ establishes a strong baseline for forthcoming explorations in this do-
main.

1 Introduction

Offline RL aims to derive an optimal policy solely from a fixed dataset of pre-collected experiences, without
further interactions with the environment (Lange et al., 2012; Levine et al., 2020). It prohibits online
exploration, meaning that effective policies must be constructed solely from the evidence provided by an
unknown, potentially sub-optimal behaviour policy active in the environment. This approach is especially
suited for real-world scenarios where executing sub-optimal actions can be dangerous, time-consuming, or
costly, yet there is an abundance of prior data. Relevant applications include robotics (Singh et al., 2020;
Kumar et al., 2021; Sinha et al., 2022), long-term healthcare treatment plans (Tang & Wiens, 2021; Tang
et al., 2022; Shiranthika et al., 2022), and autonomous driving (Shi et al., 2021; Fang et al., 2022; Diehl et al.,
2023). Despite its practical appeal, offline RL faces a significant distributional shift challenge (Kumar et al.,
2019). This phenomenon arises when attempting to estimate the values of actions not present in the dataset,
often manifesting as an overestimation. As a result, out-of-distribution (OOD) actions are perceived as more
valuable than they truly are, causing the agent to select sub-optimal actions and leading to the accumulation
of errors (Fujimoto et al., 2019).

Currently available offline RL techniques mitigate the issue of distributional shift through two primary
strategies. The first constrains the policy, during training, to take actions close to dataset actions (Fujimoto
et al., 2019; Kumar et al., 2019; Wu et al., 2019; Siegel et al., 2020; Kostrikov et al., 2021a; Zhou et al.,
2021; Fujimoto & Gu, 2021). The second revolves around conservatively estimating the value of OOD actions
(Kumar et al., 2020; Yu et al., 2021; An et al., 2021). Both strategies aim to anchor the learning algorithm to
the state-action pairs within the dataset, an approach termed batch-constrained (Fujimoto et al., 2019). By
doing so, these methods seek to minimise the impact of distributional shift. However, adhering strictly to the
state-action distribution can be restrictive when the optimal action is not found in the dataset. Thus, recent
techniques seek a balance between exploiting potentially valuable OOD actions and minimising distributional
shift repercussions.

Given the constraints of the state-action distribution, a pivotal question arises: can we confine our methods
to the state distribution alone and still counteract distributional shift?

1

Under review as submission to TMLR

Figure 1: Illustration of state reachability in a continuous state space. States (s) and next states (s′) from the
dataset are shown, with yellow circles representing additional reachable states. The state-constrained method
identifies high-quality reachable states to mitigate distributional shift while improving policy performance.

Constraining exclusively to the dataset’s state distribution could significantly reduce the requisite dataset
size. Instead of needing all state-action pairs, the focus shifts to states alone. This approach allows the
agent to initiate OOD actions, provided they lead to a known state, a form of safe action exploration which
avoids distributional shift. Such flexibility can enhance the capability of offline RL algorithms in trajectory
stitching — combining sub-optimal experiences into improved trajectories. Rather than connecting based on
actions from different trajectories, the state-constrained approach facilitates stitching by leveraging adjacent
states. This method relies on understanding these proximate states, a concept we label as reachability, which
refers to the ability to reach a particular state from another state within the dataset.

This idea is illustrated in Figure 1, which shows the benefits of a state-constrained methodology. Most
current offline RL methods constrain to the specific transition, (s, a) or (s, s′)-pair, found in the dataset.
Our state-constrained methodology can instead find alternative next states (yellow circles in Figure 1) and
select the highest-value one. This approach effectively increases the number of transitions for the agent to
learn from. It avoids distributional shift by updating on in-distribution states and leads to a higher-quality
policy, as the policy is no longer restricted to explicitly observed actions.

In the state-constrained approach, understanding reachability is crucial for effectively stitching together sub-
optimal trajectories and improving the overall policy. In some environments, reachability is easily delineated;
for example, in grid-based environments like mazes, where the agent can move directly between adjacent
cells. In other environments, reachability must be ascertained from the dataset, such as in complex robotic
systems where state transitions depend on intricate dynamics.

In this work, we make several key contributions. First, building on the concept of reachability, we introduce
state-constrained offline RL. Unlike batch-constrained RL, which anchors learning to specific state–action
pairs, state-constrained RL focuses on states, allowing more flexible action selection while still mitigating
distributional shift. We also provide theoretical convergence guarantees under deterministic assumptions,
showing that our framework yields policies whose actions are of higher or equal value compared to batch-
constrained approaches. Another main contribution is StaCQ, a novel deep learning algorithm that learns a
state-constrained value function and updates the policy to stay close to the highest-quality reachable states.
We demonstrate competitive performance on multiple D4RL tasks, surpassing many state-of-the-art methods
in locomotion and Antmaze. This positions StaCQ as a robust baseline for future work on state-constrained
RL, similarly to how BCQ (Fujimoto et al., 2019) has served as a strong baseline for batch-constrained
techniques, thereby advancing offline RL research.

2 Preliminaries

The RL framework involves an agent interacting with an environment, which is typically represented as a
Markov Decision Process (MDP). Such an MDP is defined as M = (S,A, P, R, γ), where S and A denote

2

Under review as submission to TMLR

the state and action spaces, respectively; P = p(s′|s, a) represents the environment transition dynamics;
R = r(s, a, s′) is the reward function for transitioning; and 0 ≤ γ < 1 is the discount factor (Sutton &
Barto, 2018). As in Fujimoto et al. (2019), we focus on the deterministic MDP, where p(s′|s, a) = {0, 1} and
r(s, a, s′) = r(s, s′). In RL, the agent’s objective is to identify an optimal policy, π(s), that maximises the
future discounted sum of rewards

∑
i=t γi−tri(si, s′

i).

QSA-values, Q(s, a) = Eπ[
∑

i=0 γtrt(st, at)|s0 = s, a0 = a], are the expected sum of future discounted
rewards for executing action a in state s and there after following policy π. Q-learning (Watkins & Dayan,
1992), denoted as QSA-learning in this paper, estimates the QSA-values under the assumption that future
actions are chosen optimally,

Q(s, a)← (1− α)Q(s, a) + α
[
r(s, a, s′) + γ max

a′
Q(s′, a′)

]
. (1)

The optimal policy derived from QSA-learning identifies the best action that maximises the QSA-values,
π∗(s) = arg maxa Q(s, a). In deterministic contexts, QSA-learning parallels QSS-learning (Edwards et al.,
2020), which estimates the expected rewards upon transitioning from state s to s′, followed by optimal
decisions:

Q(s, s′)← (1− α)Q(s, s′) + α
[
r(s, s′) + γ max

s′′
Q(s′, s′′)

]
. (2)

QSS-learning enables QSS-values to be learned for transitioning, without evaluating actions. The optimal
policy via QSS-learning discerns the most advantageous subsequent state to maximise QSS-values, π∗

s (s) =
arg maxs′ Q(s, s′). An action can then be retrieved from an inverse dynamics model as a = I(s, π∗

s (s)),
a strategy originally designed to address QSA-learning’s challenges in redundant action spaces, i.e. where
multiple actions lead to the same next state. The methods presented in this paper build upon QSS-learning,
using it to avoid evaluating OOD actions between reachable state pairs.

In offline RL, the agent aims to discover an optimal policy; however, it must solely rely on a fixed dataset
without further interactions with the environment (Lange et al., 2012; Levine et al., 2020). The dataset
comprises trajectories made up of transitions consisting of the current state, action, next state, and the
reward for transitioning, where actions are chosen based on an unknown behaviour policy, πβ . Batch-
Constrained QSA-learning (BCQL) (Fujimoto et al., 2019) adapts QSA-learning for the offline setting by
restricting the optimisation to state-action pairs present in the dataset:

Q(s, a)← (1− α)Q(s, a) + α
[
r(s, a, s′) + γ max

a′s.t.(s′,a′)∈D
Q(s′, a′)

]
. (3)

This approach is restrictive since convergence to the optimal value function in all states is only ensured
if every optimal (s, a)-pair from the MDP resides within the dataset. Such a limitation aims to sidestep
extrapolation errors resulting from distributional shifts. Nonetheless, this framework places a significant
constraint on any learning algorithm. Subsequent sections relax this constraint: instead of adhering strictly
to state-action pairs (batch-constrained), the learning process is only bound by states (state-constrained).
In the following section, we introduce the state-constrained framework and provide a new algorithm called
state-constrained QSS-learning (SCQL). SCQL is based from QSS-learning which is useful to evaluate state
and reachable next state pairs, where both states exist in the dataset, avoiding the distributional shift issue
in offline RL. We show that, under minor assumptions, SCQL converges to the optimal QSS-value and
produces a less-restrictive policy than BCQL.

3 State-constrained QSS-learning

In this section, we provide a formal introduction to state-constrained QSS-learning and establish its conver-
gence to the optimal QSS-value under a set of minimal assumptions. Within this framework, the learning
updates are restricted exclusively to the states present in the dataset. A rigorous definition of state reacha-
bility is indispensable for this setting:
Definition 3.1. (State reachability) In a deterministic MDP M, a state s′ is considered reachable from
state s if and only if there exists an action a such that p(s′|s, a) = 1. We denote the set of states reachable
from s as SRM(s), where s′ ∈ SRM(s).

3

Under review as submission to TMLR

Definition 3.1 implies that a state is reachable if there exists an action that, when executed in the environment,
leads to that state. This definition allows multiple reachable next states to be evaluated rather than a
single state-action pair. State-constrained QSS-learning enables more flexible learning updates by evaluating
multiple reachable next states, as shown in Figure 1 where the agent can now learn from all reachable states
rather than the single explicit next state. This flexibility leads to more robust policies that can better
generalise beyond the specific transitions seen in the dataset.

3.1 Theoretical foundations

In this section, we initially adapt the theorems presented for BCQL (Fujimoto et al., 2019) to suit the state-
constrained context (Theorems 3.4 - 3.6). All our subsequent theorems are proposed based on learning an
optimal QSS-value. However, it is important to note that these theorems still hold if QSA-learning is used
instead, with an inverse model defined to evaluate actions between states and reachable next states.

Our theory operates under the following assumptions: (A1) the environment is deterministic; (A2) the
rewards are bounded such that ∀(s, s′), |r(s, s′)| ≤ c; (A3) the QSS-values, Q(s, s′), are initialised to finite
values; and (A4) the discount factor is set such that 0 ≤ γ < 1.

First, we show that under these assumptions, QSS-learning converges to the optimal QSS-value.
Theorem 3.2. Under assumptions A1-4, and with the training rule given by

Q(s, s′)← r(s, s′) + γ max
s′′ s.t. s′′∈SRM(s′)

Q(s′, s′′), (4)

assuming each (s, s′) pair is visited infinitely often, let Qn(s, s′) be the value from the nth update of Eq. (4),
then Qn(s, s′) converges to the optimal QSS-value, Q∗(s, s′), as n→∞ for all s, s′.

Proof. This follows from the convergence of QSA-learning in a deterministic MDP (Mitchell, 1997). For
brevity and clarity, the full proof is given in the Appendix.

The convergence of QSS-learning in a deterministic MDP, as shown in Theorem 3.2, is crucial for establishing
the convergence of SCQL. Since SCQL is based on QSS-learning and operates in a deterministic MDP,
Theorem 3.2 provides the foundation for proving the convergence and optimality of SCQL under certain
assumptions. We now demonstrate that learning the value function from the dataset D is equivalent to
determining the value function of an associated MDP, denoted as MS . Intuitively, MS is the MDP where
all transitions are possible between reachable states found in D.
Definition 3.3. (State-constrained MDP) Let the state-constrained MDPMS = (S,A,PS ,R, γ). Here,
both S and A remain identical to those in the original MDP, M and sterminal is an additional terminating
state. The transition probability is given by: a = I(s, s′) ∈ A

pS(s′|s, a) =
{

1 if (s, s′ ∈ D and s′ ∈ SRM(s)) or (s /∈ D and s′ = sterminal)
0 otherwise.

The reward function and discount factor remain the same as the original MDP. Except for the terminal state
where r(s, sterminal), is set to the initialised value of Q(s, s′).

The transition probability pS(s′|s, a) in the state-constrained MDP is defined such that transitions are
possible only between states that are reachable from one to the other according to the state reachability
definition. This ensures that the state-constrained MDP captures the essential dynamics of the original
MDP while focusing on the states present in the dataset. The reward r(s, s′) is assigned as the original
reward defined in M. For the case where s is absent from the dataset, the rewards are set to the initialised
values Q(s, s′). Importantly, the s and s′ in Definition 3.3 both exist in the dataset but may not exist as a
pair (s, s′); this means that more transitions exist under this definition than in the batch-constrained MDP
defined in Fujimoto et al. (2019).

4

Under review as submission to TMLR

Theorem 3.4. By sampling s from D, sampling s′ from SRM(s) and performing QSS-learning on all
reachable state-next state pairs, QSS-learning converges to the optimal value function of the state-constrained
MDP MS .

Proof. Given in Appendix A.

Theorem 3.4 establishes that performing QSS-learning on all reachable state-next state pairs from the dataset
converges to the optimal value function of the state-constrained MDP. This result is crucial for understanding
the convergence and optimality properties of SCQL, as it shows that QSS-learning effectively learns the
optimal value function of the state-constrained MDP, which is closely related to the original MDP.

We are now ready to define the state-constrained QSS-learning (SCQL) update which is similar to the BCQL
formulation except now the maximisation is constrained to the states rather than state-action pairs in the
dataset. This formulation allows the maximisation to be taken over more values composing more accurate
Q-values while still staying close to the dataset:

Q(s, s′)← (1− α)Q(s, s′) + α
[
r(s, s′) + γ max

s′′s.t.s′′∈D
∩

s′′∈SRM(s′)

Q(s′, s′′)
]
. (5)

SCQL, Eq. (5), converges under the identical conditions as traditional QSS-learning, primarily because the
state-constrained setting is non-limiting whenever every state in the MDP is observed.

Theorem 3.5. Under assumptions A1-4 and assuming every state s is encountered infinitely, let Qn(s, s′)
be the value from the nth update of Eq.(5), the update rule of SCQL, then Qn(s, s′) converges to the optimal
QSS-value Q∗(s, s′), as n→∞ for all (s, s′).

Proof. This follows from Theorem 3.2, noting the state-constraint is non-restrictive with a dataset which
contains all possible states.

Theorem 3.5 is a reduction in the restriction compared to BCQL as now we only require every state to be
encountered infinitely rather than every (s, a) -pair.

The optimal policy for our state-constrained approach can be formulated as:

π∗
s (s) = arg max

s′ s.t.s′∈D
∩

s′∈SRM(s)

Q∗(s, s′). (6)

Here, the maximisation is taken over next states from the dataset and that are reachable from the current
state. We now demonstrate that Eq. (6) represents the optimal state-constrained policy.

Theorem 3.6. Under assumptions A1-4 and assuming every state s is encountered infinitely, let Qn(s, s′)
be the value from the nth update of Eq.(5), the update rule of SCQL, then Qn(s, s′) converges to Qπ

S(s, s′),
the optimal QSS-value computed from states from D, with the optimal state-constrained policy defined by Eq.
(6) where s ∈ D and s′ ∈ SRM(s) ∩ D.

Proof. Given in Appendix A.

Theorem 3.6 has important practical implications for the performance of SCQL in real-world scenarios
with limited datasets. It suggests that SCQL can learn an optimal state-constrained policy even when the
dataset does not contain all possible state-action pairs, as long as every state is visited infinitely often. The
state-constrained approach greatly reduces the limitations placed on the learning algorithm compared to the
batch-constrained method. In the batch-constrained approach, the necessity for every state-action pair to be

5

Under review as submission to TMLR

present in the dataset demands a dataset of size at least |S| × |A|. On the other hand, the state-constrained
method only mandates that each state be visited, which minimally requires a dataset size of |S|.

We will now show that BCQL is a special case of SCQL, and that policies produced by SCQL will never be
worse than policies produced by BCQL.
Theorem 3.7. Let πBCQL and πSCQL be the policies produced by BCQL and SCQL respectively. Then, in
a deterministic MDP, VπSCQL(s) ≥ VπBCQL(s), ∀s ∈ D.

Proof. Given in Appendix A.

From Theorems 3.6 and 3.7, the state-constrained approach poses fewer restrictions than the batch-
constrained counterpart while also always producing a policy at least as good. SCQL can perform more
Q-value updates and maximise over more states than BCQL because it considers all reachable state-next
state pairs from the dataset, rather than being limited to the explicit state-action pairs present in the dataset.
This allows SCQL to exploit the structure of the state-constrained MDP more effectively and learn a better
policy, with less required data. In the next section, this improvement is illustrated through an example
which shows SCQL excelling even with a limited dataset.

3.2 An illustrative example: maze navigation

To elucidate the advantages of SCQL in comparison to BCQL, we explore a simple maze environment backed
by a dataset with few trajectories. This pedagogical illustration aims to show how SCQL utilises the concept
of state reachability - which enables improved performance over BCQL (which has no mechanism to utilise
state reachability). Figure 2 shows the full maze environment, visualised as a 10 by 10 grid. The available
states are shown as white squares, while the red squares represent the maze walls. Each state in this
environment is denoted by the (x, y) coordinates within the maze, and the agent’s available actions comprise
of simple movements: left, right, up, and down. With each movement, the agent incurs a reward penalty
of a small negative value (rpen = −0.1), but upon successfully navigating to the gold star, it is rewarded
with a large positive value (rgoal = 100). Consequently, the agent’s primary objective becomes devising the
most direct route to the star. In this deterministic environment, the outcomes of transitioning to a state
and executing an action are congruent, meaning Eq. (1) and (2) mirror each other. This allows for a direct
comparison between BCQL and SCQL in terms of their performance and ability to leverage limited datasets.
This experiment converges after 100 steps with a learning rate of α = 0.25 and a discount factor of γ = 0.99.

(a) Maze and Dataset (b) BCQL Final Policy (c) SCQL Final Policy

Figure 2: Comparison of BCQL and SCQL methods on a simple maze environment. (a) The maze is a 10
by 10 grid where the coordinate values (x, y) represent the state. The high reward region is represented by
a star and maze walls are represented by red grid squares. The dataset is made of 4 trajectories represented
by the dotted lines where the white circle is the starting state and the black circle is the final state. (b) The
final policy when applying BCQL to the dataset. (c) The final policy when applying SCQL to the dataset.

6

Under review as submission to TMLR

Figure 2a provides a visual representation of the maze and accompanying dataset. Here, trajectories start
at the white circle and end at the black circle. Despite its simplicity, the dataset contains a scant number
of states wherein multiple actions have been taken. Within this specific framework, the notion of state
reachability is straightforward: any state that is just one block away from the current state is considered
reachable. Formally the state reachability is, SRM((x, y)) = {(x + 1, y), (x − 1, y), (x, y + 1), (x, y − 1)}.
Although this definition includes the wall states as reachable, SCQL can only perform updates where s′ is
reachable and in the dataset, thus the walls are avoided. In other words, a state is considered reachable
from the current state if it is one block away in any of the four cardinal directions (left, right, up, or down).
This simple definition of state reachability is sufficient for demonstrating the advantages of SCQL in this
illustrative example.

Applying BCQL with training as per Eq. (3) and policy extraction as per

π(s) = max
a s.t. (s,a)∈D

Q(s, a),

we obtain the policy depicted in Figure 2b, where arrows indicate policy direction. Conversely, for SCQL,
training via Eq. (5) and policy training through Eq. (6) yields the policy in Figure 2c. For clarity, if
no optimal movement can be found in the state due to no information in the dataset, it is left blank.
SCQL is able to leverage the sparse dataset more efficiently, enabling the agent to reach the gold star from
any dataset state position. BCQL, however, succeeds in only 11 of the 57 unique dataset states, which is
equivalent to the performance of behavioural cloning. SCQL’s advantage stems from its ability to use state
adjacency information for trajectory stitching, enabling the agent to construct optimal trajectories even in
sparse datasets. By contrast, BCQL’s reliance on previously observed state-action pairs limits its performance
when faced with a limited dataset. In many practical settings state reachability cannot be naturally assumed
from the environment. As a result, in the following sections, a deep learning implementation of SCQL is
defined where state reachability is learned from the dataset.

4 Practical implementation: StaCQ

In this section, we aim to provide a practical implementation of SCQL. Through this method we seek to
benefit from the state-constrained framework, where Q-values are updated on all state and reachable next
state pairs; and the policy uses the reachable states to find a more diverse, safe and closer to optimal policy.
This requires a practical method to learn state reachability, as well as an actor-critic method that exploits
the benefits of the state reachability.

As a result, we introduce StaCQ (State-Constrained deep QSS-learning), our particular deep learning
implementation of SCQL. We present a simple, yet effective, approach to learning state reachability, using
dynamics models of the environment. StaCQ is a policy constraint method that regularises the policy
towards the best reachable next state in the dataset. Our specific implementation learns a QSS-function
that is aligned with the underlying theory. However, state-constrained methods can be adapted from the
theory in various ways, similar to how many techniques modify the batch constraint in BCQ (Fujimoto et al.,
2019). For instance, alternative state-constrained methods might incorporate different policy regularisation
techniques, such as those based on divergence measures or constraint violation penalties, or explore different
approaches to estimating state reachability using available data and domain knowledge. The purpose here
is to illustrate one specific implementation of the broader state-constrained framework, this implementation
can be extended or modified in several ways.

4.1 Estimating state reachability

Central to the state-constrained approach is the concept of state reachability, as per Definition 3.1. Because
the environments used in our benchmarks do not provide this information, we need to estimate reachability
from the dataset. In our implementation, we consider ŝ′ reachable to s if we can predict the action that
reaches ŝ′. For this, we introduce a forward dynamics model, fω1(s, a), and an inverse dynamics model,
Iω2(s, s′). Both models are implemented as neural networks and trained via supervised learning on triplets

7

Under review as submission to TMLR

(s, a, s′) ∼ D. The loss function for the forward model is given by

Lω1 = E(s,a,s′)∼D[(fω1(s, a)− s′)2] (7)

while the loss for the inverse model is:

Lω2 = E(s,a,s′)∼D[(Iω2(s, s′)− a)2]. (8)

Consistent with prior research, we adopt an ensemble strategy to account for the epistemic uncertainty
(uncertainty in model parameters) (Buckman et al., 2018; Chua et al., 2018; Janner et al., 2019; Argenson
& Dulac-Arnold, 2020; Yu et al., 2020; 2021). Each model within the ensemble possesses a distinct set
of parameters. The ensemble’s final predictions for s′ and a are computed by taking the average of their
respective outputs. It is important to note that these models are relatively simple, and incorporating more
complex architectures, such as those proposed in Zhang et al. (2021), could significantly improve both model
predictions and state reachability estimates.

Using these models, we propose an estimator of state reachability, denoted by ŜRM, as:

ŝ′ ∈ ŜRM(s) iff ||fω1(s, Iω2(s, ŝ′))− ŝ′||∞ ≤ ϵ. (9)

This criterion suggests that ŝ′ is reachable from s only if an action can be predicted that transitions the agent
from s to ŝ′. Our practical implementation of state reachability, shown in Eq. (9), aims to satisfy Definition
3.1. Without access to the true environment dynamics, we must model these transitions using available data.
We use the L∞-norm between observed and predicted states to ensure reachability is determined uniformly
across all state dimensions. While other norms, such as L1 and L2, can be used, our experiments showed no
significant difference in the policy produced by StaCQ between the L2 and L∞ norms. An ablation study
on the effects of norm choice and threshold distance is provided in Appendix F.

It is important to note that ϵ, in Eq. (9), is a small positive value used to account for potential model
inaccuracies, and we set ϵ = 0.1 for all datasets. In Appendix B, we also present a method for reducing the
computational complexity of this calculation.

4.2 StaCQ

StaCQ uses an actor-critic framework, where the critic, represented by the Q(s, s′) value, is trained by
minimising the mean square error (MSE) between predicted and true QSS-values. In line with the theory,
the QSS-values are updated across all pairs of states and their reachable next states:

Lθ = E s∼D
ŝ′∈ŜRM(s)

[(
r(s, ŝ′) + γQθ′(ŝ′, fω1(ŝ′, πϕ′(ŝ′)))−Qθ(s, ŝ′)

)2]
. (10)

In this equation, the target actor produces an action, πϕ′(ŝ′), which is passed into the forward model fω1

before being evaluated by the QSS-function. The specific reward for the reachable pair (s, ŝ′) may be unseen
in the dataset, and if the reward function is unknown, it must be approximated using a neural network.
Similar to the forward and inverse dynamics models, this can be achieved through supervised learning by
minimising the MSE between the predicted and actual rewards:

Lω3 = E(s,r,s′)∼D[(rω3(s, s′)− r)2]. (11)

Past research suggests that this type of reward model is effective at estimating rewards for previously unseen
transitions (Hepburn & Montana, 2024). In Eq. (10), θ′ represents the parameters of the target Q-value,
which are incrementally updated towards θ: θ′ ← τθ + (1− τ)θ′, where τ is the soft update coefficient.

To train the deterministic actor, π : S → A, we aim to maximise the current QSS-values while staying close
to the best next state in the dataset. Therefore, the loss we minimise is:

Lϕ = Es∼D

[
−λQθ(s, fω1(s, πϕ(s))) + (fω1(s, πϕ(s)))− ŝ′)2

]
, (12)

8

Under review as submission to TMLR

where the hyperparameter λ controls the level of regularisation. The ŝ′ represents the best reachable next
state from s according to the QSS-value,

ŝ′ = arg max
s′∈ŜRM(s)

Qθ(s, s′).

This is, therefore, a similar policy extraction method to TD3+BC (Fujimoto & Gu, 2021), as both methods
use a MSE regulariser. However, StaCQ leverages the state reachability metric, allowing the maximisation
to be performed over multiple states, whereas TD3+BC is limited to a single state-action pair.

Algorithm 1 StaCQ
1: Input: Dataset D, T iterations, τ
2: Initialise: ω1, ω2, ω3, θ, θ′, ϕ
3: Pre-train fω1 & Iω2 : Eqs.(7) & (8)
4: Pre-train reachability criteria ŜRM
5: for t = 1, . . . , T do
6: Optimise reward function: Eq. (11)
7: Optimise QSS-value: Eq. (10)
8: Optimise policy: Eq. (12)
9: Update target networks:

θ′ ← τθ + (1− τ)θ′,
ϕ′ ← τϕ + (1− τ)ϕ′

10: end for

Similar to batch-constrained offline RL methods, StaCQ
aims to balance staying close to the dataset while max-
imising the Q-value. The hyperparameter λ controls the
trade-off between producing actions that lead to high-value
OOD states and staying close to states in the dataset, specif-
ically the highest value reachable state. Since the forward
model is fixed, a small amount of Gaussian noise is added
to the policy action, to ensure the policy does not overfit
to the forward model, resulting in a more robust policy.
The full algorithm is presented in Algorithm 1. Notably, all
three constituent models are trained using supervised learn-
ing, making them straightforward sub-processes within the
overall architecture.

5 Related work

Model-free offline RL. BCQ has emerged as one of the pioneering offline deep RL methodologies (Fuji-
moto et al., 2019). It posits that having all (s, a) pairs in the MDP enables the construction of an optimal
QSA-value by focusing updates only on the (s, a) pairs present in the dataset. As a result, BCQ restricts
the policy to these observed (s, a) pairs while allowing minimal perturbations to facilitate marginal improve-
ments. Following BCQ, numerous algorithms have been introduced to develop alternative ways to constrain
the policy to seen (s, a) pairs, either by restricting it to the support of the (s, a)-distribution (Kumar et al.,
2019; Wu et al., 2019; Siegel et al., 2020; Kostrikov et al., 2021a; Zhou et al., 2021; Brandfonbrener et al.,
2021) or directly limiting it to the (s, a) pairs (Fujimoto & Gu, 2021).

In contrast to policy constraints, some methods tackle distributional shifts by pessimistically evaluating the
value function on OOD (s, a) pairs (Kumar et al., 2020; Yu et al., 2021; An et al., 2021). There is also a
subset of offline RL methods that combines both pessimistic value evaluation and policy constraints (Dadashi
et al., 2021; Beeson & Montana, 2024). Alternatively, implicit Q-learning (IQL) (Kostrikov et al., 2021b) and
policy-guided offline RL (POR) (Xu et al., 2022) aim to learn an optimal value function through expectile
regression, with POR estimating a state-value function and IQL estimating an action-value function. Both
methods learn the optimal policy (referred to as the guide policy in POR) via advantage-weighted regression.
All of these approaches adopt the batch-constrained method, prioritising explicit (s, a) pairs or (s, s′) pairs
found in the dataset over unobserved actions. Our state-constrained method, however, relaxes the batch-
constrained objective by requiring constraints only on reachable states in the dataset rather than explicit
(s, a) pairs.

Model-based offline RL. Model-based methods learn the dynamics of the environment to support policy
learning (Sutton, 1991; Janner et al., 2019). There are generally two main approaches to model-based
offline RL. The first approach learns a pessimistic model of the environment and performs rollouts with
this augmented model, effectively increasing the dataset size (Yu et al., 2020; Kidambi et al., 2020; Rigter
et al., 2022). The second approach uses the models for planning, allowing the agent to look ahead during
evaluation to determine the optimal path (Argenson & Dulac-Arnold, 2020; Zhan et al., 2021; Janner et al.,

9

Under review as submission to TMLR

2022; Diehl et al., 2021). In contrast, StaCQ uses models to implement our concept of state reachability;
thus, StaCQ does not generate new states or involve planning during evaluation.

State reachability. The state-constrained approach relies heavily on the concept of state reachability.
Prior studies on state reachability (Hepburn & Montana, 2022; 2024) have employed a Gaussian distribution
to determine the likelihood of stitching from s to s′. In contrast, our method treats a state as either
reachable or not, avoiding the use of continuous probability distributions. State reachability is closely
related to state similarity, a well-explored concept in the literature (Zhang et al., 2020; Agarwal et al., 2021;
Le Lan et al., 2021). One way to measure state similarity is through bisimulation metrics, which are based
on the environment’s dynamics (Ferns et al., 2012). Traditional bisimulation methods often require full
state enumeration (Chen et al., 2012; Bacci et al., 2013a;b), leading to the development of more scalable
pseudometric approaches (Castro, 2020). While incorporating a pseudometric into our state reachability
framework could be a potential avenue, we leave this for future work. Our current state reachability metric
is simple, intuitive, and grounded in the core definition.

Trajectory stitching. A key feature of offline RL is its ability to stitch together trajectories (Kostrikov
et al., 2021b), i.e., combining previously observed trajectories to create a novel one that completes the task.
Imitation learning methods, such as behavioural cloning (Pomerleau, 1988; 1991), struggle with stitching due
to their inability to distinguish between optimal and sub-optimal states. Similarly, the Decision Transformer
(DT) (Chen et al., 2021) formulates the offline RL problem as a supervised learning task using a goal-
conditioned policy. While DT exhibits weak stitching capabilities, efforts have been made to address this
by integrating offline RL principles (Yamagata et al., 2023; Wu et al., 2023). Combining DT with StaCQ’s
policy extraction approach could yield further improvements in stitching. However, our current work focuses
on a straightforward implementation of state-constrained offline RL.

6 Experimental results

We evaluate StaCQ against several model-free and model-based baselines on the D4RL benchmarking
datasets from the OpenAI Mujoco tasks (Todorov et al., 2012; Fu et al., 2020). The model-free baselines we
compare against are BCQ (Fujimoto et al., 2019), TD3+BC (Fujimoto & Gu, 2021), and IQL (Kostrikov
et al., 2021b). BCQ is the foundational batch-constrained offline RL method on which many subsequent
methods are based, making it the most direct theoretical comparison. TD3+BC is the most similar to StaCQ
in terms of implementation, as both use a BC-style regularisation process. IQL, a current SOTA model-free
method, provides a strong comparison point.

The model-based baselines include MBTS (Hepburn & Montana, 2024), Diffuser (Janner et al., 2022), and
RAMBO (Rigter et al., 2022). MBTS employs a data augmentation strategy with a different state reachabil-
ity approach compared to StaCQ. Diffuser is a planning-based method that uses a diffusion model, making
its dynamics model more complex than StaCQ’s. RAMBO, a SOTA model-based method, performs rollouts
using a pessimistic dynamics model of the environment. Although StaCQ does not use models for planning
or rollouts, we include these model-based algorithms for comparison.

Additionally, we devised a one-step version of StaCQ (Brandfonbrener et al., 2021), detailed in Appendix D,
to showcase the flexibility of the state-constrained framework.

Results for both StaCQ and the one-step version of StaCQ are shown in Table 1. For the Antmaze tasks,
it is unnecessary to train a reward model since these tasks feature sparse rewards, meaning the reward for
being in s′ remains constant. As all s′ are in the dataset, the reward, r(s, s′), is always known for all s where
s′ ∈ SRM(s). Also for the Antmaze tasks, StaCQ deploys independent target Q-value estimates. This is
a techniques from Ghasemipour et al. (2022) that improves the performance of the policy in the medium
and large Antmaze tasks. Despite potential model errors in estimating state reachability, StaCQ performs
remarkably well against the baselines. The learning curves for all tasks in Table 1 are shown in Appendix
G.

StaCQ outperforms all model-free baselines in the locomotion tasks (Hopper, Halfcheetah, and Walker2d)
across the entire range of datasets (random, medium-replay, medium, and medium-expert). These envi-

10

Under review as submission to TMLR

Table 1: Average normalised scores on the D4RL datasets. StaCQ results have been obtained by taking an
average over 5 seeds. The bolded scores are within 95% of the highest performing method.

Model-free baselines Model-based baselines Our methods
BC BCQ TD3+BC IQL MBTS Diffuser RAMBO StaCQ OneStep StaCQ

H
op

pe
r Rand 6.2 7.6 8.5 - - - 21.6 17.5 ± 12.8 7.5 ± 0.4

Med-Rep 22.5 51.0 60.9 94.7 50.2 93.6 96.6 99.1 ± 1.3 99.4 ± 0.6
Med 56.8 60.9 59.3 66.3 64.3 74.3 92.8 100.2 ± 3.0 93.3 ± 3.2
Med-Exp 54.2 85.9 98.0 91.5 94.8 103.3 83.3 111.9 ± 0.2 92.1 ± 9.2

W
al

ke
r2

D Rand 1.4 4.4 1.6 - - - 11.5 4.4 ± 6.4 6.5 ± 0.9
Med-Rep 25.5 60.7 81.8 73.9 61.5 70.6 85.0 87.2 ± 7.3 88.1 ± 5.3
Med 39.4 73.7 83.7 78.3 78.8 79.6 86.9 92.2 ± 3.0 85.7 ± 10.4
Med-Exp 90.5 94.5 110.1 109.6 108.8 106.9 68.3 116.2 ± 1.5 107.6 ± 8.5

H
al

fc
he

et
ah Rand 2.1 2.2 11.0 - - - 40.0 24.3 ± 1.3 2.6 ± 1.6

Med-Rep 34.5 41.1 44.6 44.2 39.8 37.7 68.9 52.2 ± 0.5 46.4 ± 0.4
Med 42.4 46.6 48.3 47.4 43.2 42.8 77.6 57.6 ± 0.6 50.0 ± 0.2
Med-Exp 66.6 87.8 90.7 86.7 86.9 88.9 93.7 96.4 ± 2.9 94.9 ± 1.0

Total (excl. rand) 432.4 602.2 677.4 692.6 628.3 697.7 753.1 813.0 757.5

A
nt

m
az

e

Umaze 53.4 70.0 78.6 87.5 - - 25.0 89.8 ± 5.0 75.6 ± 3.8
U-diverse 64.6 44.0 71.4 62.2 - - 0.0 64.0 ± 29.7 67.2 ± 13.8
M-play 0.0 0.0 3.0 71.2 - - 16.4 47.2 ± 27.1 20.6 ± 12.5
M-diverse 0.8 0.0 10.6 70.0 - - 23.2 47.4 ± 27.6 13.0 ± 4.2
L-play 0.0 0.0 0.0 39.6 - - 0.0 31.4 ± 6.0 5.2 ± 5.2
L-diverse 0.0 0.0 0.2 47.5 - - 2.4 40.0 ± 22.4 2.2 ± 1.6

Total (Antmaze) 118.8 114.0 163.8 378.0 - - 67.0 319.8 183.8

ronments are complex robotics tasks, with the random and medium-replay consisting of few good-quality
episodes. StaCQ also surpasses most model-based baselines in the locomotion tasks, with the exception of
RAMBO, which outperforms StaCQ in the Halfcheetah and random tasks. However, on average StaCQ is the
highest-performing method across all locomotion tasks, consistently ranking as either the top or second-best
performing method. TD3+BC uses a consistent hyperparameter across all datasets, whereas our StaCQ
methods use an environment-dependent hyperparameter (see Appendix C). To enable a fair comparison,
Appendix E compares TD3+BC and StaCQ using the same hyperparameter tuning strategy.

Through utilising the higher number of reachable states and thus finding higher quality OOD actions that lead
to in-distribution states, StaCQ performs well across most of the locomotion tasks. However its performance
in the Antmaze tasks is comparatively lower. StaCQ does outperform RAMBO in the Antmaze tasks,
which are notoriously challenging for methods involving dynamics models (Wang et al., 2021; Rigter et al.,
2022), and performs competitively against the model-free baselines. Notably, StaCQ outperforms BCQ and
TD3+BC, which are the most comparable baselines in terms of both theory and implementation. Methods
such as IQL, which rely on advantage-weighted policy extraction, may have an advantage in these tasks due
to their ability to handle sparse rewards more effectively. Nonetheless, StaCQ is either the highest or second
highest performing method on the Antmaze tasks against the comparative methods.

7 Discussion and conclusions

In this paper, we introduced a method for state-constrained offline RL. Most prior offline RL approaches are
batch-constrained, limiting the learning of the Q-function or policy to (s, a) pairs or the (s, a)-distribution in

11

Under review as submission to TMLR

the dataset. In contrast, our state-constrained methodology confines learning updates to states within the
dataset, offering significant potential reductions in dataset size required for achieving optimality. By focus-
ing on states rather than state-action pairs, the state-constrained approach enables more efficient learning
updates and can achieve optimality with smaller datasets compared to batch-constrained methods.

Central to the proposed state-constrained approach is the concept of state reachability, which we define
and illustrate in a simple maze environment. This example underscores the improved stitching capability
of state-constrained methods over batch-constrained ones, particularly in datasets with limited trajectories.
Additionally, we provide theoretical backing that affirms the potential for our method’s convergence based
on dataset states rather than state-action pairs. Similar to BCQ (Fujimoto et al., 2019), our theory assumes
a deterministic MDP. This focus on deterministic environments simplifies the theoretical development (Fu-
jimoto et al., 2019; Jin et al., 2021; Shi et al., 2022), and provides a fair comparison with the BCQ theory,
while also providing clear guarantees for convergence, making it an appropriate starting point for the state-
constrained approach. Our theoretical goal is to demonstrate convergence and provide a comparison with
BCQ. As a result, Theorem 3.6 shows that SCQL converges to the optimal policy with a smaller requisite
dataset size than BCQ; and, Theorem 3.7 shows that the policy produced by SCQL can always be preferred
to the policy produced by BCQL.

Based from these theoretical developments, our practical implementation also defines reachable states de-
terministically — states are considered reachable or not, regardless of potential stochastic transitions. De-
terministic settings align with many practical applications, such as robotic control or industrial systems,
where transitions can be accurately modelled. However, some real-world environments are stochastic, where
actions lead to a distribution of possible next states. Future work will extend state reachability to account for
stochastic transitions by incorporating probabilistic models of the environment’s dynamics. Theoretically,
the definition of state reachability can be extended to stochastic MDPs, for example s′ is reachable from s if it
is the most likely next state when performing action a, i.e s′ ∈ SRM(s) if p(s′|s, a) = maxs′

i
∼p(·|s,a) p(s′

i|s, a).
Practically, this will involve redefining reachability in terms of the likelihood of reaching a state under certain
actions, possibly using techniques such as probabilistic graphical models. The key challenge will be maintain-
ing computational efficiency while handling the increased complexity of probabilistic transitions. Extending
the framework in this way will allow the state-constrained approach to be applied to more complex, uncertain
environments, improving its robustness and real-world applicability.

We also introduced StaCQ, an implementation of state-constrained deep offline RL. StaCQ leverages QSS-
learning (Edwards et al., 2020) to estimate the value of transitioning from s to s′, which is particularly
advantageous in a state-constrained context as it avoids action dependency. StaCQ determines state reach-
ability using forward and inverse dynamics models, trained via supervised learning on the dataset. While
the performance of these models can influence StaCQ, the algorithm consistently demonstrates strong per-
formance in complex environments, often surpassing baseline batch-constrained methods. StaCQ relies on
an ensemble of forward and inverse dynamics models. Increasing the size of the ensemble would enable more
accurate estimates, however the number of models is consistent with prior research (Janner et al., 2019) and
is accurate enough for StaCQ to perform well, as shown in Table 1. StaCQ uses an ensemble of four critics
whereas OneStep StacQ uses a single critic. These values were chosen as they enable stable estimates across
all datasets.

There are several potential improvements to explore in future work. Despite the simplicity of the models we
used, our reachability measure delivered SOTA performance. Future enhancements could improve this by
adding more complexity to the dynamics models, reducing model error, and capturing the true environment
dynamics more accurately. Alternatively, developing entirely new state reachability criteria independent of
dynamics models could significantly enhance the algorithm’s effectiveness. Potential ideas include leveraging
graph-based approaches or using reinforcement learning techniques to learn reachability directly from data.
Additionally, the policy extraction process could be improved by incorporating elements such as a Decision
Transformer (Chen et al., 2021) or diffusion policies (Ajay et al., 2022). These techniques have shown
promise in offline RL by leveraging the structure of the dataset to generate more diverse and effective policies.
Integrating them into StaCQ could allow the algorithm to exploit the available data more effectively.

12

Under review as submission to TMLR

Similar to batch-constrained methods, further advances might arise from relaxed state constraints, albeit
with tailored considerations for this setting. Using ensembles to assess the uncertainty of QSA-values (An
et al., 2021; Ghasemipour et al., 2022; Beeson & Montana, 2024) and constraining actions to specific regions
has proven advantageous in the batch-constrained domain. Similar methodologies could be extended to
state-constrained approaches, such as employing ensembles of QSS-functions to evaluate uncertainty.

Beyond improving state reachability estimates and policy extraction mechanisms, the potential for advance-
ment in state-constrained methodologies is vast. One intriguing direction is to refine state reachability
estimates to focus solely on states, excluding action predictions. Such advancements could lead to algo-
rithms that rely entirely on state-only datasets, which is particularly relevant for real-world scenarios like
learning from video data, where states are observable (as images), but the actions leading to transitions are
unknown. Expanding the notion of state reachability is another promising avenue. Our current definition,
based on one-step state reachability (∃a such that p(s′|s, a) = 1), could be extended to multiple steps. For
example, a two-step reachability could be defined as s′′ ∈ SRM(s) if ∃a1, a2 such that p(s′|s, a1) = 1 and
p(s′′|s′, a2) = 1. This principle can be further extrapolated, providing a foundation for novel model-based
offline RL algorithms. Extending this notion of state reachability will allow for a higher number of reachable
states to be found, while being sure they lead, in k-steps, to in-distribution states. Appendix H shows
the theoretical benefits of a multi-step state reachable method on a simple maze environment. However, a
practical method that incorporates model error is left for future work. Lastly, the state-constrained method-
ology holds significant potential for multi-agent offline RL scenarios, where complexity grows with the action
space size. By reducing action dependence, the state-constrained approach appears well-suited to tackle such
challenges.

In conclusion, we have ventured into the realm of state-constrained offline RL, introducing a novel paradigm
that emphasises states over state-action pairs in the dataset. While this paper lays the foundational ground-
work, the path forward calls for further investigation, refinement, and integration with other emerging
techniques. We believe that these endeavours can push the boundaries of current offline RL methodologies
and offer unprecedented solutions to complex problems.

13

Under review as submission to TMLR

References
Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bellemare. Contrastive behavioral

similarity embeddings for generalization in reinforcement learning. arXiv preprint arXiv:2101.05265, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal. Is condi-
tional generative modeling all you need for decision-making? arXiv preprint arXiv:2211.15657, 2022.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline reinforcement
learning with diversified Q-ensemble. Advances in neural information processing systems, 34:7436–7447,
2021.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. arXiv preprint arXiv:2008.05556,
2020.

Giorgio Bacci, Giovanni Bacci, Kim G Larsen, and Radu Mardare. Computing behavioral distances, compo-
sitionally. In Mathematical Foundations of Computer Science 2013: 38th International Symposium, MFCS
2013, Klosterneuburg, Austria, August 26-30, 2013. Proceedings 38, pp. 74–85. Springer, 2013a.

Giorgio Bacci, Giovanni Bacci, Kim G Larsen, and Radu Mardare. On-the-fly exact computation of bisimi-
larity distances. In International conference on tools and algorithms for the construction and analysis of
systems, pp. 1–15. Springer, 2013b.

Alex Beeson and Giovanni Montana. Balancing policy constraint and ensemble size in uncertainty-based
offline reinforcement learning. Machine Learning, 113(1):443–488, 2024.

David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. Offline RL without off-policy
evaluation. Advances in neural information processing systems, 34:4933–4946, 2021.

Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee. Sample-efficient rein-
forcement learning with stochastic ensemble value expansion. Advances in neural information processing
systems, 31, 2018.

Pablo Samuel Castro. Scalable methods for computing state similarity in deterministic markov decision
processes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 10069–10076,
2020.

Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabilistic bisimilarity.
In Foundations of Software Science and Computational Structures: 15th International Conference, FOS-
SACS 2012, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2012, Tallinn, Estonia, March 24–April 1, 2012. Proceedings 15, pp. 437–451. Springer, 2012.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084–15097, 2021.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning in a
handful of trials using probabilistic dynamics models. Advances in neural information processing systems,
31, 2018.

Robert Dadashi, Shideh Rezaeifar, Nino Vieillard, Léonard Hussenot, Olivier Pietquin, and Matthieu Geist.
Offline reinforcement learning with pseudometric learning. In International Conference on Machine Learn-
ing, pp. 2307–2318. PMLR, 2021.

Christopher Diehl, Timo Sievernich, Martin Krüger, Frank Hoffmann, and Torsten Bertram. Um-
brella: Uncertainty-aware model-based offline reinforcement learning leveraging planning. arXiv preprint
arXiv:2111.11097, 2021.

Christopher Diehl, Timo Sebastian Sievernich, Martin Krüger, Frank Hoffmann, and Torsten Bertram.
Uncertainty-aware model-based offline reinforcement learning for automated driving. IEEE Robotics and
Automation Letters, 8(2):1167–1174, 2023.

14

Under review as submission to TMLR

Ashley Edwards, Himanshu Sahni, Rosanne Liu, Jane Hung, Ankit Jain, Rui Wang, Adrien Ecoffet, Thomas
Miconi, Charles Isbell, and Jason Yosinski. Estimating Q(s, s’) with deep deterministic dynamics gradients.
In International Conference on Machine Learning, pp. 2825–2835. PMLR, 2020.

Xing Fang, Qichao Zhang, Yinfeng Gao, and Dongbin Zhao. Offline reinforcement learning for autonomous
driving with real world driving data. In 2022 IEEE 25th International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 3417–3422. IEEE, 2022.

Norman Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite markov decision processes. arXiv
preprint arXiv:1207.4114, 2012.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: Datasets for deep data-
driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning. Advances
in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without exploration.
In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Kamyar Ghasemipour, Shixiang Shane Gu, and Ofir Nachum. Why so pessimistic? estimating uncertainties
for offline RL through ensembles, and why their independence matters. Advances in Neural Information
Processing Systems, 35:18267–18281, 2022.

Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings of the 1984
ACM SIGMOD international conference on Management of data, pp. 47–57, 1984.

Charles A Hepburn and Giovanni Montana. Model-based trajectory stitching for improved offline reinforce-
ment learning. arXiv preprint arXiv:2211.11603, 2022.

Charles A Hepburn and Giovanni Montana. Model-based trajectory stitching for improved behavioural
cloning and its applications. Machine Learning, 113(2):647–674, 2024.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for flexible
behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline RL? In International
Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. MOReL: Model-based
offline reinforcement learning. Advances in neural information processing systems, 33:21810–21823, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning with fisher
divergence critic regularization. In International Conference on Machine Learning, pp. 5774–5783. PMLR,
2021a.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit Q-learning.
arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy Q-learning
via bootstrapping error reduction. Advances in Neural Information Processing Systems, 32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative Q-learning for offline rein-
forcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

15

Under review as submission to TMLR

Aviral Kumar, Anikait Singh, Stephen Tian, Chelsea Finn, and Sergey Levine. A workflow for offline model-
free robotic reinforcement learning. arXiv preprint arXiv:2109.10813, 2021.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforcement
learning: State-of-the-art, pp. 45–73. Springer, 2012.

Charline Le Lan, Marc G Bellemare, and Pablo Samuel Castro. Metrics and continuity in reinforcement
learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 8261–8269,
2021.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial, review,
and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Tom Mitchell. Machine Learning. McGraw Hill, 1997.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural information
processing systems, 1, 1988.

Dean A Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
computation, 3(1):88–97, 1991.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-RL: Robust adversarial model-based offline reinforce-
ment learning. Advances in neural information processing systems, 35:16082–16097, 2022.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic Q-learning for offline reinforcement
learning: Towards optimal sample complexity. In International conference on machine learning, pp.
19967–20025. PMLR, 2022.

Tianyu Shi, Dong Chen, Kaian Chen, and Zhaojian Li. Offline reinforcement learning for autonomous driving
with safety and exploration enhancement. arXiv preprint arXiv:2110.07067, 2021.

Chamani Shiranthika, Kuo-Wei Chen, Chung-Yih Wang, Chan-Yun Yang, BH Sudantha, and Wei-Fu Li. Su-
pervised optimal chemotherapy regimen based on offline reinforcement learning. IEEE Journal of Biomed-
ical and Health Informatics, 26(9):4763–4772, 2022.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Neunert, Thomas
Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing what worked: Behavioral
modelling priors for offline reinforcement learning. arXiv preprint arXiv:2002.08396, 2020.

Avi Singh, Albert Yu, Jonathan Yang, Jesse Zhang, Aviral Kumar, and Sergey Levine. COG: Connecting
new skills to past experience with offline reinforcement learning. arXiv preprint arXiv:2010.14500, 2020.

Samarth Sinha, Ajay Mandlekar, and Animesh Garg. S4RL: Surprisingly simple self-supervision for offline
reinforcement learning in robotics. In Conference on Robot Learning, pp. 907–917. PMLR, 2022.

Richard S Sutton. Dyna, an integrated architecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Shengpu Tang and Jenna Wiens. Model selection for offline reinforcement learning: Practical considerations
for healthcare settings. In Machine Learning for Healthcare Conference, pp. 2–35. PMLR, 2021.

Shengpu Tang, Maggie Makar, Michael Sjoding, Finale Doshi-Velez, and Jenna Wiens. Leveraging factored
action spaces for efficient offline reinforcement learning in healthcare. Advances in Neural Information
Processing Systems, 35:34272–34286, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033. IEEE, 2012.

16

Under review as submission to TMLR

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline re-
inforcement learning with reverse model-based imagination. Advances in Neural Information Processing
Systems, 34:29420–29432, 2021.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8:279–292, 1992.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning. arXiv
preprint arXiv:1911.11361, 2019.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. arXiv preprint
arXiv:2307.02484, 2023.

Haoran Xu, Li Jiang, Li Jianxiong, and Xianyuan Zhan. A policy-guided imitation approach for offline
reinforcement learning. Advances in Neural Information Processing Systems, 35:4085–4098, 2022.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer: Leveraging
dynamic programming for conditional sequence modelling in offline RL. In International Conference on
Machine Learning, pp. 38989–39007. PMLR, 2023.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. MOPO: Model-based offline policy optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn. COMBO:
Conservative offline model-based policy optimization. Advances in neural information processing systems,
34:28954–28967, 2021.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory pruning. arXiv
preprint arXiv:2105.07351, 2021.

Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant repre-
sentations for reinforcement learning without reconstruction. arXiv preprint arXiv:2006.10742, 2020.

Michael R Zhang, Tom Le Paine, Ofir Nachum, Cosmin Paduraru, George Tucker, Ziyu Wang, and Mo-
hammad Norouzi. Autoregressive dynamics models for offline policy evaluation and optimization. arXiv
preprint arXiv:2104.13877, 2021.

Wenxuan Zhou, Sujay Bajracharya, and David Held. PLAS: Latent action space for offline reinforcement
learning. In Conference on Robot Learning, pp. 1719–1735. PMLR, 2021.

17

Under review as submission to TMLR

A Missing proofs

Proof of Theorem 3.2 Since each (s, s′) pair is visited infinitely often, consider consecutive intervals
during which each (s, s′) transition occurs at least once. We want to show the max error over all entries in
the Q table is reduced by at least a factor of γ during each such interval.

Let ∆n by the max error in Qn, ∆n := maxs,s′ |Qn(s, s′)−Q∗(s, s′)|. Then,

|Qn+1(s, s′)−Q∗(s, s′)| = |(r(s, s′) + γ max
s′′

Qn(s′, s′′)− (r(s, s′) + γ max
s′′

Q∗(s′, s′′))| (13)

= γ|max
s′′

Qn(s′, s′′)−max
s′′

Q∗(s′, s′′)| (14)

= γ|max
s′′

Qn(s′, s′′)−max
s′′

Q∗(s′, s′′)| (15)

≤ γ max
s′′
|Qn(s′, s′′)−Q∗(s′, s′′)| (16)

≤ γ max
ŝ,s′′
|Qn(ŝ, s′′)−Q∗(ŝ, s′′)| (17)

Which implies |Qn+1(s, s′)−Q∗(s, s′)| ≤ γ∆n. □

Where for brevity the maximisation maxs′′ is the shorthand for maxs′′ s.t. s′′∈SRM(s′). Also, Eq. (13)
is using the training rule; Eqs. (14) and (15) are simplifying and rearranging; (16) uses the fact that
|maxx f1(x) −maxx f2(x)| ≤ maxx |f1(x) − f2(x)|; Eq. (17) we introduced a new variable ŝ for which the
maximisation is performed - this is permissible as allowing this additional variable to differ will always be
at least the maximum value.

Thus, the updated Qn+1(s, s′) for any s, s′ is at most γ times the maximum error in the Qn table, ∆n. The
largest error in the initial table, ∆0, is bounded because the values of Q0(s, s′) and Q∗(s, s′) are bounded
∀s, s′. Now, after the first interval during which each s, s′ is visited the largest error will be at most γ∆0.
After k such intervals, the error will be at most γk∆0. Since each state is visited infinitely often, the number
of such intervals is infinite and ∆n → 0 as n→∞.

Proof of Theorem 3.4. 1.Define deterministic state-constrained MDP MS . We define MS =
(S,A,PS ,R, γ) where S and A are the same as the original MDP. We have the transition probability
where

pS(s′|s, a) =
{

1 if (s, s′ ∈ D and s′ ∈ SRM(s)) or (s /∈ D and s′ = sterminal)
0 otherwise.

this is a deterministic transition probability for s, s′ that are in the dataset and reachable. If a pair exists
but is not in the dataset we set the rewards to be the initialised Q(s, s′) values, otherwise they have the
reward seen in the dataset.

2. We have all the same assumptions under MS as we do under M, apart from infinite (s, s′) visitation, so
we need that and then it follows from Theorem 3.2.

Note that sampling under the dataset D with uniform probability satisfies the infinite state-next-state visi-
tation assumptions of the MDP MS . For a reachable pair (s, s′) /∈ D [this may be due to s /∈ D or s′ /∈ D],
Q(s, s′) will never be updated and will correspond to the initialised value. So sampling from D is equivalent
to sampling from the MDP MS and QSS-learning converges to the optimal value under MS by following
Theorem 3.2. □

Proof of Theorem 3.5. This follows from Theorem 3.2, noting the state-constraint is non-restrictive with
a dataset which contains all possible states. □

Proof of Theorem 3.6. This result follows from the fact that if every s is visited infinitely then due
to the definition of state reachability we can evaluate over all (s, s′)-pairs in the dataset. Then following
Theorem 3.4, which states QSS-learning learns the optimal value for the MDP MS for s, s′ ∈ D. However,
the deterministicMS corresponds to the originalM in all seen state and reachable next-state pairs. Noting

18

Under review as submission to TMLR

that state-constrained policies operate only on s, s′ ∈ D, whereMS corresponds to the true MDP, it follows
that π∗ will be the optimal state-constrained policy from the optimality of QSS-learning. □

Theorem A.1. In a deterministic setting, QSA-values are equivalent to QSS-values

Proof. See Theorem 2.2.1 in (Edwards et al., 2020)

Proof of Theorem 3.7. Case 1: In this situation, for all states in the dataset, we do not have any extra
reachable states, other than the pairs i.e. ∀s ∈ D,SRM(s) = {s′}, where (s, s′) ∈ D. In this case the state-
constrained MDP, Definition 3.3, is equivalent to the batch-constrained MDP in (Fujimoto et al., 2019). The
condition of the state-constrained MDP,

s, s′ ∈ D and s′ ∈ SRM(s)

becomes (s, s′) ∈ D as s′ ∈ SRM(s) only exists where (s, s′) ∈ D. From this, the probability transition
function for the state-constrained and batch-constrained MDPs are equivalent and thus so are the MDPs
themselves. Finally, for this case we just need to show that the SCQL and BCQL updates are the same. So
under this case condition the SCQL update becomes

Q(s, s′)← (1− α)Q(s, s′) + α
[
r(s, s′) + γ max

s′′ s.t. (s′,s′′)∈D
Q(s′, s′′)

]
.

From Theorem A.1, for a transition (s, a, s′) ∈ D we have Q(s, a) = Q(s, s′) and thus for the transition
(s′, a′, s′′) ∈ D we have Q(s′, a′) = Q(s′, s′′), therefore the SCQL update is equivalent to

Q(s, a)← (1− α)Q(s, a) + α
[
r(s, a) + γ max

a′ s.t. (s′,a′)∈D
Q(s′, a′)

]
.

Therefore, for case 1 BCQL and SCQL have the same Q-value update and therefore have the same optimal
policy. So, πBCQL(s) = πSCQL(s), Q(s, πBCQL(s)) = Q(s, πSCQL(s)), and thus VπBCQL(s) = VπSCQL(s),∀s ∈
D.

Case 2: In this case, for a single state in the dataset, we have one reachable next state that is un-
seen as a pair in the dataset, i.e. ∃s̃, ŝ′ ∈ D s.t. ŝ′ ∈ SRM(s̃) and (s̃, ŝ′) /∈ D. In this case the
state-constrained MDP probability transition function becomes: for a = I(s, s′) ∈ A

pS(s′|s, a) =
{

1 if ((s, s′) ∈ D) or (s /∈ D and s′ = sterminal) or (s = s̃ and s′ = ŝ′)
0 otherwise.

This is the transition function for the batch-constrained MDP but allowing for an extra transition from s̃
to ŝ′. Now comparing BCQL and SCQL Q-value updates, we have all equivalent values for the transition
(s, a, s′) except for the trajectory that contains the state s̃. For the converged QSS-value, Q∗, let s̃−1 be the
state in the trajectory previous to s̃ and s̃′ be the next state after s̃ in the trajectory,

Q∗(s̃−1, s̃)← (1− α)Q∗(s̃−1, s̃) + α
[
r(s̃−1, s̃) + γ max{Q∗(s̃, s̃′), Q∗(s̃, ŝ′)}

]
If Q∗(s̃, s̃′) ≥ Q∗(s̃, ŝ′) then again BCQL is equivalent to SCQL. However, if Q∗(s̃, s̃′) < Q∗(s̃, ŝ′) then
SCQL will have higher values than BCQL for all states previous to s̃ and therefore will produce a higher
quality policy by the policy improvement theorem. In this case, as Q∗(s̃, s̃′) < Q∗(s̃, ŝ′), ∃s such that
Q(s, πSCQL(s)) > Q(s, πBCQL(s)), thus VπSCQL(s) ≥ VπBCQL(s),∀s ∈ D.

Then without loss of generality Case 2 can be extended to all cases where we have multiple reach-
able next states for multiple dataset states, that have higher value according to the optimal QSS-value.
□

19

Under review as submission to TMLR

B Reducing the complexity of state reachability estimation

Directly computing ŜRM for every state s would entail comparing each state in the dataset against all
others, an approach that is computationally prohibitive for larger datasets. To address this challenge, we
calculate the range of potentially reachable states for each state dimension. This calculation is based on a
set of random actions, denoted as {ai

rand}n
i=1.

For a given state s, we first determine its range by calculating the minimum and maximum values using fω1 .
Specifically, the minimum range Rmin(s) is computed as mini fω1(s, ai

rand), and the maximum range Rmax(s)
is maxi fω1(s, ai

rand). Subsequently, we construct a smaller set of states within the range (Rmin(s), Rmax(s)),
using an R-tree (Guttman, 1984), a data structure that efficiently identifies states within a specified hyper-
rectangle (our range). This approach, leveraging the R-tree’s efficient search capability, dramatically reduces
the size of the dataset. Consequently, the models are applied only to this refined set of states, leading to a
significant reduction in computational complexity.

C Implementation details

For our experiments we use ϵ = 0.1 for the state reachability criteria where the LHS is also scaled by the
maximum of the difference in state range, i.e our state reachability estimate for state s is determined by∣∣∣∣∣∣∣∣fω1(s, Iω2(s, s′))− s′

Rmax(s)−Rmin(s)

∣∣∣∣∣∣∣∣
∞

< ϵ.

This means that the maximum state dimension model prediction error must be within 10% of the true state
range. Due to this we also normalise all states which gives more accurate model prediction and is done in
the same way as TD3+BC (Fujimoto & Gu, 2021), i.e let si be the ith feature of state s

si = si − µi

σi + ϵs
,

where µi and σi are the mean and standard deviation of the ith feature across all states and ϵs = 10−3 is
a small normalisation constant. Similar to TD3+BC, we do not normalise states for the Antmaze tasks as
this is harmful for the results.

For the MuJoCo locomotion tasks we evaluate our method over 5 seeds each with 10 evaluation trajectories;
whereas for the Antmaze tasks we also evaluate over 5 seeds but with 100 evaluation trajectories. Just like
TD3+BC (Fujimoto & Gu, 2021), we scale our hyperparameter by the average Q-value across the minibatch

λ = α
1
N

∑
i Q(si, s′

i)
,

where N is the size of the minibatch (in our case N = 256) and s′
i is the next state where the policy

action leads from s. We aim to find a consistent α hyperparameter across the different environments. We
find that the optimal consistent hyperparameters are α = {1, 5, 10} for Hopper, Walker2d and Halfcheetah
respectively. However for Halfcheetah -medium expert we use α = 0.5 due to the significant improvement.
For the Antmaze tasks, each maze size is a new environment and we use α = {2, 10, 19} for the umaze,
medium and large environments respectively. Across all environments, we add a small amount of zero mean
Gaussian noise to the policy action before being input into the forward model, we use a fixed variance of 0.1.
It should be noted that making this policy noise vary across the different environments could improve results
greatly, however we aim to keep this fixed so that we have a general method that can be easily optimised on
other environments.

The actor, critic and reward model are represented as neural networks with two hidden layers of size 256
and ReLU activation. They are trained using the ADAM optimiser (Kingma & Ba, 2014) and have learning
rates 3e − 4, the actor also has a cosine scheduler. We use an ensemble of 4 critic networks and take the
minimum value across the networks. Also we use soft parameter updates for the target critic network with
parameter τ = 0.005, and we use a discount factor of γ = 0.99. For the locomotion tasks we use a shared

20

Under review as submission to TMLR

target value to update the critic towards, whereas for the Antmaze tasks we use independent target values
for each critic value. Both the inverse and forward dynamics models are represented as neural networks with
three hidden layers of size 256 and ReLU activation. They are trained using the ADAM optimiser with a
learning rate of 4e−3 and a batch size of 256. We use an ensemble of 7 forward models and 3 inverse models
and then take a final prediction as an average across the ensemble. Also our forward model predicts the
state difference rather than the next state directly, which improves model prediction performance.

To attain the results for BCQ, we re-implemented the algorithm from the paper (Fujimoto et al., 2019) and
trained on the version 2 datasets. Following the same practises as StaCQ we evaluate BCQ over 5 seeds each
with 10 evaluations on the MuJoCo locomotion tasks and 5 seeds each with 100 evaluations on the Antmaze
tasks. All other results in Table 1 were obtained from the original authors’ papers. Our experiments were
performed with a single GeForce GTX 3090 GPU and an Intel Core i9-11900K CPU at 3.50GHz. Each run
takes on average 2.5 hours, where models are pre-trained and state reachability is given (the same models
and reachability lists are given to each run). We provide 5 runs for each dataset (18) which gives a total run
time of 225 hours.

D One-step method

StaCQ, Algorithm 1, that we have introduced in this paper is an actor-critic method that learns the QSS-
value and policy together. Alternatively, the QSS-value can be learned directly from the data, in an on-policy
fashion, then a policy can be extracted directly from this on-policy QSS-value. These approaches are known
as one-step methods (Brandfonbrener et al., 2021). In this section we adapt StaCQ into a one-step method.

D.1 Estimating QSS-values

So that the QSS-values are learned on-policy while still taking advantage of the state-constrained framework
we introduce a small modification to Eq. (5). Since the pair (s′, s′′) is unseen in the dataset, we use the
following approximation:

max
s′′s.t.(s′′,s′′′)∈D

s′′∈SRM(s′)

{r(s′, s′′) + γQ(s′′, s′′′)} (18)

to replace max s′′s.t.s′′∈D
s′′∈SRM(s′)

Q(s′, s′′). This adjustment ensures that the QSS-value is only evaluated on explicit

state-next-state pairs, thereby avoiding OOD (s, s′)-pairs. Although this approach diverges slightly from the
theoretical method, where QSS-value updates are performed on every pair, it provides a practical solution.

Using Eq. (18), the approximation of state reachability and the reward model Eq. (11), the on-policy state-
constrained QSS-values can be refined by reducing the MSE between the target and the actual QSS-values.
The target is determined by identifying the maximum value across reachable states:

Lθ = E(s,s′)∼D

[(
r(s, s′) + γ max

s′′s.t.(s′′,s′′′)∈D,
s′′∈SRM(s′)

{rω3(s′, s′′) + γQθ′(s′′, s′′′)} −Qθ(s, s′)
)2]

. (19)

Here, θ′ represents the parameters for a target Q-value which are incrementally updated towards θ: θ′ ←
τθ + (1− τ)θ′, with τ being the soft update coefficient.

D.2 Policy extraction step

Eq. (19) gives a one-step optimal state-constrained QSS-value. However, this equation alone does not
produce an optimal action. To determine the optimal action, we need to add a policy extraction step. We
use the same policy extraction method as StaCQ, a state behaviour cloning regularised policy update similar
to TD3+BC (Fujimoto & Gu, 2021):

Lϕ = Es∼D

[
λQθ(s, fω1(s, πϕ(s))) + (fω1(s, πϕ(s)))− ŝ′)2

]
, (20)

21

Under review as submission to TMLR

where

ŝ′ = arg max
s′s.t.(s′,s′′)∈D

s′∈ŜRM(s)

{rω3(s, s′) + γQθ(s′, s′′)},

Algorithm 2 StaCQ (One Step RL version)
1: Input: Dataset D, T number of iterations, τ
2: Initialise: parameters ω1, ω2, ω3, θ, θ′, ϕ
3: Pre-train fω1 and Iω2 using Eqs.(7) and (8)
4: Pre-train reachability criteria ŜRM
5: for t = 1, . . . , T do
6: Optimise reward function according to Eq. (11)
7: Optimise QSS-value according to Eq. (19)
8: Update target networks: θ′ ← τθ + (1− τ)θ′.
9: end for

10: for t = 1, . . . , T do
11: Optimise policy: Eq. (20)
12: end for

Again, due to the forward model being fixed, a small amount of Gaussian noise is added to the policy action
before being input into the model. This creates a more robust policy by ensuring the policy does not exploit
the forward model. The complete procedure for the one step version of StaCQ is provided in Algorithm 2.

D.3 One step method implementation details

In the original OneStepRL paper (Brandfonbrener et al., 2021), they evaluate their method over 10 seeds
where the λ hyperparameter has been tuned over the first 3 seeds and then evaluated with the λ fixed
for the remaining 7. However as we want a consistent hyperparameter for each environment we choose
α = {0.1, 1.0, 5.0} for Hopper, Walker2d and Halfcheetah respectively and for the Antmaze tasks we choose
α = {10, 40, 100} for the umaze, medium and large environments respectively. The one step method also uses
a single critic, we found that increasing the number of critics deteriorated results. All other implementation
details are the same as StaCQ, Appendix C.

E Consistent hyperparameter experiment

The single StaCQ hyperparameter, λ in the policy update, is tuned per environment (for example, using the
same λ for all Hopper datasets). This ensures StaCQ is not over-tuned to each dataset while still producing
realistic, high-quality results. Most state-of-the-art methods have different hyperparameters for each dataset
(Yu et al., 2020; Kidambi et al., 2020; Brandfonbrener et al., 2021; Wang et al., 2021; Ghasemipour et al.,
2022; Rigter et al., 2022; Xu et al., 2022); this is not the case for StaCQ. However, TD3+BC and IQL
both use a consistent hyperparameter across all datasets. TD3+BC uses an ensemble of two critics, whereas
StaCQ has an ensemble of four. To compare fairly with these methods, we perform two comparisons. First,
we fix StaCQ’s hyperparameter across all locomotion tasks. Second, we tune TD3+BC’s hyperparameter
for each environment and supplement it with an ensemble of four critics. Table 2 shows these comparisons.

From Table 2, we can see that with consistent hyperparameter tuning strategies StaCQ still vastly outper-
forms TD3+BC (and IQL). This now provides a clear comparison showing how more Q-value evaluations
through the state reachability metric allows for higher-quality policies than the batch-constrained counter-
parts.

22

Under review as submission to TMLR

Fixed hyperparameter Per environment tuning & 4 critics
IQL TD3+BC StaCQ TD3+BC StaCQ

R
an

do
m Halfcheetah - 11.0 15.8 18.0± 1.1 24.3± 1.3

Hopper - 8.5 8.6 7.6± 0.7 17.5± 12.8
Walker2d - 1.8 3.5 0.9± 0.2 4.4± 6.4

M
ed

Halfcheetah 47.4 48.3 50.7 49.0± 0.3 57.6± 0.6
Hopper 66.3 59.3 100.1 61.5± 7.7 100.2± 3.0
Walker2d 78.3 83.7 88.6 83.6± 4.8 92.2± 3.0

M
ed

-R
ep Halfcheetah 44.2 44.6 46.5 44.6± 0.7 52.2± 0.5

Hopper 94.7 60.9 98.7 61.5± 23.8 99.1± 1.3
Walker2d 73.9 81.8 85.5 84.0± 3.0 87.2± 7.3

M
ed

-E
xp Halfcheetah 86.7 90.7 92.4 90.9± 2.2 96.4± 2.9

Hopper 91.5 98.0 94.0 104.5± 11.8 111.9± 0.2
Walker2d 109.6 110.1 114.2 110.6± 0.5 116.2± 1.5

Total 692.6 698.7 798.6 716.7 859.2

Table 2: Average normalised scores for StaCQ, TD3+BC and IQL with consistent hyperparameter tuning
strategies. The left hand side compares StaCQ with IQL and TD3+BC where there is a consistent hy-
perparameter across all datasets. The right hand side compares StaCQ with TD3+BC with 4 critics and
hyperparameters tuned per dataset. The bold scores are within the 95% of the highest performing method
in each dataset. Scores represent mean over 5 seeds of 10 evaluation ± the standard deviation.

F Ablation study: exploring the effect of the reachability metric

In this section, we explore the effect of changing the reachability metric for StaCQ. That is, for fixed
datasets, Walker2d-Medium and Walker2d-MediumExpert, we explore how the change of reachability norm
and threshold for reachable states, ϵ, effects the average normalised score.

Table 3 shows the comparison of the reachability metric with different thresholds. For the L1-norm with
ϵ = 0.01 and 0.05 and l∞-norm with ϵ = 0.01 on the Walker2d-Medium dataset, the threshold was too small
to find any reachable states. In these cases, the reachable states were the explicit next state in the dataset,
therefore Eq. (10) and (12) where only updated using (s, s′) ∈ D. This is essentially the same method as
TD3+BC, except using Q(s, s′) instead of Q(s, a). In these cases, StaCQ performs on par with TD3+BC,
as expected, but much worse than StaCQ with a larger threshold.

Otherwise, for all metrics increasing the threshold leads to an increased score up to a certain point (e.g.
ϵ = 0.1 for L2-norm) where too many states are considered reachable, when they are not, at which point
the average score decreases. On the Walker2d-medium dataset, StaCQ seems fairly robust to a change
in reachability as even with the large thresholds the scores do not decrease as far as TD3+BC. On the
Walker2d-MediumExpert dataset, when the threshold is too large, ϵ = 0.5 for the L2 and L∞ -norms, the
performance degrades massively. This is because too many states are considered reachable which are in fact
not.

As a result of this study, the reachability metric chosen across all datasets is the L∞-norm with ϵ = 0.1,
as these values produced the most reliable scores. It should be noted that other norms and thresholds
could have been used to achieve similar or greater scores, however across all datasets these hyperparameters
performed well.

23

Under review as submission to TMLR

Norm Threshold (ϵ) Walker2d-Medium Walker2d-MediumExpert
L2-norm 0.01 94.1± 3.1 116.0± 1.8

0.05 94.4± 1.4 104.5± 0.1
0.1 92.1± 1.0 94.0± 22.8
0.5 91.9± 2.5 0.3± 0.6

L1-norm 0.01 82.6± 1.3 115.5± 1.9
0.05 82.6± 1.3 114.6± 1.8
0.1 84.1± 17.0 113.7± 5.0
0.5 90.3± 2.5 107.8± 11.1

L∞-norm 0.01 82.6± 1.3 115.7± 1.3
0.05 92.6± 3.6 114.2± 1.9
0.1 92.2± 3.0 116.2± 1.5
0.5 91.4± 5.8 6.7± 12.4

Table 3: Comparison of different reachability metric norms and thresholds on the Walker2d-Medium and
Walker2d-MediumExpert datasets. The normalised score is averaged for 10 evaluations providing a standard
deviation over 5 seeds.

G Learning curves for StaCQ

In this section we provide the learning curves of StaCQ, across all datasets. During training, at 5000 gradient
step intervals, the mean of 10 evaluations (for the locomotion tasks) or 100 evaluations (for the Antmaze
tasks) of StaCQ had been recorded across 5 seeds. This is used to monitor the performance of StaCQ during
training and the environment interactions are not used for the policy or Q-value updates.

24

Under review as submission to TMLR

(a) Hopper (b) Walker2d

(c) Halfcheetah (d) Antmaze-Umaze

(e) Antmaze-Medium (f) Antmaze-Large

Figure 3: Learning curves for StaCQ across all datasets, grouped together by environment. The mean
normalised score, over 10 evaluations (for locomotion tasks) or 100 evaluations (for Antmaze tasks), is
recorded for every 5000 steps during training. The solid line is the mean score across 5 seeds and the shaded
region is the standard deviation.

25

Under review as submission to TMLR

H Multi-step reachability: potential extensions and an illustrative example

The SCQL framework leverages one-step state reachability. A natural and promising direction for future
work involves extending this concept to multi-step reachability. The core idea is to use a learned forward
dynamics model, fω1 , to simulate k-step trajectories (s0, a0, . . . , ak−1, sk) starting from a state s0. The crucial
constraint remains that the trajectory must terminate at a state sk that belongs to the original dataset D.
This allows the agent to potentially bridge larger gaps in the dataset by traversing through intermediate
states (s1, . . . , sk−1) that might be out-of-distribution, while still anchoring the final value estimate to reliable
in-distribution data (sk ∈ D).

The two-step case Let us examine the specific case of two-step reachability. We define the set of 2-step
reachable states ending in the dataset D from a state s as:

SR(2)
M,D(s) = {s2 ∈ D | ∃a0, a1 s.t. p(s1|s, a0) = 1 and p(s2|s1, a1) = 1}.

Here, the intermediate state s1 does not need to be in D. Practically, reachability would be estimated using
the learned model fω1 , denoted ŜR

(2)
M,D(s).

To utilise this, a modified Q-learning update could estimate the value Q(s, s′) based on the best 2-step
reachable state from s′. A conceptual sketch, analogous to Eq. (5), might look like:

Q(s, s′)← (1− α)Q(s, s′) + α
[
r(s, s′) + γ max

s′′′∈D
∩

s′′′∈ŜR
(2)
M,D(s′)

V (2)(s′, s′′′)
]
.

In this sketch, V (2)(s′, s′′′) represents the estimated value of the optimal 2-step path initiating from s′ and
terminating at s′′′ ∈ D. Accurately estimating V (2) using the learned model fω1 (involving rewards for the
first step s′ → s′′ and the value/reward for the second step s′′ → s′′′) is a key challenge, requiring careful
handling of model predictions and potential accumulated errors.

Extracting an optimal policy π∗(s) based on k-step reachability is also more complex than the 1-step case.
Conceptually, the goal is to select the first action a0 that initiates the sequence leading to the highest-value
k-step reachable state s∗

k ∈ D:

1. Find the best k-step endpoint: s∗
k = arg max

sk∈ŜR
(k)
M,D(s)

V (k)(s, sk).
2. Determine the first action a∗

0 on the optimal path from s to s∗
k.

Step 2 typically involves some form of planning (e.g., sampling action sequences with the model) or learning
a policy specifically optimised for this multi-step objective.

Illustration: maze two-step reachability The potential benefit of multi-step reachability is illustrated
in the simple maze environment shown in Figure 4. The dataset provided (Figure 4a) is sparse, preventing
the standard one-step SCQL from finding a path to the goal from all dataset states (Figure 4b). However,
by considering two-step reachability (k = 2), the agent can plan through an intermediate state that may
not be in the dataset (indicated by dotted arrows). Assuming perfect knowledge of the dynamics for this
illustrative example, a hypothetical two-step state-constrained policy can successfully connect all starting
points to the goal region (Figure 4c), demonstrating improved trajectory stitching capabilities.

Potential challenges While promising, extending state-constrained RL to multiple steps also introduces
significant practical challenges, primarily stemming from reliance on the learned dynamics model fω1 . Key
challenges and potential research directions include:

• Model error accumulation: Errors in fω1 compound over longer rollouts (k > 1), leading to
inaccurate state predictions and potentially unreliable value estimates for the k-step paths.

• Handling uncertainty: Effectively leveraging multi-step rollouts requires managing this model
uncertainty. Potential approaches include incorporating pessimism into value estimates based on

26

Under review as submission to TMLR

(a) Maze and Dataset (b) SCQL: 1-step reachable policy (c) SCQL: 2-step reachable policy

Figure 4: Comparison of one-step and two-step state reachability SCQL methods on a simple maze envi-
ronment. (a) The maze is a 10 by 10 grid where the coordinate values (x, y) represent the state. The high
reward region is represented by a star and maze walls are represented by red grid squares. The dataset is
composed of 4 trajectories represented by the dotted lines where the white circle is the starting state and the
black circle is the final state. (b) The final policy when applying one-step reachable SCQL to the dataset.
(c) The final policy when applying two-step reachable SCQL to the dataset, where dotted arrows represent
transitions through a state that is not in the dataset.

rollout uncertainty (Yu et al., 2020; Rigter et al., 2022), using model ensembles to quantify confidence,
or dynamically adapting the rollout horizon k based on model reliability.

• Computational cost: Finding and evaluating all k-step reachable paths terminating in D can be
computationally demanding. Efficient search or sampling techniques would be crucial. Graph-based
search algorithms operating on the state space defined by the learned model could offer an alternative
to simple rollouts for finding paths back to D.

• Algorithmic integration: Developing robust Q-learning or policy optimization methods that
correctly incorporate these multi-step, state-constrained value estimates is non-trivial, especially
when considering the complexities of planning or differentiating through model rollouts.

Exploring these multi-step extensions involves balancing the benefit of connecting more distant states against
the cost and unreliability of longer model-based rollouts. This intersection of model-based planning and
offline constraints presents a rich area for future investigation within the state-constrained RL paradigm.

27

	Introduction
	Preliminaries
	State-constrained QSS-learning
	Theoretical foundations
	An illustrative example: maze navigation

	Practical implementation: StaCQ
	Estimating state reachability
	StaCQ

	Related work
	Experimental results
	Discussion and conclusions
	Missing proofs
	Reducing the complexity of state reachability estimation
	Implementation details
	One-step method
	Estimating QSS-values
	Policy extraction step
	One step method implementation details

	Consistent hyperparameter experiment
	Ablation study: exploring the effect of the reachability metric
	Learning curves for StaCQ
	Multi-step reachability: potential extensions and an illustrative example

