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Abstract

Learning Markov decision processes (MDP) in an adversarial environment has been a chal-
lenging problem. The problem becomes even more challenging with function approximation
since the underlying structure of the loss function and transition kernel are especially hard
to estimate in a varying environment. In fact, the state-of-the-art results for linear adver-
sarial MDP achieve a regret of Õ(K6/7) (K denotes the number of episodes), which admits
a large room for improvement. In this paper, we propose a novel explore-exploit algorithm
framework and investigate the problem with a new view, which reduces linear MDP into
linear optimization by subtly setting the feature maps of the bandit arms of linear opti-
mization. This new technique, under an exploratory assumption, yields an improved bound
of Õ(K4/5) for linear adversarial MDP without access to a transition simulator. The new
view could be of independent interest for solving other MDP problems that possess a linear
structure.

1 Introduction

Reinforcement learning (RL) describes the interaction between a learning agent and an unknown environ-
ment, where the agent aims to maximize the cumulative reward through trial and error (Sutton and Barto,
2018). It has achieved great success in many real applications, such as games (Mnih et al., 2013; Silver
et al., 2016), robotics (Kober et al., 2013; Lillicrap et al., 2015), autonomous driving (Kiran et al., 2021) and
recommendation systems (Afsar et al., 2022; Lin et al., 2021). The interaction in RL is commonly portrayed
by Markov decision processes (MDP). Most works study the stochastic setting, where the reward is sampled
from a fixed distribution (Azar et al., 2017; Jin et al., 2018; Simchowitz and Jamieson, 2019; Yang et al.,
2021). RL in real applications is in general more challenging than the stochastic setting, as the environment
could be non-stationary and the reward function could be adaptive towards the agent’s policy. For example,
a scheduling algorithm will be deployed to self-interested parties, and recommendation algorithms will face
strategic users.

To design robust algorithms that work under non-stationary environments, a line of works focuses on the
adversarial setting, where the reward function could be arbitrarily chosen by an adversary (Yu et al., 2009;
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Rosenberg and Mansour, 2019; Jin et al., 2020a; Chen et al., 2021; Luo et al., 2021a). Many works in
adversarial MDPs optimize the policy by learning the value function with a tabular representation. In this
case, both their computation complexity and their regret bounds depend on the state space and action
space sizes. In real applications however, the state and action spaces could be exponentially large or even
infinite, such as in the game of Go and in robotics. Such cost of computation and the performance are then
inadequate.

To cope with the curse of dimensionality, function approximation methods are widely deployed to approxi-
mate the value functions with learnable structures. Great empirical success has proved its efficacy in a wide
range of areas. Despite this, theoretical understandings of MDP with general function approximation are
yet to be available. As an essential step towards understanding function approximation, linear MDP has
been an important setting and has received significant attention from the community. It presumes that the
transition and reward functions in MDP follow a linear structure with respect to a known feature (Jin et al.,
2020b; He et al., 2021; Hu et al., 2022). The stochastic setting in linear MDP has been well studied and
near-optimal results are available (Jin et al., 2020b; Hu et al., 2022). The adversarial setting in linear MDP
is much more challenging since the underlying linear parameters of the loss function and transition kernel
are especially hard to estimate while having to adapt to a varying environment.

The research on linear adversarial MDPs remains open. Early works proposed algorithms when the transition
function is known (Neu and Olkhovskaya, 2021). Several recent works explore the problem without a known
transition function and derive policy optimization algorithms with the state-of-the-art regret of Õ

(
K6/7)

(Luo et al., 2021a; Dai et al., 2023; Sherman et al., 2023; Lancewicki et al., 2023). While the optimal regret in
tabular MDPs is of order Õ

(
K1/2) (Jin et al., 2020a), the regret upper bounds available for linear adversarial

MDPs seem to admit a large room for improvement.

In this paper, we investigate linear adversarial MDPs with unknown transitions. We propose a new view that
transforms linear MDP to a linear optimization problem by regarding the expected state-action visitation
features in MDP as the feature of arms in linear optimization problem. Our algorithm constitutes an
exploration and exploitation phase. In the exploration phase, we estimate the feature visitations of the
policies in the constructed policy set using reward-free estimation techniques. Then, in the exploitation
phase, we operate on a set of policies and optimize the probability distribution of which policy to execute.
By carefully balancing the suboptimality in policy construction, the suboptimality in feature visitation
estimation, and the suboptimality in policy execution, we deduce new analyses of the problem which achieves
the first Õ

(
K4/5) regret bound for linear adversarial MDPs without a simulator. Let d be the feature

dimension and H be the length of each episode. Details of our contributions are as follows.

• With an exploratory assumption (Assumption 1), we obtain an Õ(d7/5H12/5K4/5) regret upper
bound for linear adversarial MDP. As compared in Table 1, this is the first regret bound that
achieves Õ(K4/5) order when a simulator of the transition is not provided. We also want to note that
our exploratory assumption that only ensures the MDP is learnable is much weaker than previous
works (Neu and Olkhovskaya, 2021; Luo et al., 2021a). Under this weaker exploratory assumption,
our result achieves a significant improvement over the Õ(K6/7) regret in Luo et al. (2021a) and
also removes the dependence on λ in the main order term which is the minimum eigenvalue of the
exploratory policy’s covariance that can be small.

• In a simpler setting where the agent has access to a simulator, our regret can be further improved
to Õ(

√
d2H5K). This result also removes the dependence on λ in the main order of previous works

(Neu and Olkhovskaya, 2021; Luo et al., 2021a). Compared with Luo et al. (2021a), our required
simulator is also weaker: we only need to have access to the trajectory when given any policy π,
while Luo et al. (2021a) requires the next state s′ given any state-action pair (s, a).

• Our results are the first that achieves Õ(K1/2) high probability-type regret bound for linear adversar-
ial MDP with a simulator and Õ(K4/5) regret without a simulator when the exploratory assumption
holds. Previous works for high probability-type regret only achieve Õ(K2/3) bound with access to a
simulator for the linear-Q setting (Lancewicki et al., 2023). And Dai et al. (2023); Luo et al. (2021a);
Sherman et al. (2023) which are based on the policy optimization approach are only able to produce
the upper bound for the expected regret.
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• Technically, we provide a new tool and simpler analysis for linear MDP problems by exploiting
the linear features of the MDP and transforming it into a linear optimization problem by setting
the expected feature mappings of different policies as arms. We also provide a refined analysis of
the Hedge algorithm where the features are approximated instead of being precisely given. This
approach differs from previous policy optimization-based algorithms and could be of independent
interest in other problems that possess a linear structure.

Table 1: Comparisons of our results with most related works for linear adversarial MDPs.

Simulator1 Exploratory
Assumption2 Regret3 Computation complexity

Neu and Olkhovskaya (2021) 4 yes yes Õ(
√

K/λ) poly(|S|, |A|, d, H, K)

Luo et al. (2021a)
yes yes Õ(

√
K/λ) (KAH)O(H)

5

no Õ(K2/3)

no yes Õ
(

K/ (λ)2/3
)6/7

poly(|A|, d, H, K)
no Õ(K14/15)

Dai et al. (2023) yes no Õ(
√

K) (KAH)O(H) 5

no no Õ(K8/9) poly(|A|, d, H, K)

Sherman et al. (2023) yes no Õ(K2/3) poly(|A|, d, H, K)no no Õ(K6/7)

Ours yes yes Õ(
√

K)
KO(dH2)

no yes Õ(K4/5+poly(1/λ))
1 The simulator required in this paper is defined in Assumption 2. Note that the simulators adopted in Dai

et al. (2023) and Luo et al. (2021a) are stronger that returns the next state s′ when given any state action
pair (s, a), while Sherman et al. (2023); Neu and Olkhovskaya (2021) and this paper only need the simulator
to return a trajectory given a policy. Our simulator can be implied by theirs.

2 Our exploratory assumption is introduced in Assumption 1. It is worth noting that our assumption on
exploration is also much weaker than Neu and Olkhovskaya (2021); Luo et al. (2021a;b). Specifically, our
exploratory assumption only ensures the learnability of the MDP while the other works require a policy
that can explore the full linear space in all steps. Our assumption can be implied by theirs.

3 λ in the regret represents the minimum eigenvalue induced by a “good” exploratory policy π0, which satisfies
λmin (Λπ0,h) ≥ λ for all h ∈ [H], where Λπ0,h is the covariance of π0 at step h (see Assumption 1).

4 The algorithm of Neu et al. (2010) requires full knowledge of the transition kernel.
5 The exponential complexity is due to the exponential number of calls to the simulator when constructing

the dilated bonus in Luo et al. (2021a) and Dai et al. (2023).

2 Related Work

Linear Stochastic MDPs. The linear function approximation problem has been studied for a long history
(Bradtke and Barto, 1996; Melo and Ribeiro, 2007; Sutton and Barto, 2018; Yang and Wang, 2019). Until
recently, Yang and Wang (2020) propose theoretical guarantees for the sample efficiency in the linear MDP
setting. However, it assumes that the transition function can be parameterized by a small matrix. In general
cases, Jin et al. (2020b) develop the first efficient algorithm LSVI-UCB both in sample and computation
complexity. They show that the algorithm achieves Õ(

√
d3H3K) regret where d is the feature dimension and

H is the length of each episode. This result is improved to the optimal order Õ(dH
√

K) by Hu et al. (2022)
with a tighter concentration analysis. A very recent work (He et al., 2022a) points out a technical error
in Hu et al. (2022) and show a nearly minimax result that matches the lower bound Õ(d

√
H3K) in Zhou

et al. (2021). All these works are based on UCB-type algorithms. Apart from UCB, the TS-type algorithm
has also been proposed for this setting (Zanette et al., 2020). The above results mainly focus on minimax
optimality, and it is also attractive to derive an instance-dependent regret bound as it changes in MDPs
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with different hardness. He et al. (2021) is the first to provide this type of regret in linear MDP. Using a
different proof framework, they show that the LSVI-UCB algorithm can achieve Õ(d3H5 log K/∆) where ∆
is the minimum value gap in the episodic MDP.

Adversarial losses in MDPs When the losses at state-action pairs do not follow a fixed distribution,
the problem becomes the adversarial MDP. This problem was first studied in the tabular MDP setting.
The occupancy measure-based method is one of the most popular approaches to dealing with a potential
adversary. For this type of approach, Zimin and Neu (2013) first study the known transition setting and
derive regret guarantees Õ(H

√
K) and Õ(

√
HSAK) for full-information and bandit feedback, respectively.

For the more challenging unknown transition setting, Rosenberg and Mansour (2019) also start from the
full-information feedback and derive an Õ(HS

√
AK) regret. The bandit feedback is recently studied by Jin

et al. (2020a), where the regret bound is Õ(HS
√

AK). The other line of works (Neu et al., 2010; Shani
et al., 2020; Chen et al., 2022; Luo et al., 2021a) is based on policy optimization methods. In the unknown
transition and bandit feedback setting, the state-of-the-art result in this line is also an Õ(

√
K) order achieved

by Luo et al. (2021a;b).

Specifically, a few works focus on the linear adversarial MDP problem. Neu and Olkhovskaya (2021) first
study the known transition setting and provide an Õ(

√
K) regret with the assumption that an exploratory

policy can explore the full linear space. For the general unknown transition case, Luo et al. (2021a;b) discuss
four cases on whether a simulator is available and whether the exploratory assumption is satisfied. With
the same exploratory assumption as Neu and Olkhovskaya (2021), they show a regret bound Õ(

√
K) with

a simulator and Õ(K6/7) otherwise. Very recent two works (Dai et al., 2023; Sherman et al., 2023) further
generalize the setting by removing the exploratory assumption. These two works independently provide
Õ(K8/9) and Õ(K6/7) regret for this setting when no simulator is available. It is worth noting that the
above works provide guarantees for the expected regret. For the stronger high-probability regret objective,
Lancewicki et al. (2023) provide an Õ(K2/3) upper bound when a simulator is available.

Linear mixture MDP is another popular linear function approximation model, where the transition is a
mixture of linear functions. When considering the adversarial losses, Cai et al. (2020) and He et al. (2022b)
study unknown transition but full-information feedback type, in which case the learning agent can observe
the loss of all actions in each state. Zhao et al. (2023a) consider the general bandit feedback in this setting
and show the regret in this harder environment is also Õ(

√
K). Their modeling does not assume the

structure of the loss function which introduces the dependence on S, A in the regret. Apart from linear
function approximation, Zhao et al. (2023b) also consider the adversarial losses in low-rank MDPs under
full-information feedback.

3 Preliminaries

In this work, we study the episodic adversarial Markov decision processes (MDP) denoted by
M(S,A, H, {Ph}H

h=1 , {ℓk}K
k=1) where S is the state space, A is the action space, H is the horizon of each

episode, Ph : S ×A×S → [0, 1] is the transition kernel of step h with Ph(s′ | s, a) representing the transition
probability from s to s′ by taking action a at step h, and ℓk is the loss function at episode k. We denote
πk = {πk,h}H

h=1 as the learner’s policy at each episode k, where πk,h is a mapping from each state to a
distribution over the action space of step h, and let πk,h(a | s) represent the selecting probability of action
a at state s by following policy πk at step h.

The learner interacts with the MDP M for K episodes. At each episode k = 1, 2, . . . , K, the environment
(adversary) first chooses the loss function ℓk := {ℓk,h}H

h=1 which may be probably based on the history infor-
mation before episode k. The learner simultaneously decides its policy πk. For each step h = 1, 2, . . . , H, the
learner observes the current state sk,h, takes action ak,h based on πk,h, and observes the loss ℓk,h(sk,h, ak,h).
The environment will transit to the next state sk,h+1 at the end of the step based on the transition kernel
Ph(· | sk,h, ak,h).
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The performance of a policy π over episode k can be evaluated by its expected cumulative loss, also known
as the value function defined as below:

V π
k = E

[
H∑

h=1
ℓk,h(sk,h, ak,h)

]
,

where the expectation is taken from the randomness in the transition and the policy π. Denote π∗ ∈
argminπ

∑K
k=1 V π

k as the global optimal policy that suffers the least expected loss over K episodes. The
objective of the learner is to minimize the cumulative regret which is defined as the cumulative difference
between the value of the taken policies and that of the global optimal policy π∗:

Reg(K) =
K∑

k=1

(
V πk

k − V π∗

k

)
. (1)

Linear adversarial MDP denotes an MDP where both the transition kernel and the loss function are linearly
depending on a feature mapping. We give a formal definition as follows.
Definition 1 (Linear MDP with adversarial losses). The MDP M(S,A, H, {Ph}H

h=1 , {ℓk}K
k=1) is a linear

MDP if there is a known feature mapping ϕ : S × A → Rd and d unknown signed measures µh,1, . . . , µh,d :
S → R forming µh := (µh,1, . . . , µh,d) : S → Rd such that the transition probability for any s, a, h satisfies

Ph (·|s, a) = ⟨ϕ(s, a), µh⟩ .

Further, for any episode k and step h, there exists an unknown loss vector θk,h ∈ Rd such that

ℓk,h(s, a) = ⟨ϕ(s, a), θk,h⟩ .

for all state-action pair (s, a). Without loss of generality, we assume ∥ϕ (s, a)∥2 ≤ 1 for all s, a, ∥|µh| (S)∥2 =∥∥∫
s∈S |dµh (s)|

∥∥
2 ≤
√

d, ∥θk,h∥2 ≤
√

d for any k, h, and ℓk,h(s, a) ≤ 1 for all k, h, s, a.

Given a policy π, its feature visitation at step h is defined as the expected feature mapping this policy
encounters at step h following policy π: ϕπ,h = Eπ [ϕ (sh, ah)], where Eπ [·] denotes taking expectation w.r.t
the randomness of state transitions and policy π. Then the expected loss that the policy π receives at step
h of episode k can be written as

ℓπ
k,h := Eπ [ℓk,h (sk,h, ak,h)] = ⟨ϕπ,h, θk,h⟩ , (2)

and the value of policy π can be expressed as

V π
k =

H∑
h=1

ℓk,h =
H∑

h=1
⟨ϕπ,h, θk,h⟩ . (3)

For simplicity, we also define ϕπ,h (s) = Ea∼πh(·|s) [ϕ(s, a)] to represent the expected feature visitation of
state s at step h by following π.

For any policy π, define Λπ,h := E(sh,ah)∼π

[
ϕ(sh, ah)ϕ(sh, ah)⊤] as the expected covariance of π at step

h. Let λ∗
min,h = supπ λmin (Λπ,h), where λmin(·) denotes the smallest eigenvalue of a matrix, and λ∗

min =
minh λ∗

min,h. Analog to previous works that study the function approximation setting (Neu and Olkhovskaya,
2021; Luo et al., 2021a; Hao et al., 2021; Agarwal et al., 2021), we make the following exploratory assumption
to ensure efficiency in exploring the transition dynamics:
Assumption 1 (Exploratory assumption). λ∗

min > 0.

When the assumption is reduced to the tabular setting, where ϕ(s, a) is a basis vector in RS×A, this as-
sumption becomes µmin := minh maxπ mins,a µπ(s, a) > 0, where µπ(s, a) is the probability of visiting the
state-action pair (s, a) under the trajectory induced by π. It simply means that there exists a policy with
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positive visitation probability for all state-action pairs, which is standard (Li et al., 2020). In the linear
setting, it guarantees that all the directions in Rd are able to be visited by some policy.

We point out that this assumption is weaker than the exploratory assumptions used in previous works (Neu
and Olkhovskaya, 2021; Luo et al., 2021a), in which they assume such exploratory policy π0, satisfying
λmin (Λπ0,h) ≥ λ0 > 0 for all h ∈ [H], is given as input to the algorithm. We only assume such policies to
exist, which only requires the transition kernel of the MDP to satisfy certain constraints, while finding an
exploratory policy is an extremely difficult task.

4 Algorithm

In this section, we introduce the proposed algorithm 1. At a high level, the algorithm is based on our
proposed new view that transforms the linear MDP to a linear optimization problem by regarding the
state-action visitation feature as arms. It takes a finite policy class Π and the feature visitation estimators
{ϕ̂π,h : π ∈ Π, h ∈ [H]} as input and optimizes the probability of selecting each policy in Π. The acquisition
of Π and {ϕ̂π,h : π ∈ Π, h ∈ [H]} will be introduced in Section 4.1 and Section 4.2, respectively.

Recall that the loss value ℓk,h(s, a) is an inner product between the feature ϕ(s, a) and the loss vector θk,h.
According to this structure, we investigate ridge linear regression to estimate the unknown loss vector. To
be specific, in each episode after executing policy πk, the observed loss value can be used to estimate the
loss vector θ̂k,h and the value function V̂ π

k can be estimated for each policy π (line 9). We then adopt an
optimistic strategy toward the values of policies and an optimistic estimation of any policy π’s value (line
10). Based on the optimistic value, the exploitation probability w(π) of a policy π follows an EXP3-type
update rule (line 11). To better explore each dimension of the linear space, the final selecting probability
is defined as the weighted combination of the exploitation probability and an exploration probability g(π),
where the weight γ is an input parameter (line 7). Here the exploration probability gh = {gh(π)}π∈Π is
derived by computing the G-optimal design problem to minimize the uncertainty of all policies, i.e.,

gh ∈ argmin
p∈∆(Π)

max
π∈Π
∥ϕπ,h∥2

Vh(p)−1 ,

where Vh(p) =
∑

π∈Π p(π)ϕπ,hϕ⊤
π,h. This exploratory probability can ensure the magnitude of V̂k,π being

bounded. As for the computation complexity, as outlined Lattimore and Szepesvári (2020, Note 3 of Chapter
21), the optimal design can be approximated efficiently within O(d log log d) iterations, yielding g(π) that
satisfies the following inequality:

max
π∈Π

∥∥∥ϕ̂π,h

∥∥∥2

Vh(gh)−1
≤ 2 min

p∈∆(Π)
max
π∈Π

∥∥∥ϕ̂π,h

∥∥∥2

Vh(p)−1
≤ 2d .

And the constant approximation factor will not change the order of the regret.

If the input ϕ̂π,h is the true feature visitation ϕπ,h, we can ensure that the regret of the algorithm compared
with the optimal policy in Π can be upper bounded. Now it suffices to bound the additional regret caused
by the sub-optimality between the optimal policy in Π and the global optimal policy, and the estimation
bias of the feature visitation, which will be discussed in the following sections.

4.1 Policy Construction

In this subsection, we introduce how to construct a finite policy set Π such that the global optimal policy
π∗ can be approximated by elements in Π. The policy construction method mainly follows Appendix A.3 in
Wagenmaker and Jamieson (2022) but with refined analysis for the adversarial setting.

We consider the linear softmax policy class. Specifically, given a parameter w = {wh}H
h=1 where wh ∈ Rd,

the induced policy πw would select action a ∈ A at state s with probability

πw
h (a|s) = exp (η⟨ϕ (s, a) , wh⟩)∑

a′ exp (η⟨ϕ (s, a′) , wh⟩)
. (4)
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Algorithm 1 GeometricHedge for Linear Adversarial MDP Policies (GLAP)

1: Input: policy class Π with feature visitation estimators {ϕ̂π,h}H
h=1 for any π ∈ Π, confidence δ, exploration

parameter γ ≤ 1/2
2: Initialize: ∀π ∈ Π, w1 (π) = 1, W1 = |Π|; η = γ/dH2

3: for h = 1, 2, · · · , H do
4: Compute the G-optimal design gh(π) on the set of feature visitations: {ϕ̂π,h, π ∈ Π}. Denote g(π) =

1
H

∑H
h=1 gh(π)

5: end for
6: for each episode k = 1, 2, . . . , K do
7: Compute the probabilities for any policy π ∈ Π:

pk (π) = (1− γ) wk (π)
Wk

+ γg(π)

8: Select policy πk ∼ pk and observe losses ℓk,h (sk,h, ak,h), for any h ∈ [H]
9: Calculate the loss vector and value function estimators:

θ̂k,h = Σ̂−1
k,hϕ̂πk,hℓk,h (sk,h, ak,h) , ℓ̂π

k,h = ϕ̂⊤
π,hθ̂k,h , V̂ π

k =
H∑

h=1
ℓ̂π

k,h , ∀π ∈ Π

where Σ̂k,h =
∑

π pk(π)ϕ̂π,hϕ̂⊤
π,h

10: Compute the optimistic estimate of the loss function

Ṽ π
k =

H∑
h=1

ℓ̂π
k,h − 2ϕ̂⊤

π,hΣ̂−1
k,hϕ̂π,h

√
H log

( 1
δ

)
dK

 , ∀π ∈ Π

11: Update the selecting probability using the loss estimators

∀π ∈ Π, wk+1(π) = wk(π) exp
(
−ηṼ π

k

)
, Wk+1 =

∑
π∈Π

wk+1(π)

12: end for

The advantage of such a policy class is that given two parameters w and u, the value difference between
policies induced by them can be upper bounded by the difference between w and u, i.e.,∣∣∣V πw

− V πu
∣∣∣ ≤ 2dHη

H∑
h=1
∥wh − uh∥2 ,

where η > 0 is the parameter in Equation 4. Recall that the structure of linear MDP guarantees that the
optimal value can be represented by a linear function, i.e., there exists a weight vector w∗ = {w∗

h}
H
h=1 where

∥w∗
h∥2 ≤ 2H

√
d such that Q∗

h (s, a) = ⟨ϕ(s, a), w∗
h⟩ ,∀h ∈ [H] (Jin et al., 2020b). Then by constructing a

parameter covering W over Bd(2H
√

d) for some accuracy ϵ, we can ensure that the optimal parameter w∗

can be approximated by a parameter w ∈ WH , i.e.,
∑

h ∥wh − w∗
h∥2 ≤ Hϵ. Further based on the above

property, the optimal value V ∗ can be approximated by the value V πw of some linear softmax policy πw

with w ∈ WH . The result of constructing such a policy covering is shown briefly in the following lemma.
Lemma 1. In the linear MDP problem, there exists a finite policy class Π with log cardinality log |Π| =
O
(
dH2 log K

)
, such that the regret Reg(K; Π) compared with the optimal policy in Π is close to the regret

Reg(K) compared with the global optimal policy, i.e.,

Reg(K) =
K∑

k=1

(
V πk

k − V π∗

k

)
≤

K∑
k=1

V πk

k −min
π∈Π

K∑
k=1

V π
k + 1 =: Reg(K; Π) + 1 .
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The detailed analysis can be found in the Appendix C.

4.2 Feature Visitation Estimation

In this subsection, we discuss how to deal with unavailable feature visitations of policies. Our approach
is to estimate the feature visitation {ϕπ,h}H

h=1 for each policy π and use these estimated features as input
of Algorithm 1. The feature estimating process is described in Algorithm 2, which is called the feature
visitation estimation oracle.

Algorithm 2 FEATURE VISTATION ESTIMATION ORACLE

1: Input: policy set Π, tolerance ϵ ≤ 1/2, confidence δ

2: Initialize: β = 16H2 log(4H2d|Π|/δ), ϕ̂π,1 = Ea1∼π1(·|s1) [ϕ(s1, a1)]
3: for h = 1, 2, . . . , H − 1 do
4: Run procedure in Theorem 2 (Appendix B) with parameters: ϵexp ← ϵ2/(d3β), δ ← δ/(2H),

λ = log(4H2d|Π|/δ), Φ ← Φh := {ϕ̂π,h : π ∈ Π}, γΦ = 1/(2
√

d), and denote returned data as
{(sh,τ , ah,τ , sh+1,τ )}Kh

τ=1, for Kh total number of running episodes, and covariates as

Λh ←
Kh∑
τ=1

ϕ (sh,τ , ah,τ ) ϕ (sh,τ , ah,τ )⊤ + 1/d · I

5: for π ∈ Π do
6:

ϕ̂π,h+1 ←

(
Kh∑
τ=1

ϕπ,h+1 (sh+1,τ ) ϕ⊤
h,τ Λ−1

h

)
ϕ̂π,h ,

where ϕπ,h (s) = Ea∼πh(·|s) [ϕ(s, a)].
7: end for
8: end for
9: return Φ := {ϕ̂π,h : π ∈ Π, h = 1, 2, · · · , H}

Under linear MDP, for any policy π, we can first decompose its feature visitation at step h as

ϕπ,h = Eπ [ϕ(sh, ah)] =
∫

ϕπ,h(s)dµ⊤
h−1(s)Eπ [ϕ(sh−1, ah−1)]

=Tπ,hϕπ,h−1

=Tπ,hTπ,h−1 · · · Tπ,2ϕπ,1 ,

where Tπ,h =
∫

ϕπ,h(s)dµh−1(s) is the transition operator and ϕπ,1 = Eπ[ϕ(s1, a1)] can be directly computed
based on policy π. Thus, to estimate ϕπ,h for each step h, we need to estimate all transition operator
{Tπ,h}H

h=1.

We use the least square method to estimate the transition operator. Consider currently we have collected
K trajectories, then the estimated value is given by

T̂ ∈ argmin
T

K∑
τ=1

(T ϕ(sh−1,τ , ah−1,τ )−
∑

a

π(a|sh)ϕ(sh, a))2 + ∥T ∥2
,

and the closed-form solution is that

T̂π,h =
(

K∑
τ=1

ϕ(sh−1,τ , ah−1,τ )ϕπ,h(sh,τ )
)

Λ−1
h−1 ,

8
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where ϕπ,h(sh,τ ) =
∑

a π(a|sh)ϕ(sh, a), and

Λh−1 =
K∑

τ=1
ϕ(sh−1,τ , ah−1,τ )ϕ(sh−1,τ , ah−1,τ )⊤ + λI .

In order to ensure the accuracy of the estimated feature visitation, we provide a guarantee for the accuracy
of the estimated transition operator. The intuition is to collect enough data in each dimension of the feature
space. For the design of how to collect trajectories, we adopt the reward-free technique in Wagenmaker and
Jamieson (2022) and transform it to an independent feature visitation estimation oracle. At a high level,
the reward free algorithm aims to collect transition data in as few interactions as possible that minimize
some uncertainty measure, which is approximately maxϕ ∥ϕ∥Λ−1

h
in our setting. To achieve this, instead of

maximizing expected reward as in standard RL, the algorithm take some uncertainty objective as a surrogate
reward and instead optimize over it. The detailed discussion can be found in Appendix B. Algorithm 2
satisfies the following sample complexity and accuracy guarantees.
Lemma 2. For any ϵ > 0, δ ∈ (0, 1), with probability at least 1 − δ, Algorithm 2 could return a feature
visitation estimation for every policy π ∈ Π in at most Õ

(
d4H3/ϵ2) episodes that satisfies∥∥∥ϕ̂π,h − ϕπ,h

∥∥∥
2
≤ ϵ/
√

d , ∀h ∈ [H] ,

where Õ here hides log factors and lower order terms.

Since the regret in an episode is less than H, the total regret incurred in the feature estimation process is of
order Õ(d4H4/ϵ2). The detailed analysis and results can be found in Appendix B.

5 Analysis

This section provides the regret guarantees for the proposed Algorithm 1 as well as a proof sketch. Consider
Algorithm 1 with the policy set Π constructed in Section 4.1 and the feature of policies estimated in Section
4.2 as input. Suppose we run Algorithm 1 for K rounds. The regret compared with any fixed policy π ∈ Π
in these K rounds can be bounded as below.
Lemma 3. With probability at least 1− δ, for any policy π ∈ Π,

K∑
k=1

(V πk

k − V π
k ) = O

H

√
dKH log |Π|

δ
+ dH2

γ
log
(
|Π|
δ

)
+ γKH︸ ︷︷ ︸

standard regret bound of EXP3

+ dH2

γ
ϵK︸ ︷︷ ︸

feature estimation bias

 ,

where ϵ is the tolerance of the estimated feature visitation bias in Algorithm 2.

Recall that when the policy set is constructed as Section 4.1, the difference between the global regret defined
in Equation (1) and the regret compared with the best policy in Π is just a constant. So the global regret
is in the same order as the regret bound shown in Lemma 3.

Similar to previous works on linear adversarial MDP (Luo et al., 2021a;b; Sherman et al., 2023; Dai et al.,
2023) that discuss the cases of whether a transition simulator is available, we define a simulator in the
following assumption.
Assumption 2 (Simulator). The learning agent has access to a simulator such that when given a policy π,
it returns a trajectory based on the MDP and policy π.

It is worth noting that this simulator is weaker than that in Luo et al. (2021a); Dai et al. (2023) which needs
to generate the next state given any state-action pair. If the learning agent has access to such a simulator
described in Assumption 2, then the feature estimation process in Section 4.2 can be regarded as regret-free
and the final regret is just as shown in Lemma 3. Otherwise, there is an additional Õ(d4H3/ϵ2) regret term.
Balancing the choice of γ and ϵ yields the following results.

9
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Theorem 1. With the constructed policy set in Section 4.1 and the feature visitation estimation process in
Section 4.2, selecting ϵ = Õ(K−2/5), the cumulative regret satisfies

Reg(K) = O
(

d7/5H12/5K4/5 log1/5(K/δ) + C1

)
with probability at least 1− δ, where C1 = poly (d, H, log 1/δ, 1/λ∗

min, log K) is a lower order term. Addition-
ally, if Assumption 2 holds, the regret upper bound can be improved to

Reg(K) = O
(√

d2H5K log(K/δ)
)

.

Due to the space limit, the proofs of the main results are deferred to Appendix A.

Discussions In this work, we adopt a new view that transforms the problem of linear adversarial MDPs
into a linear optimization problem. Under this view, we propose a novel explore-exploit framework and show
that it achieves the state-of-the-art result in the literature with the cost that the computational complexity
depends on the size of the policy covering. Compared with previous works that focus on local properties using
policy optimization, our approach provides a completely different design philosophy that globally optimizes
the policy set. This framework may be of independent research interest for theoretically analyzing the linear
MDP problem.

Since our work mainly aims to improve Luo et al. (2021a) with an exploratory assumption, we specifically
discuss the difference between our work and theirs. It is worth noting that though both works provide
guarantees for problems with exploratory assumption and transition simulators, our required assumptions
are much weaker and can be implied by that in Luo et al. (2021a).

Benefiting from this new view, our work improves the regret bounds in Luo et al. (2021a) only using weaker
assumptions. As shown in Table 1, our result Õ(K4/5) explicitly improve the result Õ(K6/7) in Luo et al.
(2021a). And it also achieves the state-of-the-art dependence on the horizon K compared with existing
works (Luo et al., 2021a; Dai et al., 2023; Sherman et al., 2023). Recall that the result in Luo et al. (2021a)
also depends on λ where λ is the minimum eigenvalue in the exploratory assumption. In real applications,
for each direction in the linear space, it is reasonable that there will be a policy that visits the direction. So
one could ensure the exploratory assumption by mixing these policies. However, there is no guarantee on
the value of λ, and the regret depending on 1/λ can be very large when λ is very small. Compared with Luo
et al. (2021a), we remove the dependence of λ in the main regret order term.

When a transition simulator is available, the number of calls to it (query complexity) is also important to
portray the efficiency of the algorithm. Our query complexity O(K2) (the detailed computation is provided
in Appendix A) is much more preferred than O(KAH)O(H) in Luo et al. (2021a).

Another important advantage is that our approach can deal with the infinite action space. In some common
applications including autonomous driving and robotics, the size of the action space may be infinite. However,
previous works fail to apply in these settings as their approaches need to enumerate the entire action set or
solve an optimization problem on the action space ∆(A) (Dai et al., 2023; Luo et al., 2021a; Sherman et al.,
2023). We deal with this problem by putting a finite action covering over the action space when constructing
the policy set in Section 4.1. More technical details can be found in Appendix C.

It is also worth noting that our result achieves the first high-probability regret bound for linear adversarial
MDP, given that previous works based on policy optimization approaches only guarantee the expected regret
(Luo et al., 2021a; Dai et al., 2023; Sherman et al., 2023).

To conclude, our work improves the results in Luo et al. (2021a) in terms of weaker assumptions, better
regret bounds, fewer queries to the simulator (if we use one), and can deal with more general infinite action
space with the cost that the computational complexity depending on the size of the policy covering. But
we want to note that this dependence of computation is also standard in the reduced linear bandit problem
when the cardinality of the decision set is large (Dani et al., 2007, Lemma 3.1).

10
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6 Conclusion

In this paper, we investigate a new view for linear MDP that transforms the visitation feature of a policy
as the feature of an arm in the linear optimization problem. Based on this view, we propose a framework
that uses the estimated visitation features of policies as input and optimizes the selection probabilities of all
candidate policies. With an exploratory assumption, we provide the first Õ(K4/5) regret without access to
a simulator. Our algorithm enjoys a weaker assumption and a better regret bound with respect to both K
and λ compared with the results in Luo et al. (2021a),. It also achieves the first high-probability type regret
guarantee and can deal with the infinite action space compared with existing works for linear adversarial
MDP (Luo et al., 2021a; Dai et al., 2023; Sherman et al., 2023).

Our view contributes a new approach to linear MDP, which could be of independent interest. Future
implications of this technique could involve solving other adversarial settings, such as when the loss function
is corrupted up to a budget, and solving robust linear MDP where the transition kernel could change over
episodes. Deriving lower bounds for linear adversarial MDP is also an important direction.
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A Analysis of Algorithm 1

In this section we propose the regret analysis for Algorithm 1 and prove the final regret bounds for our main
algorithm. We will state the necessary concentration bounds as lemmas first and then analyze the regret,
proving Lemma 3 and Theorem 1. In the following analysis, we will condition on the success of the event in
Theorem 3, whose probability is at least 1 − δ. The following inequality will be used in the analysis and is
restated in the beginning.
Lemma 4 (Theorem 1.6 in Freedman (1975)). Let F0 ⊂ F1 ⊂ · · · ⊂ FT be a filtration and let
X1, X2, · · ·XT be random variables such that Xt is Ft measurable, E [Xt|Ft−1] = 0, |Xt| ≤ b almost surely,
and

∑T
t=1 E

[
X2

t |Ft−1
]
≤ V for some fixed V > 0 and b > 0. Then, for any δ ∈ (0, 1), we have with

probability at least 1− δ,
T∑

t=1
Xt ≤ 2

√
V log (1/δ) + b log (1/δ) .

To start with, we give the concentration of the feature visitation estimators returned from Algorithm 2,
which will be fundamental in the following analysis. Notice that ϕ̂π,1 can be computed directly from the
initial state distribution and action distribution.
Lemma 5. Suppose the estimation accuracy can be guaranteed as Theorem 3, which holds with prob-
ability at least 1 − δ. Then we have for all episode k and steps h, the feature visitation estimators{

ϕ̂π,h, h = 1, 2, · · · , H , π ∈ Π
}

returned by algorithm 2 satisfy:∣∣∣⟨θk,h, ϕ̂π,h − ϕπ,h⟩
∣∣∣ ≤ ϵ

Proof. Since ∥θk,h∥2 ≤
√

d for any k and h, as in Definition 1, according to Theorem 3, we have:∣∣∣⟨θk,h, ϕ̂π,h − ϕπ,h⟩
∣∣∣ ≤ ∥∥∥ϕ̂π,h − ϕπ,h

∥∥∥
2
· ∥θk,h∥2 ≤

ϵ√
d
·
√

d ≤ ϵ .

The following Lemma 6 and Lemma 7 will bound the magnitude for the loss and value estimators in line 9,
using the properties of G-optimal design computed in line 4.

Lemma 6.
∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

≤ dH
γ and

∣∣∣ϕ̂⊤
π,hθ̂k,h

∣∣∣ ≤ dH
γ , for all h and π ∈ Π.

Proof. According to the properties of G-optimal design, we have:∥∥∥ϕ̂π,h

∥∥∥2

(
∑

π
gh(π)ϕ̂π,hϕ̂⊤

π,h)−1 ≤ d ,

and Σ̂k,h ⪰ γ
H

∑
π gh(π)ϕ̂π,hϕ̂⊤

π,h. Thus we have
∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

≤ dH
γ . So:

∣∣∣ϕ̂⊤
π,hθ̂k,h

∣∣∣ =
∣∣∣ϕ̂π,hΣ̂−1

k,hϕ̂πk,hℓk,h (sk,h, ak,h)
∣∣∣ ≤ ∥∥∥ϕ̂π,h

∥∥∥
Σ̂−1

k,h

∥∥∥ϕ̂πk,h

∥∥∥
Σ̂−1

k,h

≤ dH

γ
, ∀π ∈ Π ,

where the second last inequality is due to the bound ℓk,h(sh, ah) ≤ 1.

Lemma 7. With our choice of η = γ
2dH2 , when K ≥ L0 = 4dH log

(
|Π|
δ

)
, we have for all optimistic loss

function estimator Ṽ π
k ,
∣∣ηṼ π

k

∣∣ ≤ 1.
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Proof. To make sure
∣∣ηṼ π

k

∣∣ ≤ 1, we notice that:

∣∣Ṽ π
k

∣∣ ≤ H∑
h=1

∣∣∣ϕ̂⊤
π,hθ̂k,h

∣∣∣+
H∑

h=1
2ϕ̂⊤

π,hΣ̂−1
k,hϕ̂k,h

√
H log 1/δ

dK
. (5)

By Lemma 6, we have ∣∣Ṽ π
k

∣∣ ≤ dH2

γ

(
1 + 2

√
H log 1/δ

dK

)
.

When K ≥ L0 = 4dH log
(

|Π|
δ

)
, we have

∣∣Ṽ π
k

∣∣ ≤ 2dH2

γ . Thus, our choice of η = γ
2dH2 satisfy this constraint.

Throughout the following analysis, assuming we have run for some number of episodes K, we let (Fk)K
k=1 the

filtration on this, with Fk the filtration up to and including episode k. Define Ek [·] = E [·|Fk−1]. The next
lemma will bound the bias of the loss vector estimator, thus we can bound the bias of the value function
estimator.
Lemma 8. Denote θexp

k,h = Ek

[
θ̂k,h

]
= Ek

[
Σ̂−1

k,hϕ̂πk,hℓk,h (sk,h, ak,h)
]

as the expected value of the loss vector
estimator on Fk−1. Then we have for ∀π ∈ Π, with probability at least 1− δ, the returned feature visitation
estimators satisfy: ∣∣∣⟨ϕ̂π,h, θexp

k,h ⟩ − ⟨ϕπ,h, θk,h⟩
∣∣∣ ≤ (dH

γ
+ 1
)

ϵ ≤ 2dH

γ
ϵ .

As a result, we also have
∣∣∣⟨ϕ̂π,h, θexp

k,h ⟩
∣∣∣ ≤ 2dH

γ ϵ + 1 .

Proof. Using the tower rule of expectation, we have:

θexp
k,h = Σ̂−1

k,hEk

[
ϕ̂πk,hϕ⊤

πk,hθk,h

]
= Σ̂−1

k,h

∑
π′

pk (π′) ϕ̂π′,hϕ⊤
π′,hθk,h .

Thus, ∣∣∣⟨ϕ̂π,h, θexp
k,h ⟩ − ⟨ϕ̂π,h, θk,h⟩

∣∣∣ =
∣∣∣∣∣ϕ̂⊤

π,hΣ̂−1
k,h

∑
π′

pk (π′) ϕ̂π′,h

(
ϕ⊤

π′,h − ϕ̂⊤
π′,h

)
θk,h

∣∣∣∣∣
≤
∑
π′

pk (π′)
∣∣∣ϕ̂⊤

π,hΣ̂−1
k,hϕ̂π′,h

(
ϕ⊤

π′,h − ϕ̂⊤
π′,h

)
θk,h

∣∣∣
≤
∑
π′

pk (π′) dH

γ
ϵ = dH

γ
ϵ ,

where the last inequality is due to Lemma 5 and Lemma 6.
Moreover, we also have that

∣∣∣⟨ϕ̂π,h − ϕπ,h, θk,h⟩
∣∣∣ ≤ ϵ. Combining the two terms, we proof the lemma as:

∣∣∣⟨ϕ̂π,h, θexp
k,h ⟩ − ⟨ϕπ,h, θk,h⟩

∣∣∣ ≤ ∣∣∣⟨ϕ̂π,h, θexp
k,h ⟩ − ⟨ϕ̂π,h, θk,h⟩

∣∣∣+
∣∣∣⟨ϕ̂π,h − ϕπ,h, θk,h⟩

∣∣∣ ≤ (dH

γ
+ 1
)

ϵ .

Lemma 9. Denote DEVK,π =
∣∣∣∑K

k=1 V̂ π
k − V π

k

∣∣∣, then we have with probability at least 1− δ,

DEVK,π ≤2
K∑

k=1

H∑
h=1
∥ϕπ,h∥2

Σ−1
k,h

√
H log

( 1
δ

)
dK

+ 1
2

√
dKH log

(
1
δ

)
+ 2

(
dH2

γ

)
log
(

1
δ

)
+ 2dH2

γ
ϵK .
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Proof. First, we bound the bias of the estimated loss of each policy π after episode k in step h:

ℓ̂π
k,h − ℓπ

k,h =ϕ̂⊤
π,hθ̂k,h − ϕ⊤

π,hθk,h

=
(

ϕ̂⊤
π,hθ̂k,h − ϕ̂⊤

π,hθexp
k,h

)
+
(

ϕ̂⊤
π,hθexp

k,h − ϕπ,hθk,h

)
≤
(

ϕ̂⊤
π,hθ̂k,h − ϕ̂⊤

π,hθexp
k,h

)
+ 2dH

γ
ϵ .

The first term is a martingale difference sequence as Ek

[
ϕ̂⊤

π,hθ̂k,h − ϕ̂⊤
π,hθexp

k,h

]
= 0 by the definition

in Lemma 8. To bound its magnitude, notice that
∣∣∣ϕ̂⊤

π,hθ̂k,h − ϕ̂⊤
π,hθexp

k,h

∣∣∣ ≤ ∣∣∣ϕ̂⊤
π,hθ̂k,h

∣∣∣ +
∣∣∣ϕ⊤

π,hθk,h

∣∣∣ +∣∣∣ϕ̂⊤
π,hθexp

k,h − ϕ⊤
π,hθk,h

∣∣∣ ≤ dH
γ + 1 + 2dH

γ ϵ ≤ 2dH
γ according to 5 and 6. Its variance is also bounded as:

Ek

[(
ϕ̂⊤

π,hθ̂k,h − ϕ̂⊤
π,hθexp

k,h

)2
]
≤Ek

[(
ϕ̂⊤

π,hθ̂k,h

)2
]

=Ek

[
ϕ̂⊤

π,hθ̂k,hθ̂⊤
k,hϕ̂π,h

]
=Ek

[
ℓk,h (sk,h, ak,h)2

ϕ̂⊤
π,hΣ̂−1

k,hϕ̂πk,hϕ̂⊤
πk,hΣ̂−1

k,hϕ̂π,h

]
≤
∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

,

where the last inequality is due to the fact Ek

[
ϕ̂πk,hϕ̂⊤

πk,h

]
= Σ̂k,h and |ℓk,h (sk,h, ak,h)| ≤ 1. Using the

Freedman inequality, we acquire with probability al least 1− δ:

DEVK,π ≤
H∑

h=1

∣∣∣∣∣
K∑

k=1
ℓ̂π

k,h − ℓπ
k,h

∣∣∣∣∣
≤

H∑
h=1

2

√√√√ K∑
k=1

∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

log
(

1
δ

)
+ 2dH

γ
log
(

1
δ

)
+ 2dH

γ
ϵK


≤2

√√√√H

K∑
k=1

H∑
h=1

∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

log
(

1
δ

)
+ 2dH2

γ
log
(

1
δ

)
+ 2dH2

γ
ϵK

≤2
K∑

k=1

H∑
h=1

∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

√
H log

( 1
δ

)
dK

+ 1
2

√
dKH log

(
1
δ

)
+ 2dH2

γ
log
(

1
δ

)
+ 2dH2

γ
ϵK ,

where the second last and last inequality is due to the Cauchy Schwartz inequality and GM-AM inequality.

Lemma 10. We bound the gap between the actual regret and the expected estimated regret. With probability
at least 1− δ,

K∑
k=1

V πk

k −
K∑

k=1

∑
π

pk (π) Ṽ π
k ≤ H

(√
d + 2dH

γ
ϵ + 1

)√
2K log 1

δ
+ 8dH2

3γ
log 1

δ
+2H

√
dKH log 1

δ
+ 2dH2

γ
ϵK .

Proof. Denote ϕ̄k,h =
∑

π pk (π) ϕ̂π,h, we have that :

ℓπk

k,h −
∑

π

pk (π) ℓ̂π
k =ϕ⊤

πk,hθk,h − ϕ̄⊤
k,hθ̂k,h

=
(

ϕ⊤
πk,hθk,h − ϕ̂⊤

πk,hθexp
k,h

)
+
(

ϕ̂⊤
πk,hθexp

k,h − ϕ̄⊤
k,hθ̂k,h

)
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≤2dH

γ
ϵ +

(
ϕ̂⊤

πk,hθexp
k,h − ϕ̄⊤

k,hθ̂k,h

)
.

Notice that Ek

[
ϕ̂⊤

πk,hθexp
k,h

]
= Ek

[
ϕ̄⊤

k,hθ̂k,h

]
. We bound its conditional variance as follows:

√
Ek

[(
ϕ̂⊤

πk,hθexp
k,h − ϕ̄⊤

k,hθ̂k,h

)2
]
≤
√
Ek

[(
ϕ̂⊤

πk,hθexp
k,h

)]2
+

√
Ek

[(
ϕ̄⊤

k,hθ̂k,h

)2
]

(6)

≤2dH

γ
ϵ + 1 +

√
ϕ̄⊤

k,hΣ̂−1
k,hϕ̄k,h (7)

≤2dH

γ
ϵ + 1 +

√∑
π

pk (π) ϕ̂⊤
π,hΣ̂−1

k,hϕ̂π,h (8)

=2dH

γ
ϵ + 1 +

√
d , (9)

where inequality 6 is due to Cauchy Schwartz inequality and 8 is due to Jensen inequality. Moreover,∣∣∣ϕ̂⊤
πk,hθexp

k,h − ϕ̄⊤
k,hθ̂k,h

∣∣∣ ≤ 2dH
γ . Applying Bernstein’s Inequality, we obtain with probability at least 1− δ,

∑
k=1

V πk

k −
K∑

k=1

∑
π

pk (π) V̂ π
k ≤

H∑
h=1

K∑
k=1

(
ℓπk

k,h −
∑

π

pk (π) ℓ̂π
k

)

≤H

(√
d + 2dH

γ
ϵ + 1

)√
2K log 1

δ
+ 8

3
dH2

γ
log 1

δ
+ 2dH2

γ
ϵK .

Since V̂ π
k − Ṽ π

k =
∑H

h=1 2ϕ̂⊤
π,hΣ̂−1

k,hϕ̂k,h

√
H log 1/δ

dK , we have:

K∑
k=1

∑
π

pk (π)
(

V̂ π
k − Ṽ π

k

)
=

K∑
k=1

H∑
h=1

∑
π

2pk (π) ϕ̂⊤
π,hΣ̂−1

k,hϕ̂k,h

√
H log 1/δ

dK

=2H
√

dKH log 1/δ .

Combining the two terms, we prove this lemma.

Lemma 11. With probability at least 1− δ, we have:

K∑
k=1

∑
π

pk(π)
(
Ṽ π

k

)2 ≤ 2dKH2 + 2dH3

γ

√
2K log

(
1
δ

)
+

8dH3 log
( 1

δ

)
γ

.

Proof.

∑
π

pk (π)
(
Ṽ π

k

)2 ≤
∑

π

pk (π)

2
(

V̂ π
k

)2
+ 2

(
H∑

h=1
2pk (π) ϕ̂⊤

π,hΣ̂−1
k,hϕ̂k,h

√
H log 1/δ

dK

)2
≤
∑

π

pk (π)
(

2
(

V̂ π
k

)2
+ 2H

H∑
h=1

4
∥∥∥ϕ̂π,h

∥∥∥2

Σ̂−1
k,h

ϕ̂⊤
π,hΣ̂−1

k,hϕ̂π,h

H log
( 1

δ

)
dK

)

≤
∑

π

pk (π)
(

2
(

V̂ π
k

)2
+ 8dH

γ

H∑
h=1

ϕ̂⊤
π,h

ˆΣk,h
−1

ϕ̂π,h

H log
( 1

δ

)
dK

)

=2
∑

π

pk (π)
(

V̂ π
k

)2
+ 8dH3 log 1/δ

γK
. (10)
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Since
(

V̂ π
k

)2
≤ H

∑H
h=1

(
ℓ̂π

k,h

)2
, we bound the first term as follows.

∑
π

pk (π)
(

ℓ̂π
k,h

)2
≤
∑

π

pk (π) θ̂⊤
k,hϕ̂π,hϕ̂⊤

π,hθ̂k,h ≤ ϕ̂⊤
πk,hΣ̂−1

k,hϕ̂πk,h .

Its conditional expectation is Ek

[
ϕ̂⊤

πk,hΣ̂−1
k,hϕ̂πk,h

]
=
∑

π pk (π) ϕ̂⊤
π,hΣ̂−1

k,hϕ̂π,h = d, and also
∣∣∣ϕ̂⊤

πk,hΣ̂−1
k,hϕ̂πk,h

∣∣∣ ≤
dH
γ . Thus, applying the Hoeffding bound, we have with probability at least 1− δ,

K∑
k=1

∑
π

pk (π)
(

V̂ π
k

)2
≤H

H∑
h=1

dK + dH

γ

√
2K log 1/δ = dkH2 + dH3

γ

√
2K log 1/δ .

Plugging it into 10, we finish our proof.

Proof of Lemma 3. Now we are ready to start analyzing the regret. Using classical potential function analysis
techniques in similar algorithms, we have:

log
(

WK+1

W1

)
=

K∑
k=1

log
(

Wk+1

Wk

)

=
K∑

k=1
log
(∑

π

wk(π)
Wk

exp
(
−ηṼ π

k

))

≤
K∑

k=1
log
(∑

π

pk(π)− γgπ

1− γ

(
1− ηṼ π

k + η2 (Ṽ π
k

)2)) (11)

≤
K∑

k=1

∑
π

pk(π)− γgπ

1− γ

(
−ηṼ π

k + η2 (Ṽ π
k

)2)
≤ η

1− γ

[
K∑

k=1

∑
π

−pk(π)Ṽ π
k + γ

K∑
k=1

∑
π

g(π)Ṽ π
k + η

K∑
k=1

∑
π

pk(π)
(
Ṽ π

k

)2
]

, (12)

where inequality 11 is from
∣∣ηṼ π

k

∣∣ ≤ 1 guaranteed by Lemma 7. Using Lemma 9, we can bound the second
term as:

K∑
k=1

Ṽ π
k ≤

K∑
k=1

V π
k + DEVk,π −

K∑
k=1

H∑
h=1

2ϕ̂⊤
π,hΣ̂−1

k,hϕ̂π,h

√
H

log
( 1

δ

)
dK

≤
K∑

k=1
V π

k + 1
2

√
dKH log

(
1
δ

)
+ 2

(
dH2

γ

)
log
(

1
δ

)
+ 2dH2

γ
ϵK

≤KH + 1
2

√
dKH log

(
1
δ

)
+ 2

(
dH2

γ

)
log
(

1
δ

)
+ 2dH2

γ
ϵK .

(13)

Plugging Lemma 10, Lemma 11 and Equation (13) into Equation (12), notice we condition on γ ≤ 1/2, we
obtain:

log
(

WK+1

W1

)
≤ −η

K∑
k=1

V πk

k + 2η2

[
2dKH2 + 2dH3

γ

√
2K log

(
1
δ

)
+

8dH3 log
( 1

δ

)
γ

]

+ 2ηγKH + η

[
1
2

√
dKH log

(
1
δ

)
+ 2

(
dH2

γ

)
log
(

1
δ

)
+ 2dH2

γ
ϵK

]

+ 2η

[
H

(√
d + 2dH

γ
ϵ + 1

)√
2K log 1

δ
+ 8

3
dH2

γ
log 1

δ
+ 2H

√
dKH log 1

δ
+ 2dH2

γ
ϵK

]
.

(14)

18
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Combining terms, we have:

log
(

WK+1
W1

)
η

≤−
K∑

k=1
V πk

k +O
(

H

√
dKH log 1

δ

)
+O

(
dH2

γ
log
(

1
δ

)
+ γKH

)

+O
(

ηdKH2 + ηdH3

γ

√
2K log

(
1
δ

)
+

8ηdH3 log
( 1

δ

)
γ

)
+O

(
dH2

γ
ϵK

)
.

(15)

Plugging η = γ
dH2 into Equation (15), we have:

log
(

WK+1
W1

)
η

≤−
K∑

k=1
V πk

k +O
(

H

√
dKH log 1

δ

)
+O

(
dH2

γ
log
(

1
δ

)
+ γKH

)
+O

(
dH2

γ
ϵK

)
. (16)

On the other hand, we have:

log
(

WK+1

W1

)
≥η

(
K∑

k=1
−Ṽ π

k

)
− log (|Π|)

≥η

 K∑
k=1
−V π

k −DEVK,π +
K∑

k=1

H∑
h=1

2ϕ̂⊤
π,hΣ̂−1

k,hϕ̂π,h

√
H

log
( 1

δ

)
dK

− log (|Π|)

≥η

(
K∑

k=1
−V π

k −
1
2

√
dKH log

(
1
δ

)
− 2

(
dH2

γ

)
log
(

1
δ

)
− 2dH2

γ
ϵK

)
− log (|Π|) .

(17)

Combining (16) and (17), we have:

K∑
k=1

V πk

k − V π
k ≤O

(
H

√
dKH log 1

δ
+ dH2

γ
log
(

1
δ

)
+ γKH

)
+O

(
dH2

γ
ϵK

)
+ log (|Π|)

η
. (18)

Choosing η = γ
dH2 and combining terms, we obtain for any policy π ∈ Π, with probability at least 1− δ:

K∑
k=1

V πk

k − V π
k = O

(
H

√
dKH log |Π|

δ
+ dH2

γ
log
(
|Π|
δ

)
+ γKH

)
+O

(
dH2

γ
ϵK

)
. (19)

We will then present the proof of Theorem 1 based on Equation (19). Notice we condition on K being large
enough so that the optimal parameters γ and ϵ set below are smaller than 1

2 , satisfying the requirements of
the algorithm, while the cases of K being small is trivial.

• In the case when we have access to a simulator, the total regret occurred while we execute the policies

in Π. Set the parameters as ϵ← dH2 log K
δ /K, γ ←

√
dH log

(
|Π|
δ

)
/K and using the properties of

Π in Lemma 18, the total regret is bounded as:

Reg(K) ≤ Reg (K; Π) + 1 = max
π∈Π

(
K∑

k=1
V πk

k − V π
k

)
+ 1 = O

(√
d2H5K log K

δ

)
.

Also, according to corollary 1, the total number of episodes run on the simulator is in the order of
Õ
(
d3HK2).

19
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• When we don’t have access to a simulator, we have to take account of the regret occurred while we
estimate the feature visitation of each policy. According to corollary 1, the additional regret is in
the order of O

(
d4H4

ϵ2 log H2d|Π|
δ + C1

)
. By our construction of policy set Π in Lemma 18, the total

regret is bounded as:

Reg(K) = O
(

d5H6

ϵ2 log K

δ
+ d2H4

γ
log K

δ
+ γKH + dH2

γ
ϵK +

√
d2H5K log K

δ
+ C1

)
, (20)

with C1 = poly
(

d, H, log 1/δ, 1
λ∗

min
, log |Π|, log 1/ϵ

)
. Set the parameters as ϵ ←

K−2/5d9/5H9/5 log2/5 K
δ , γ ← K−1/5d7/5H7/5 log1/5 K

δ , the total regret is in the order of:

Reg(K) = Õ
(

d7/5H12/5K4/5 log1/5 K

δ

)
.

B Construct the Policy Visitation Estimators

In this section, we will propose the analysis of Algorithm 2. We then prove theorem 3 and corollary 1 as our
main results, which will provide the concentration of the estimators ϕ̂π,h and bound the sample complexity.
These results will then be used to proof the final regret bounds in Appendix A.

First, we propose the performance guarantee of the data collecting oracle, which comes directly from
theorem 9 in Wagenmaker and Jamieson (2022). Denote:

XYopt (Λ) = max
ϕ∈Φ
∥ϕ∥2

A(Λ)−1 for A (Λ) = Λ + Λ0 ,

for Λ0 be some fixed regularizer. We consider it’s smooth approximation:

X̃Yopt (Λ) = 1
η

log

∑
ϕ∈Φ

e
η∥ϕ∥2

A(Λ)−1

 .

We also define Ωh := {Eπ∼ω [Λπ,h] : ω ∈ ∆π}, where ∆π is the set of all the distributions over all valid
Markovian policies. Ωh is, then, the set of all covariance matrices realizable by distributions over policies at
step h.Then we have
Theorem 2. Considering running Algorithm 6 in Wagenmaker and Jamieson (2022) with some ϵ > 0 and
functions

fi (Λ)← X̃Yopt (Λ)

for Λ0 ← (TiKi)−1 Σi =: Λi and

ηi = 2
γΦ
·
(

1 + ∥Λi∥op

)
· log |Φ|

Li =
∥∥Λ−1

i

∥∥2
op , βi = 2

∥∥Λ−1
i

∥∥3
op

(
1 + ηi

∥∥Λ−1
i

∥∥
op

)
, Mi =

∥∥Λ−1
i

∥∥2
op

where Σi is the matrix returned by running Algorithm 7 in Wagenmaker and Jamieson (2022) with N ← TiKi,
δ ← δ/

(
2i2), and some λ ≥ 0. Then with probability 1− 2δ, this procedure will collect at most

20 ·
infΛ∈Ω maxϕ∈Φ ∥ϕ∥2

A(Λ)−1

ϵexp
+ poly

(
d, H, log 1/δ,

1
λ∗

min
,

1
γΦ

, λ, log |Φ|, log 1
ϵexp

)
episodes, where

A (Λ) = Λ + min
{

(λ∗
min)2

d
,

λ∗
min

d3H3 log7/2 1/δ

}
· poly log

(
1

λ∗
min

, d , H , λ , log 1
δ

)
· I ,
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and will produce covariates Σ̂ + Σi such that

max
ϕ∈Φ
∥ϕ∥2(

Σ̂+Σi

)−1 ≤ ϵexp

and
λmin

(
Σ̂ + Σi

)
≥ max {d log 1/δ , λ} .

Next, we will propose the concentration analysis of our estimators and bound the total number of episodes
run. Throughout this section, assuming we have run for some number of episodes K, we let (Fτ )K

τ=1 the
filtration on this, with Fτ the filtration up to and including episode τ . We also let Fτ,h denote the filtration
on all episodes τ ′ < τ , and on steps h′ = 1, · · · , h of episode τ . Define

ϕπ,h = Eπ [ϕ (sh, ah)] , ϕπ,h (s) =
∑
a∈A

ϕ (s, a) πh (a|s)

and
T :=

∫
ϕπ,h (s) dµh−1 (s)⊤

.

We have from lemma A.7 in Wagenmaker and Jamieson (2022): ϕπ,h = Tπ,hϕπ,h−1 = · · · = Tπ,h · · · Tπ,1ϕπ,0 .
We also denote γΦ := maxϕ∈Φ ∥ϕ∥2.

The following Lemma 12 comes straight from lemma B.1, lemma B.2 and lemma B.3 in Wagen-
maker and Jamieson (2022) and provides us with the basic concentration properties of the estimators
constructed in line 6 of Algorithm 2.
Lemma 12. Assume that we have collected some data {(sh−1,τ , ah−1,τ , sh,τ )}K

τ=1 where, for each τ ′,
sh,τ ′ |Fh−1,τ ′ is independent of {(sh−1,τ , ah−1,τ , sh,τ )}τ ̸=τ ′ . Denote ϕh−1,τ = ϕ (sh−1,τ , ah−1,τ ) and Λh−1 =∑K

τ=1 ϕh−1,τ ϕ⊤
h−1,τ + λI. Fix π and let

T̂π,h =
(

K∑
τ=1

ϕπ,h(sh,τ )ϕ⊤
h−1,τ

)
Λ−1

h−1

ϕ̂π,h =T̂π,hT̂π,h−1 · · · T̂π,2T̂π,1ϕπ,0 .

Fix u ∈ Sd−1. Then with probability at least 1− δ:∣∣∣⟨u, ϕπ,h − ϕ̂π,h⟩
∣∣∣ ≤ h−1∑

i=1

(
2
√

log 2H

δ
+

log 2H
δ√

λmin (Λi)
+
√

dλ

)
·
∥∥∥ϕ̂π,i

∥∥∥
Λ−1

i

.

Thus, with probability at least 1− δ,∥∥∥ϕ̂π,h − ϕπ,h

∥∥∥
2
≤ d

h−1∑
h′=1

(
2
√

log 2Hd

δ
+

log 2Hd
δ√

λmin (Λh′)
+
√

dλ

)
·
∥∥∥ϕ̂π,h′

∥∥∥
Λ−1

h′

Lemma 13. Let εh
est denote the event on which, for all π ∈ Π, the feature visitation estimates returned by

line 6 satisfy: ∥∥∥ϕ̂π,h+1 − ϕπ,h+1

∥∥∥
2
≤ d

h−1∑
h′=1

(
3
√

log 4H2d|Π|
δ

+
log 4H2d|Π|

δ√
λmin (Λh′)

)
·
∥∥∥ϕ̂π,h′

∥∥∥
Λ−1

h′

Then P
[(

εh
est
)c] ≤ δ

2H .

Proof. Following similar analysis in lemma B.5 in Wagenmaker and Jamieson (2022), we also have the data
collected in Theorem 2 satisfy the independent requirements of Lemma 12. The result follows by setting
λ = 1/d in Lemma 12.
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Lemma 14. Let εh
exp denote the event on which: The total number of episodes run in line 4 is at most

C
d3 infΛ∈Ωh

maxϕ∈Φh
∥ϕ∥2

A(Λ)−1

ϵ2/β
+ poly

(
d, H, log 1/δ,

1
λ∗

min
, log |Π|, log 1/ϵ

)
episodes. The covariates returned by line 4, Λh, satisfy:

max
ϕ∈Φh

∥ϕ∥2
Λ−1

h
≤ ϵ2

d3β
, λmin (Λh) ≥ log 4H2d|Π|

δ
. (21)

Then P
[(

εh
exp
)c ∩ εh−1

est ∩
(
∩h−1

i=1 εi
exp
)]
≤ δ

2H .

Proof. By Lemma 15, on the event εh−1
est ∩

(
∩h−1

i=1 εi
exp
)

we can bound
∥∥∥ϕ̂π,h+1 − ϕπ,h+1

∥∥∥
2
≤ ϵ/
√

d. Remember
that we condition on K being large enough so that we have ϵ ≤ 1/2. Also, we can lower bound ∥ϕπ,h∥2 ≥
1/
√

d from lemma A.6 in Wagenmaker and Jamieson (2022). Thus,∥∥∥ϕ̂π,h

∥∥∥
2
≥ ∥ϕπ,h∥2 −

∥∥∥ϕ̂π,h+1 − ϕπ,h+1

∥∥∥
2
≥ 1/

√
d− ϵ/

√
d ≥ 1/

(
2
√

d
)

.

So the choice of γΦ = 1
2

√
d

is valid. The result then follows by applying Theorem 2 with our chosen
parameters.

Lemma 15. On the event εh
est ∩

(
∩h

i=1εi
exp
)
, for all π ∈ Π,∥∥∥ϕ̂π,h+1 − ϕπ,h+1

∥∥∥
2
≤ ϵ/
√

d .

Proof. On εi
exp, we can bound:

λmin (Λi) ≥ log 4H2d|Π|
δ

,∥∥∥ϕ̂π,i

∥∥∥
Λ−1

i

≤ ϵ

d
√

dβ
= ϵ

4Hd
√

d log 4H2d|Π|
δ

.

so that: ∥∥∥ϕ̂π,h+1 − ϕπ,h+1

∥∥∥
2
≤ d

h−1∑
h′=1

(
3
√

log 4H2d|Π|
δ

+
log 4H2d|Π|

δ√
λmin (Λh′)

)
·
∥∥∥ϕ̂π,h′

∥∥∥
Λ−1

h′

≤ d

h∑
i=1

4
√

log 4H2d|Π|
δ

· ϵ

4Hd
√

d log 4H2d|Π|
δ

≤ dH · ϵ

dH
√

d
= ϵ/
√

d .

Lemma 16. Define εexp = ∩hεh
exp and εest = ∩hεh

est. Then P [εest ∩ εexp] ≥ 1 − δ, and conditioning on
εest ∩ εexp, for all h = 1, 2, · · · , H − 1 and π ∈ Π, we have:∥∥∥ϕ̂π,h+1 − ϕπ,h+1

∥∥∥
2
≤ ϵ/
√

d .

Proof. Obviously,

εc
exp ∪ εc

est =
H−1⋃
h=1

((
εh

exp
)c ∪

(
εh

est
)c
)
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=
H−1⋃
h=1

(
εh

exp
)c \

((
εh−1

est
)c ∪

(
∪h−1

i=1
(
εi

exp
)c
))
∪

H⋃
h=1

(
εh

est
)c

=
H−1⋃
h=1

(
εh

exp
)c ∩

(
εh−1

est ∩
(
∩h−1

i=1 εi
exp
))
∪

H⋃
h=1

(
εh

est
)c

.

Using Lemma 13 and Lemma 14, we can bound

P
[
εc

est ∪ εc
exp
]
≤

H−1∑
h=1

(
P
[(

εh
exp
)c ∩ εh−1

est ∩
(
∩h−1

i=1 εi
exp
)]

+ P
[(

εh
est
)c
])

≤
H−1∑
h=1

2 · δ

2H

≤δ .

And the inequality follows by Lemma 15.

Theorem 3. (Full version of Lemma 2) With probability at least 1− δ, Algorithm 2 will run at most

CH2d3
H−1∑
h=1

infΛ∈Ωh
maxπ∈Π ∥ϕπ,h∥2

Λ−1

ϵ2 log H2d|Π|
δ

+ poly
(

d, H, log 1/δ,
1

λ∗
min

, log |Π|, log 1/ϵ

)

episodes, and will output policy visitation estimators Φ =
{

ϕ̂π,h : h = 1, 2, · · · , H, π ∈ Π
}

with bias bounded
as: ∥∥∥ϕ̂π,h − ϕπ,h

∥∥∥
2
≤ ϵ/
√

d .

Proof. According to Lemma 16, we can condition on the event εest ∩ εexp, thus we obtain the accuracy
desired. According to Lemma 14, we have total episodes be bounded as :

H−1∑
h=1

C
d3 infΛ∈Ωh

maxϕ∈Φh
∥ϕ∥2

A(Λ)−1

ϵ2/β
+ poly

(
d, H, log 1/δ,

1
λ∗

min
, log |Π|, log 1/ϵ

)

≤
H−1∑
h=1

C
d3 infΛ∈Ωh

maxϕ∈Φh
∥ϕ∥2

A(Λ)−1

ϵ2 H2 log H2d|Π|
δ

+ poly
(

d, H, log 1/δ,
1

λ∗
min

, log |Π|, log 1/ϵ

)
.

Conditioning on εest ∩ εexp, we have for all π ∈ Π,
∥∥∥ϕ̂π,h − ϕπ,h

∥∥∥
2
≤ ϵ/
√

d, thus we can upper bound:

inf
Λ∈Ωh

max
ϕ∈Φh

∥ϕ∥2
A(Λ)−1 = inf

Λ∈Ωh

max
π∈Π

∥∥∥ϕ̂π,h

∥∥∥2

A(Λ)−1

≤ inf
Λ∈Ωh

max
π∈Π

(
2 ∥ϕπ,h∥2

A(Λ)−1 + 2
∥∥∥ϕ̂π,h − ϕπ,h

∥∥∥2

A(Λ)−1

)
≤ inf

Λ∈Ωh

max
π∈Π

(
2 ∥ϕπ,h∥2

A(Λ)−1 + 2ϵ2

dλmin (A (Λ))

)
≤ inf

Λ∈Ωh

max
π∈Π

4 ∥ϕπ,h∥2
Λ−1 + 4ϵ2

dλ∗
min

Thus, the total number of episodes is bounded as:

CH2d3
H−1∑
h=1

infΛ∈Ωh
maxπ∈Π ∥ϕπ,h∥2

Λ−1

ϵ2 log H2d|Π|
δ

+ poly
(

d, H, log 1/δ,
1

λ∗
min

, log |Π|, log 1/ϵ

)
. (22)
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From lemma B.10 in Wagenmaker and Jamieson (2022), we can bound:

inf
Λ∈Ωh

max
π∈Π
∥ϕπ,h∥2

Λ−1 ≤ d .

Thus we have:
Corollary 1. The sample complexity in Algorithm 2 is bounded by:

O
(

d4H3

ϵ2 log H2d|Π|
δ

+ C1

)
,

where C1 = poly
(

d, H, log 1/δ, 1
λ∗

min
, log |Π|, log 1/ϵ

)
.

C Construct the Policy Set

In this section we provide the proof for the policy set Π we constructed. The construction techniques follows
directly from Appendix A.3 in Wagenmaker and Jamieson (2022) and we will prove such construction also
works in MDP with adversarial rewards. Our main result is stated in Lemma 18.
Lemma 17. In the adversarial MDP setting, where the loss function changes in each round, the best policy
of the MDP M(S,A, H, {Ph}H

h=1 , {ℓk}K
k=1) in rounds 1 to K from the set of all stationary policies, is

the optimal policy of the MDP with a fixed loss function being the average. Denote the average MDP as
M̊(S,A, H, {Ph}H

h=1 , ℓ̊), with the same transition kernel and the average loss ℓ̊ = 1
K

∑K
k=1 ℓk.

That is:

if π∗ = argmin
π

K∑
k=1

V π
k ,

then π∗ = argmin
π

V̊ π .

Where V̊ is the value function associated with the new MDP M̊.

Proof. Let τπ = ((s1, a1), (s2, a2), · · · (sH , aH)) be the trajectory generated by following policy π through
the MDP. Denote the occupancy measure µπ

h(sh, ah) as the probability of visiting state-action pair (sh, ah)
under trajectory τπ, and µπ = (µπ

1 , µπ
2 , · · ·µπ

H).
For any stationary policy π, we have:

V π =
H∑

h=1

∑
(sh,ah)∈Sh×Ah

µπ
h(sh, ah)ℓk(sh, ah) .

Since the two MDP share the same transition kernel, the occupancy measure generated by the same policy
stays unchanged. So we have:

K∑
k=1

V π
k =

K∑
k=1

H∑
h=1

∑
(sh,ah)∈Sh×Ah

µπ
h(sh, ah)ℓk(sh, ah)

=
H∑

h=1

∑
(sh,ah)∈Sh×Ah

µπ
h (sh, ah)

(
K∑

k=1
lk,h(sh, ah)

)

=
H∑

h=1

∑
(sh,ah)∈Sh×Ah

µπ
h(sh, ah) ·Kl̊(sh, ah)

= KV̊ π
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So π∗ satisfies:

π∗ = argmin
π

K∑
k=1

V π
k = argmin

π
V̊ π .

Lemma 18. Choose c to be an arbitrary constant, then we can construct a policy set Π for any linear
adversarial MDP M(S,A, H, {Ph}H

h=1 , {ℓk}K
k=1), such that there exists a policy π ∈ Π, when compared with

the global optimal policy, the regret of which is bounded by 1:

K∑
s=1

V π
k − V π∗

k ≤ 1 .

So that:

Reg(K) =
K∑

s=1
V πk

k − V π∗

k = max
π∈Π

K∑
s=1

V π
k −

K∑
k=1

V π∗

k + Reg (K; Π) ≤ Reg (K; Π) + 1 .

and the size of Π is bounded as:

|Π| ≤
(

1 + 32K2H4d5/2 log (1 + 16HdK)
)dH2

,

where d is the dimension of the feature map.

Proof. According to Lemma A.14 in Wagenmaker and Jamieson (2022) that for any linear MDP
M̊(S,A, H, {Ph}H

h=1 , ℓ̊) with fixed reward function ℓ̊, we can construct a policy set, that there exists a
policy π ∈ Π, which approximates the best policy of M̊ with bias

∣∣∣V̊ π − V̊ ∗
∣∣∣ ≤ ϵ′. And the size of the policy

set is bounded as:

|Π| ≤
(

1 + 32H4d5/2 log (1 + 16Hd/ϵ′)
(ϵ′)2

)dH2

. (23)

Notice this construction is based entirely on the set of state action features ϕ (s, a) and require no information
on the loss or reward function. In the adversarial case, we choose M̊ to be the average MDP denoted in
Lemma 17, and we obtain the regret bound of π in all the K episodes:

K∑
k=1

V π∗

k − V π
k = K

(
V̊ π∗
− V̊ π

)
= K

(
V̊ ∗ − V̊ π

)
≤ Kϵ′ . (24)

The proof is finished by taking ϵ′ = 1/K in Equation (23).
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