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ABSTRACT

Deep learning-based medical image segmentation models, such as U-Net, rely on
high-quality annotated datasets to achieve accurate predictions. However, the in-
creasing use of generative models for synthetic data augmentation introduces po-
tential risks, particularly in the absence of rigorous quality control. In this paper,
we investigate the impact of synthetic MRI data on the robustness and segmen-
tation accuracy of U-Net models for brain tumor segmentation. Specifically, we
generate synthetic T1-contrast-enhanced (T1-Ce) MRI scans using a GAN-based
model with a shared encoding-decoding framework and shortest-path regulariza-
tion. To quantify the effect of synthetic data contamination, we train U-Net mod-
els on progressively “poisoned” datasets, where synthetic data proportions range
from 16.67% to 83.33%. Experimental results on a real MRI validation set re-
veal a significant performance degradation as synthetic data increases, with Dice
coefficients dropping from 0.8937 (33.33% synthetic) to 0.7474 (83.33% syn-
thetic). Accuracy and sensitivity exhibit similar downward trends, demonstrating
the detrimental effect of synthetic data on segmentation robustness. These find-
ings underscore the importance of quality control in synthetic data integration and
highlight the risks of unregulated synthetic augmentation in medical image analy-
sis. Our study provides critical insights for the development of more reliable and
trustworthy AI-driven medical imaging systems.

1 INTRODUCTION

Deep learning-based segmentation models (Minaee et al., 2021), such as U-Net (Ronneberger et al.,
2015), have demonstrated remarkable success in medical image analysis (Azad et al., 2024; Du
et al., 2020), particularly in brain tumor segmentation tasks (Abidin et al., 2024; Ranjbarzadeh et al.,
2023; Das et al., 2022; Magadza & Viriri, 2021). These models rely heavily on high-quality image-
segmentation pairs to ensure accurate and reliable predictions. However, the growing adoption
of generative models for synthetic medical image creation introduces new challenges (Dayarathna
et al., 2024). While synthetic data can potentially augment training datasets, improve data diversity,
and address class imbalances, its uncontrolled incorporation may lead to significant performance
degradation (Hao et al., 2024). Without rigorous quality control, synthetic data can act as a form of
“data poisoning”, negatively impacting model robustness and segmentation accuracy (Yerlikaya &
Bahtiyar, 2022; Pitropakis et al., 2019).

In recent years, generative adversarial networks (GANs) (Goodfellow et al., 2014; 2020) have
emerged as a popular technique for generating synthetic medical images (AlAmir & AlGhamdi,
2022; Singh & Raza, 2021; Nie et al., 2017). These models leverage learned distributions from
real data to synthesize realistic samples. While some studies have explored the benefits of GAN-
generated data for augmentation (Makhlouf et al., 2023; Zhang et al., 2023; Chen et al., 2022a;
Hatamizadeh et al., 2021), few have systematically examined the risks associated with using syn-
thetic medical images in segmentation tasks. Specifically, the effects of synthetic data contamina-
tion on segmentation models remain insufficiently studied, raising concerns about potential accuracy
degradation and unreliable clinical applications (Singkorapoom & Phoomvuthisarn, 2023).
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To address such a gap, we evaluate the impact of synthetic MRI data on the performance of U-
Net (Ronneberger et al., 2015) models for brain tumor segmentation. We consider synthetic data
as a type of contamination and investigate how increasing proportions of synthetic data influence
segmentation robustness. Using a novel GAN-based model (Xie et al., 2023), we generate syn-
thetic T1-contrast-enhanced (T1-Ce) MRI images from paired CT-MRI datasets and introduce them
into training sets at varying proportions. We compare a baseline U-Net trained exclusively on real
MRI data against U-Net models trained on progressively “poisoned” datasets containing increasing
amounts of synthetic data. Segmentation performance is assessed using Dice coefficient, Jaccard
index, accuracy, and sensitivity to quantify the extent of degradation. The results demonstrate a
significant decline in segmentation performance as the proportion of synthetic data increases, with
notable drops in Dice coefficients, Jaccard index, and sensitivity. These findings emphasize the
importance of establishing best practices for incorporating synthetic data in medical image seg-
mentation pipelines. By highlighting the potential risks of synthetic data contamination, this study
provides valuable insights for developing robust and trustworthy deep learning (Wang et al., 2023a;
Li et al., 2023; Huang et al., 2018; Hanif et al., 2018; Li et al., 2024b; Zheng et al., 2024) in medical
imaging applications (Shukla et al., 2023; Teng et al., 2024; Fidon, 2023; Shi et al., 2024).

2 RELATED WORKS

Brain Tumor Segmentation Brain tumor segmentation has been a critical task in medical image
analysis, enabling precise delineation of tumor regions for diagnosis and treatment planning (Wad-
hwa et al., 2019; Gordillo et al., 2013). Traditional methods relied on handcrafted features (Mecheter
et al., 2022; Khan et al., 2020; Hasan et al., 2019) and classical machine learning models (Soomro
et al., 2022; Amin et al., 2019; Bakas et al., 2018), but deep learning approaches, particularly convo-
lutional neural networks (CNNs) (Li et al., 2021), have significantly advanced segmentation perfor-
mance (Havaei et al., 2017; Pereira et al., 2016). U-Net (Ronneberger et al., 2015) and its variants
(Azad et al., 2024; Siddique et al., 2021) have become the backbone of many segmentation pipelines
due to their encoder-decoder architecture and skip connections, which preserve spatial information.
More recent methods leverage transformer-based architectures (Ghazouani et al., 2024; Wang et al.,
2023b; Jiang et al., 2022; Huang et al., 2022) and hybrid CNN-Transformer models (Liu et al., 2024;
Kang et al., 2024; Chen et al., 2022b; Jia & Shu, 2021) to enhance feature representation and im-
prove segmentation accuracy. Despite these advancements, the robustness of segmentation models
remains a concern, especially when trained on datasets with varying levels of synthetic content.

GAN-based MRI Synthesis The generation of synthetic MRI images has gained significant atten-
tion due to its potential to augment datasets, address data scarcity, and enable cross-modality learn-
ing (Tiwari et al., 2025; Choi et al., 2025; Pani & Chawla, 2024; Koetzier et al., 2024; Hamghalam
& Simpson, 2024; Ji et al., 2022; Han et al., 2018; Blystad et al., 2012). Generative adversarial
networks (GANs) (Goodfellow et al., 2014; 2020) and variational autoencoders (VAEs) (Kingma,
2013; Pinheiro Cinelli et al., 2021) have been widely explored for MRI synthesis (Tavse et al.,
2022; Laptev et al., 2021). Conditional GANs (Mirza, 2014) and cycle-consistent GANs (Zhu et al.,
2017) have been applied for modality translation, such as generating MRI from CT scans. More
recent works incorporate structural constraints and perceptual losses to improve anatomical consis-
tency in synthetic images. However, concerns persist regarding the quality and fidelity of synthetic
images, as even minor artifacts or inconsistencies can propagate through downstream tasks, ad-
versely affecting segmentation performance. In this context, synthetic medical images may act as a
form of data poisoning, compromising model reliability and clinical applicability (Singkorapoom &
Phoomvuthisarn, 2023).

Data Poisoning Attack Data poisoning attacks involve injecting manipulated, low-quality, or ma-
licious data into training datasets to degrade model performance or induce adversarial vulnerabilities
(Yerlikaya & Bahtiyar, 2022; Fan et al., 2022). In the medical imaging domain, poisoning can oc-
cur through mislabeled (Tolpegin et al., 2020; Lin et al., 2021), perturbed (Martinelli et al., 2023;
Bortsova et al., 2021). Prior research has demonstrated that even small perturbations in training data
can lead to significant performance degradation in classification and segmentation models (Szegedy,
2013; Chakraborty et al., 2021). While poisoning attacks and corresponding mitigation strategies
(Goldblum et al., 2022; Schwarzschild et al., 2021; Fu et al., 2024; Li et al., 2024a) have been ex-
tensively studied in general computer vision tasks (Wei et al., 2024; Akhtar & Mian, 2018), their
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impact on medical imaging pipelines remains underexplored. Our work investigates the effect of
synthetic MRI data as a form of data poisoning, evaluating its impact on brain tumor segmentation
performance.

3 METHODS

In this study, we investigate the potential degradation in segmentation accuracy when synthetic data
is incorporated into the training process, an overall workflow is shown in Figure 1. Formally, let M
denote a medical AI model trained for segmentation tasks, and let S represent an image synthesis
model designed to generate synthetic medical images. We define a real medical dataset as D, and a
modified dataset containing synthetic samples generated using S as D′. Our objective is to analyze
the effects of training M on D′.

2D-Unet

2D-Unet

① Segmentation

② Poisoning Attack 
+ 

Segmentation

Synthetic DataGenerative Model

BraTS2021 Datasets

Real CT Fake MRI

Figure 1: Overall workflow.

Specifically, as shown in Algorithm 1, our study follows these steps: (i) We first prepare a medical
dataset D, and employ a generative model S (Xie et al., 2023), as shown in Figure 2, to produce
synthetic data, resulting in a modified dataset D′. (ii) We then train a baseline model M trained
solely on D, and a model M ′ trained on D′, which contains synthetic images. (iii) We evaluate the
segmentation performance of both models M and M ′ using metrics including the Dice coefficient,
Jaccard index, accuracy, and sensitivity.

Algorithm 1 Training and Evaluation of U-Net with Synthetic Data
Require: D = {(x, y)}, S, P = {16.67%, 33.33%, 50.00%, 66.67%, 83.33%}

1: for p ∈ P do ▷ Poisoning
2: X ′ ← S(D)
3: D′(p)← D ∪X ′

4: end for
5: M← Train U-Net on D
6: for p ∈ P do ▷ Training
7: M′(p)← Train U-Net on D′(p)
8: end for
9: for p ∈ P do ▷ Evaluation

10: Compute Dice(M),Dice(M′(p))
11: Compute Jaccard, Accuracy, Sensitivity
12: end for

We expect that the segmentation performance of M ′ will be lower than that of M , formally ex-
pressed as: Dice(M ′) < Dice(M), where Dice(M) and Dice(M ′) represent the Dice coefficients
of the models trained on D and D′, respectively. Through systematic experimentation, we aim to
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Real CT
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Input Real
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Figure 2: Workflow of generative model (Xie et al., 2023).

quantify the extent of performance degradation and provide insights into the risks associated with
synthetic data contamination in medical image segmentation tasks.

4 EXPERIMENTS

4.1 SETUP

Dataset We conduct our experiments using the publicly available BraTS2021 dataset, which con-
tains T1-contrast-enhanced (T1-Ce) MRI scans from 150 glioma patients along with their corre-
sponding enhanced tumor (ET) segmentation masks (Menze et al., 2014). To introduce synthetic
data, we employ a generative adversarial network (GAN) (Goodfellow et al., 2020; 2014) designed
for cross-domain medical image translation (Xie et al., 2023). Specifically, the GAN is trained on
660 paired CT-MRI datasets and features a shared encoding-decoding framework with shortest-path
regularization (Xie et al., 2023) to ensure anatomical consistency during translation. Some cases of
synthetic MRI can be found in the appendix A. The trained model generates 150 synthetic T1-Ce
MRI scans, which are then incorporated into our training set at varying proportions.

Protocol We evaluate the impact of synthetic MRI data on U-Net segmentation performance. Let
D = {(x, y)} represent the original dataset, where x denotes real MRI scans and y the correspond-
ing segmentation masks. Using the trained GAN model, we generate synthetic MRI images X ′.
We construct modified datasets D′(p) by mixing real MRI scans with synthetic samples, where
p ∈ {16.67%, 33.33%, 50.00%, 66.67%, 83.33%} represents the proportion of synthetic data. Two
types of U-Net models are trained: (i) A baseline model M trained solely on D, establishing a
performance reference. (ii) Poisoned modelsM′(p) trained on D′(p), simulating different levels of
synthetic data contamination.

Metrics We evaluate the segmentation performance ofM andM′(p) on a real MRI test set using
the following standard metrics:

(i) Dice Coefficient: Measures the spatial overlap between the predicted segmentation Ŷ and the
ground truth Y . Defined as:

Dice =
2|Ŷ ∩ Y |
|Ŷ |+ |Y |

(1)

where |Ŷ ∩ Y | represents the number of correctly segmented pixels, and |Ŷ | and |Y | denote the
total number of pixels in the predicted and ground truth masks, respectively. A higher Dice score
indicates better segmentation performance.

(ii) Jaccard Index: Also known as the Intersection-over-Union (IoU), this metric evaluates the pro-
portion of correctly segmented pixels relative to the union of predicted and ground truth segmenta-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Quantitative description of metrics on varying poisoning rates
Poisoning Rate(%) Dice Jaccard Accuracy Sensitivity

0.00 0.8939 ± 0.1243 0.8184 ± 0.1546 0.9983 ± 0.0011 0.9136 ± 0.1578
16.67 0.8650 ± 0.2072 0.7937 ± 0.2151 0.9638 ± 0.1854 0.8790 ± 0.2390
33.33 0.8937 ± 0.0722 0.8145 ± 0.1071 0.9981 ± 0.0013 0.9191 ± 0.1173
50.00 0.8572 ± 0.1580 0.7738 ± 0.1810 0.9979 ± 0.0011 0.9292 ± 0.1208
66.67 0.8146 ± 0.2457 0.7360 ± 0.2458 0.9978 ± 0.0013 0.8328 ± 0.2817
83.33 0.7474 ± 0.2650 0.6486 ± 0.2579 0.9967 ± 0.0020 0.7577 ± 0.3054

tions:

Jaccard =
|Ŷ ∩ Y |
|Ŷ ∪ Y |

(2)

Jaccard provides a stricter evaluation compared to Dice, as it penalizes false positives and false
negatives more severely.

(iii) Accuracy: Measures the overall correctness of pixel classification, considering both the seg-
mented tumor region and the background:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

where TP , TN , FP , and FN represent true positives, true negatives, false positives, and false
negatives, respectively. Accuracy alone can be misleading in imbalanced segmentation tasks, where
background pixels dominate.

(iv) Sensitivity: Also known as recall or true positive rate, sensitivity quantifies the model’s ability
to correctly identify tumor regions:

Sensitivity =
TP

TP + FN
(4)

A higher sensitivity indicates fewer missed tumor regions, which is critical for medical applications
where under-segmentation could lead to misdiagnoses.

4.2 RESULTS

Figure 3 illustrates the segmentation outputs of the U-Net model under varying poisoning rates. At
low synthetic data proportions (e.g., 16.67%), model predictions remain close to the ground truth.
However, as p increases, segmentation quality deteriorates, with higher poisoning levels leading to
incorrect tumor boundary delineations. Table 1 presents the quantitative impact of synthetic data
contamination. The Dice coefficients decrease from 0.8937 (p = 33.33%) to 0.7474 (p = 83.33%),
confirming a strong correlation between synthetic data proportion and segmentation degradation.
Jaccard and sensitivity exhibit similar trends, with significant performance drops beyond p = 50%.
However, the increase of a portion of the synthetic data has a negligible effect on accuracy. These
findings suggest that, while low proportions of synthetic data may not drastically harm model per-
formance, excessive reliance on synthetic data compromises segmentation robustness.

To further understand the effects of synthetic MRI data, we analyze segmentation performance
across different poisoning thresholds. Our results indicate that models trained with p ≤ 33.33%
maintain relatively stable performance, while those with p ≥ 50% suffer from severe degradation.
This highlights the importance of synthetic data curation, suggesting that controlled synthetic aug-
mentation may be feasible if appropriately regulated.

Our findings raise critical concerns about the integration of synthetic medical images in training
pipelines. While synthetic MRI augmentation can be beneficial in low proportions, excessive syn-
thetic data exposure introduces model biases and reduces segmentation reliability. These results
emphasize the need for quality control mechanisms and hybrid training strategies that combine real
and synthetic data optimally to mitigate potential risks in medical AI applications.
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Input Image

Ground Truth
Prediction

(Poisoning Rate: 0%)
Prediction

(Poisoning Rate: 16.7%)
Prediction

(Poisoning Rate: 33.3%)

Prediction
(Poisoning Rate: 50%)

Prediction
(Poisoning Rate: 66.7%)

Prediction
(Poisoning Rate: 83.3%)

Prediction
(Poisoning Rate: 100%)

Figure 3: A sample of segmentation results of the ET region from the same MRI scan using the
U-Net model at varying poisoning rates.

5 CONCLUSION

We investigated the impact of synthetic MRI data on the robustness and segmentation accuracy of
U-Net models for brain tumor segmentation. Experiment results suggest that the inclusion of syn-
thetic data, when not properly regulated, significantly degrades segmentation performance. As the
proportion of synthetic MRI data increased, we observed a substantial decline in key evaluation met-
rics, including Dice coefficient, Jaccard index, accuracy, and sensitivity. Our findings highlight that
while small proportions of synthetic data may not drastically impair model performance, excessive
reliance on synthetic samples introduces severe biases, compromises segmentation reliability, and
leads to inaccurate tumor boundary delineations. We provide crucial insights for designing safer,
more reliable deep learning models in medical imaging. As the adoption of generative models con-
tinues to expand, our work serves as a foundation for establishing best practices in the responsible
integration of synthetic data in AI-driven healthcare systems.
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A SYNTHETIC MRI RESULTS

We use a generative model (Xie et al., 2023) to synthesize fake MRI from real CT. Figure 4 presents
comparative case studies of fake MRI and real MRI.

Real CT Real MRIFake MRI

Test_Output_001

Real CT Real MRIFake MRI

Test_Output_002

Real CT Real MRIFake MRI

Test_Output_003

Real CT Real MRIFake MRI

Test_Output_004

Figure 4: Case studies of synthetic MRI from real CT.
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