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(a) Declarative interpretability (b) Aligned interpretability

Figure 1: Illustration of two paradigms for interpretability of end-to-end autonomous driving (AD)
systems through natural language. (a) The declarative interpretability does not utilize intermediate
outputs from AD systems, resulting in text that merely justifies the car’s driving behavior; (b) Aligned
interpretability incorporates intermediate outputs from the AD model for alignment.

Abstract:
End-to-end architectures in autonomous driving (AD) face a significant challenge
in interpretability, impeding human-AI trust. Human-friendly natural language has
been explored for tasks such as driving explanation and 3D captioning. However,
previous works primarily focused on the paradigm of declarative interpretability,
where the natural language interpretations are not grounded in the intermediate
outputs of AD systems, making the interpretations only declarative. In contrast,
aligned interpretability establishes a connection between language and the in-
termediate outputs of AD systems. Here we introduce Hint-AD, an integrated
AD-language system that generates language aligned with the holistic perception-
prediction-planning outputs of the AD model. By incorporating the intermediate
outputs and a holistic token mixer sub-network for effective feature adaptation,
Hint-AD achieves desirable accuracy, achieving state-of-the-art results in driving
language tasks including driving explanation, 3D dense captioning, and command
prediction. To facilitate further study on driving explanation task on nuScenes,
we also introduce a human-labeled dataset, Nu-X. Codes, dataset, and models are
publicly available at https://air-discover.github.io/Hint-AD/.
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1 Introduction

End-to-end perception-planning architecture is critical in autonomous driving (AD) [1, 2] and general
embodied intelligence [3, 4] due to its potential for self-supervised training with extensive data.
However, these systems face significant interpretability challenges [5, 6].

Interpretability issue [7, 8, 9, 10, 11] is particularly pronounced in embodied intelligence problems
such as AD. When an AD system directly outputs control signals, it becomes difficult for human

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://air-discover.github.io/Hint-AD/


passengers to trust the decisions. To address this, natural language, a highly user-friendly communi-
cation medium, has been explored to enhance interpretability through tasks like driving explanation,
3D dense captioning, and visual question answering (VQA). While human driver recognizes the
value of the bird’s eye view (BEV) trajectories as an explanation of WHAT is happening, language
offers a complementary perspective on WHY this is happening. These approaches can be categorized
into declarative interpretability and aligned interpretability based on a single criterion: whether the
generated language aligns with the intermediate outputs of the AD system (Fig. 1).

• Declarative interpretability generates natural language directly without intermediate inputs
from the AD system, as in recent works on driving explanation [12, 13, 14], 3D dense
captioning [15], and visual question answering [16, 17, 18, 19]. This approach often suffers
from hallucination, as the language is not grounded in comprehensive intermediate outputs,
making it mere justification of the driving behavior.

• Aligned interpretability requires alignment between language and the inner states of the
AD model. To our knowledge, this approach was first explored by [14], aligning attention
states of the AD model with a language decoder. Later works aligned the language decoder
with the inner decision states [20].

However, existing research neglects the correspondence between the language decoder and the
complete perception-prediction-planning outputs of an AD pipeline, resulting in a discrepancy
between the language tasks and AD tasks. The potential to enhance the accuracy of language tasks
in driving scenes through intermediate AD pipeline outputs remains unexplored. To this end, we
propose Hint-AD, an integrated AD-language framework designed for holistic alignment with the AD
model’s perception-prediction-planning process and high-accuracy language generation to facilitate
the interpretability in autonomous driving.

We developed two approaches for the holistic alignment between language and the AD model and
the accuracy of language outputs: (a) We develop a holistic token mixer module that adapts the
intermediate output tokens from the AD model for the language decoder, focusing on robust feature
extraction and fusion; (b) We introduce an alignment task as an online dataset to align the language
output with the intermediate outputs of the AD model, requiring the language decoder to interpret
intermediate tokens generated during the AD model’s inference process throughout training.

We implemented Hint-AD on both UniAD [2] and VAD [21], state-of-the-art (SOTA) AD models
utilizing rasterized and vectorized representations, respectively, to demonstrate its generality. Ex-
perimental results show that Hint-AD achieves state-of-the-art performance on various language
tasks, including driving explanation (20.4% on CIDEr than baseline), 3D dense captioning (185% on
CIDErthan baseline), VQA (1.2 percent improvement on accuracy), and driving command prediction
(1.2 percent improvement of accuracy). The alignment tasks significantly improved coherence be-
tween language outputs and intermediate AD model representations. Additionally, we contributed a
human-labeled driving explanation dataset, Nu-X on nuScenes [22] to address the lack of driving
explanation data on this widely-used AD dataset.

2 Related Works

End-to-end autonomous driving systems aim to create an architecture that processes sensor data
and directly outputs vehicle control signals [23]. These systems have gained research attention due
to their ability to address error accumulation problems found in traditional modular designs, where
perception and planning are separated into distinct modules [24, 25, 26, 27, 28, 29, 30, 31, 32].
Prominent examples include UniAD [2] and VAD [21] integrate modular perception tasks such as
object tracking, map building, motion forecasting, and trajectory planning within a unified framework.
Offline datasets for end-to-end autonomous driving have also been developed [22, 33].

Interpretability of AD [5, 6, 7, 8], the ability to provide a comprehensive explanation for AD
planning, is crucial for user trust and system transparency in AD systems [5, 6]. Natural language, as a
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user-friendly medium for communicating with users, has been explored for improving interpretability
of AD through by means like driving explanation [12, 13, 14], VQA [16, 17, 18, 19], and 3D dense
captioning [15]. Previous work mainly focused on declarative interpretability, For example, [12, 34]
realized driving explanation tasks using visual information. But intermediate outputs from AD model
is not aligned. [14] raised the concept that the language output should be grounded on the inner states
of an AD system. Aligning the decision state between the language decoder and the inner states of
AD model has also been explored [35], but to our knowledge, no previous work has achieved holistic
alignment with all perception-prediction-planning process with an AD model.

3 Methodology

To explore holistic alignment between natural language and intermediate results in end-to-end AD
frameworks, we propose a novel framework named Hint-AD, which consists of three modules: a
holistic token mixer, a language decoder, and a traditional AD framework. An overview of Hint-AD
is shown in Fig. 2. The existing AD pipeline in Fig. 2 can be any end-to-end AD system that
decomposes AD into perception, prediction and planning. Without loss of generality, we implement
our method on top of both UniAD [2] (as Hint-UniAD) and VAD [21] (as Hint-VAD), which use
rasterized and vectorized representations, respectively.

3.1 Overall framework of Hint-AD

Firstly, we extract intermediate query tokens from the existing AD model of a perception-prediction-
planning architecture, yielding track tokens, motion tokens, and planning tokens. Secondly, a holistic
token mixer module will adapt the tokens for language decoder input, in which we design an instance
mixer to merge instance-level track and motion information of each detected instance. We also
introduce BEV blocks and instance blocks for further feature extraction and converting length-variable
instance tokens to a fixed length. All the processed tokens are concatenated as context tokens for
text generation (see Sec. 3.2). Finally, the context tokens are formulated as prompt tokens and put
into the language decoder together with text prompts. We adopt a barbell adaptation paradigm for
efficient context understanding of the language decoder (see Sec. 3.3).

For aligning language and the intermediate results of the AD pipeline in training, we incorporate
extra training data called alignment task, which is constructed online during training (see Sec. 3.4).
Additionally, the training procedures are described in Sec.3.5.

3.2 Holistic token mixer

The query tokens extracted from the AD pipeline are not directly understandable to the language
decoder. Addressing this, we propose a holistic token mixer architecture. The implementation is
slightly different between Hint-UniAD and Hint-VAD in detail. We primarily follow the design of
Hint-UniAD, while small adjustments for Hint-VAD are provided in Appendix B.3.

We start by giving denotations for query tokens extracted from the AD pipeline. For a typical
perception-prediction-planning AD pipeline, we can extract the following components: BEV tokens
Fbev ∈ RHb×Wb×C , where Hb, Wb, and C are the height, width, and channels of the BEV field.
Track tokens {F i

track}
Ndet
i=1 ⊆ RD contain position and past trajectory information of each detected

object, where Ndet is the number of detected objects, and D is the dimension of the token vector.
Motion tokens {F i

motion}
Ndet
i=1 ⊆ RD contain predicted future trajectories of each detected object.

Planning steps Fplan ∈ RTp×2 would be the future trajectories predicted by the model.

To effectively merge tokens into an instance level, we design a novel instance mixer that integrates
the track token F i

track and the motion token F i
motion of each detected instance into an instance

token F i
instance. This is accomplished through tensor concatenation followed by a Multi-Layer

Perceptron (MLP) projector Pinstance to project tokens of Ndet detected instances into embeddings
with dimension Dembed:

F i
instance = Pinstance(Concat(F

i
track, F

i
motion)), for i = 1, 2, . . . , Ndet. (1)
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(a) Hint-AD pipeline illustration (c) Instance blocks architecture

(b) BEV blocks architecture

Figure 2: Framework of Hint-AD. (a) Hint-AD pipeline illustration. Taking intermediate output
tokens from an AD pipeline as input, a language decoder generates natural language responses.
A holistic token mixer module is designed to adapt the tokens. (b) Detailed illustration of BEV
blocks architecture. (c) A detailed illustration of instance blocks architecture.

Feature encoder E is implemented as a multi-layer convolutional network, which extracts the feature
and down-scales the BEV to 3× 3. Following this, an MLP projector Pbev is employed to transform
the BEV channel dimension C into Dembed, yielding F ′

bev = Pbev(E(Fbev)).

BEV blocks and instance blocks employ multi-head self-attention layers to adapt BEV and instance
features. For BEV tokens, multi-head self-attention (MHSA) operates among them. Given the
variable number of detected instances per frame, Nins-adapt learnable tokens {Fins-adapt}

Nins-adapt
i=1 are

introduced as queries. Multi-head cross-attention (MHCA) is then performed between these learnable
tokens and the instance tokens. BEV and instance blocks improve adaptation through improving
feature extraction and fusion of BEV and instance tokens, as demonstrated in Sec. 4.4.

F ′′
bev = MHSA(F ′

bev), F ′
instance = MHCA(Fins-adapt, Finstance). (2)

The planning steps Fplan would be encoded by sinusoidal positional encoding PE and an MLP
projector Pplan to embedding dimension Dembed: F ′

plan = Pplan(PE(Fplan)).

Among all the instances tokens, there’s one ego instance token F ego
instance representing the ego car [2].

Processed BEV, instance, ego instance, and planning tokens would be concatenated as context tokens
for further language generation tasks:

Fcontext = Concat(F ′′
bev, F

′
instance, F

ego
instance, F

′
plan). (3)

3.3 Language decoder with barbell adaptation

To incorporate high-level reasoning and context understanding ability of Multimodal Large Language
Models (MLLMs) in AD relevant language tasks [36, 37, 17, 18, 38, 39], we employ a LLaMa-
Adapter-V2 [40] as our language generator with a pretrained LLaMA-2-7B [41]. For language
fine-tuning, learnable adapters {F i

adapter}
Nadapter

i=1 ⊆ RDdec are employed, which serve as extra keys
and values in the inserted layers with zero-initialized attention [40], where Nadapter is the number of
layers to insert, and Ddec is the dimension of tokens in the language decoder.

In the original LLaMa-Adapter-V2 strategy, context tokens Fcontext would be inserted in the first
layer, and learnable adapters would be inserted in all other N − 1 layers, where N is the total number
of layers of LLaMA-2-7B. We observed that the adapters, which are for language tuning, tend to
dominate the adaptation process and reduce the context-language alignment. This is crucial for AD
tasks that requires high-level context understanding ability. Thus we propose a barbell adaptation
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paradigm (see Fig. 2), where learnable adapters are inserted only at the [2, Nfront + 1] layers (as
front adapters {F i

front}
Nfront
i=1 ) and the [N −Nend + 1, N ] layers (as end adapters {F i

end}
Nend
i=1 ). The

context tokens are inserted at the first layer.

The rationale for placing adapters at both the front and end is that front adapters aid in comprehending
context information, while end adapters enhance language fine-tuning. This design balances the
need for high-level context understanding and precise language adaptation. The effectiveness of this
barbell adaptation approach is demonstrated in Sec. 4.4. During training, we employ cross-entropy
loss as the captioning loss, with supervision applied exclusively to the answer tokens.

3.4 Aligning language and intermediate outputs

To align language with intermediate outputs from AD model, the language decoder needs grounded
context understanding of the information contained in each token (i.e. object’s position in track
tokens) generated in AD model’s inference steps. We implemented this by adding an online alignment
task dataset in the training process.

During the alignment task, given the AD model’s intermediate inputs, a set of prompt-answer pairs
are generated (see Fig. 3). This task includes four types of alignments: (a) Counting alignment,
requiring the language decoder to interpret the number of instances of each type detected in the frame
according to track tokens; (b) Position alignment, necessitating the model to provide the position
of a tracked instance based on a specific instance token; (c) Motion alignment, involving decoding
the velocity information contained in an instance token; and (d) Planning alignment, requiring the
language decoder to output the future trajectory points contained in a planning token.

All the question-answer pairs for alignment tasks are generated online during training. The alignment
tasks greatly improve the language decoder’s context understanding of the intermediate tokens, thus
improving the accuracy of AD captioning by a large margin (see Sec. 4.4).

3.5 Training pipeline

The whole training pipeline of Hint-AD includes two stages. In the first stage, the end-to-end AD
model is trained independently. In the second stage, we freeze all parameters of the AD model and
the MLLM parameters, updating only the parameters of the holistic token mixer and adapters. The
total trainable parameters at the second stage are 87M, more training details are stated in Appendix A.

4 Experiments
4.1 Datasets and baselines
Datasets. Explanation serves as a guide for human learning and understanding [42, 43]. Particularly
in the context of end-to-end autonomous driving (AD) systems, human users often seek explanations to
bridge the gap between sensor inputs and AD behaviors [14]. Currently, there is no dataset providing
such explanations for nuScenes [22], a widely utilized dataset in AD research. To address this gap
and facilitate interpretability-focused research on nuScenes, we introduce Nu-X, a comprehensive,
large-scale, human-labeled explanation dataset. Nu-X offers detailed contextual information and
diverse linguistic expressions for each of the 34,000 key frames in nuScenes.

A sentence of explanation typically comprises narration and reasoning [14], for instance: “<Narration>
The car is merging into the right lane. <Reasoning> To pass the red car in front.” In our dataset, each
caption encompasses these two components. Detailed examples and key data statistics are presented
in Fig. 10. For an in-depth description of the labelling process and comprehensive data statistics,
please refer to Appendix D.

All Hint-AD architectures and baselines were trained and evaluated on the following datasets to
provide a comprehensive analysis: (1) Alignment task dataset (see Sec. 3.4), designed to align lan-
guage with intermediate outputs of the AD model by requiring the language decoder to interpret each
intermediate token, with ground truth answers generated online during training; (2) TOD3Cap [15],
a 3D dense captioning dataset offering object descriptions for 64.3K outdoor objects in nuScenes,

5



1

2

2
1

Figure 3: Qualitative Results. We present examples of the language output generated by Hint-AD
across multiple tasks, including driving explanation, 3D dense captioning, VQA, command prediction,
and four categories of alignment tasks. Captions that do not match the ground truth are colored in red.

annotated with appearance, motion, environment, and inter-object spatial relationships; (3) NuScenes-
QA [16], a VQA dataset covering 34K frames of nuScenes with five question types, including
existence, counting, query-object, query-status, and Comparison; (4) Driving command dataset,
labeled by us on nuScenes (see Appendix E), composed of direction and velocity commands.

Baselines. We have selected benchmark methods that include both key milestones and state-of-the-
art approaches in language generation within the AD context (more details in Appendix C.4): (1)
ADAPT [12] generates sentences with a vision-language transformer in an auto-regressive manner.
Cross attention and sparse attention masks are used on text and video tokens; (2) BEV+Adapter [40]
takes only BEV features as input and LLaMA-Adapter-V2 (the same as Hint-AD) as the language
decoder; (3) BEVDet+MCAN [16] uses a Modular Co-Attention Network (MCAN) [44] with layers
of self-attention for separate language and visual understanding. Stacked cross-attention layers are
used for cross-model feature interaction. Detection results from a BEVDet [45] is adapted for input;
(4) Vote2Cap-DETR [46] has two parallel task-specific heads base on a transformer architecture.
The queries are decoupled into localization queries and caption queries; (5) TOD3Cap [15] utilizes a
query-based detection head to generate a set of 3D object proposals from the BEV features. These
features are then processed by LLaMA-Adapter [47] to be prompts for the language model to generate
dense captions; (6) GPT-4o is a multimodal model developed by OpenAI, equipped with state-of-the-
art vision capabilities alongside text generation performance comparable to its predecessor, GPT-4.
(7) Gemini-1.5 is a pioneering large language model from Google, specifically designed to handle
multimodal inputs with an extended context length.

4.2 Comparing with baseline models

Quantitative results. We present results separately for different input types and backbone modules
on four datasets. For Nu-X and TOD3Cap datasets, we adopt four standard image captioning metrics,
CIDEr (C) [48], BLEU (B) [49], METEOR (M) [50] and Rouge (R) [51]. GPT-3.5 scoring (G) is
also used for Nu-X’ evaluation due to the comprehensive expression in driving explanation (See
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Appendix C.6 for detail). A threshold of 0.25 is set for matching predicted and ground-truth bounding
box while testing TOD3Cap. For NuScenes-QA and Command datasets, we directly compare the
generated texts with ground truth to obtain accuracy. Based on reasoning complexity, QA are divided
into zero-hop (H0) and one-hop (H1). Following conclusions can be drawn from Tab. 1.

Both Hint-UniAD and Hint-VAD demonstrate high performance on multi-task tests. Both systems
achieve SOTA results on the Nu-X dataset, surpassing the best baseline (BEV+Adapter) by 3.8 points
(20.4%) in CIDEr scores. Remarkably, Hint-UniAD exhibits significantly superior performance
on the TOD3Cap task, with a CIDEr score improvement of 222.3 points (185%). Although Hint-
VAD performs slightly lower on this task, potential explanations are discussed in Appendix C.3.
Additionally, on the NuScenes-QA and Command datasets, Hint-VAD achieves overall accuracy
improvements of 0.6 and 1.2 points over the best baseline, respectively. These results underscore the
effectiveness of the proposed Hint-AD architecture.

Table 1: Comparison with Baselines. "Inter. outputs" represents intermediate outputs. All methods
are adapted for BEV visual representation and employ mixed dataset training. Hint-UniAD and
Hint-VAD, as two implementations of Hint-AD on different AD models, outperform baselines across
four language tasks in the AD context.

Input Method Nu-X TOD3Cap NuScenes-QA Command

C ↑ B ↑ M ↑ R ↑ G ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑
Image +

6-shot examples
GPT-4o 19.0 3.95 10.3 24.9 5.22 160.8 50.4 31.6 43.5 42.0 34.7 37.1 75.4

Gemini 1.5 17.6 3.43 9.3 23.4 5.03 169.7 53.6 33.4 45.9 40.5 32.9 35.4 80.9

BEV(2D) ADAPT [12] 17.7 2.06 12.8 27.9 5.79 - - - - 51.0 44.2 46.4 79.3
BEV+Adapter [40] 18.6 3.47 11.3 24.5 6.27 - - - - 51.8 45.6 47.7 81.1

BEV(2D) +
bounding boxes

BEVDet+MCAN [44] 13.2 2.91 10.3 24.5 5.04 104.9 50.1 43.0 68.0 56.2 46.7 49.9 80.7
Vote2Cap-DETR [46] 15.3 2.61 10.9 24.2 5.33 110.1 48.0 44.4 67.8 51.2 44.9 47.0 76.5

TOD3Cap [15] 14.5 2.45 10.5 23.0 5.10 120.3 51.5 45.1 70.1 53.0 45.1 49.0 78.2

BEV(2D) +
inter. outputs

Hint-UniAD (Ours) 21.7 4.20 12.7 27.0 7.20 342.6 71.9 48.0 85.4 56.2 47.5 50.4 83.0
Hint-VAD (Ours) 22.4 4.18 13.2 27.6 7.44 263.7 67.6 47.5 79.4 55.4 48.0 50.5 82.3

Qualitative Results. Figure 3 presents some qualitative results. The text generated by Hint-AD
demonstrates a grounded understanding of the scene and aligns appropriately with the intermediate
results of the AD model. For additional results and analysis, please refer to Appendix C.2.

4.3 Analysis on alignment between language and AD model

To quantify the alignment between language and the intermediate outputs of the AD model, we
evaluate the language decoders’ output against the predictions of the AD perception modules, which
is generated online on the validation set. Four kinds of disalignment protocols are designed: (a)
Counting Disalignment (CD) which measures the discrepancy between the number of instances in
each category given by the decoding head and the tracking model, (b) Position Disalignment (PD)
which measures the positional difference of a specific instance, (c) Motion Disalignment (MD) which
measures the velocity difference, calculated as the mean distance between the velocity in the caption
and the velocity predicted by the perception system, and (d) Planning Disalignment (PLD) which
measures the discrepancy in trajectory points. For detailed definition, please refer to Appendix C.1.

We tested Hint-AD with both aligned interpretability (original design) and declarative interpretability,
results are detailed in Appendix C.1. The aligned language decoder performs significantly better than
the models operating under the declarative interpretability paradigm, indicating the effectiveness of
alignment designs including holistic token mixer and alignment tasks.

4.4 Ablation study

Effectiveness of holistic alignment. To evaluate the effectiveness of holistic language-AD alignment
on language task accuracy, we conducted an ablation study by removing track, motion, and planning
tokens from the language decoder’s inputs. Results in Tab. 2 show that using all tokens achieves the
highest performance. Track tokens enhance 3D dense captioning with positional information, while
planning tokens improve command prediction by providing future trajectory data.
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Table 2: Ablation on holistic alignment. The performance is highest when all tokens are used,
highlighting their importance in enhancing specific tasks.

Method Input Nu-X TOD3Cap NuScenes-QA Command

C ↑ B ↑ M ↑ R ↑ G ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑

Hint-UniAD

W/o track token 19.5 2.95 11.3 21.3 6.85 120.3 48.0 48.5 69.4 53.0 42.6 46.1 82.5
W/o motion token 22.3 3.02 12.6 26.5 7.04 267.3 67.2 43.0 81.3 53.6 43.5 46.9 82.4

W/o planning token 20.8 3.10 11.4 23.5 6.39 290.6 68.4 44.5 85.6 55.3 46.7 49.6 79.1
w/ all tokens 21.7 4.20 12.7 27.0 7.20 342.6 71.9 48.0 85.4 56.2 47.5 50.4 83.0

Ablation on Holistic Token Mixer Design. Instance mixer and instance blocks enhance the feature
extraction and adaptation of intermediate tokens. Results in Tab. 3 indicate that removing instance
blocks and instance mixer significantly reduces performance on TOD3Cap and NuScenes-QA, as the
positional and motion information of objects is not adequately fused.

Table 3: Ablation on holistic token mixer. The performance is highest when all sub-networks are
included, showing the importance of these components for effective feature extraction and adaptation.

Method Sub-networks Nu-X TOD3Cap NuScenes-QA Command

C ↑ B ↑ M ↑ R ↑ G ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑

Hint-UniAD
W/o instance mixer 20.8 3.22 10.6 26.5 6.38 220.4 58.3 46.9 73.0 52.0 44.8 47.2 81.6
W/o instance blocks 21.3 3.24 11.3 27.1 7.13 259.4 62.5 47.0 82.3 54.3 47.2 49.6 81.3

All sub-networks 21.7 4.20 12.7 27.0 7.20 342.6 71.9 48.0 85.4 56.2 47.5 50.4 83.0

Effectiveness of barbell adaptation. We explore three alternatives: (a) Early Fusion, original design
of LLaMA-Adapter-V2 [40], adapters in each layer; (b) Pyramid adaptation, adapters in the first
Nfront layers; and (c) Hammer adaptation, adapters in final Nend layers only. Barbell adaptation
performs the best on three datasets (Tab. 4). More adaptation methods in Appendix B.2.

Table 4: Ablation on adaptation strategy. Ballbell adaptation achieves the best scores on all datasets
except for TOD3Cap, demonstrating our adaptation strategy enables better context understanding and
language fine-tuning.

Method Adaptation Strategy Nu-X TOD3Cap NuScenes-QA Command

C ↑ B ↑ M ↑ R ↑ G ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑

Hint-UniAD

Early fusion 16.9 3.34 12.0 25.6 6.94 350.4 70.6 45.3 89.3 55.9 47.0 49.9 78.3
Pyramid adaptation 15.3 3.10 11.2 24.4 6.34 335.3 70.8 44.4 67.8 52.5 44.6 48.5 77.5
Hammer adaptation 14.7 2.45 10.5 23.0 6.19 298.7 65.6 42.1 60.1 50.4 43.1 45.5 76.2
Barbell adaptation 21.7 4.20 12.7 27.0 7.20 342.6 71.9 48.0 85.4 56.2 47.5 50.4 83.0

5 Conclusions and Limitations

We present Hint-AD, an integrated AD-language framework that aligns language generation with
the holistic perception-prediction-planning process of AD models, achieving SOTA performance
in multiple AD captioning tasks. Meanwhile, as an exploratory research on the implementation of
aligned interpretability, the following limitations are waiting to be resolved by further research:

• Due to its pipeline-specific nature, any changes in the intermediate output format necessitate
modifications in the design of the token mixer. For purely end-to-end models, such as
black-box models, adjustments are required to handle latent outputs effectively.

• The LLaMA-based language decoder is relatively time-consuming. Further investigation into
smaller model alternatives, such as MiniChat-1.5-3B and StableLM-3B-4E1T, is warranted.

As LLM’s potential to comprehend AD models’ intermediate outputs becomes evident, future research
can delve deeper into this area and enhance user trust in AD models through aligned interpretability.
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A Training and inference

The graphics memory usage for the language decoder varies with batch size, ranging from 31GB
(batch size = 1) to 78GB (batch size = 24). For Hint-VAD, the memory usage ranges from 26GB
(batch size = 1) to 45GB (batch size = 20). Training Hint-UniAD takes 13 hours for 3 epochs on 8
A100 GPUs, while training Hint-VAD takes 7 hours on 8 A100 GPUs. The inference times for the
AD module and language decoder are detailed in Tab. 5.

Table 5: Inference Time and Average Time per Batch. Evaluated on 1 single A100 GPU, this table
presents the inference times and average time per batch for the AD model and language decoder of
Hint-UniAD and Hint-VAD under different batch sizes of sentences to generate.

Method Module Batch=1 Batch=10 Batch=20
time (s) Avg. time/batch (s) time (s) Avg. time/batch (s) time (s) Avg. time/batch (s)

Hint-UniAD AD model 0.43 0.43 0.43 0.43 0.43 0.43
Language decoder 1.23 1.23 1.38 0.138 1.45 0.073

Hint-VAD AD model 0.159 0.159 0.159 0.159 0.159 0.159
Language decoder 1.25 1.25 1.42 0.142 1.48 0.074

In Tab. 6, we present the wall-clock time of the entire system with a batch size of 1, as applied in a
real car scenario. This time encompasses data acquisition, pre-processing, and post-processing, all
measured in seconds.

Data acquisition time includes capturing images from six HIKROBOT MV-CU013-A0UC cameras
and transmitting these images from the computer to the online server if using online inference.

Pre-processing time involves preparing image sequences before inputting them into the model, which
is conducted online if using an online server.

Autonomous driving inference time refers to the time taken by UniAD and VAD to perform inferences.

LLM inference time is calculated as the time required to generate 26.5 tokens, which is the average
generation length observed in our research.

Post-processing time includes the duration needed for data transmission if the inference is conducted
online.

Since users can access language output as soon as the first token is generated, we define interactive
latency as the sum of data acquisition, pre-processing, autonomous driving inference, and post-
processing times.

Table 6: Whole system latency measurements. Acq. refers to acquisition, AD refers to the
inference time of AD model, Token gen. refers to the token generation speed, Inter. refers to
interactive.

Methods GPU Data acq. (s) Pre-process (s) AD (s) LLM (s) Token gen. (/s) Post-process (s) Sum (s) Inter. latency (s)
Hint-UniAD RTX 3090 (offline) <0.01 <0.01 0.49 1.83 14.5 <0.01 2.32 0.49
Hint-UniAD RTX 4090 (offline) <0.01 <0.01 0.27 0.62 42.9 <0.01 0.89 0.27
Hint-UniAD NVIDIA A100 (online) 0.35 <0.01 0.56 1.24 21.5 0.04 2.18 0.94
Hint-VAD RTX 3090 (offline) <0.01 <0.01 0.12 1.65 16.1 <0.01 1.77 0.12
Hint-VAD RTX 4090 (offline) <0.01 <0.01 0.07 0.59 45.2 <0.01 0.66 0.07
Hint-VAD NVIDIA A100 (online) 0.35 <0.01 0.16 1.25 21.3 0.04 1.79 0.54

B More on Model Designs

B.1 Parameters in Model Design

Here we provide Tab. 7 to specify parameters used in our architecture and additional explanation.

BEV blocks consist of a sequence of 8 transformer encoder blocks. Each block includes a normaliza-
tion layer, a multi-head self-attention layer with 16 attention heads, a second normalization layer, and
a multi-layer perceptron (MLP) with a hidden dimension of 3072.
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Instance blocks comprise a sequence of 5 transformer decoder blocks with the same internal structure
as the BEV blocks. These blocks accept 5 learnable tokens, Fins-adapt, and instance tokens, Finstance,
as input. A cross-attention mechanism is performed between these inputs, with Fins-adapt serving as
the queries and Finstance serving as the keys and values.

Table 7: Notations.
Notation Shape & Params description

Nfront 12 layers of front adapters inserted in LLaMA
Nend 8 layers of end adapters inserted in LLaMA

Dembed 728 embed dimension used in holistic token mixer
C 256 dimension of the BEV feature

Fbev 200× 200× 256 BEV tokens
Ftrack Ndet × 256 Track tokens
Fmotion Ndet × 256 Motion tokens
Fplan Ndet × 256 Planning steps

Finstance Ndet × 256 Instance token
F ego
instance 256 Ego instance token

B.2 Comparison with Other Adaptation Methods

Here we present analysis on why adapter is chosen as tuning method for Hint-AD.

We selected adapters due to considerations of training stability and parameter efficiency. As high-
lighted by LLaMA-Adapter [59], parameter-efficient fine-tuning methods like LoRA exhibit instability
during training, particularly when addressing entirely new modalities. For instance, LoRA experi-
ences gradient explosion within approximately 2.3K training steps. The LLaMA-Adapter addresses
this issue by introducing zero-initialized cross-attention weights between adapter tokens and text
queries.

We show experiment results with LoRA and DoRA in Tab. 8, demonstrating that the adapter is
the only method that ensures stable training for this application while delivering superior overall
performance.

Table 8: Comparison between adapter and LoRA on Hint-AD.
Method # Params (%) ↓ Stable training steps ↑ Nu-X TOD3Cap NuScenes-QA Cmd.

C ↑ B ↑ M ↑ R ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑
LoRA (r=16) 0.672 2.3K 17.8 3.05 10.1 21.8 257.6 61.3 24.4 57.5 45.3 40.0 41.2 71.6
DoRA (r=16) 0.702 3.1K 18.3 3.72 10.4 21.5 290.4 69.0 37.1 64.3 52.7 42.7 46.0 78.9

Adapter_epoch-3.1K 0.014 >20K 20.8 3.90 12.9 26.5 307.3 68.9 43.3 75.6 52.4 45.5 47.8 75.6

B.3 Variations on Hint-VAD framework

VAD [21] uses the same BEV encoder as UniAD [2], but vectorizes scene representations for
planning and getting rid of dense maps. So the BEV tokens are the same: Fbev ∈ RHb×Wb×C , where
Hb, Wb, and C are the height, width, and channels of the BEV field. But for VAD has different
motion prediction and planning phases, so the input tokens are adjusted as follows: In Track tokens
{F i

track}Ni=1 ⊆ RD and Motion tokens {F i
motion}Ni=1 ⊆ RD, N is the number of agent queries, not

the number of detected objects. We select valid tokens based on the query’s classification score, using
a threshold of 0.5, thereby only considering queries with a high probability of corresponding to actual
objects. Additionally, VAD considers both ego-agent interaction and ego-map interaction. We use
updated queries as Ego token F i

ego ⊆ RD, which contain both dynamic and static information of the
driving scene. Finally, we adopt Planning steps Fplan ∈ RTp×2, the future trajectories predicted by
the model. We adjust the token mixer to accommodate the shape of each token while maintaining the
same overall architecture.
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C More on experiments

C.1 More analysis on language-AD model alignment

To quantify the alignment between language and the intermediate outputs of the AD model, we
evaluate the output of language decoders against the results predicted by the AD perception modules,
which is generated online on the validation set. We define four kinds of disalignment as follows:

Counting Disalignment (CD) measures the discrepancy between the number of instances of each
category given by the text and the number detected by the AD model. It is defined as: CD =√

1
Ncat

∑Ncat

i=1 (c
(i)
text − c

(i)
AD)

2, where Ncat is the number of object categories, c(i)text and c
(i)
AD are the

counts of the ith category given by the text and the AD model, respectively.

Position Disalignment (PD) measures the difference in the position of a specific instance given by the
text and the AD model. It is quantified by calculating the mean distance between the position in the
caption rtext and the position predicted by the AD model rAD: PD = Mean(|rtext − rAD|).

Motion Disalignment (MD) measures the difference in velocity, calculated as the mean distance
between the velocity in the caption vtext and the velocity predicted by the AD model vAD: MD =
Mean(|vtext − vAD|).

Planning Disalignment (PLD) measures the discrepancy in trajectory points. A trajectory is expressed
as four future positions of the ego car with 0.5s time steps between each [r(1), r(2), r(3)r(4)], and
PLD is defined as the mean distance from the original AD prediction at 2s (L2 loss): PLD =

Mean(|r(4)text − r
(4)
AD|).

Here we offer a comparison of alignment between Hint-UniAD and various declarative alignment
methods, as shown in Tab. 9.

• Among the declarative methods, the Hint-UniAD architecture achieved the highest perfor-
mance, except in the counting disalignment task, demonstrating its overall efficacy.

• Methods utilizing a pre-trained LLM as a language decoder performed poorly on the
counting task. This poor performance arises from a bias towards certain numbers: for
example, LLaMA tends to output specific integers like 10 and 20.

Table 9: Comparison with other declarative alignment models. To standardize the output formats
of the language decoders used in these methods, we also tuned the models accordingly. N refers to
no, and Y refers to yes.

Method Alignment type LLM Counting ↓ Position ↓ Motion ↓ Planning ↓
Hint-UniAD aligned Y 2.36 1.22 0.51 2.98
Hint-UniAD declarative Y 5.82 10.01 1.98 10.12

ADAPT declarative N 8.30 14.23 2.49 13.07
BEVDet+MCAN declarative N 4.69 13.05 2.18 12.53
Vote2Cap-DETR declarative N 5.03 11.60 2.50 12.85

TOD3Cap declarative Y 7.10 12.13 2.17 10.60

C.2 More Qualitative results

Here we demonstrate more detailed Qualitative results on all four datasets. All predictions are
generated by Hint-UniAD model, and we choose TOD3Cap as baseline while evaluating results on
Nu-X and Command datasets.

Our model excels in generating accurate and contextually appropriate predictions across multiple tasks.
For driving explanation and command prediction, our model outperforms the baseline by providing
more accurate narration, reasoning, and driving commands. In VQA tasks, it excels in accurately
describing the surroundings, including the type and number of objects. In 3D dense captioning, our

15



model successfully detects surrounding objects and provides precise status descriptions. However, it
occasionally make errors in identifying object colors and estimating distances. In alignment tasks,
our model performs well across all directions but struggles with precise positional information due to
the limitations of image-based data. Additionally, it tends to undercount objects in counting tasks.

We also present some qualitative results from prompting GPT-4o and Gemini-1.5, as shown in
Figures 4 to 6. Hint-AD demonstrates better consistency with ground-truth annotations, achieving
higher accuracy in VQA tasks such as determining whether an object is moving. In contrast, GPT-4o
and Gemini-1.5 tend to provide more diverse descriptions of the scene and driving behavior. The full
prompts are shown in Figure 8.

C.3 Analysis on testing difference between Hint-UniAD and Hint-VAD

According to Tab. 1, VAD performs much worse than UniAD on TOD3Cap dataset but slightly better
on the other three datasets. This can be explained by VAD’s restricted perception range of 60m by
30m, whereas objects in TOD3Cap often fall outside this range. Since all questions in TOD3Cap are
object-centered, missed detections significantly lower the scores on this dataset.

C.4 Baseline implementations

ADAPT. [12] The original work [12] takes a sequence of raw video frames as inputs, and outputs
natural language narration and reasoning. It employs Video Swin Transformer [52] as the video
encoder. Two tasks, Driving Caption Generation (DCG) and Control Signal Prediction (CSP), are
jointly trained based on the same video tokens.

Here we adopt its text generation head, where the sentences are generated by vision-language
transformer in an auto-regressive manner. The text inputs are tokenized and padded to a fixed length,
and then are embedded with a segment embedding method. While training, we use cross attention
mask within text tokens and sparse attention mask between text tokens and BEV features. The
vision-language transformer encoder starts with a ”[CLS]” token and generates one word token at a
time, consuming previously generated tokens as the inputs until it outputs the ending token ”[SEP]”
or reaches the maximum length.

TOD3Cap. [15] The original TOD3Cap framework is implemented using a BEV detector module
that processes both 2D and 2D+3D inputs. We adapted TOD3Cap for UniAD and VAD by adding an
extra captioning head. The inputs for Image BEV features and object proposals are derived from the
BEV tokens and tracking tokens of these two AD models, respectively.

Vote2Cap-DETR++. [46] Unlike the traditional "detect-then-describe" methods that first detect
objects and then describe them, Vote2Cap-DETR++ uses a transformer-based framework to parallelly
decode object localization and caption generation tasks. It uses 3D positional encoding is added to
enhance the context-awareness of the generated captions: Absolute Position Token is injected into the
caption prefix to indicate the spatial location of the object in the 3D scene and Rank-Based Position
Encoding is applied to local context tokens.

C.5 More Ablation Experiments

We have expanded the ablation studies to include multi-module ablation and cross-model consistency,
encompassing both Hint-UniAD and Hint-VAD. The ablation results for Hint-UniAD are presented
in Tab. 10 and Tab. 11. These results indicate a consistent performance trend between Hint-UniAD
and Hint-VAD. Notably, during multi-module ablation, the performance of the model experiences a
further decline.
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Figure 4: Qualitative results on Nu-X and Command datasets. We choose TOD3Cap as baseline
model and present GPT-4o and Gemini-1.5 result.
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Figure 5: Qualitative results on NuSence-QA with GPT-4o and Gemini-1.5 outputs.

Table 10: More ablation on holistic alignment

Method Ablated Nu-X TOD3Cap NuScenes-QA Cmd.
C ↑ B ↑ M ↑ R ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑

Hint-UniAD

track 19.5 2.95 11.3 21.3 120.3 48.0 48.5 69.4 53.0 42.6 46.1 82.5
motion 22.3 3.02 12.6 26.5 267.3 67.2 43.0 81.3 53.6 43.5 46.9 82.4

planning 20.8 3.10 11.4 23.5 290.6 68.4 44.5 85.6 55.3 46.7 49.6 79.1
track & planning 19.8 2.98 11.7 22.9 135.4 60.4 46.1 72.2 53.4 43.1 46.5 80.6

motion & planning 21.0 3.06 12.1 25.2 280.7 66.1 44.3 78.1 54.6 45.1 48.2 80.7
track & motion 20.1 3.03 11.9 24.1 - - - - 54.1 44.2 47.5 81.2

all 18.6 3.47 11.3 24.5 - - - - 51.8 45.6 47.7 81.1
none 21.7 4.20 12.7 27.0 342.6 71.9 48.0 85.4 56.2 47.5 50.4 83.0

Hint-VAD

track 20.0 3.03 11.4 22.0 132.6 44.5 46.9 56.8 52.6 46.5 48.9 83.9
motion 19.5 2.96 11.0 21.1 233.5 59.8 44.2 71.6 54.1 49.2 50.9 81.2

planning 18.8 2.86 10.5 20.1 246.7 66.8 47.7 78.8 53.9 47.4 49.6 77.8
none 22.4 4.18 13.2 27.6 263.7 67.6 47.5 79.4 55.4 48.0 50.5 82.3

Table 11: More ablation on holistic token mixer.

Method Ablated Nu-X TOD3Cap NuScenes-QA Cmd.
C ↑ B ↑ M ↑ R ↑ C ↑ B ↑ M ↑ R ↑ H0 ↑ H1 ↑ All ↑ Acc. ↑

Hint-UniAD

instance mixer 20.8 3.22 10.6 26.5 220.4 58.3 46.9 73.0 52.0 44.8 47.2 81.6
instance blocks 21.3 3.24 11.3 27.1 259.4 62.5 47.0 82.3 54.3 47.2 49.6 81.3

all 19.1 3.02 11.1 25.1 164.3 55.1 45.1 70.2 51.1 44.1 46.4 82.1
none 21.7 4.20 12.7 27.0 342.6 71.9 48.0 85.4 56.2 47.5 50.4 83.0

Hint-VAD
instance mixer 21.6 4.09 12.4 25.8 189.4 49.3 43.8 68.3 53.0 45.1 47.7 80.7
instance blocks 22.0 4.17 13.3 27.3 249.8 57.9 45.7 74.5 53.6 46.1 48.6 81.0

none 22.4 4.18 13.2 27.6 263.7 67.6 47.5 79.4 55.4 48.0 50.5 82.3
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Figure 6: Qualitative results on TOD3Cap with GPT-4o and Gemini-1.5 outputs.
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Figure 7: Qualitative results on alignment dataset.

C.6 Caption evaluation

GPT-3.5 for Logicality and Accuracy Assessment The evaluation of visual language models for
automated driving presented in this paper focuses on two main components: the logicality assessment
of driving descriptions and the accuracy evaluation of driving behavior predictions.

For the logicality assessment of driving descriptions, we utilized GPT-3.5 to determine the correlation
between driving behavior descriptions and the triggers for those behaviors in the model’s predictions.
Initially, we prompted GPT-3.5 to extract key information from each predicted description, including
the car’s driving behavior (movement and geographic location) and the causative factors (subject and
form). We evaluated the associative relationship between the preceding and following events based
on three criteria:

• The consistency between the car action implied by the causative factors and the predicted
driving behavior.

• The logical coherence between the causative factors and the predicted driving behavior.

• The consistency between the details in the causative factors and those in the driving behavior.

Each metric was scored and summarized for each component.

Additionally, we conducted a comparative analysis of the similarity between predicted and manually
labeled driving behaviors. Using GPT-3.5, we extracted key information, such as the car’s action,
purpose, and reason, from both the predicted and manually labeled driving behaviors for comparison.
Each pair was scored based on the degree of match (complete, partial, or missing). The primary
metrics for this comparison included:

• The similarity between driving behavior and geographic location.

• The objects and reasons leading to such driving behavior.

• Other relevant details.
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TOD3

Figure 8: Prompts for GPT-4o and Gemini-1.5.
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Penalties were applied for instances of fictitious information, which reduced the total score. The
mean of these scores constituted the scene description score. The total prompt for GPT-3.5 is shown
in Fig. 9

Figure 9: Prompt for GPT-3.5 on semantic evaluation

D More on Nu-X

•

•

Figure 10: Examples of Nu-X dataset.

D.1 Annotation procedure

To balance accuracy and effectiveness of annotation, we conducted a process incorporating both
human labelling and LLM diversification (see Fig. 11). The training / validation branches of nuScenes
contain 850 videos, each spanning about 20 seconds, with approximately 40 key frames per video
annotated. labelling all frames is inefficient as driving behaviors and road conditions in adjacent
frames are often similar. Each video typically features only 3-4 distinct driving behaviors. However,
identical annotations across frames risk over-fitting, reducing effectiveness. Therefore, we used
MLLM to diversify expressions and add scene-description details to each frame. The annotation
process includes the following procedures:

Human labelling We employed five professional annotators for a total of 126 hours. All annotators
are familiar with US driving rules and have driving experience. They were instructed to describe
specific driving behaviors and the potential reasons for these decisions. Annotations for each video
include the time intervals of certain driving behaviors, along with narration and reasoning.
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Figure 11: Annotation and data statistics of Nu-X. (a) The annotation process of Nu-X dataset; (b)
Distribution of the sequence length of narration; (c) Distribution of reasoning sentence length; (d)
Distribution of different vocabulary in Nu-X.
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For narration, annotators focused on at least 11 driving behaviors, such as directional decisions (e.g.,
go forward, turn left, turn right, U-turn) and velocity commands (e.g., accelerate, decelerate, stop,
stay stationary). Descriptors like "slightly" or "sharply" were encouraged.

For reasoning, annotators incorporated specific road conditions, key instances (e.g., pedestrians, front
cars), and traffic rules (e.g., traffic lights, stop signs, yellow lines).

GPT-4v image description Before diversification process, we firstly leverage GPT-4v to generate
the image description of multi-view camera images to extract the visual information. Specifically, we
provide GPT-4v with each frame of multi-view images in nuScenes and task it with capturing and
recording key traffic information from these images. This information includes, but is not limited to,
pedestrians, vehicles, traffic signals, and other relevant road signs. Through this process, GPT-4v is
able to automatically extract and provide detailed descriptions of the elements and dynamics present
in each image frame in a sentence of about 120 word length.

GPT-4v auto-diversification With the image description, we utilize GPT-4v to automatically
generate diverse outputs based on the human-labeled captions, which is particularly useful for
creating varied descriptions and perspectives of the same set of images. We also constraints the text
output to follow the original main driving behavior and reasoning of human annotators to ensure the
correctness.

Human check We conduct a thorough human check to ensure accuracy and relevance after the
auto-diversification. This step involves experts reviewing and validating the multiple interpretations
generated by GPT-4v, verifying that the descriptions accurately reflect the content of the images.
The human check process is essential for maintaining high standards of quality and reliability in our
traffic analysis, ensuring that the diversified outputs align with real-world observations.

D.2 More on data statistics

We show some key results of data statistics in Fig. 11(b)-(d). The average length of a narration is
8.29 words for a sentence, and the average length of reasoning is 11.25 words.

E More on command dataset

The ground truth of the nuScenes dataset provides only three types of directional commands: <TURN
LEFT>, <TURN RIGHT>, and <FORWARD>, which lack the necessary velocity information. To
address this, we labeled a command dataset using programmed protocols based on the ground truth
future steps, incorporating additional velocity commands such as <ACCELERATE>, <DECELER-
ATE>, <STATIONARY>, and <KEEP SPEED>.

Directional commands were generated by analyzing the trajectory slope, applying a criterion where
driving 5 meters with only 1 meter of lateral drift was considered.

For velocity commands, polynomial fitting was used to smooth the speed curve derived from the
average speed between predicted points. The average acceleration over the next 4 seconds was then
used to determine the velocity commands. Given the vehicle’s increased sensitivity to speed changes
when approaching zero, different thresholds for speed changes were set: 0.36m/s2, 0.12m/s2, and
0.05m/s2 for initial speeds of >2 m/s, 1-2 m/s, and <1 m/s, respectively.
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