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ABSTRACT

Link prediction (LP) is a crucial task in graph-structured data, aiming to estimate the
likelihood of non-observable links based on known graph structure and node/edge
features. Despite the success of Graph Neural Networks (GNNs) in solving graph-
level tasks, their results, compared to classical methods, are worse in solving
node-level tasks such as LP. The main reason lies in the limitations of Message
Passing GNNs (MPNNs), the most common technique used in GNNs. One of the
main limitations of MPNNs is their inability to distinguish between some graphs,
e.g., k-regular graphs. Discriminating between k-regular graphs lets us count the
sub-structures and triangles, which are crucial in the success of classical methods
for the LP task. Encoding link representation instead of node representation can
solve this problem, but the previous methods are prohibitively expensive and thus
impractical. We propose a novel light learnable eigenbasis to encode the link
representation and induced subgraphs (sub-structures) efficiently and explicitly.
We propose formulating the linear constraints as the eigenvalue problem with linear
constraints. We efficiently implement our proposed convolutional layer with a
novel learnable Lanczos algorithm with linear constraints, LLwLC. Specifically,
we introduce Neumann eigenvalues and encode its corresponding constraints to the
eigenbasis. Given the Neumann constraints, the Neumann basis splits the nodes
into two (one-hop and two-hop away nodes) and efficiently encodes the relation
between them. We also investigate the effect of encoding different linear constraints
(subgraphs). Although our theoretical results apply to many problem settings, we
report our results on link prediction tasks achieving state-of-the-art in benchmark
datasets.

1 INTRODUCTION

We observe the ubiquitous existence of graphs in different applications such as social net-
works Adamic & Adar (2003), citation networks Shibata et al. (2012), knowledge graph construc-
tion Nickel et al. (2015), metabolic network reconstruction Oyetunde et al. (2017), and recommender
systems (Monti et al. (2017); Nickel et al. (2014)). Recent state-of-the-art methods to process graph-
structured data are based on graph neural networks (GNNs) Kipf & Welling (2016). Spatial GNNs
primarily utilize the MPNN Gilmer et al. (2017) frameworks mainly because of their simplicity and
scalability. However, their performance is worse than classical methods in node-level tasks (e.g., LP)
due to their limited expressive power. MPNNs, based on neighborhood aggregation schemes, are at
most as expressive as classical Weisfeiler-Lehman (1-WL Weisfeiler & Leman (1968)) test Xu et al.
(2019); Morris et al. (2019) thus not capable of discriminating between some graphs, e.g., k-regular
graphs. Chen et al. (2020) proved that MPNNs cannot count connected subgraphs with three or more
nodes that form cycles. Distinguishing between k-regular graphs and counting the sub-structures and
triangles are crucial to the success of classical methods for the LP task Chamberlain et al. (2022).
Specifically, the subtrees MPNN build are the same for both subgraphs in Figure 1.

One major reason for inexpressiveness in MPNNs is their incapability to count cycles. To address
this issue, the solutions fall into three main directions: Aligning to the k-WL hierarchy Maron
et al. (2019b); Keriven & Peyré (2019); Azizian & Lelarge (2021), augmenting node features with
identifiers, or utilizing the structural information that cannot be captured by the WL test Bodnar et al.
(2021b;a). Our proposed solution falls into the last category.

Subgraph GNNs (SGNNs) are state-of-the-art for solving expressivity in MPNNs. SGNNs Bevilacqua
et al. (2022); Guerra et al. (2022) enrich GNN features by encoding extracted SGNNs as new features
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constraint-1 0 0 1 1 −1 −1 0 0 0 0 0 0 1 1 −2 0 0 0 0 0

constraint-2 2 2 2 2 0 0 0 0 0 0 2 2 2 2 0 0 0 0 0 0

eigenvector-1 0.24 −0.46−0.40 0.61 −0.03 0.25 −0.19−0.25−0.13−0.05 0.36 0.23 −0.39−0.20−0.29−0.40−0.34−0.25−0.27−0.36

Figure 1: Two k-regular subgraphs with their corresponding Neumann constraints (constraint-1 and constraint-2) and LLwLC computed
Neumann eigenvector (eigenvector-1). For the two k-regular subgraphs, the MPNN makes the same tree, while our proposed eigenbasis (LLwLC)
can distinguish between them. The red, teal, and blue nodes are the query, one-hop-away, and two-hop-away nodes. The sum of the dotted edges
(first Neumann constraint:

∑
x∼y

(f(x) − f(y) = 0) is zero.

and passing them to the GNN architecture. Previous works did the pre-processing steps to encode the
information about the set of nodes and lifting graphs into simplicial or cell complexes Bodnar et al.
(2021b;a)). However, they require an expensive pre-computation stage in the worst-case scenario.
Also, Bevilacqua et al. (2022) considered a set of nodes a new set of features. They equivariantly
encoded the subgraphs extracted with the fixed policy and injected it into the GNN architecture as a
new set of features. Despite their success, they are prohibitively expensive and exhaustive.

We propose a novel method to encode the subgraphs into our proposed GNN model. Our method
stems from graph signal processing (GSP) Ortega et al. (2018) and spectral graph theory Chung &
Graham (1997). We introduce a new eigenbasis, Learnable Lanczos Layer with Linear Constraints
(LLwLC), that encodes the linear constraints, mainly the extracted subgraphs, into the basis. We
devise our proposed low-rank approximation Eckart & Young (1936) of the Laplacian matrix based
on the Lanczos algorithm with linear constraints Golub et al. (2000).

The new basis makes the features more expressive by explicitly encoding the linear constraints
over the graph. We investigate linear constraints with different subgraph extraction policies. We
mainly conduct our experiments with the vertex-deleted subgraphs and Neumann eigenvalue con-
straints Chung & Graham (1997). The former is beneficial to show that LLwLC is a universal
approximator (specifically with a few linear constraints). The latter is beneficial by encoding the
boundary conditions of the input graph as new linear constraints into the eigenbasis (link representa-
tion between one hop and two hop away nodes leads to counting the triangle and substructures). The
Neumann constraints let GNNs distinguish between the k-regular graphs from each other, as shown
in Figure 1.

Theoretically, LLwLC can be conducted in many problem settings. We analyze its effectiveness on
challenging LP tasks where addressing k-regular graphs and counting the substructures are crucial
for their success. SEAL Zhang & Chen (2018) and BUDDY Chamberlain et al. (2022) considered
subgraphs to encode information for the LP task. However, neither SEAL nor BUDDY, which only
leverages oversimplified pairwise node representation features, have enough expressive capability to
distinguish between input graphs.

The main contributions of our paper are (i) Formulating an eigenvalue problem with linear constraints
utilizing the Lanczos algorithm with the linear constraints and proposing a novel light learnable
eigenbasis to encode sets of linear constraints (induced subgraphs) into the basis (LLwLC). (ii)
Proposing and investigating the Neumann eigenvalue constraints in our new eigenbasis (not only it
encodes the induced subgraphs but also the link representation). (iii) We provide a rigorous theoretical
analysis of our proposed eigenbasis LLwLC. (iv) We show our method is a universal approximator
(as expressive as the k-WL test) with linear order of complexity w.r.t input graph nodes.

2 PRELIMINARIES.

Notations. G(V,E,X) is a graph with vertex set V , edge set E, and node features X ∈ R|V |×d.
Each column of X : xv ∈ Rd refers to the features on the node v ∈ V . A and D are the graph
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adjacency and graph degree matrices on G, respectively. L = D−A is the graph Laplacian on G. n
is the number of nodes. dx is the degree of node x in G.

Lanczos Algorithm with Linear Constraints. For a given symmetric matrix L ∈ Rn×n and a
randomly initialized vector ν ∈ Rn, the N-step Lanczos algorithm computes an orthogonal matrix
Q ∈ Rn×m and a symmetric tridiagonal matrix T ∈ Rm×m, such that Q

⊤
LQ = T. We denote

Q = [q1, . . . ,qN ] where column vector qi is the i-th Lanczos vector. T is the tridiagonal matrix
with the eigenvector and eigenvalue matrices B ∈ Rm×m and R ∈ Rm×m, respectively. Q
forms an orthonormal basis of the Krylov subspace KN (L,b) and its first K columns form the
orthonormal basis of K(L,x). By investigating the j-th column of the system LQ = QT and
rearranging terms, we obtain Lqj = βj+1qj+1 + βjqj−1 + αjqj , and the first j steps of the
Lanczos process take the form LQj = QjTj + βj+1qj+1e

⊤

j Liao et al. (2019). Having the linear
constraint changes the plain Lanczos algorithm (Algorithm 1) by replacing uj = Lqj − βjqj−1 with
uj = pj − βjqj−1 assuming the initial vector ν is projected into the null space of the constraints
(ν ∈ N (C

⊤
)) Golub et al. (2000). If we project the initial vector ν into null space of the constraint

matrix ν1 = Pν ∈ N (C
⊤
) and notice the mathematical equivalence between computing the smallest

eigenvalue of the constraint Ap = P
⊤
LP and L then one step of the Lanczos algorithm with the

linear constraints is βj+1qj+1 = PLPqj − βjPqj−1 −αjPqj = P(Lqj − βjqj−1 −αjqj). This
means projecting to the null space of the constraint matrix in each step of the algorithm.

Proposition. If we start simple Lanczos with ν ∈ N (C
⊤
), then qj ∈ N (C

⊤
) for all j.

Spectral Graph Convolutional Networks. The early graph learning models rooted in graph signal
processing (GSP) Ortega et al. (2018), trying to generalize signal processing convolution operators on
graphs. Among definitions of frequency representations of graph signals Ortega et al. (2018), which
are grounded on spectral graph theory Chung & Graham (1997) and graph wavelet theory Hammond
et al. (2011), the spectral graph theory-based one is most popular. It defines the graph Fourier
transform and its inverse based on the eigenbasis of the graph Laplacian. The graph Laplacian L
is positive semi-definite and can be factored as L = UΛU⊤, where U = [u1, . . . ,un] ∈ Rn×n

denotes the matrix of eigenvectors, sorted according to their eigenvalues. Further, the matrix Λ is a
diagonal matrix with Λi,i is a λi, where λi denotes the ith eigenvalue. For a graph signal x ∈ Rn, the
graph Fourier transform Shuman et al. (2013) and its inverse are U⊤x and Ux, respectively. Hence,
the graph Fourier transform is an orthonormal (linear) transform to the space spanned by the basis of
the eigenvectors in U. Based on this observation, spectrum-based methods generalize convolution
to graphs. Hence, the graph convolution is U(U

⊤
x ∗U⊤

y) = Ug(Λ)U
⊤
x, where y is the graph

filter, g is the function applied over the eigenvalue matrix Λ to encode the graph filter, and ∗ is the
elementwise multiplication. The seminal spectral GCN method Bruna et al. (2013) defined g(Λ) to
be Θi,j . However, the eigendecomposition is cubic in the number of nodes. To address this, different
g functions were defined Henaff et al. (2015); Kipf & Welling (2016). Hammond et al. (2011)
estimated the graph filter with the Chebychev function. Kipf & Welling (2016) made the Chebyshev
Spectral GCNs more scalable by setting x ∗ gθ ≈ Θ(In +D− 1

2AD− 1
2x). The drawbacks of Kipf &

Welling (2016) are that first, it only propagates information from any node to its nearest neighbours,
i.e., nodes that are one-hop away, and second, no learnable parameters are associated with the graph
Laplacian L. The only learnable parameter is a linear transform applied to every node simultaneously.
There are only two ways to consider k-hops away nodes with ChebychevNet Kipf & Welling (2016):
either stacking layers on top of each other (which leads to over-smoothing Li et al. (2018)), or
computing the powers of L, which is computationally expensive. Instead, LanczosNet Liao et al.
(2019) utilizes the Lanczos algorithm and proposes a spectral GCN model to leverage multi-scale
information via fast-approximated computation of matrix power and have learnable spectral filters.
Like previous spectral and spatial GCNs, LanczosNet does not encode the relation between sets of
nodes (subgraphs) and link representation. Thus, their features have limited expressivity, which leads
to, e.g., not being able to distinguish between the k-regular graph.

To address the above issues and make features more expressive, our approach advocates using a novel
learnable spectral basis encoding the subgraphs (as linear constraints). Specifically, we investigate
the Neumann eigenvalue constraints as a new basis for our proposed GNN architecture. We formulate
it as an eigenvalue problem with linear constraints utilizing the Lanczos algorithm with the linear
constraints Golub et al. (2000) to solve it. In the next section, we describe our method in detail.
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L, C

Proj. into N (C)

Solve Least Square Eq.

T,Q

LLwLC

R,B = evd(T)

Λ̂ = MLP(R), V̂ = (Q · B)

(V̂Λ̂V̂⊤)XW

Figure 2: In each block, the low-rank approximation of the graph Lapla-
cian matrix (L) is estimated with the constraints (C) encoded in it. To
compute the Lanczos algorithm with the linear constraints, in each step,
we project into the null space of the constraint matrix (N (C⊤)) and
solve the least square equation with the QR method.T is the tridiagonal
matrix which its eigendecomposition returns eigenvalue matrix (R) and
eigenvector matrix (B). Finally, by applying multi-layer perceptron
(MLP) over R and reconstructing V, we have LLwLC eigenbasis. X
and W are feature and weight matrix, resepectively.

Algorithm 1 LLwLC. Differences between the Lanczos-
Net and LLwLC are shown in red.
input :L,P, ν, κ, ϵ
init :ν1 = P(ν), β1 = ∥ν1∥2, q0 = 0.
For j = 1 to κ:

qj =
νj

βj

uj = Lqj − βjqj−1

αj = u⊤
j qj

pj = P(Lqj)→ LSQR
uj = pj − βjqj−1

νj+1 = uj − αjqj

βj+1 = ∥νj+1∥2
If βj+1 ≤ ϵ, quit

Q = [q1, . . . , qκ]
Construct T
Eigen decomposition T = BRB⊤

Return V = Q ·B and f(R)

3 METHOD

We introduce the novel eigenbasis learnable Lanczos algorithm with the linear constraints
(LLwLC). It encodes the relation between a set of nodes/edges by projecting the eigenbasis to the
null space of the constraints matrix. LLwLC is a low-rank approximator that simultaneously encodes
the constraints (relation between a set of nodes) into the eigenbasis and learns the filters based on the
new eigenbasis, which leads to more expressive features.

In the following, first, we explain how we compute the LLwLC eigenbasis, full block, and the full
pipeline architecture. Then, we explain the subgraph extraction policies. Finally, we prove the
convergence of LLwLC, the novel low-rank approximation eigenbasis.

3.1 LLWLC

To devise our proposed eigenbasis, we have to solve a large sparse symmetric eigenvalue problem with
homogeneous linear constraints Golub et al. (2000), where C ∈ Rn×l with n ≫ l is the constraint
matrix:

min
C⊤x=0,x ̸=0

x
⊤
Lx

x⊤x
. (1)

As discussed in Golub et al. (2000), Equation (1) is mathematically equivalent to computing the
smallest eigenvalue of the constraint P⊤LP of matrix L on the null space N (C⊤) of C⊤, where
P is the orthogonal projector onto N (C⊤). To solve Equation (1), Golub et al. (2000) derived an
inner-outer Lanczos process in Algorithm 1. The algorithm breaks into two parts: the outer and the
inner loop, where the outer one is the loop in the simple Lanczos algorithm and the inner one is the
loop to solve the least square problem of P(b) = min

y∈Rl
∥Cy − b∥2, where y = C†b and b = L̂qj .

Orthogonal Projector. As mentioned by Golub et al. (2000), if the constraint matrix, C, is dense, then
P is produced by computing the QR decomposition of C. For the sparse case, if dim(N (C⊤)) ≈ n,
P = I − CC†, where C† is the Moore-Penrose inverse of C. Because of the full column rank
assumption on C, we have C† = (C⊤C)−1C⊤ ( Björck (1996); Stewart & Sun (1990)).

In contrast to the iterative approach of Golub et al. (2000) to solve the least square equation

Cy = b, (2)

given that our constraint matrix is sparse and not large, we utilize the PyTorch framework, which
internally uses the direct method of QR factorization Anderson et al. (1992). Thus, it is numerically
stable, and we can backpropagate through it.
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Full Block. We build our complete block, shown in Figure 2. By computing the eigenbasis using the
proposed algorithm 1, we learn the features in each block with

σ(Vf(R)V⊤XW) = σ(L̂XW), (3)

where V = Q ·B. We define f to be multi-layer perceptrons (MLPs) over the Ritz values of each
block (diagonal matrix R). With the learned filters, we reconstruct our new basis and transform
the graph signals, X ∈ Rm×n, to this new basis to learn the features that satisfy our constraints.
W ∈ Rn×m is the learnable weight. σ is the non-linearity we apply in each block where we set it to
LeakyReLU in our experiments.

Full Architecture. We build our complete pipeline by stacking the LLwLC blocks Figure 2 explained
above, followed by a global sort pooling Zhang et al. (2018) and a fully connected block in the last
layer. The final output is one value (y) corresponding to the existence of the edge. We increase the
number of blocks in our pipeline by reusing the eigenbasis we computed once and applying an MLP
layer on top of the Ritz eigenvalues.

MPNNs also lose information about the distance between multiple nodes. To make MPNN approaches
more expressive, we, same as SEAL Zhang & Chen (2018) and BUDDY Chamberlain et al. (2022),
use DRNL, a deterministic instance attribute. As we explained, although LLwLC, in theory, is
applicable to different problems, we do experiments in link prediction tasks to show the effectiveness
of considering substructures. So, as shown in previous works Zhang & Chen (2018); Chamberlain
et al. (2022), considering only two hops away nodes suffices. However, there is no limit to increasing
the number of hops because C only needs to be full column rank.

3.2 SUBGRAPH EXTRACTION POLICY.

As defined in ESAN Bevilacqua et al. (2022), the subgraph selection policy is a function π : G →
P(G), assigned to each graph, where G be the set of all graphs with n nodes or less and P(G) be its
power set. Although any linear constraint in the input graph satisfying full rank assumption can be
encoded in C, we propose the following subgraph extraction policies.

Neumann Eigenvalue. The ith Neumann eigenvalue Chung & Graham (1997) is

λS,i = inf
f

sup
f ′∈Ci−1

∑
x∈S

f(x)Lf(x)∑
x∈S

f2(x)dx
s.t.

∑
y∈S,y∼x

(f(x)− f(y)) = 0
∑
x∈S

f(x)dx = 0

This can be formulated into

min
f∈Rn

f⊤Lf subject to ∥f∥ = 1 and C⊤f = 0, (4)

where L ∈ Rn×n is symmetric and large sparse matrix, and C ∈ Rn×l with n ≥ l is large sparse and
of full column rank. f : S ∪ δS → Rn is the Neumann eigenvector. The vertex boundary, δS, of an
induced subgraph, consists of all vertices that are not in S but adjacent to some vertex in S. This is
the specific case of an eigenvalue problem with the linear constraints, shown in Equation 1.

Theorem 1. Neumann’s features are more expressive than MPNN’s features. Besides addressing the
node automorphism problem, we can distinguish the k-regular graphs from each other, which leads to
more expressivity in GNNs.

Constraints C. The sufficient conditions under which LLwLC can solve graph isomorphism entails
that LLwLC is a universal approximator of functions defined on graphs Chen et al. (2019). Given
that we can encode any subgraph into our eigenbasis, we can examine whether a specific substructure
collection can completely characterise each graph. By the reconstruction conjecture Ulam (1960), we
know that we can reconstruct the graph if we have all the n− 1 vertex deleted subgraphs.

Theorem 2. If the reconstruction conjecture holds and the substructure collection contains all graphs
of size k = n−1 with the form of

∑
x∈S

f(x)dx = 0 (for every vertex-deleted subgraph S), then LLwLC

can distinguish all non-isomorphic graphs of size n and is therefore universal.
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Based on Bollobás (1990), almost every graph has reconstruction number three. Thus, we do not need
to extract all the n − 1 vertex-deleted subgraphs. This is consistent with our experimental results,
where we observed that certain small substructures such as Neumann constraints (or in the other
ablation study with only ten vertex-deleted subgraphs) significantly improve the results.

3.3 LLWLC CONVERGENCE.

Perturbation and Error Study. The accuracy of the linear least square problem using QR factoriza-
tion depends on the accuracy of the QR factorization. As Zhang et al. (2020) discussed, two types
of accuracy error are crucial in QR factorization when solving linear least square problems: The
backward error for a matrix Z is ∥Z−Q̂R̂∥

∥Z∥ and the orthogonality of Q̂ is ∥I− Q̂
⊤
Q̂∥. Ideally, both

numerical errors should be zero, but due to roundoff errors and potential loss of orthogonality of
Gram-Schmidt QR, the QR factorization might not be accurate enough to solve the linear least square
problem.

The inexact QR factorization to solve Equation 2 will affect the accuracy of both the Lanczos vectors
and the tridiagonal matrices generated. So the computed tridiagonal matrix Tj is a perturbed one of
the theoretical tridiagonal matrix, say T∗

j , generated by exact Lanczos iteration is Tj = T∗
j +Ej ,

where Ej is the perturbation matrix after the j-th step. The following theorem represents the error
bounds of the computed perturbed tridiagonal matrix compared to the theoretical exact solution of
the tridiagonal matrix T after the jth step of the Lanczos algorithm.

Theorem 3. Let U and Ũ be the eigenspaces corresponding to the smallest eigenvalues λ and λ̃
of the symmetric matrices L and L̃ = L + E, respectively. Then for any u ∈ U and ũ ∈ Ũ with

∥u∥2 = 1 and ∥ũ∥2 = 1, we have λ̃−λ ≈
j∑

i=1

Ej(i, i)u(i)
2 +2

j−1∑
i=1

Ej(i, i+1)u(i)u(i+1), where

Ej(s, t) is the (s, t) element of Ej .

Greenbaum’s Results Greenbaum (1989). The tridiagonal matrix Tj generated at the end of the jth

finite precision Lanczos process satisfying LQj = QjTj + βj+1qj+1e
⊤

j +Fj , where e
⊤

j is a vector
with the jth component one and all the other components zero, F = (f1, . . . , fj) is the perturbation
term with ∥fj∥2 ≤ ϵ∥L∥2, ϵ ≪ 1, is the same as that generated by an exact Lanczos process but with
a different matrix L̃. The matrices L and L̃ are close in the sense that for any eigenvalue λ(L̃) of
L̃, there is an eigenvalue λ(L) of L such that |λ(L̃)− λ(L)| ≤ ∥Fj∥2. Therefore, in our case with
the constant accuracy of the QR factorization, we can show PLPQ̃j = Q̃jTj + βjq̃j+1e

⊤

j + F̃j ,

where F̃j = O(η) with η corresponds to the accuracy of the QR method for solving the least square
equation.

Theorem 4. Let UΛU⊤ be the eigendecomposition of an n × n symmetric matrix L with
Λi,i = λi, λ1 ≥ · · · ≥ λn and U = [u1, . . . ,un]. Let Uj ≡ span{u1, . . . ,uj}. Assume κ-
step Lanczos algorithm starts with vector ν and outputs the orthogonal Q ∈ Rn×κ and tridiag-
onal matrix T ∈ Rκ×κ. For any j with 1 < j < n and κ > j, we have ∥L − QTQ⊤∥2F ≤
1∑

j=i

λ2
i

(
sin(ν,Ui)Π

j−1
k=1(λk−λN )/(λk−λj)

cos(ν,ui)TK−i(1+2γi)

)2

+

j+1∑
N=i

λ2
i , where TK−i(x) is the Chebyshev Polynomial of

degree K − i and γi = (λi − λi+1)/(λi+1 − λN ).

Based on Greenbaum’s results Greenbaum (1989), we know that for our computed perturbed Lanczos
algorithm exists an exact Lanczos algorithm but for a different matrix. Based on Theorem 4, we also
cognize the upper bound of the low-rank approximator of the Lanczos algorithm. Therefore, the
perturbed Lanczos algorithm, caused by the inaccuracy of the QR method for solving the least square
equation, converges to the upper bound of the low-rank approximation of the symmetric matrix of the
exact Lanczos algorithm.
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CORA CITESEER PUBMED COLLAB VESSEL
METRIC HR@100 HR@100 HR@100 HR@50 ROC-AUC

CN 33.92 29.79 23.13 56.44 48.49
AA 39.85 35.19 27.38 64.35 48.49
RA 41.07 33.56 27.03 64.00 N.A.

GCN 66.79 67.08 53.02 44.75 43.53
SAGE 55.02 57.01 39.66 48.10 49.89

NEO-GNN 80.42 84.67 73.93 57.52 N.A.
SEAL 81.71 83.89 75.54 64.74 80.50
NBFNET 71.65 74.07 58.73 OOM N.A.
BUDDY 88.00 92.93 74.10 65.94 55.14

LLWLC 91.44 93.40 83.10 66.86 79.60
# PARAMS. 0.019M 0.018M 0.024M 0.026M 0.019M

Table 1: Results on link prediction benchmarks; LLwLC with only Neumann Constraints. The colors denote the best and second-best models.
We train LLwLC with 10% of the VESSEL dataset.

4 EXPERIMENTS.

We extensively evaluate our proposed LLwLC against traditional heuristics (CN Barabási & Albert
(1999), RA Zhou et al. (2009), AA Adamic & Adar (2003)); vanilla GNN (GCN Kipf & Welling
(2016), SAGE Hamilton et al. (2017)); GNNs modifying the input graph of MPNN (SEAL Zhang &
Chen (2018), NBFNet Zhu et al. (2021)); and GNNs with manual features as pairwise representations
(Neo-GNN Yun et al. (2021), BUDDY Chamberlain et al. (2022)). Their results are from Chamberlain
et al. (2022). We use four link prediction benchmarks. Three are the Planetoid citation networks
Cora, Citeseer, and Pubmed (Yang et al. (2016)). The other one is ogbl-collab from the Open Graph
Benchmark (Hu et al. (2020)). Dataset statistics and splits are shown in Appendix A.1. Baseline
results for ogbl-collab are taken directly from the OGB leaderboard.

Setup. The learning rate in all experiments is 0.0001. All results are reported after 20 epochs. The
MLP block applied on top of the Ritz values consists of two MLP layers (32 channels each) followed
by the non-linearity (LeakyReLU) and the dropout. We fix the number of eigenpairs to be 10 at
maximum, and in case less than the constant value, we pad it with 0. We implement all methods
using PyTorch Paszke et al. and PyTorch Geometric Fey & Lenssen (2019). In the training phase, the
training loss is the binary cross entropy (BCE) between the output prediction ŷ and the ground-truth
signal y; L : BCE(ŷ, y). Like SEAL Zhang & Chen (2018), we make the positive and negative testing
data by randomly removing 10% of existing links from each dataset and randomly sampling the same
number of nonexistent links, respectively. We also make the training data leveraging the remaining
90% of existing links and the same number of additionally sampled nonexistent links.

Link Prediction Results. Table 1 shows that our new eigenbasis LLwLC is a robust framework for
link prediction and achieves a strong performance on link prediction benchmarks. With only 0.02M
parameters, we outperform the previous models on the standard Planetoid dataset. This means the
information provided by utilizing subgraph structures and encoding a subset of node relations leads
to better results for predicting a link between two nodes in Cora, CiteSeer, and PubMed.

Also, we achieve state-of-the-art on the more complicated and real-world dataset Collab with only
0.02M parameters (compared to BUDDY Chamberlain et al. (2022) and SEAL Zhang & Chen (2018)
with 1.10M and 0.50M parameters respectively). When we increase the number of blocks with only
0.03M parameters, we achieve 67.50 HR@50. In all experiments on this dataset, like the previous
works, we only utilized 15% of the training dataset during the training phase to train our model. Also,
on the Vessel dataset, we achieve on-par results with SEAL while only training with 10% of the
training dataset and only 0.019M (less than 1% parameters).

Time Complexity. The time complexity of our method is O(κE) + O(k2n) for the outer loop
(Lanczos algorithm) and the QR factorization, respectively, where κ ≪ n is the number of computed
eigenvectors and k ≪ n is the number of linear constraints. Thus, we are linear w.r.t number of
nodes. The comparison between the time complexity of LLwLC and the previous ones is represented
in Table 3. The more interesting comparison would be with the higher-order universal approximator
GNNs Maron et al. (2019a) with the time complexity of O(nk)). In Theorem 2, we show that if the
reconstruction conjecture holds and we have all the n− 1 vertex-deleted subgraphs, then LLwLC is
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Collab Cora PubMed
Metric HR@50 HR@100 HR@100
# Params. 0.026M 0.019M 0.021M

LanczosNet Liao et al. (2019) 42.58 90.80 77.18
LLwLC w. Neumann Constraints 66.86 91.44 83.10
LLwLC w. 10 Constraints 69.40 93.10 82.28

Two-block LLwLC w. Neumann Const. 67.50 # Params 0.035M

Table 2: Results on link prediction benchmark datasets with different numbers of vertex-deleted subgraphs as constraints. The color denotes
the best model.

Complexity SEAL BUDDY NBFNet LLwLC

Preprocessing O(1) O(lE(d+ h)) O(1) O(1)
Training (1 link) O(Ed2) O(l2h+ ld2) O(Ed+ nd2) O(κE + k2n)
Inference O(Ed2) O(l2h+ ld2) O(Ed+ nd2) O(κE + k2n)

Table 3: Time Complexity. n and E are the number of
nodes and edges with d-dimensional node features, l hops
considered for propagation, and sketches with size h (in
BUDDY). κ is the number of eigenvectors and k is the
number of constraints.

Cora Citeseer Pubmed
Metric AUC AUC AUC

LanczosNet Liao et al. (2019) 94.5% 96.5% 97.2%
LLwLC (w. L & C) 97.0% 98.1% 98.3%

Table 4: Planetoid Datasets results with L (with
ground truth edge) with and w.o. Neumann constraints.
The color denotes the best model.

universal approximator with worst case time complexity O(n3) (as if k = n− 1). Also, based on the
results of Barabási & Albert (1999), we know that in practice, only a few constraints are required for
graph reconstruction. So, we are the first model to provide expressivity while having reasonable time
complexity (in practice, linear to number of nodes).

Ablation Studies. To show the effect of applying the constraints, we make the comparison between
the estimation of the basis with the ground truth Laplacian matrix L (edge given) and the approxi-
mation of the eigenbasis with the ground truth Laplacian matrix L and the Neumann constraints C.
We show the results on three benchmark datasets in Table 4. We observe that injecting the Neumann
constraints, C, significantly improves the results.

To analyse the effectiveness of our proposed layer, we study one block of LLwLC as shown in Figure 2
followed by a non-linearity, a global sort pooling layer, and a fully connected layer. The results are
in Table 4. LLwLC (with Neumann constraints) beats the LanczosNet Liao et al. (2019) (without any
linear constraints on the input graph) in all three benchmark datasets.

We conduct further experiments to see the effect of coupling more constraints to our architecture.
The experiments in Table 2 show the effects of increasing the number of constraints by utilizing
the vertex-deleted subgraphs. We observe that with only ten vertex-deleted subgraph constraints,
we can achieve state-of-the-art and improve the results on benchmark datasets. Specifically, on the
Collab dataset, the effect of constraints is remarkable (from HR@50 42.83 of LanczosNet without
any linear constraints on the input graph to HR@50 69.40 with ten constraints of vertex deleted
subgraphs. The results on the Cora dataset also show improvement from HR@100 90.80 to 93.10.
The results are on par between PubMed with Neumann Constraints and Pubmed with ten vertex
deleted subgraph constraints, while both improved the baseline results drastically). Our results align
with the theory we provide in Theorem 2. Theorem 2 shows that having n− 1 deleted subgraphs
as linear constraints leads to a universal approximator function. Favorably, we know that with
three vertex-deleted subgraphs, almost all graphs are reconstructible Bollobás (1990), which our
experiments support.

5 RELATED WORK.

Link Prediction. LP is a node-level task that by predicting missing or future links between pairs
of nodes, becomes a crucial question on graph-structured data. The LP methods fall into three
groups; heuristics Katz (1953); Newman (2001), unsupervised node embeddings or factorization
methods Menon & Elkan (2011), and graph neural networks (GNNs) Gilmer et al. (2017). Heuristics
and classical approaches are successful. Katz Katz (1953) measures the similarity between two
nodes based on the weighted counts of paths between them. PageRank Page et al. (1998) computes
the random walk probability. SimRank Jeh & Widom (2002) measures similarity considering the
similarity between the neighbors of the two nodes. Despite their success, they are task-specific and
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not generalizable. The embedding methods embed the nodes in the low dimension such that the
distance between the nodes is kept. Despite their scalability, they are not inductive and cannot be
tested in new graphs Perozzi et al. (2014); Grover & Leskovec (2016). Current LP approaches utilize
GNNs, but their results are slightly worse than classical methods. The reason behind this is the limits
on the expressivity power of the MPNNs, a commonly used approach in GNNs.

MPNN Expressivity. Measuring the expressivity power of GNNs involves addressing the graph
isomorphism problem, which has no P solution (NP-intermediate). 1-WL test Weisfeiler & Leman
(1968) solves graph isomorphism for most graph-structured data. MPNNs are at most as expressive
as the 1-WL test Xu et al. (2019); Morris et al. (2019); Li & Leskovec (2022). The 1-WL test fails to
distinguish only a few graph structures. This limitation is significant in real-world graph-structured
applications. In particular, the 1-WL test fails to distinguish isomorphism between attributed regular
graphs, measure the distance between different nodes, and count cycles Li & Leskovec (2022).
The solutions fall into four categories: injecting random attributes , injecting deterministic distance
attributes Zhang & Chen (2018), building higher order-GNNs Maron et al. (2019b), and subgraph-
based approaches. Injecting random attributes makes the same features assigned to different nodes
with the same substructure different, thus enabling the network to distinguish them. However, they
are not deterministic; thus, the neural network has difficulty generalizing. Deterministic positional
features (e.g. Zhang & Chen (2018)) argue that the incapability of the GNNs to encode the distance
between nodes in the input graph raises the above issues and addresses them by injecting deterministic
distance attributes. However, these methods assign different node features to isomorphic graphs and,
thus, are not generalizable in inference time Li & Leskovec (2022). In parallel, a line of research
discusses the expressivity of GNNs through subgraphs. For graph-level tasks, extracting subgraphs
enhances expressivity, e.g., ESAN Bevilacqua et al. (2022) proposed selecting a bag of subgraphs.
For the LP task, Surel Yin et al. (2022) and Surel+ Yin et al. (2023) also encode more expressive
features by considering subgraphs. However, they have to do it system level and offline. Leveraging
this, several graph convolution-based deep network models have been proposed Kipf & Welling
(2016); Susnjara et al. (2015); Liao et al. (2019).

Subgraph GNNs for Link Prediction. The first subgraph-based link prediction architecture is
the Weisfeiler Lehman Neural Machine (WLNM) Zhang & Chen (2017). SEAL Zhang & Chen
(2018) improves WLNM by replacing fully connected with graph convolutional layers and encoding
positional features by proposing the DRNL approach to improve the node labeling instead of utilizing
the Weisfeiler Lehman coloring. SEAL Zhang & Chen (2018) proves the sufficiency of information
in two hops away subgraphs by defining γ-decaying heuristics, which unifies the classical methods
to η

∑∞
l=1 γ

lf(x, y, l). 0 ≤ γ ≤ 1 is a decaying factor, η ≥ 0 is a constant or a function of γ that
is upper bounded by a constant, and f is a non-negative function of x, y, l under the given network.
Based on the γ-decaying heuristic, it shows that the crucial information for the classical methods
(e.g., Katz, PageRank, and SimRank) lies in two hops away nodes (given 0 ≤ γ ≤ 1 the increase to l
in γ-decaying heuristic makes the higher orders less effective). SEAL Zhang & Chen (2018) does not
encode the pairwise node representation. To compute the features without computational overhead,
Neo-GNN ( Yun et al. (2021)) and BUDDY ( Chamberlain et al. (2022)) decouple the pairwise
representation from node representation learning. By leveraging the extracted manual features as
pairwise representations, they only run MPNN on the original graph. While this leads to better
scalability, these pairwise representations are oversimplified.

6 CONCLUSION.

We propose a novel eigenbasis to encode the linear constraints (relations between nodes/edges in
the input graph) explicitly and efficiently. Thus, this new basis can address the limitations of the
MPNNs, e.g., their inability to distinguish between some graphs, e.g., between the k-regular graphs.
We specifically propose the Neumann constraints, which encode the edge relation between one-hop
and two-hop away subgraphs (this specific constraint can distinguish between k-regular graphs). Also,
it encodes the relation between the one-hop-away nodes. We also investigated the effect of encoding
the vertex-deleted subgraph constraints, which leads to improvement in benchmark datasets. We
provide a rigorous proof of convergence of the LLwLC eigenbasis. Also, we show that LLwLC is a
universal approximator while its complexity is linear w.r.t number of nodes. In future work, we will
investigate the effect of learning the linear constraints between nodes/edges of the input graph.
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Table 5: Properties of link prediction benchmarks. Confidence intervals are +/- one standard deviation.
Splits for the Planetoid datasets are random and Collab uses the fixed OGB splits.

CORA CITESEER PUBMED COLLAB

# NODES 2708 3327 18717 235868
# EDGES 5278 4676 44,327 1,285,465
SPLITS RAND RAND RAND TIME
AVG DEG 3.9 2.74 4.5 5.45
AVG DEG 15.21 7.51 20.25 29.70
1-HOP SIZE 12+/-15 8+/-8 12+/-17 99 +/-251
2-HOP SIZE 127+/-131 58+/-92 260+/-432 115+/-571

A APPENDIX

A.1 DATASET DETAILS.

The properties of the link prediction benchmarks used throughout our evaluations are presented
in Table 5.

A.2 THEORETICAL ANALYSES

Proof of Theorem 3. It is the immediate result of the following theorem discussed in Golub et al.
(2000).

Theorem 5. Let U and Ũ be the eigenspaces corresponding to the smallest eigenvalues λ and λ̃ of
the symmetric matrices A and Ã = A+E, respectively. Then

1. For any u ∈ U and ũ ∈ Ũ with ∥u∥2 = ∥ũ∥2 = 1,

ũ⊤Eũ ≤ λ̃− λ ≤ u⊤Eu.

2. For any ũ ∈ Ũ with ∥u∥2 = 1, there exists u ∈ U with ∥ũ∥2 = 1 such that

β ≤ ∥u− ũ∥2 ≤ β(1 +
β2

1 +
√
2
),

where β satisfies

max{0, ∥Eũ∥2−|λ̃−λ|
d̃max

, ∥Eu∥2−|λ̃−λ|
dmax

} ≤ β ≤ min{∥Eû∥2

d̃min
, ∥Eu∥2

dmin
}

with

d̃min = min{|λ̃− λ(A)||λ(A) ̸= λ},

d̃max = max{|λ̃− λ(A)||λ(A) ̸= λ},

dmin = min{|λ− λ(Ã)||λ(Ã) ̸= λ̃},

dmax = max{|λ− λ(Ã)||λ(Ã) ̸= λ̃}.

Proof of Theorem 4 As addressed by Liao et al. (2019); Parlett (1980), we have LQ = QT from
the Lanczos algorithm. Therefore,

∥L−QTQ
⊤
∥2F = ∥L− LQQ

⊤
∥2F = ∥L(I−QQ

⊤
)∥2F

Let P⊥
Q ≡ I − QQ

⊤
, the orthogonal projection onto the orthogonal complement of subspace

span{Q}. Relying on the eigendecomposition we have,
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∥L−QTQ
⊤
∥2F =

∥UΛU
⊤
(I−QQ

⊤
)∥2F =

∥ΛU
⊤
(I−QQ

⊤
)∥2F =

∥(I−QQ
⊤
)UΛ∥2F =

∥[λ1P
⊥
Qu1, . . . , λNP⊥

QuN ]∥2F ,

where we use the fact that ∥RA∥2F = ∥A∥2F for any orthogonal matrix R and ∥A∥2F = ∥A∥2F . Note
that for any j we have,

∥[λ1P
⊥
Qu1, . . . , λNP⊥

QuN ]∥2F =

N∑
i=1

λ2
i ∥P⊥

Qui∥2 ≤ λ2
i ∥P⊥

Qui∥2 +
N∑

i=j+1

λ2
i ,

where we use the fact that for any i, ∥P⊥
Qui∥2 = ∥ui∥2 − ∥ui −P⊥

Qui∥2 ≤ ∥ui∥2 = 1. Note that
we have span{Q} = span{ν,Lν, . . . ,LK−1ν} ≡ κK from the Lanczos algorithm. Therefore, we
have,

∥P⊥
Qui∥ = |sin(ui, κK)| ≤ |tan(ui, κK)|.

We finish the proof by applying the above lemma with A = L.

Proof of Theorem 1.
Definition 1 (Graph isomorphism and automorphism). Let G1 = (V1, E1), G2 = (V2, E2) be two
simple graphs. An isomorphism between G1, G2 is a bijective map Φ : V1 → V2 which preserves
adjacencies, that is: ∀u, v ∈ V1 : (u, v) ∈ E1 ⇐⇒ (Φ(u),Φ(v)) ∈ E2. If G1 = G2, Φ is called an
automorphism Chamberlain et al. (2022).

BUDDY Chamberlain et al. (2022) can distinguish between edges in different orbits (solves the node
automorphism problem) (see Figure 3). We also can address the problem because the one hop-away
nodes, two hop-away nodes, and the Neumann eigenvalue constraints are different in different orbits
of the C6 graph.

Figure 3: The C6 graph shows three different orbits with three different colors. Both BUDDY Chamberlain et al. (2022) features and our
proposed features can distinguish them.

BUDDY Chamberlain et al. (2022) features cannot improve the MPNN features to discriminate
between the 2-regular graphs Figure 4. Because the 1-hop and 2-hop structure features for nodes
1 and 2 are the same in both graphs. On the contrary, our proposed linear constraints (induced
subgraphs represented in constraint-1 in Figure 4) for the query nodes (1 and 2) in G1 differ from
those in G2. Thus, our proposed method is more expressive than all the previously proposed methods.
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Constraint-1 1. 0. 2. 2. 2. 2. 2. 2. 1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1. 2. 2. 2. 1. 0.

Constraint-2 0. 0. 1. 1. −1. −1. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. −1. −1. 0. 0. 0. 0. 0. 0.

Constraint-3 1. 1. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0. 1. 1. 2. 2. 0. 0. 0. 0. 0. 0. 0. 0.

Eigenvect-1 0.08 −0.01 0.04 −0.07−0.09 0.06 −0.25−0.08 0.72 0.13 0.58 −0.14 −0.14 0.46 −0.01−0.15−0.53 0.37 −0.34 0.00 0.27 −0.16 0.12 −0.31

Figure 4: Two k-regular subgraphs with their corresponding Neumann constraints and Neumann eigenvectors and linear constraints (induced
subgraphs). For the two k-regular subgraphs, the MPNN makes the same tree, while our proposed eigenbasis (LLwLC) can distinguish between
them.
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