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ABSTRACT

Concept Bottleneck Generative Models (CBGMs) incorporate a human-
interpretable concept bottleneck layer, which makes them interpretable and steer-
able. However, designing such a layer for generative models poses the same chal-
lenges as for concept bottleneck models in a supervised context, if not greater
ones. Deterministic mappings from the model inner representations to soft con-
cepts in existing CBGMs: (i) limit steerable generation to modifying concepts
in existing inputs; and, more importantly, (ii) are susceptible to concept leakage,
which hinders their steerability. To address these limitations, we first introduce the
Variational Hard Concept Bottleneck (VHCB) layer. The VHCB maps probabilis-
tic estimates of binary latent variables to hard concepts, which have been shown to
mitigate leakage. Remarkably, its probabilistic formulation enables direct genera-
tion from a specified set of concepts. Second, we propose a systematic evaluation
framework for assessing the steerability of CBGMs across various tasks (e.g., ac-
tivating and deactivating concepts), which allows us to empirically demonstrate
that the VHCB layer consistently improves steerability.

1 INTRODUCTION

In recent years, a new line of research has emerged to improve the interpretability of Generative
Models (GMs) by leveraging Concept Bottleneck Models (CBMs) (Koh et al., 2020). A CBM is
an inherently interpretable model consisting of a concept predictor, which maps inputs to human-
understandable concepts, and a label predictor, which maps these concepts to task outputs. CBMs
offer two key advantages: (i) predictions are explicitly grounded in concepts, and (ii) users can in-
tervene on concepts to steer the output. However, CBMs face two key challenges that limit steerabil-
ity: concept incompleteness, when the concept set fails to capture all task-relevant information, and
concept leakage, when soft concept probabilities unintentionally encode task information. Incom-
pleteness can be addressed with a side channel that encodes task information not explained by the
concepts (Havasi et al., 2022; Espinosa Zarlenga et al., 2022; Sawada & Nakamura, 2022; Yuksek-
gonul et al., 2023), while leakage can be reduced by using hard concept representations (Margeloiu
et al., 2021; Havasi et al., 2022; Lockhart et al., 2022; Vandenhirtz et al., 2024; Sun et al., 2024).

Concept Bottleneck Generative Models (CBGMs) extend CBMs from classification to generative
tasks (Ismail et al., 2023; Kulkarni et al., 2025). In this framework, a Concept Bottleneck (CB) layer
is introduced at an intermediate location of the generative model, mapping the inner representation
of the generator to a set of human-understandable concepts. These methods aim to make generative
models inherently interpretable and, most importantly, steerable. By manipulating concepts in the
latent space it is possible to control generation, either by (i) generating new data according to specific
concept configurations (steerable generation), or (ii) intervening concepts in existing observations
(steerable conditional generation). Current CBGM methods rely on soft concepts and deterministic
CB layers, remaining vulnerable to concept leakage and restricting steerability to concept interven-
tions, as they do not model a generative process over the concept space.

Contributions. We address these limitations by introducing the Variational Hard Concept Bot-
tleneck (VHCB) layer, defining the first probabilistic CBGM with hard concepts. The VHCB is
based on a binary Variational Autoencoder (VAE), producing probabilistic estimates of binary latent
variables that are directly mapped to hard concepts (Section 3). Moreover, this probabilistic formu-
lation enables direct generation from specified concept configurations while still supporting concept
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Figure 1: Block diagram of (a) the general architecture of CBGMs, and (b) the VHCB layer. Note
that the Error-Correcting Code (ECC) in the VHCB layer is a deterministic transformation that
enables effective inference.

inference and steerability through concept interventions. In addition, we introduce a systematic
evaluation framework for CBGMs across various inference and steerable generation tasks (Section
4). This comprehensive evaluation allows us to analyze accuracy in concept prediction, alignment
between intended and actual outcomes of concept manipulation, distributional shifts on non-target
concepts during intervention, and the impact of correlations and biases present in the training data
in the behavior of the model (Section 5).

2 CBGM FRAMEWORK

In CBGMs, a CB module is inserted at an intermediate location of a generative model to map inner
representations to a set of human-interpretable concepts (Ismail et al., 2023; Kulkarni et al., 2025).
In general, CBGMs consist of three components, as shown in Figure 1. The pre-bottleneck module
(u → w) maps a (noisy) latent input u (usually Gaussian distributed) to a pre-bottleneck embedding
w. The concept bottleneck module (w → (c, s) → ŵ) maps w to a set of predefined concepts c and
an unsupervised embedding s.The embedding s acts as a side channel to capture information not
represented by the concepts, addressing the inherent incompleteness of the concept set in generative
tasks, since generation depends on factors that cannot be fully described by human-interpretable
concepts (e.g., textures, lighting, or object position). The CB then maps (c, s) to a post-concept
embedding ŵ. Finally, the post-bottleneck module (ŵ → x) generates the final output x. In this
setting, one can adopt either an in-hoc approach, training the base generative model (pre- and post-
bottleneck modules) together with the CB layer, or a post-hoc approach, where the CB layer is
inserted into a pretrained generative model.

Concept label sources. We consider a set of K human-interpretable binary concepts y ∈ {0, 1}K
indicating the presence of specific features in observations x. For example, in the image shown
in Figure 1, ‘smiling’ and ‘black hair’ would be active, while ‘has mustache’ and ‘wearing sun-
glasses’ would be inactive. Concept labels can be obtained from three sources: (i) annotated datasets
(xi,yi)

N
i=1, (ii) pretrained supervised classifiers that predict y from x, or (iii) pretrained zero-shot

classifiers that infer concepts without task-specific training (Kulkarni et al., 2025).

Desiderata. The goal is to design generative models that produce high-quality outputs while re-
maining both interpretable and steerable. Generation quality requires the model to produce diverse
data that accurately reflects the training distribution. Interpretability requires accurate inference of
human-understandable concepts. Steerability requires precise control over the generative process: in
steerable generation, the model should produce samples reflecting specific concept configurations;
in conditional steerable generation, it should be possible to modify target concepts in existing ob-
servations x while keeping remaining concepts unchanged. Additionally, disentanglement between
the unsupervised representation s and the concepts c is necessary to ensure that modifying the side
channel does not unintentionally alter concept information in the generated outputs.

2.1 STATE OF THE ART

Two different approaches have been proposed for implementing the CB module in CBGMs. Is-
mail et al. (2023) follow a in-hoc approach. They extended the Concept Embedding Model (CEM)
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(Espinosa Zarlenga et al., 2022) layer by mapping the pre-bottleneck embedding w into an unsu-
pervised embedding and a set of two embeddings per concept, representing the concept’s active and
inactive states. These embeddings are then combined according to the likelihood of each concept
ci being active to produce the post-concept embedding ŵ. The CEM layer and the base generative
model are trained jointly.

In contrast, Kulkarni et al. (2025) proposed the Concept Blottleneck Autoencoder (CB-AE), a CB
module that can be introduced into pretrained generative models. The encoder maps w into a latent
space that includes both concept predictions, with each binary concept represented by two logits,
and an unsupervised embedding. The decoder produces the post-concept embedding ŵ, which must
accurately reconstruct w to preserve the pretrained model’s generative performance. Training uses
synthetic images generated by the pretrained model, with concept labels y obtained from pretrained
or zero-shot classifiers such as Contrastive Language-Image Pre-training (CLIP) (Radford et al.,
2021). The CB-AE is optimized using

L = Lr1(w, ŵ) + Lr2(x, x̂) + Lc(y, c) + Li1(ytarget,yint) + Li2(ytarget, cint), (1)

where Lr1 and Lr2 are Mean Squared Error (MSE) reconstruction losses on the embeddings (w, ŵ)
and images (x, x̂), respectively. Lc is a cross-entropy loss aligning predicted concepts c with labels
y. Intervention losses Li1 and Li2 enforce that concept interventions produce the desired changes:
Li1 compares target concepts ytarget with those in the intervened image yint, while Li2 aligns the
concepts cint predicted from the intervened embedding ŵint with ytarget. Kulkarni et al. (2025)
also propose a lightweight version of the CB-AE, referred to as Concept Controller (CC). In this
model, only the encoder is trained using a reconstruction loss, and interventions are performed via
an optimization-based procedure that applies small perturbations to w to induce a target concept.
However, there is no guarantee that these interventions actually utilize the inferred latent concepts,
since concept inference and intervention are independent processes. For this reason, we do not
consider the CC in our analysis.

Limitations. Both methods rely on soft concept representations, which are susceptible to concept
leakage, where concept probabilities unintentionally encode task-related information (Havasi et al.,
2022; Margeloiu et al., 2021). This reduces control over generation, one of the primary objectives
of CBGMs, as models may exploit information shortcuts rather than effectively capture concept in-
formation, causing concept interventions to fail to produce the intended effect in the final output.
In the case of the CB-AE, this issue is partially mitigated through training-time interventions (see
(1)), but at the expense of increased training complexity. Moreover, since both methods are de-
terministic, they cannot model a generative process over the concept space. As a result, steerable
generation is restricted to modifying concepts on existing inputs, while direct sampling from the
concept bottleneck or from concept distributions is not supported.

3 VARIATIONAL HARD CONCEPT BOTTLENECK LAYER

To address the limitations of existing CBGMs, we propose the Variational Hard Concept Bottleneck
(VHCB) layer. The VHCB builds on a binary VAE, in which the binary latent variables that govern
the generative process are directly mapped to hard concepts, mitigating concept leakage (Margeloiu
et al., 2021; Havasi et al., 2022; Lockhart et al., 2022; Vandenhirtz et al., 2024; Sun et al., 2024).
As a result, training can rely on a straightforward reconstruction-based objective without requiring
additional intervention terms. Its probabilistic formulation further enables direct generation from
specified concept configurations, while still supporting concept inference and controlled manipula-
tion of generated images through concept interventions. Moreover, the binary latent space yields
compact and interpretable concept representations that are easy to manipulate.

We build the VHCB by extending the Coded Discrete Variational Autoencoder (Coded DVAE) from
Martínez-García et al. (2025), a state-of-the-art (SOTA) binary VAE, to incorporate two binary la-
tent representations: a vector of concepts c, whose components are aligned with predefined hard
concepts; and an unsupervised embedding s, which acts as a side channel to address concept incom-
pleteness (Ismail et al., 2023; Kulkarni et al., 2025). For each observation x, concept supervision
is introduced during training using conditional concept distributions p(y|x) as informative priors
for c. These conditionals p(y|x) are obtained from either a supervised or a zero-shot pretrained
classifier, as described in Section 2. We consider the Coded DVAE as base model as it offers (i) a
binary latent space with a factorized prior, suitable for modeling binary concepts, (ii) probabilistic

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

estimates of binary latent variables that can be directly mapped to hard concepts, and (iii) effective
inference mechanisms that allow for robust modeling of those concepts. Remarkably, despite the
discrete latent space, training remains stable through a reparameterization trick based on overlap-
ping smoothing transformations.

3.1 MODEL DESCRIPTION

w

zc zs

vc vs

c s

y

N

Figure 2: Graphical model
of the VHCB.

Consider a dataset D = (wi,xi,yi)
N
i=1, where wi is the inner rep-

resentation of a generative model producing an image xi, and yi are
the associated K binary concept labels. The VHCB maps w to two
binary latent representations: a concept vector c ∈ {0, 1}K , whose
components are aligned with K predefined hard concepts, and an un-
supervised representation s ∈ {0, 1}L, which serves as a side channel
to capture generative factors not represented by c, accounting for con-
cept incompleteness (Ismail et al., 2023; Kulkarni et al., 2025). We
model c and s as binary latent variables with independent Bernoulli
components. By defining the side channel as a binary factorized la-
tent space, the model can learn potentially interpretable unsupervised
representations, enabling the potential discovery of new concepts.

Prior work showed that protecting binary latent variables during gen-
eration by introducing structured redundancy with Error-Correcting
Codes (ECCs) improves inference in binary VAEs (Martínez-García
et al., 2025). An ECC defines a deterministic transformation that in-
creases the dimensionality of the original vector by adding redundancy.
In our setting, we protect c and s using two separate ECCs, defining
the transformations c → vc, with vc ∈ {0, 1}K′

and K ′ > K; and
s → vs, with vs ∈ {0, 1}L′

and L′ > L. These transformations in-
crease the Hamming distance between the binary vectors allowing error correction during inference
by selecting the nearest valid codeword in the K ′-bit space for c and the L′-bit space for s. Follow-
ing Martínez-García et al. (2025), we employ uniform repetition codes, where each bit is repeated
multiple times to construct the codewords.

Following the Coded DVAE framework, after encoding, a smoothing transformation p(z|v) =∏
j p(zj |vj) is applied to both vs and vc to enable differentiable sampling. Specifically, this trans-

formation uses overlapping exponential distributions:

p(z|v = 1) =
eβ(z−1)

Zβ
, p(z|v = 0) =

e−βz

Zβ
, (2)

where v ∈ {0, 1}, z ∈ [0, 1], Zβ = (1 − e−β)/β, and β acts as an inverse temperature parameter.
The transformation is applied to both vs and vc, yielding zs and zc, which are then concatenated
to form the final embedding z that is fed into the decoder Neural Network (NN). The likelihood
of the data is conditioned on this smooth auxiliary variable z as pθ(w|z) = p(fθ(z)), where fθ(·)
denotes the decoder NN.

Variational Family. In this setting, the posterior over the hard concepts factorizes as qη(c, zc|w) =
qη(c|w)p(zc|vc), while the posterior over the unsupervised representation factorizes analogously
as qη(s, zs|s) = qη(s|w)p(zs|vs). In both cases, we assume independent Bernoulli posteriors,
consistent with the Coded DVAE formulation. The marginal posteriors qj , j = 1, . . . ,K of the bits
in c and s are obtained in two stages: first, the encoder NN produces the marginals of the coded bits,
quη (v|w) =

∏L
j=1 Ber(vj ; gj,η(w)) using the encoder NN gη(·). Next, these marginals are refined

by leveraging the structure of the repetition code through a soft majority voting procedure, yielding
improved marginals for the bits in c after correcting errors made by the encoder NN. More details
on this process can be found in Martínez-García et al. (2025).

Training. The VHCB can be trained either in-hoc, jointly with the base generative model, or post-
hoc, using a pretrained model. We focus on the post-hoc setting, as it is more practical: it is more
computationally efficient, reduces data requirements, and enables steerable generation with models
that already produce high-quality outputs. Following Kulkarni et al. (2025), we generate samples
xi from the pretrained model during training and store their intermediate representations wi. Each
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generated image xi is then passed through concept classifiers to obtain p(yi|xi), pairing every wi

with the concepts of its generated image. The model is trained by optimizing the following loss

L = Eqη(c,s,z|w) log pθ(w|z)︸ ︷︷ ︸
embedding reconstruction

−DSKL (qη(c|w), p(y|x))︸ ︷︷ ︸
concept loss

−DKL

(
qη(s|w)∥p(s)

)︸ ︷︷ ︸
side channel regularization

+MSE(x, x̂)︸ ︷︷ ︸
image rec.

,

(3)
where z = [zc; zs] is the concatenation of the soft latent variables passed to the decoder NN. The
first term enforces an accurate reconstruction of the pre-bottleneck embedding w. The concept
loss aligns the concept posterior qη(c|w) with p(y|x) using the symmetric Kullback-Leibler (KL)
divergence (Jeffreys divergence), defined as DSKL(p, q) ≜ DKL(p∥q) + DKL(q∥p) (Polyanskiy &
Wu, 2025). It preserves distributional modes and prevents the posterior from collapsing to the mean,
thereby improving control in concept interventions. The side channel regularization term constrains
the unsupervised latent s to remain close to its prior. Finally, following Kulkarni et al. (2025), an
MSE loss between the original images x and their reconstructions x̂ is included. This term is added
in the post-hoc setting to preserve the generative quality of the pretrained model, while in in-hoc
training it would be replaced by the loss of the underlying generative model (Ismail et al., 2023).

Steerable generation. With the VHCB, we can directly sample c and s from its latent space to gen-
erate an embedding ŵ conditioned on a specified concept distribution. This differs from prior SOTA
methods (Ismail et al., 2023; Kulkarni et al., 2025), which only enable steerability through interven-
tions on existing model outputs x. Operating directly on hard concepts mitigates leakage and makes
interventions transparent and intuitive: controlling a concept reduces to toggling its corresponding
bit on (1) or off (0), allowing straightforward manipulation of the generative process. Note that at
test time the binary latents c and s can be sampled from a uniform prior or fixed to a given choice,
and the smoothing transformation in (2) is applied to obtain z. Interventions on generated outputs
x are carried out by setting the bit in c corresponding to the target concept to the desired value.

4 SYSTEMATIC EVALUATION FOR CBGMS

We aim to design CBGMs that are interpretable, steerable, and capable of producing high-quality
outputs. Building on the desiderata outlined in Section 2, we introduce a systematic evaluation
framework for CBGMs. We define a set of tasks and metrics that allow to assess performance and
analyze important aspects such as concept entanglement, cascading effects of interventions, and the
impact of correlations or biases present in the training data or inherited from the pretrained generator.

4.1 METRICS

We evaluate model performance using a set of similarity and divergence metrics, selected based on
whether concepts are represented as hard variables c ∈ {0, 1}K or soft class probabilities p(c|w).
Note that a concept model can be based on hard concepts (those used to generate the datum x) and
still provide soft class probabilities q(c|w). This is the case of the VHCB.

Metrics for hard concepts. For hard binary predictions, we evaluate performance using accuracy,
defined as acc(y, c) = 1

K

∑K
j=1 1[yj = cj ], where K is the vector dimensionality, yj is the ground-

truth label, cj is the predicted concept value, and 1[·] is the indicator function. This metric quantifies
the fraction of entries where the predicted vector matches the ground-truth vector.

Metrics for soft concepts. Let p be a soft concept vector, where each entry pj represents the
ground-truth class probability p(yj = 1|x), and let q be the corresponding vector of predicted
concept probabilities, q(cj = 1|w). In this case, we consider the following metrics:

• Cosine Similarity. Quantifies the similarity of two vectors by calculating the cosine of the angle
between them, which is given by sim(p, q) = p·q

∥p∥2 ∥q∥2
.

• Total Variation Distance (TV). Treating soft binary predictions as Bernoulli distributions allows
us to compute statistical distances such as the TV, which quantifies the total change in probability
mass between two distributions (Polyanskiy & Wu, 2025). In this case, it is computed per concept
and averaged over all K concepts as TV = 1

K

∑K
j=1 |pj − qj |.
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Metrics for image generation. To assess the quality of generated images, we use the standard
Fréchet Inception Distance (FID), which quantifies the similarity between the distributions of gener-
ated and real images in a learned feature space (Heusel et al., 2017). The FID captures both fidelity
and diversity of the generated images.

4.2 TASKS

As discussed in Section 2, our goal is to design CBGMs that provide accurate concept inference for
interpretability, enable steerable generation through concepts, and preserve high generative quality.
In this section, we present a set of tasks to systematically evaluate these properties.

Robust concept inference. A primary aspect to evaluate is the model’s ability to accurately map
pre-bottleneck embeddings w to concepts c. Additionally, we need to assess the disentanglement
between c and the unsupervised representation s, which acts a side channel to address concept
incompleteness, ensuring that concept information is captured solely by c.

• Concept prediction. We assess the model’s ability to accurately predict concepts by comparing
the concept labels y ∼ p(y|x) of generated images x with the latent concepts c predicted by
the CB layer from their corresponding pre-bottleneck embeddings w. In the post-hoc setting,
ground-truth labels are obtained from images generated by the base generative model (without
the CB layer), and the associated pre-bottleneck embeddings w are mapped to concepts c. This
ensures that the evaluation reflects how well the model predicts the concepts that are inherently
represented in w by the base generator.

• Disentanglement. To assess whether the unsupervised representation s encodes concept infor-
mation, we generate two independent samples from the CBGM, x1 and x2, with corresponding
concept labels y1,y2, latent concept vectors c1, c2, and unsupervised latents s1, s2. We then
swap the unsupervised latents to form (c1, s2) and (c2, s1), and produce new outputs x′

1 and
x′
2 with concept labels y′

1 and y′
2. If s and c are disentangled, concept labels should remain

unchanged. We quantify this by computing accuracy between yi and y′
i and, when soft concept

labels are available, by evaluating soft similarity metrics between p(y|xi) and p(y′|x′
i).

Steerable generation. A central feature of CBGMs is the ability to steer generation through con-
cepts. To evaluate this, we define tasks that include generation from specified concept configurations
and targeted concept interventions in existing generated data. Although CBGMs assume concepts to
be independent, they often exhibit statistical relationships (spurious or not) that generative models
may capture or even amplify. As a result, random sampling or arbitrary interventions can yield out-
of-distribution concept configurations that the model cannot process correctly, limiting steerability.
For example, an intervention that activates two mutually exclusive concepts simultaneously, such
as ‘blond hair’ and ‘black hair’, will fail to generate both. Our evaluation framework accounts for
this, allowing us to distinguish errors caused by limitations of the CB layer from those arising from
out-of-distribution concept configurations.

• Direct concept-based generation. In probabilistic CBGMs, it is possible to sample (c, s) from
the CB’s latent space and generate images conditioned on a specified concept configuration c,
which can also be out-of-distribution. The sampled pair is mapped to a post-concept embedding
ŵ, which is then decoded to produce an image x ∼ p(x|ŵ)p(ŵ|s, c). Associated concept labels
are then estimated with a classifier as y ∼ p(y|x). Finally, we measure the accuracy between y
and c to evaluate concept alignment.

• Single concept intervention. In this case, we evaluate the ability to manipulate individual con-
cepts in existing data. First, a datum x0 is generated with the CBGM, with associated con-
cept vector c0, and concept labels y0 ∼ p(y0|x0). The target concept in c0 is then in-
tervened (activated or deactivated) to produce ctarget. A new output xint is generated as
xint ∼ p(xint|ŵint)p(ŵint|s0, c0 → ctarget), with corresponding labels yint ∼ p(y|xint).
Comparing yint with ctarget and p(y0|x0) with p(yint|xint) allows us to assess (i) whether the
intervention is accurately reflected in xint (Target accuracy) and (ii) whether non-target concepts
remain unchanged (Non Target accuracy). To ensure a comprehensive evaluation, interventions
are tested in both directions.

• Minimum Hamming distance intervention. The evaluation is the same as in the single concept
setting, but in this case we target concept patterns that are frequent in the dataset to avoid out-of-
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distribution configurations. For each sample x0 with latent concept vector c0, we select ctarget
as the closest training concept configuration in Hamming distance, defined as the number of
positions at which two vectors of the same length differ. This approach modifies the fewest
possible concepts while staying in-distribution, helping to distinguish errors due to CB layer
limitations from those caused by out-of-distribution configurations.

5 EXPERIMENTS

In this section, we present experimental results for the proposed VHCB layer and the baseline
CB-AE, evaluated on the tasks defined above. As indicated in Section 3, we focus on the post-hoc
setting. Experiments are conducted with StyleGAN2 (Karras et al., 2020), pretrained on CelebA-HQ
(256×256) (Lee et al., 2020) and CUB-200-2011 (256×256) (Wah et al., 2011), and Denoising Diffu-
sion Probabilistic Model (DDPM) (Ho et al., 2020) pretrained on CelebA-HQ (256×256). Following
Kulkarni et al. (2025), for CelebA-HQ we evaluate the model in (i) a large imbalanced regime with
all 40 concepts (all set), and (ii) a small balanced regime with the eight most balanced concepts (bal-
anced set). In addition, we introduce (iii) a low-correlation subset of eight balanced concepts that the
generator can reliably activate (low correlation set), allowing us to isolate the effect of concept cor-
relations. For CUB-200-2011, we adopt the same setup as Kulkarni et al. (2025), using 10 balanced
concepts. Results are reported using two pseudo-label sources: supervised ResNet18 classifiers and
CLIP zero-shot classifiers. Main results are presented for StyleGAN2 trained on CelebA-HQ and
CUB-200-2011, with additional experiments and extended DDPM results reported in the Appendix.

Model configuration. For both the CB-AE and VHCB, we use 4-layer Multilayer Perceptrons
(MLPs) for the encoder and decoder. In the CB-AE, following Kulkarni et al. (2025), the unsuper-
vised latent is a continuous vector s ∈ R40. In contrast, the VHCB employs a low-dimensional
binary latent s ∈ {0, 1}5. Additional implementation details are provided in the Appendix.

Automated evaluation. We use independent ResNet50 concept classifiers, not involved in training,
to obtain concept labels y ∼ p(y|x) for the generated images. These concept labels act as ground
truth for evaluating model performance.

Evaluating single concept interventions. For each target concept, we identify 1k pre-bottleneck
latents w that generate images x with p(ytarget = 1|x) < 0.5 (concept inactive) and 1k latents with
p(ytarget = 1|x) > 0.5 (concept active). These are then used to do single-concept interventions in
both directions, with the same latent set applied across all models to ensure fair comparison.

5.1 CONCEPT INFERENCE

As shown in Table 1, the proposed VHCB consistently outperforms the deterministic CB-AE across
all concept inference metrics, under both ResNet18 and CLIP supervision. Although both models
show reduced performance with CLIP due to the noisier zero-shot labels, VHCB remains superior,
demonstrating a more robust mapping from w to c. The gains are even larger for disentanglement:
VHCB achieves higher accuracy and cosine similarity while maintaining lower TV, indicating that
changes in s have little effect on concepts. This stronger separation results from the compact side
channel (5 bits compared to 40 dimensions in CB-AE) of and robust inference mechanisms intro-
duced in VHCB, enforcing a cleaner division between supervised and unsupervised factors.

5.2 STEERABLE GENERATION

Direct generation. The probabilistic formulation of the VHCB enables direct generation from spec-
ified concept configurations. Table 2 reports metrics showing that generated images actually reflect
concepts in c. Since random sampling of concept configurations can produce out-of-distribution
concept configurations, we also sample concept patterns according to their empirical frequency in
the training data. This further improves accuracy and highlights how biases in the base generative
model can limit the steering capacity of the CBGM. Figure 3 shows examples of generated images
with specific concept configurations for both CelebA-HQ and CUB-200-2011.

Single concept interventions. We next evaluate the models’ ability to manipulate outputs via
single-concept interventions, with results reported in Figure 4 and Table 3.The VHCB consistently
outperforms the CB-AE in target accuracy, learning a robust mapping from latent concepts c to
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Table 1: Concept inference and disentanglement between c and s. Evaluation on 1k random
samples generated by a StyleGAN2 pretrained on CelebA-HQ.

Concept Inference Disentanglement

Pseudo Label Clf. Model Concept
Set Acc. (↑) Cosine Sim. (↑) TV(↓) Acc.(↑) Cosine Sim. (↑) TV(↓)

ResNet18

VHCB all 0.855 0.804 0.148 0.927 0.917 0.076
CB-AE all 0.857 0.763 0.161 0.901 0.853 0.101
VHCB low corr. 0.791 0.831 0.192 0.874 0.947 0.110
CB-AE low corr. 0.779 0.739 0.238 0.701 0.803 0.229

CLIP

VHCB all 0.623 0.613 0.337 0.921 0.901 0.083
CB-AE all 0.565 0.469 0.403 0.875 0.775 0.101
VHCB low corr. 0.599 0.730 0.299 0.854 0.943 0.125
CB-AE low corr. 0.607 0.639 0.346 0.667 0.782 0.248

Table 2: Steerable Generation. Evaluation of gen-
eration from specific concept configurations using
a StyleGAN2 pretrained on CelebA-HQ. Random
samples concept sets uniformly at random, while
Patterns samples them according to their empirical
frequency in the training data.

Random Patterns

Model Pseudo
Label Clf.

Concept
Set

Target
Acc. (↑)

Target
Acc. (↑)

VHCB
ResNet18 all 0.551 0.873

low corr. 0.715 0.814

CLIP all 0.533 0.830
low corr. 0.632 0.687

Figure 3: Steerable generated examples us-
ing the VHCB and a StyleGAN2 pretrained
on CelebA-HQ and CUB-200-2011.

post-bottleneck embeddings ŵ without explicit intervention losses, indicating that hard concept
representations enhance steerability. We observe that the CB-AE shows slightly higher non-target
accuracy across settings, but this does not indicate more robust interventions. Instead, it reflects a
weaker ability to modify the target concept: in many cases, the target is unchanged (lower target ac-
curacy), leaving the output the same and artificially inflating non-target accuracy, which is computed
over all 1k interventions. In contrast, the VHCB achieves a better compromise, with large gains in
target accuracy (average increase ∼46%) and only a minor reduction in non-target accuracy (aver-
age drop ∼7%). For example, on the low-correlation set with ResNet18, target accuracy rises from
0.42 to 0.77, while non-target accuracy decreases slightly from 0.83 to 0.76. We provide qualitative
examples of this behavior in the Appendix, for both VHCB and CB-AE.

We also find that steerability is strongly influenced by the concept distribution in the dataset. In
CelebA-HQ, most concepts are underrepresented, making deactivation easier than activation, as re-
flected by higher success rates for deactivating concepts. The effects of imbalance and model biases
are evident when comparing the full set of 40 unbalanced concepts to balanced or low-correlation
subsets, where performance metrics consistently improve for both models (results for the balanced
set are provided in the Appendix). Thus, the composition of the concept set has a significant impact
on CBGM performance. We observe the same effect in the DDPM results in Table 4. Additional
results illustrating the effects of concept incompleteness and biases are provided in the Appendix.

Hamming distance interventions. Arbitrary single-concept interventions can produce out-of-
distribution concept configurations that the model cannot generate correctly, resulting in failed inter-
ventions. To mitigate this, we restrict interventions to target one of the 100 most probable concept
patterns observed in the dataset, selected via minimum Hamming distance. This approach consis-
tently improves intervention success rates in both models, with the VHCB still yielding superior
metrics, as shown in Table 3. These results further support that steerability depends not only on the
expressiveness of the CB layer but also on biases inherent in the pretrained generative model.
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Table 3: Test-time interventions. Evaluation of single-concept activation (i → a), deactivation
(a → i), and interventions guided by training concept patterns (minimum Hamming distance) using
a StyleGAN2 pretrained on CelebA-HQ.

Single (i → a) Single (a → i) Hamming Dist.

Pseudo Label
Clf. Model Concept

Set
Target

Acc. (↑)
Non Target

Acc. (↑)
Target

Acc. (↑)
Non Target

Acc. (↑)
Target

Acc. (↑)
Non Target

Acc. (↑)

ResNet18

VHCB all 0.170 0.903 0.550 0.902 0.660 0.938
CB-AE all 0.105 0.924 0.453 0.924 0.542 0.955
VHCB low corr. 0.769 0.762 0.765 0.781 0.634 0.845
CB-AE low corr. 0.420 0.825 0.554 0.822 0.418 0.880

CLIP

VHCB all 0.131 0.890 0.536 0.885 0.595 0.923
CB-AE all 0.085 0.922 0.311 0.922 0.466 0.949
VHCB low corr. 0.567 0.691 0.532 0.694 0.534 0.729
CB-AE low corr. 0.317 0.829 0.404 0.834 0.496 0.869

Table 4: DDPM results, obtained with a DDPM pretrained on CelebA-HQ.

Concept Inf. Single (i → a) Single (a → i)

Pseudo
Label Clf. Model Concept Set Acc (↑) TV (↓) Target

Acc (↑)
Non-Target

Acc (↑)
Target

Acc (↑)
Non-Target

Acc (↑)

ResNet18 VHCB all 0.773 0.254 0.131 0.905 0.546 0.898
low corr. 0.621 0.383 0.219 0.910 0.571 0.857

Figure 4: Single-concept interventions with the VHCB layer and StyleGAN2 models pretrained
on CelebA-HQ and CUB-200-2011.

6 CONCLUSION

In this work, we introduced the VHCB layer, the first probabilistic CBGM with hard concepts.
The VHCB enables improved steerability by (i) mitigating concept leakage by considering hard
concepts, and (ii) enabling direct generation from specified concept configurations thanks to its
probabilistic formulation, while still supporting concept inference and steerability through concept
interventions. We also proposed a systematic evaluation framework for CBGMs, through which
we showed that the VHCB consistently enhances steerability. This framework further revealed the
impact of correlations and biases in training data, which are not captured under our assumption of
independent concepts. Future work includes modeling concept relationships in the latent space and
fine-tuning base models to mitigate spurious biases exposed through steerability analyses.
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7 REPRODUCIBILITY STATEMENT

We have made a strong effort to ensure the reproducibility of our results by providing detailed
descriptions of the implementation, training procedures, and evaluation framework. In particular,
we explain how the method integrates with different generative architectures, including StyleGAN2
and DDPM, specify the pretrained models used in our experiments, detail the training procedures for
each architecture, and describe the concept sets employed for the various model configurations (with
a brief overview in the main text and a more extensive discussion in the Appendix). Additionally, we
provide a comprehensive description of the evaluation framework, including implementation details
and dataset-specific considerations.

REFERENCES

Tameem Adel, Zoubin Ghahramani, and Adrian Weller. Discovering Interpretable Representations
for Both Deep Generative and Discriminative Models. In International Conference on Machine
Learning, pp. 50–59. PMLR, 2018.

Guillaume Alain and Yoshua Bengio. Understanding Intermediate Layers using Linear Classifier
Probes. International Conference on Learning Representations, 2017.

Yonatan Belinkov. Probing Classifiers: Promises, Shortcomings, and Advances. Computational
Linguistics, 48(1):207–219, 2022.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation Learning: A Review and New
Perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–
1828, 2013.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN:
Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.
Advances in Neural Information Processing Systems, 29, 2016.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition.
Nature Machine Intelligence, 2(12):772–782, 2020.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Gian-
nini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller,
et al. Concept Embedding Models: Beyond the Accuracy-Explainability Trade-Off. Advances in
Neural Information Processing Systems, 35:21400–21413, 2022.

Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. GANspace: Discovering
Interpretable GAN Controls. Advances in Neural Information Processing Systems, 33:9841–
9850, 2020.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing Leakage in Concept Bottleneck
Models. Advances in Neural Information Processing Systems, 35:23386–23397, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. Ad-
vances in Neural Information Processing Systems, 30, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-VAE: Learning Basic Visual Concepts with a
Constrained Variational Framework. In International Conference on Learning Representations,
2017.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Aya Abdelsalam Ismail, Julius Adebayo, Hector Corrada Bravo, Stephen Ra, and Kyunghyun Cho.
Concept Bottleneck Generative Models. In International Conference on Learning Representa-
tions, 2023.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Insu Jeon, Wonkwang Lee, Myeongjang Pyeon, and Gunhee Kim. IB-GAN: Disentangled Represen-
tation Learning with Information Bottleneck Generative Adversarial Networks. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 35, pp. 7926–7934, 2021.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
ing and Improving the Image Quality of StyleGAN. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 8110–8119, 2020.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept Bottleneck Models. In International Conference on Machine Learning, pp.
5338–5348. PMLR, 2020.

Akshay Kulkarni, Ge Yan, Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng. Interpretable
Generative Models through Post-hoc Concept Bottlenecks. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2025.

Cheng-Han Lee, Ziwei Liu, Lingyun Wu, and Ping Luo. MaskGAN: Towards Diverse and Inter-
active Facial Image Manipulation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5549–5558, 2020.

Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar Raetsch, Sylvain Gelly, Bernhard
Schölkopf, and Olivier Bachem. Challenging Common Assumptions in the Unsupervised Learn-
ing of Disentangled Representations. In International Conference on Machine Learning, pp.
4114–4124. PMLR, 2019.

Joshua Lockhart, Nicolas Marchesotti, Daniele Magazzeni, and Manuela Veloso. Towards learn-
ing to explain with concept bottleneck models: mitigating information leakage. arXiv preprint
arXiv:2211.03656, 2022.

Emanuele Marconato, Andrea Passerini, and Stefano Teso. GlanceNets: Interpretable, Leak-proof
Concept-based Models. Advances in Neural Information Processing Systems, 35:21212–21227,
2022.

Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi Chen, Mateja Jamnik, and Adrian
Weller. Do Concept Bottleneck Models Learn as Intended? arXiv preprint arXiv:2105.04289,
2021.

María Martínez-García, Grace Villacrés, David Mitchell, and Pablo M. Olmos. Improved Variational
Inference in discrete VAEs using Error Correcting Codes. In Proceedings of the Forty-first Con-
ference on Uncertainty in Artificial Intelligence, volume 286 of Proceedings of Machine Learning
Research, pp. 2973–3012. PMLR, 21–25 Jul 2025.

Brooks Paige, Jan-Willem Van De Meent, Alban Desmaison, Noah Goodman, Pushmeet Kohli,
Frank Wood, Philip Torr, et al. Learning Disentangled Representations with Semi-Supervised
Deep Generative Models. Advances in Neural Information Processing Systems, 30, 2017.

Yury Polyanskiy and Yihong Wu. Information Theory: From Coding to Learning. Cambridge
University Press, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning Transferable Visual
Models from Natural Language Supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Yoshihide Sawada and Keigo Nakamura. Concept Bottleneck Model With Additional Unsupervised
Concepts. IEEE Access, 10:41758–41765, 2022.

Ivaxi Sheth and Samira Ebrahimi Kahou. Auxiliary Losses for Learning Generalizable Concept-
based Models. Advances in Neural Information Processing Systems, 36:26966–26990, 2023.

Ao Sun, Yuanyuan Yuan, Pingchuan Ma, and Shuai Wang. Eliminating Information Leakage in
Hard Concept Bottleneck Models with Supervised, Hierarchical Concept Learning. arXiv preprint
arXiv:2402.05945, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026
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A EXTENDED BACKGROUND

Interpretability in Generative Models. A central research direction focuses on learning disentan-
gled representations, where independent factors of variation are captured along latent dimensions to
enable controlled generation (Bengio et al., 2013; Chen et al., 2016; Higgins et al., 2017; Paige et al.,
2017; Jeon et al., 2021; Yang et al., 2023). Although these factors can sometimes be interpretable,
disentanglement does not guarantee alignment with human-interpretable concepts (Locatello et al.,
2019). Also post-hoc approaches have been proposed, such as Adel et al. (2018), where an exist-
ing latent space is transformed using invertible transformations to encode interpretable concepts.
However, interventions in this setting are not direct as more than one latent dimension can map to
the same concept information. Another method aims to identify interpretable control directions in
Generative Adversarial Networks (GANs) by applying Principal Component Analysis (PCA) to in-
ternal representations of the model (Härkönen et al., 2020). A different line of work, mainly applied
in Natural Language Processing (NLP), trains classifiers to predict concepts from model representa-
tions (Alain & Bengio, 2017; Belinkov, 2022). While this reveals that internal states contain concept
information, it does not imply that the model relies on such concepts for its predictions.

Concept Bottleneck Models (CBMs). A CBM (Koh et al., 2020) is an inherently interpretable
model consisting of two modules: a concept predictor, which maps inputs to human-understandable
concepts, and a label predictor, which maps these concepts to task outputs. These modules can be
trained independently, sequentially, or jointly, and concepts may be represented as discrete labels,
class probabilities, or embeddings (Koh et al., 2020; Havasi et al., 2022; Espinosa Zarlenga et al.,
2022). CBMs offer two key advantages: (i) predictions are explicitly grounded in interpretable
high-level concepts, and (ii) users can intervene on these concepts to alter the final output. How-
ever, they face two main challenges: concept incompleteness and concept leakage. Incompleteness
arises when the predefined concept set fails to capture all task-relevant information, which can be
mitigated through a side channel or by learning representations that encode additional information
not explained by the concepts (Havasi et al., 2022; Espinosa Zarlenga et al., 2022; Sawada & Naka-
mura, 2022; Yuksekgonul et al., 2023). Leakage occurs when soft concept probabilities unintention-
ally encode task labels, undermining interpretability and trustworthiness (Margeloiu et al., 2021;
Havasi et al., 2022). This can be alleviated by using binary concept representations or enforcing
uncorrelated concept representations (Chen et al., 2020; Margeloiu et al., 2021; Havasi et al., 2022;
Espinosa Zarlenga et al., 2022; Marconato et al., 2022; Sheth & Ebrahimi Kahou, 2023; Vanden-
hirtz et al., 2024). In our work, we adopt hard binary concepts leveraging the Coded DVAE, which
prevent leakage while providing a low-dimensional and easily interpretable latent representation.

A.1 RELATED WORK: INTERPRETABILITY IN GENERATIVE MODELS THROUGH CBMS

 

 

      
 

   

 

 
 

   

   

 
 

 

     

Figure 5: Diagrams of state-of-the-art CBGM architectures: (a) the Concept Embedding Model
(CEM) (Ismail et al., 2023) and the (b) Concept Bottleneck Autoencoder (CB-AE) (Kulkarni et al.,
2025).
Concept Embedding Model (CEM). Ismail et al. (2023) were the first to introduce CBMs into
generative models, aiming to make them both interpretable and steerable through a model-agnostic
concept bottleneck layer. Building on the CEM layer (Espinosa Zarlenga et al., 2022), the pre-
bottleneck representation w is mapped into two embeddings per concept, representing its active and
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inactive states, which are mixed based on the likelihood of the concept yi being active. To capture
task-relevant information not covered by predefined concepts, the authors introduce an unknown
concept network that learns an additional unsupervised embedding. In this framework, the genera-
tive model and bottleneck layer must be trained jointly, making the approach reliant on annotated
data and computationally expensive.

Post-Hoc Concept Bottleneck Autoencoder (CB-AE) and CC. To reduce the dependence on la-
beled data and the computational cost of CBGMs, Kulkarni et al. (2025) proposed the CB-AE, a
concept-based autoencoder that can be integrated into pretrained generative models. The encoder
maps the pre-bottleneck latent w into a concept space that includes both concept predictions, with
each binary concept represented by two logits, and an unsupervised embedding that captures in-
formation not covered by the concepts. The decoder reconstructs the latent ŵ, which is passed to
the post-bottleneck module to generate the final output x̂. In this setup, depicted in Figure 5, only
the CB-AE is trained, while the generative model remains fixed. To this end, the CB-AE leverages
synthetic images generated by the pretrained model, with pseudo-labels y given by pretrained or
zero-shot classifiers such as CLIP (Radford et al., 2021). The model is trained by minimizing the
following objective

L = Lr1(w, ŵ) + Lr2(x, x̂) + Lc(y,m) + Li1(ytarget,yint) + Li2(ytarget,mint), (4)

where Lr1 and Lr2 are MSE reconstruction losses between generative latents (w, ŵ) and images
(x, x̂). Lc is a cross-entropy loss aligning predicted concepts m with pseudo-labels y. The inter-
vention losses Li1 and Li2 are cross-entropy losses that enforce that interventions in the concept
space yield the desired changes in both the generative latent ŵint and the generated image x̂int: Li1
compares the target concepts ytarget with the pseudo-labels of the intervened image yint, while Li2
aligns the predictions mint, obtained by mapping ŵint to the concept space, with ytarget. In this
case, interventions are performed by swapping the concept logits.

Alternatively, the authors propose optimization-based interventions where small perturbations are
applied to the latent w to induce a target concept, an approach referred to as CC. In this setting, only
the encoder is trained with reconstruction losses, but there is no guarantee that the model relies on
latent concept information to carry out the interventions.

B STYLEGAN2

The main experimental results of this work were obtained by integrating our proposed VHCB layer
into pretrained StyleGAN2 models (Karras et al., 2020). This family of generative models is par-
ticularly well suited to the CBGM framework, as image generation is controlled by a single latent
representation that we map to concepts and that the generator then transforms into an output. In
StyleGAN2, we place the VHCB layer between the Mapping Network and the Synthesis Network,
as illustrated in Figure 6, following the approach of Ismail et al. (2023); Kulkarni et al. (2025).
These prior works showed that this the optimal location in this setting, since it enables high-quality
image generation while allowing the CB layer to capture semantic rather than style information.

   

 

Figure 6: Diagram showing the integration of our VHCB layer into the StyleGAN2 architecture.

Datasets and pretrained models. We use two publicly available pretrained StyleGAN2 models:
one trained on CelebA-HQ at 256× 256 resolution (Lee et al., 2020), and one trained on CUB 200-
2011 at 256× 256 resolution (Wah et al., 2011)1. Following Kulkarni et al. (2025), for CelebA-HQ
we train and evaluate the VHCB layer in (i) a large imbalanced regime with all 40 concepts (all set),

1https://github.com/NVlabs/stylegan3
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and (ii) a small balanced regime with the eight most balanced concepts (balanced set). In addition,
we introduce (iii) a low-correlation subset of eight balanced concepts that the generator can reliably
activate (low correlation set), allowing us to isolate the effect of concept correlations. For CUB, we
adopt the same setup as Kulkarni et al. (2025), using 10 balanced concepts. The specific concept
sets are as follows:

• CelebA-HQ
– Complete set (all, 40 concepts): ‘5 o Clock Shadow’, ‘Arched Eyebrows’, ‘Attrac-

tive’, ‘Bags Under Eyes’, ‘Bald’, ‘Bangs’, ‘Big Lips’, ‘Big Nose’, ‘Black Hair’,
‘Blond Hair’, ‘Blurry’, ‘Brown Hair’, ‘Bushy Eyebrows’, ‘Chubby’, ‘Double Chin’,
‘Eyeglasses’, ‘Goatee’, ‘Gray Hair’, ‘Heavy Makeup’, ‘High Cheekbones’, ‘Male’,
‘Mouth Slightly Open’, ‘Mustache’, ‘Narrow Eyes’, ‘No Beard’, ‘Oval Face’, ‘Pale
Skin’, ‘Pointy Nose’, ‘Receding Hairline’, ‘Rosy Cheeks’, ‘Sideburns’, ‘Smiling’,
‘Straight Hair’, ‘Wavy Hair’, ‘Wearing Earrings’, ‘Wearing Hat’, ‘Wearing Lipstick’,
‘Wearing Necklace’, ‘Wearing Necktie’, and ‘Young’.

– Balanced set (8 concepts): ‘Attractive’, ‘Wearing Lipstick’, ‘Mouth Slightly Open’,
‘Smiling’, ‘High Cheekbones’, ‘Heavy Makeup’, ‘Male’, and ‘Arched Eyebrows’.

– Low correlation set (8 concepts): ‘Pale Skin’, ‘Bangs’, ‘Big Lips’, ‘Mouth Slightly
Open’, ‘Chubby’, ‘Young’, ‘Smiling’, and ‘Mustache’.

• CUB-200-2011
– Balanced set (10 concepts): ‘Small size 5, to 9 inches’, ‘Perching like shape’, ‘Solid

breast pattern’, ‘Black bill color’, ‘Bill length shorter than head’, ‘Black wing color’,
‘Solid belly pattern’, ‘All purpose bill shape’, ‘Black upperparts color’, and ‘White
underparts color’.

Implementation and training details. For both the CB-AE and VHCB, we use 4-layer MLPs for
the encoder and decoder. In the CB-AE, following Kulkarni et al. (2025), the unsupervised latent
is a continuous vector s ∈ R40. In contrast, the VHCB employs a low-dimensional binary latent
s ∈ {0, 1}5, protected by uniform repetition with a code rate of R = 5/50. Concept variables
are encoded with code rates R ∈ {8/240, 10/300, 40/800} depending on the number of concepts.
Models are trained for 50 epochs using Adam with a learning rate of 0.0002, with concept labels
provided either by supervised ResNet18 classifiers or CLIP zero-shot classifiers. The VHCB used
batch size 32 and 1000 steps per epoch, and weighted the concept loss by β = 20 in the training
objective. For the CB-AE, we halved the batch size to 16 due to memory limits and doubled the
steps to match the number of training samples. For CelebA-HQ with the balanced concept set,
we used the model weights provided by the authors 2; all other configurations were trained from
scratch. Thresholds for computing the concept losses in the CB-AE were set to 0.9 for supervised
classifiers, 0.6 for CelebA-HQ with CLIP, and none for CUB-200-2011, following the original code
specifications.

C DENOISING DIFFUSION PROBABILISTIC MODEL

To assess the generality of the proposed VHCB across generative architectures, we integrate it into
a DDPM (Ho et al., 2020). Following the setup of Kulkarni et al. (2025), we use a publicly available
pretrained DDPM from Google, trained on CelebA-HQ at 256 × 256 resolution, which employs a
U-Net as the denoising network.3 This enables a direct comparison with the baseline method from
Kulkarni et al. (2025) under identical conditions.

Following Kulkarni et al. (2025), we attach the VHCB module to the bottleneck layer of the U-Net
architecture. While other integration strategies (e.g., adding modules to multiple skip connections)
could potentially provide finer control, our aim here is to replicate the original post-hoc CBM con-
figuration and verify whether the trends observed with StyleGAN2 also hold in diffusion models. A
schematic of the model with the VHCB module is shown in Figure 7.

Implementation and training details. We follow the same dataset and concept setup as in the
StyleGAN2 experiments (see Section B), but restrict our analysis to CelebA-HQ. We first generate

2https://github.com/Trustworthy-ML-Lab/posthoc-generative-cbm
3https://huggingface.co/google/ddpm-celebahq-256
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Figure 7: Integration of the VHCB module into the pretrained DDPM architecture. A noisy image
xt at diffusion timestep t is processed by the U-Net, which predicts the corresponding noise ϵ̂t.
The VHCB module is inserted at the bottleneck of the U-Net and maps intermediate features to a
binary concept vector c via an encoder, which is then used for concept prediction, steerability, and
reconstruction via the decoder. The objective is to ensure that semantic information is captured and
can be manipulated through c, without disrupting the denoising trajectory.

a dataset of 50,000 images using the pretrained DDPM, storing both the latent noise vectors and the
resulting images. Concept pseudo-labels are obtained using a bank of ResNet-18 classifiers (one per
concept), and probabilities are thresholded at 0.5 to produce binary targets.

The VHCB is trained by replaying the diffusion process: the stored noise latents are fed into the
fixed pretrained DDPM, now augmented with our module. We restrict training to timesteps t ∈
[0, 400], since later steps add excessive noise and degrade the semantic structure in the bottleneck
representation (Kulkarni et al., 2025). At each step, the U-Net predicts the noise at timestep t, and
the VHCB receives the corresponding bottleneck features.

The loss is the same supervised objective as in equation (3), consisting of (i) a binary cross-entropy
loss for concept prediction, (ii) a KL divergence regularizer for the side channel, and (iii) a recon-
struction term. In the DDPM setting, the reconstruction is implemented as a consistency constraint:
the mean squared error between the predicted noise of the pretrained U-Net and that of the U-Net
with the VHCB attached. This ensures that the VHCB learns concept-aligned representations with-
out interfering with the denoising process.

We use the same VHCB architecture described in Section B. However, here we only consider code
rates R ∈ {8/240, 40/800} depending on the number of concepts. Models are trained for 50 epochs
using Adam with a learning rate of 0.0002, batch size of 32, with concept labels provided either by
supervised ResNet18 classifiers or CLIP zero-shot classifier. A weight of β = 20 was again applied
to the concept loss term to increase its influence during training.

D ADDITIONAL EXPERIMENTAL RESULTS

In this section, we extend the experiments from the main paper. Specifically, we report results using
pretrained StyleGAN2 models for the three CelebA-HQ concept sets, as well as results for the CUB-
200-2011 dataset. We also expand the experimental evaluation by including results obtained with a
pretrained DDPM.

Intervening concepts. In the VHCB, test-time interventions are performed by setting the latent
variable of the target concept to the desired value (0 for inactive, 1 for active). For the CB-AE,
interventions are applied by assigning the maximum logit (out of the two representing each concept)
to the position corresponding to the target value. Metrics for single-concept interventions are calcu-
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Table 5: Concept inference and disentanglement between c and s. StyleGAN2, CelebA-HQ

Concept Inference Disentanglement

Pseudo Label
Clf. Model Concept

Set Acc. (↑) Cosine Sim. (↑) TV (↓) Acc. (↑) Cosine Sim. (↑) TV (↓)

ResNet18

VHCB all 0.855 0.804 0.148 0.927 0.917 0.076
CB-AE all 0.857 0.763 0.161 0.901 0.853 0.101
VHCB balanced 0.757 0.883 0.217 0.867 0.937 0.111
CB-AE balanced 0.761 0.872 0.234 0.776 0.811 0.192
VHCB low corr. 0.791 0.831 0.192 0.874 0.947 0.110
CB-AE low corr. 0.779 0.739 0.238 0.701 0.803 0.229

CLIP

VHCB all 0.623 0.613 0.337 0.921 0.901 0.083
CB-AE all 0.565 0.469 0.403 0.875 0.775 0.101
VHCB balanced 0.558 0.713 0.353 0.824 0.918 0.138
CB-AE balanced 0.552 0.601 0.411 0.709 0.735 0.248
VHCB low corr. 0.599 0.730 0.299 0.854 0.943 0.125
CB-AE low corr. 0.607 0.639 0.346 0.667 0.782 0.248

lated by systematically intervening on every concept in the set, with the aim of changing the target
concept while keeping all other concepts unchanged.

Evaluating single concept interventions. For each target concept, we identify 1k pre-bottleneck
latents w that generate images x with p(ytarget = 1|x) < 0.5 (target concept inactive) and 1k latents
with p(ytarget = 1|x) > 0.5 (target concept active). These latents are then used to do single-concept
interventions in both directions, with the same latent set applied across all models to ensure fair
comparison. Because some concepts are underrepresented in the dataset, the pretrained generative
model may fail to reliably generate images where those concepts are active. As a result, in the
large imbalanced CelebA-HQ regime, 1k active latents could only be obtained for a subset of the 40
concepts. Specifically, active latents were obtained for the following concepts: ‘Arched Eyebrows’,
‘Attractive’, ‘Bangs’, ‘Big Lips’, ‘Big Nose’, ‘Chubby’, ‘Goatee’, ‘Heavy Makeup’, ‘High Cheeck-
bones’, ‘Male’, ‘Mouth Slightly Open’, ‘Mustache’, ‘No Beard’, ‘Pale Skin’, ‘Smiling’, ‘Wearing
Lipstick’, and ‘Young’.

D.1 STYLEGAN2 ON CELEBA-HQ

Concept inference. We observe the results generalize across the 3 considered concept subsets. As
shown in Table 5, our proposed VHCB consistently improves over the deterministic CB-AE across
concept inference metrics, under both ResNet18 and CLIP pseudo-label supervision. Notably, the
VHCB improves the soft metrics, suggesting that its posterior is properly aligned the pretrained
classifiers. While performance decreases for both models with CLIP supervision due to the noisier
zero-shot labels, VHCB remains clearly superior, indicating a more robust mapping from w to
c. The gains are even larger for disentanglement: VHCB achieves substantially higher accuracy
and cosine similarity with lower TV, showing that modifying s has minimal effect on concepts.
This stronger separation arises from the compact side channel of VHCB (only 5 bits compared to
40 dimensions in CB-AE), which restricts concept leakage into s and enforces a cleaner division
between supervised and unsupervised factors.

Single concept intervention. We next evaluate the models’ ability to manipulate outputs via single-
concept interventions, with results reported in Figure 8 and Tables 6 and 7 (intervening on every
concept in each set). The VHCB consistently outperforms the CB-AE in terms of target accuracy,
learning a robust mapping between latent concepts c and post-bottleneck embeddings ŵ without
requiring explicit intervention losses. We observe that the CB-AE shows slightly higher non-target
accuracy across settings, but this does not indicate more robust interventions. Instead, it reflects a
weaker ability to modify the target concept: in many cases, the target is unchanged (lower target
accuracy), leaving the output the same and artificially inflating non-target accuracy, which is com-
puted over all 1k interventions. In contrast, the VHCB achieves a better compromise, with large
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Table 6: Single concept interventions (activation). StyleGAN2, CelebA-HQ.

Single (i → a)

Pseudo Label Clf. Model Concept
Set

Target
Acc. (↑)

Non Target
Acc. (↑)

Non Target
Cosine Sim. (↑)

Non Target
TV (↓)

ResNet18

VHCB all 0.170 0.903 0.868 0.098
CB-AE all 0.105 0.924 0.910 0.078
VHCB balanced 0.376 0.812 0.869 0.160
CB-AE balanced 0.283 0.846 0.898 0.135
VHCB low corr. 0.769 0.762 0.853 0.187
CB-AE low corr. 0.420 0.825 0.921 0.136

CLIP

VHCB all 0.131 0.890 0.830 0.112
CB-AE all 0.085 0.922 0.906 0.079
VHCB balanced 0.346 0.706 0.740 0.245
CB-AE balanced 0.206 0.839 0.884 0.135
VHCB low corr. 0.567 0.691 0.813 0.234
CB-AE low corr. 0.317 0.829 0.921 0.130

Table 7: Single concept interventions (deactivation). StyleGAN2, CelebA-HQ.

Single (a → i)

Pseudo Label Clf. Model Concept
Set

Target
Acc. (↑)

Non Target
Acc. (↑)

Non Target
Cosine Sim. (↑)

Non Target
TV (↓)

ResNet18

VHCB all 0.550 0.902 0.868 0.098
CB-AE all 0.453 0.924 0.910 0.078
VHCB balanced 0.810 0.758 0.859 0.190
CB-AE balanced 0.833 0.777 0.881 0.178
VHCB low corr. 0.765 0.781 0.867 0.177
CB-AE low corr. 0.554 0.822 0.918 0.138

CLIP

VHCB all 0.536 0.885 0.821 0.116
CB-AE all 0.311 0.922 0.906 0.080
VHCB balanced 0.682 0.627 0.732 0.296
CB-AE balanced 0.509 0.779 0.868 0.177
VHCB low corr. 0.532 0.694 0.821 0.233
CB-AE low corr. 0.404 0.834 0.918 0.130

gains in target accuracy (average increase ∼46%) and only a minor reduction in non-target accuracy
(average drop ∼7%). For example, on the low-correlation set with ResNet18, target accuracy rises
from 0.42 to 0.77, while non-target accuracy decreases slightly from 0.83 to 0.76. Similarly, with
CLIP, target accuracy improves from 0.32 to 0.57, with non-target accuracy dropping from 0.83
to 0.69. The same pattern is observed in the complete and balanced sets, showing that the VHCB
achieves a better balance between modifying target concepts and preserving non-target concepts.

We also observe that steerability is strongly influenced by concept distribution in the dataset: in
CelebA-HQ most concepts are underrepresented, making deactivation easier than activation. The
effect of imbalance and model biases is also evident when moving from the full set of 40 unbal-
anced concepts to balanced and low-correlation subsets, with metrics consistently improving in both
models. Therefore, the definition of the concept set has also a large influence in the CBGM perfor-
mance.

Hamming distance intervention. To mitigate the effect of out-of-distribution concept configura-
tions that arbitrary interventions yield during evaluation, we restrict interventions to target one of
the 100 most probable concept patterns observed in the dataset, selected via minimum Hamming
distance. Results are reported in Table 8. This approach consistently improves intervention success
rates in both models, and all the concept sets, with the VHCB still yielding superior metrics, as
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Figure 8: Examples of single concept interventions in CelebA-HQ with VHCB layers trained on
different concept sets.

Figure 9: Examples of single concept interventions in CelebA-HQ with VHCB and CB-AE layers.

shown in Table 8. These results further support that steerability depends not only on the expressive-
ness of the CB layer but also on biases inherent in the pretrained generative model.

Impact of concept incompleteness and model biases. With large concept sets, correlations (spu-
rious or not) between concepts can limit steerability, as some configurations fall out of distribution.
However, concept information is generally better isolated. In smaller concept sets, low correlations
make interventions easier, but the model may inadvertently capture information from unmodeled
concepts due to dataset biases. For example, in CelebA-HQ, hair color and ‘smiling’ exhibit spu-
rious correlations (this effect can be observed in some interventions in Figure 8). Introducing hair
color concepts (e.g., ‘blond hair’, ‘black hair’) allows to better isolate the concept ‘smiling’. How-
ever, single concept interventions in this setting become harder, since activating mutually exclusive
hair colors yields out-of-distribution configurations. Therefore, the definition of the concept set has
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Table 8: Hamming distance-based interventions. StyleGAN2, CelebA-HQ.

Hamming Distance

Pseudo Label Clf. Model Concept
Set

Target
Acc. (↑)

Non Target
Acc. (↑)

Non Target
Cosine Sim. (↑)

Non Target
TV (↓)

ResNet18

VHCB all 0.660 0.938 0.863 0.085
CB-AE all 0.542 0.955 0.910 0.066
VHCB balanced 0.594 0.868 0.892 0.129
CB-AE balanced 0.374 0.837 0.896 0.145
VHCB low corr. 0.634 0.845 0.895 0.149
CB-AE low corr. 0.418 0.880 0.936 0.110

CLIP

VHCB all 0.595 0.923 0.827 0.099
CB-AE all 0.466 0.949 0.902 0.070
VHCB balanced 0.423 0.719 0.753 0.239
CB-AE balanced 0.252 0.854 0.896 0.130
VHCB low corr. 0.534 0.729 0.828 0.225
CB-AE low corr. 0.496 0.869 0.933 0.113

Figure 10: Examples of interventions activating the concept mustache, we can see the effect of the
concept incompleteness and the effect of the biases present in the data, captured by the generative
model.

also a large influence in the CBGM performance. To further illustrate this effect, Table 10 presents
examples of interventions aimed at activating the ‘Mustache’ concept, which is strongly correlated
with ‘Male’ and ‘No Beard’. When modeling the complete set of concepts, most interventions fail,
as ‘No Beard’ (which was already active) and ‘Mustache’ are mutually exclusive, and due to the
data biases, ‘Female’ and ‘Mustache’ simultaneously active is also out-of-distribution. However,
when using a reduced concept set that excludes ‘No Beard’ and ‘Male’, interventions on ‘Mustache’
succeed. In cases where the mustache is added to a female image, the model changes the gender
to ‘Male’ to accommodate the intervention. Additionally, we observe the model captures spurious
correlations associated with the ‘Mustache’ concept, such as dark hair and a higher likelihood of
wearing sunglasses.

Image generation. The probabilistic formulation of the VHCB enables direct generation from spec-
ified concept configurations. Table 9 reports metrics showing that generated images actually reflect
concepts in c. Since random sampling of concept configurations can produce out-of-distribution
concept configurations, we also sample concept patterns according to their empirical frequency in
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Figure 11: Examples of generation from specific concept configurations in CelebA-HQ. The results
were obtained with a pretrained StyleGAN2.

Table 9: Generation. StyleGAN2, CelebA-HQ.

Random Patterns

Model Pseudo
Label Clf.

Concept
Set Target Acc. (↑) Target Acc. (↑)

VHCB

ResNet18 all 0.551 0.873
balanced 0.670 0.778
low corr. 0.715 0.814

CLIP all 0.533 0.830
balanced 0.607 0.679
low corr. 0.632 0.687

Table 10: Image quality. We report FID30k using a StyleGAN2 pretrained on CelebA-HQ.

Forward Random Generation

Pseudo Label Clf. Model Concept
Set FID (↓) FID (↓)

ResNet18

VHCB all 7.248 16.095
CB-AE all 11.645 –
VHCB balanced 11.016 19.636
CB-AE balanced 9.169 –
VHCB low corr. 11.589 34.925
CB-AE low corr. 13.590 –

CLIP

VHCB all 6.388 19.601
CB-AE all 12.070 –
VHCB balanced 10.345 19.163
CB-AE balanced 11.439 –
VHCB low corr. 9.666 24.037
CB-AE low corr. 8.083 –

the training data. This further improves accuracy and highlights how biases in the base generative
model can limit the steering capacity of the CBGM. As with interventions, we observe a general
improvement in generation accuracy when considering balanced and low-correlation concept sets.
In Table 10, we report FID scores for images generated using the full CBGM (Forward) and by
directly sampling from the VHCB latent space (Random Generation). In the forward setting, the
VHCB generally improves FID compared to the base CB-AE, indicating a better reconstruction of
the pre-concept embedding w. In contrast, FID increases substantially when generating from ran-
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Table 11: Concept inference and disentanglement between c and s. StyleGAN2, CUB-200-2011.

Concept Inference Disentanglement

Pseudo Label Clf. Model Acc. (↑) Cosine Sim. (↑) TV (↓) Acc. (↑) Cosine Sim. (↑) TV (↓)

ResNet18 VHCB 0.743 0.914 0.167 0.864 0.957 0.100
CB-AE 0.720 0.919 0.181 0.962 0.991 0.027

CLIP VHCB 0.554 0.812 0.246 0.792 0.943 0.127
CB-AE 0.570 0.543 0.355 0.612 0.867 0.216

Table 12: Single concept interventions (activation). StyleGAN2, CUB-200-2011.

Single (i → a)

Pseudo Label
Clf. Model Target Acc. (↑) Non Target Acc. (↑) Non Target

Cosine Sim. (↑) Non Target TV (↓)

ResNet18 VHCB 0.392 0.754 0.896 0.164
CB-AE 0.112 0.669 0.895 0.184

CLIP VHCB 0.372 0.665 0.859 0.196
CB-AE 0.226 0.905 0.905 0.157

dom latent samples, as out-of-distribution concept configurations reduce the similarity between the
distributions of generated and real images in the learned feature space.

D.2 STYLEGAN2 ON CUB-200-2011

We also evaluate the different CB layers in the CUB-200-2011 dataset, evaluating the same tasks we
did in CelebA-HQ. This is a more challenging dataset, as the annotations are more noisy, as some
of the attributes cannot be seen in the pictures, and the size of the dataset is smaller, which does not
affect the CB layer itself (as it is trained with generated data) but it does affect the performance of
the classifiers employed for training (in the supervised case) and for automatic evaluation.

Concept Inference. In this case, we again observe the robustness of the VHCB layer. Metrics in
Table 11 show that, while both models perform similarly when trained with supervised classifiers,
the VHCB shows a substantially smaller drop in performance when trained with zero-shot classifiers,
which tend to be more noisy.

Interventions. We next evaluate the models’ ability to manipulate model outputs via concept inter-
ventions. Tables 12 and 13 contain the metrics for single concept interventions, Table 14 contains
the results for Hamming-distance interventions, and Figure 12. Although in this case the models
perform more closely, we observe that the VHCB has better capability to activate concepts.

Generation. Table 15 reports metrics showing that generated images actually reflect concepts in c,
and Figure 13 shows examples of images generated with fixed concepts. Since random sampling
of concept configurations can produce out-of-distribution concept configurations, we also sample
concept patterns according to their empirical frequency in the training data. This further improves
accuracy and highlights how biases in the base generative model can limit the steering capacity of
the CBGM.

D.3 DDPM ON CELEBA-HQ

We next evaluate our approach on a diffusion-based generator, specifically on the pretrained DDPM
described in Section C. We replicate the evaluation protocol from our StyleGAN2 experiments,
using the same concept sets and pseudo-label classifiers. Results are reported in Tables 17 and 18
for direct comparison with StyleGAN2. Unlike StyleGAN2, the post-hoc CB-AE baseline from
Kulkarni et al. (2025) is not available for this setting, but this does not affect our objective here: our
aim is to verify whether the same overall trends observed with StyleGAN2 also hold for DDPMs,
rather than to benchmark against all baselines.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 13: Single concept interventions (deactivation). StyleGAN2, CUB-200-2011.

Single (a → i)

Pseudo Label
Clf. Model Target Acc. (↑) Non Target Acc. (↑) Non Target

Cosine Sim. (↑) Non Target TV (↓)

ResNet18 VHCB 0.707 0.715 0.895 0.176
CB-AE 0.886 0.586 0.901 0.192

CLIP VHCB 0.513 0.660 0.885 0.190
CB-AE 0.430 0.711 0.921 0.156

Figure 12: Examples of single concept intervention in CUB-200-2011. Results obtained with a
StyleGAN2 pretrained on CUB.

Table 14: Hamming distance-based interventions. StyleGAN2, CUB-200-2011.

Hamming Distance

Pseudo Label
Clf. Model Target Acc. (↑) Non Target Acc. (↑) Non Target

Cosine Sim. (↑) Non Target TV (↓)

ResNet18 VHCB 0.642 0.764 0.884 0.171
CB-AE 0.734 0.697 0.888 0.187

CLIP VHCB 0.342 0.675 0.874 0.187
CB-AE 0.308 0.722 0.913 0.154

Figure 13: Examples of generation from specific concept configurations in CUB. Results obtained
with a StyleGAN2 pretrained on CUB.

Concept inference. Table 17 shows that the VHCB captures concept information reliably in the
diffusion setting. With ResNet18 supervision, we observe competitive accuracy on the balanced and
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Table 15: Generation. StyleGAN2 CUB.

Random Patterns

Pseudo Label Clf. Model Target Acc. (↑) Target Acc. (↑)

ResNet18 VHCB 0.669 0.750
CB-AE – –

CLIP VHCB 0.516 0.550
CB-AE – –

Table 16: Image quality. StyleGAN2 CUB.

Forward Random Generation

Pseudo Label Clf. Model FID (↓) FID (↓)

ResNet18 VHCB 14.864 16.882
CB-AE 27.243 –

CLIP VHCB 16.952 24.762
CB-AE 24.597 –

low-correlation sets, while disentanglement metrics remain consistent across concept sets. As in the
StyleGAN2 case, CLIP supervision yields lower overall scores due to noisier labels, but the trends
remain stable. Importantly, the side channel retains only limited concept information, confirming
that the compact binary bottleneck continues to mitigate leakage in DDPMs.

Concept interventions. The steerability of the VHCB within DDPMs is summarized in Table 18.
We evaluate activation (i → a), deactivation (a → i), and interventions restricted to training con-
cept patterns (minimum Hamming distance). As in the StyleGAN2 setting, we observe substantial
improvements in target accuracy when deactivating concepts, with non-target attributes largely pre-
served. However, unlike in StyleGAN2, Hamming distance interventions do not improve target
accuracy: while they achieve excellent preservation of non-target concepts (above 0.98 across all
settings), they fail to reliably enforce the target concept. This contrast suggests that enforcing con-
cept changes in DDPMs is harder than in GANs, likely because the denoising trajectory resists
out-of-distribution edits. Moreover, this may reflect a limitation of introducing the VHCB only at
the bottleneck of the UNet backbone, pointing to the need for future work on alternative multi-layer
insertion points. These results thus highlight both the generality of our findings across generative
families and the specific challenges that diffusion-based generators present for fine-grained concept
steering.

Table 17: Concept inference and disentanglement between c and s. DDPM, CelebA-HQ.

Concept Inference Disentanglement

Model Pseudo
Label Clf.

Concept
Set Acc. (↑) Cosine Sim. (↑) TV (↓) Acc. (↑) Cosine Sim. (↑) TV (↓)

VHCB

ResNet18
all 0.733 0.595 0.254 0.733 0.595 0.255

balanced 0.546 0.627 0.402 0.545 0.633 0.402
low corr. 0.621 0.333 0.383 0.622 0.338 0.383

CLIP
all 0.684 0.431 0.320 0.680 0.431 0.321

balanced 0.577 0.224 0.430 0.569 0.231 0.434
low corr. 0.339 0.481 0.569 0.345 0.483 0.567
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Table 18: Test-time interventions. Evaluation of single-concept activation (i → a), deactivation
(a → i), and interventions guided by training concept patterns (minimum Hamming distance).
DDPM, CelebA-HQ.

Single (i → a) Single (a → i) Hamming Dist.

Model Pseudo
Label Clf.

Concept
Set

Target
Acc. (↑)

Non Target
Acc. (↑)

Target
Acc. (↑)

Non Target
Acc. (↑)

Target
Acc. (↑)

Non Target
Acc. (↑)

VHCB

ResNet18
all 0.131 0.905 0.546 0.898 0.047 0.993

balanced 0.406 0.625 0.250 0.491 0.044 0.983
low corr. 0.187 0.910 0.571 0.857 0.041 0.990

CLIP
all 0.131 0.905 0.546 0.898 0.041 0.992

balanced 0.343 0.607 0.250 0.500 0.037 0.980
low corr. 0.219 0.906 0.571 0.847 0.046 0.991

Table 19: Generation. DDPM, CelebA-HQ.

Random Patterns

Model Pseudo
Label Clf.

Concept
Set

Target
Acc. (↑)

Target
Acc. (↑)

VHCB

ResNet18
all 0.506 0.711

balanced. 0.490 0.490
low corr. 0.503 0.580

CLIP
all 0.505 0.705

balanced. 0.491 0.545
low corr. 0.502 0.530

Image generation. Results are summarized in Table 19. As with interventions, generated images
generally reflect the intended concepts, confirming that the VHCB enables controllable generation
within DDPMs. Sampling concept patterns according to their empirical frequency in the training
data typically improves target accuracy compared to purely random sampling, particularly for the
complete concept set. However, gains are less consistent for the balanced and low-correlation sets,
where improvements are modest or absent. We attribute this behavior not to limitations of the
VHCB itself, but rather to its placement at the bottleneck of the U-Net denoiser, which may provide
a weaker steering handle compared to StyleGAN2’s mapping network. These findings highlight that
while the proposed approach is effective, further improvements in consistency could be achieved by
exploring alternative integration strategies within diffusion architectures.
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