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ABSTRACT

We consider the problem of low probability estimation: given a machine learning
model and a formally-specified input distribution, how can we estimate the prob-
ability of a binary property of the model’s output, even when that probability is
too small to estimate by random sampling? This problem is motivated by the need
to improve worst-case performance, which distribution shift can make much more
likely. We study low probability estimation in the context of argmax sampling
from small transformer language models. We compare two types of methods: im-
portance sampling, which involves searching for inputs giving rise to the rare out-
put, and activation extrapolation, which involves extrapolating a probability dis-
tribution fit to the model’s logits. We find that importance sampling outperforms
activation extrapolation, but both outperform naive sampling. Finally, we explain
how minimizing the probability estimate of an undesirable behavior generalizes
adversarial training, and argue that new methods for low probability estimation
are needed to provide stronger guarantees about worst-case performance.

1 INTRODUCTION

Modern ML systems undergo black-box optimization to minimize a loss function on samples drawn
from a training distribution. Although models produced in this way perform desirably on average
over this distribution, they can still produce highly undesirable outputs on very rare inputs. This is
a problem, because these rare inputs can become much more likely in the presence of distribution
shift, especially one chosen adversarially, such as with large language model “jailbreaks” (Carlini
et al., 2024; Wei et al., 2024).

Preventing such highly undesirable outputs is a notoriously challenging problem. The most common
remedy is adversarial training, in which inputs that produce these undesirable outputs are searched
for and used as additional training data (Goodfellow et al., 2014; Madry, 2017), but the transfer
between different search methods is generally weak (Kang et al., 2019; Wei et al., 2024). In this
work, we propose the more modest goal of simply estimating the probability that an input drawn
from some distribution will produce a certain kind of output, which has been considered before in
the context of computer vision in Webb et al. (2019). We will show that even this intermediate goal
is challenging, but successful methods could enable new ways of preventing undesirable outputs by
minimizing their estimated probability.

To advance work on this problem, we study low probability estimation in the context of small trans-
former language models. We consider various formally-defined input distributions in which each
input token is sampled independently, and develop methods for estimating the probability that a
particular target token will have the largest output logit. We constrain the computational budget of
our methods and obtain ground truth probabilities by random sampling using a much larger compu-
tational budget. The target tokens are chosen to have ground truth probabilities between 10−9 and
10−5, which are too small for random sampling to produce a good estimate under the constrained
computational budget.

In this context, we study two types of methods:

• Importance sampling. We define a new input distribution under which the rare event is
much more likely, sample from that distribution, and re-weight samples to obtain an un-
biased estimate for the original distribution. Our Independent Token Gradient Importance
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Figure 1: Left: To evaluate the performance of our low probability estimation methods, we compare
their estimates against ground-truth probabilities obtained by brute-force sampling with a larger
computational budget. Right: The estimates of Metropolis–Hastings Importance Sampling on the
icl input distribution and 4-layer model, after a fit has been applied. Each point represents a
different target token.

Sampling (ITGIS) method treats token positions independently and uses gradients to obtain
this new input distribution, while our Metropolis–Hastings Importance Sampling (MHIS)
method uses a Markov chain Monte Carlo algorithm to sample from a distribution with
non-independent tokens.

• Activation extrapolation. We use random samples to fit a probability distribution to the
model’s logits, and extrapolate into the tails of this distribution to produce a probability
estimate. Our Quadratic Logit Decomposition (QLD) method applies a presumption of
independence to the empirical distribution of logits, motivated by Christiano et al. (2022),
and our Gaussian Logit Difference (GLD) method is a simple baseline that fits a Gaussian
to the difference between the maximum logit and target logit.

In our setting, both types of methods outperform random sampling, and importance sampling tends
to outperform activation extrapolation. Nevertheless, we remain interested in activation extrapola-
tion and similar approaches because they produce new methods for reducing the probabilities of rare
outputs, whereas importance sampling essentially recovers standard adversarial training.

The remainder of the paper is structured as follows. In Section 2, we formally define the problem
of low probability estimation, both in general and in our language model setting. In Section 3,
we describe our four methods in more detail. In Sections 4 and 5, we describe the models and
input distributions on which we test our methods and convey our experimental findings. Finally, in
Sections 6, 7 and 8, we discuss the limitations and implications of our results, related work, and
future directions.

2 PROBLEM STATEMENT

Given an input space X , an output space Y , an input distribution D ∈ ∆(X ), a model M : X → Y ,
and a formal boolean property of model outputs C : Y → {0, 1}, low probability estimation is the
problem of efficiently estimating

Pr
x∼D

[C(M(x)) = 1].
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We sometimes refer to the event C(M(x)) = 1 as the “target behavior”, or just “the behavior.” If the
probability of the behavior large enough (say, larger than 1/n), it is easy to estimate by drawing n
independent samples from X and using the sample mean of C(M(x)). However, if the probability
is significantly smaller than 1/n, this sample mean is almost always 0, making it uninformative at
distinguishing between small probabilities like 10−10 and 10−20.

2.1 OUR SETTING

In this paper, we study low probability estimation in the setting of argmax sampling from language
models with single-token behaviors. Let M : V∗ → V be a transformer language model that
predicts the next token given a string of previous tokens, where V is the token vocabulary. Note that
we sample at temperature 0, so M is deterministic. Given a distributionD over V∗ and a target token
t ∈ V , the low probability estimation problem for single-token behaviors is the task of estimating

Pr
x∼D

[M(x) = t].

Letting Mi(x) be the logit the model assigns to token i ∈ V , this can also be written as:
Pr
x∼D

[Mt(x) > Mi(x) ∀i ̸= t].

In general,D can be any distribution that can be formally specified. However, in this paper we focus
only on distributions D with independent tokens. That is, we specify an input length k and token
distributions D1, . . . ,Dk ∈ ∆(V), then write D as the product D1 × · · · × Dk. Table 1 shows the
8 distributions that were tested, with tokens colored for clarity. To prevent overfitting, the methods
were only run on the first four distributions during development, and they were finalized before
testing on the last four distributions. The results were qualitatively the same on both halves of the
split.

Table 1: Input distributions and examples. See Table 2 for more detailed descriptions.

Name Short description Tokenized example
hex Hexadecimal characters <|BOS|>aa5acbf6aad468813f94c2fbbff4dc65eadc1553

camel CamelCase Python tokens <|BOS|>LayoutCredServicesVirtualUseTimeInterface

ColorBodyAlRowHeightRepFontAndMetaRequestGroupsOne

LabelPasswordAndRaVideoFailedValueGuiTypeMicrosoft

SlotDeId

colon Python tokens, ending with ‘:’ <|BOS|> et-= """]: (\n : Thisc

\r\n (’/\nFilereturn\n\n <|EOS|>

’].2default.**1 self( def’)",:

if Python tokens, starting with
‘ if’

<|BOS|> if: else,-post\n \n 2\n\n5 found

fromout, self- node +=\n \n =\n( this ’values

(),.(do

caps “He/She screamed:”, followed
by caps and punctuation

<|BOS|>He screamed: "ESOTTULEBOV.,WR!!IMITLEER.,ARY

...IIESSION

english English words <|BOS|>ating. is invent School not found from cm

an in one to shooting everyone Cor George around

responsive employees ground on stone various,

spanish Spanish tokens <|BOS|> lo no bu dees cr socialjosabiler m de enidad

areljd final de v de lo much

icl In-context learning prompt <|BOS|>A for American N for nothing O for orange N

for nice Y for your M for Monday O for operating U

for unless S for sleep V for

3 ESTIMATION METHODS

We introduce four methods in this section: two importance sampling methods (Independent Token
Gradient and Metropolis–Hastings), and two activation extrapolation methods (Quadratic Logit De-
composition and Gaussian Logit Difference). We also compare against the baseline of outputting an
optimal constant, which can be thought of as the performance of naive sampling because we only
evaluate the methods on tokens with ground truth probabilities less than the reciprocal of the allotted
sampling budget (see Section 4).
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3.1 IMPORTANCE SAMPLING METHODS

Naive sampling fails to produce good estimates for low probability events because it takes too many
samples from D to observe a positive example. To address this, we can instead draw samples from
a different distribution that up-weights regions of input space most likely to produce the behavior
of interest. If we re-weight our observations properly, this gives an unbiased estimator for the
true probability. This is known as importance sampling, and it enjoys the same advantages that
adversarial training has over standard training: by using a narrower input distribution, we can more
efficiently discover positive examples of the target behavior.

Formally, let p(x) be the probability mass function of D, and let q(x) be the PMF of any other
distribution. Then

Pr
x∼p

[M(x) = t] = Ex∼p[1[M(x) = t]] = Ex∼q

[
p(x)

q(x)
1[M(x) = t]

]
,

but the latter may have less variance (and so require fewer samples to get a good estimate).

The following two importance sampling methods take q(x) to be a Boltzmann posterior with prior
p(x). The first defines q(x) with independent tokens, while the second defines q(x) to have non-
independent tokens and so requires a more sophisticated sampling method.

3.1.1 INDEPENDENT TOKEN GRADIENT IMPORTANCE SAMPLING (ITGIS)

We want q to up-weight tokens that contribute to t being outputted. One way to do this is to continue
to treat each input token as independent, but change the probability of tokens according to their
average linear contribution to the logit of t. Let x = (x1, . . . , xk) ∈ Vk be an input of length k, and
say that p(x) factors as p1(x1) · · · pk(xk). Then we define q(x) = q1(x1) · · · qk(xk), where

qi(xi) ∝ pi(xi) · exp
(
si(xi)

T

)
and

si(xi) = Ex′∼q[∇x′Mt(x
′)]i,xi

.

T is a temperature parameter, and the gradient is taken by treating x′ as a one-hot vector in Rk×|V|.
Intuitively, the gradient ∇x′Mt(x

′)i,xi
gives us a linear approximation to how much the logit of t

would change if we replaced i-th token of x′ with xi (up to an additive constant w.r.t. xi). Thus, si
scores each token value according to its average linear contribution to Mt, and qi is defined as the
Boltzmann distribution with respect to this score function.1

However, since si and q are both defined in terms of each other, we can’t calculate si directly. To
overcome this, we construct a sequence of score functions s(0)i , s

(1)
i , . . . and associated distributions

q(0), q(1), . . . that are adaptively refined with respect to each other (see Appendix B.i for details).
Sampling from each q(j) lets us calculate an importance sampling estimate, and the final output of
the method is the average value of these estimates across all j.

3.1.2 METROPOLIS–HASTINGS IMPORTANCE SAMPLING (MHIS)

A problem with ITGIS is that the new sampling distribution q(x) still treats all tokens as indepen-
dent, and it only accounts for linear effects of tokens on the target logit. Thus, ITGIS may fail to
sample into the most important regions of the input space if the model is sensitive to non-linear
interactions between tokens (e.g., if the model’s target logit is only high when the last two tokens of
the input are the same as each other).

To remedy this, we can define an importance sampling distribution that doesn’t have independent
tokens. We must use a score function that depends on the entire input; the most natural choice is the
target logit Mt(x). We define

q(x) ∝ p(x) · exp
(
Mt(x)

T

)
,

1It can be shown that, given a score function s(x) and a prior p(x), the distribution that maximizes
Ex∼q[s(x)]− T ·KL(q∥p) is q(x) ∝ p(x) · exp(s(x)/T ).
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again using a Boltzmann distribution to up-weight regions of input space that are more likely to have
positive samples.

Unlike ITGIS, we cannot explicitly compute q because it does not factor into independent distribu-
tions over each token. Instead, we use the Metropolis–Hastings algorithm to produce a random walk
in input space that has a stationary distribution of q.2 To do so, we must define a proposal distri-
bution ϕ(x′|x) that suggests the next element of the walk. To encourage fast mixing, this proposal
distribution should be good at exploring into regions of input space that q weights highly.

Here we take inspiration from Greedy Coordinate Gradient, an algorithm that optimizes a discrete
prompt to jailbreak a model using gradients (Zou et al., 2023). We adapt this optimization procedure
into a proposal distribution: to pick a proposed next step x′ of the walk, we choose a random token
position i to replace, compute the gradient of s(x) with respect to xi, then sample a replacement
token for position i according to a Boltzmann distribution defined by this gradient (similarly to
ITGIS). The final output of the method is the average importance sampling estimate taken after a
burn-in period. For a precise description of the algorithm, see Appendix B.ii.

3.2 ACTIVATION EXTRAPOLATION METHODS

The importance sampling methods search for explicit examples of inputs that cause the given behav-
ior. This makes their task at least as hard as the adversarial training search problem—if it is difficult
to find an x ∈ supp(D) such that M(x) = t, the importance sampling estimators will likely fail to
produce a positive estimate.

We hope to find low probability estimation methods that work even when the search problem for
importance sampling is hard. To do this, we introduce activation extrapolation: first fit a distribution
to the activations or logits of M , then estimate the probability of the output property of interest under
this idealized distribution. Our first such method is Quadratic Logit Decomposition, which applies a
presumption of independence between uncorrelated subspaces the model’s pre-unembed activations.
We also develop Gaussian Logit Difference, which is intended as a simple baseline method.

3.2.1 QUADRATIC LOGIT DECOMPOSITION (QLD)

Let the random vector v(x) ∈ Rd be the activation of the model right before applying the unembed
matrix WU ∈ Rd×|V|. That is, v(x) ·WU represents the model’s output logit vector M(x)1,...,|V|.
We first collect n samples of v (call them v(1), . . . ,v(n)). We then choose some unit direction
d ∈ Rd (see below), then decompose each v(i) into a(i) + b(i), where a lies in the subspace
spanned by d, and b lies in the complementary subspace that is orthogonal in a whitened basis.3
This decomposition is chosen such that the random vectors a and b are uncorrelated across the n
samples.

Next, by treating the random vectors a and b as independent, we can use our n samples of each to
obtain n2 “synthetic” samples of u. The final output of QLD is the proportion of these synthetic
samples that cause t to be outputted:

1

n2

∣∣∣{(i, j) ∈ [n]2
∣∣a(i) + b(j) ∈ S

}∣∣∣ ,
where S ⊆ Rd is the “acceptance region” of activation space corresponding to activations that result
in the target logit being highest after unembedding. Despite the fact that there are n2 synthetic
samples, this proportion can be computed in Õ(n) time by first sorting the samples a(i). A more
complete description of the QLD algorithm can be found in Appendix B.iii.

Choice of direction. We rely on the following two assumptions for QLD to perform well: 1) a
and b are independent (so that our estimate is unbiased), and 2) the contribution towards the output
behavior is split roughly equally between these two terms (to minimize the variance of our estimate).

2Metropolis–Hastings is a Markov Chain Monte Carlo method for sampling from a distribution with an
unknown normalizing constant. See Robert (2016) for a description of the algorithm.

3Actually, a, b, and d are all defined in the whitened space of v; see Appendix B.iii.
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See Appendix C for more discussion of this motivation. After some initial experimentation with a
variety of candidate directions,4 we decided to set d to be the direction of the shortest vector in
whitened space that results in the model outputting t. It can also be thought of as the maximum like-
lihood value of v under a Gaussian prior, conditioned on observing the model output t. Appendix D
describes the algorithm we use to compute d.

3.2.2 GAUSSIAN LOGIT DIFFERENCE

On any given input, we can record the difference ∆t := Mt(x)−maxi Mi(x). We wish to estimate
the probability that ∆t ≥ 0. A natural estimation method, which we view as a simple baseline, is to
treat ∆t as Gaussian by estimating its mean µ and standard deviation σ with samples, then calculate
Pr[N (µ, σ2) ≥ 0]. In practice, we use a slightly different functional form that captures the Gaussian
PDF, which approximates the CDF well in the tails. The output of the Gaussian Logit Difference
method is:

exp

(
−
(

aµ

σ + ϵ

)2

+ b

)
+ c,

where a, b, c, and ϵ are parameters that are fit to minimize loss across all target tokens associated
with a given distribution (see Section 4.2).

4 EXPERIMENTAL SETUP

We apply our methods on three models: a 1-layer, a 2-layer, and a 4-layer transformer from Nanda &
Bloom (2022). All models have a hidden dimension of d = 512, a vocabulary size of |V| = 48262,
GELU non-linearities (Hendrycks & Gimpel, 2023), and were trained on the C4 dataset (Raffel
et al., 2023) and CodeParrot (Tunstall et al., 2022).

For each of the 8 distributions (listed in Table 1) and for each model, we generate ground-truth token
probabilities by running forward passes on 232 random samples. We then select a random set of 256
tokens among those with ground-truth probabilities between 10−9 and 10−5, and we test all of our
methods on these tokens.5

We give each method a computational budget of 216 model calls (see details in Appendix F). This
budget was chosen so that naive sampling would almost never result in any positive estimates for
the range of token probabilities we test (216 < 105), but the theoretical quadratic gains from QLD
would still be enough to get signal on the entire range of probabilities ((216)2 > 109).

Our code is available at [link to be added later].

4.1 ITAKURA–SAITO LOSS

We measure the quality of the method with a loss function inspired by the Itakura–Saito divergence
(Itakura & Saito, 1968). If p is the ground-truth probability of a particular target token, then an
estimate of q incurs a loss of:

DIS(p, q) =
p

q
− ln

p

q
− 1.

Two considerations went into the choice of this loss function. First, Itakura–Saito loss is a proper
scoring rule (Buja et al., 2019). Second, since it only depends on the ratio p/q, Itakura–Saito loss
is sensitive to small probabilities: if p = 10−100 and q = 10−10, then DIS(p, q) is very large.
In contrast, the squared error loss function (p − q)2 would be extremely small. Intuitively, this
sensitivity is desirable because we care how our methods perform on a wide (as measured in log-
space) range of ground-truth probabilities. We don’t want the performance metric to be dominated
by a method’s behavior on only the most probable tokens.

For completeness, we also report our results using squared error in log-space (Appendix H), even
though this is not a proper scoring rule. The results are qualitatively identical.

4Other candidate directions included 1) the t-th column of WU pulled back into whitened space and 2) the
expectation of N (0, Idd) conditioned on lying in the whitened acceptance region.

5The hex distribution only had 159 and 135 such tokens for the 2- and 4-layer models, respectively, so we
instead used every token that fell into the given range. See Appendix E for more details.
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4.2 AFFINE FITS

Many methods often report estimates of 0, but DIS is undefined for q = 0. To address this, we
fit a transformation x 7→ axc + b to the outputs of each method, where a, b and c are chosen
to minimize Itakura–Saito loss. axc can be thought of an affine transformation in log-space, and
adding b prevents values from being too small while barely affecting larger outputs. To ensure that
this transformation is not overfitting to the particular set of 256 tokens, we report the leave-one-out
cross-validation (LOOCV) loss of each method. We train a separate fit for each (method, input
distribution) pair. 6

5 RESULTS

Figure 2 shows the performance of each method. The relative ordering is clear: both importance
sampling methods outperform Quadratic Logit Decomposition, which in turn outperforms Gaussian
Logit Difference. GLD is barely better than outputting an optimal constant (which can be interpreted
as the performance of naive sampling). Figure 4 shows that there is a fair amount of variation in
method performance across the 8 distributions: some behaviors like hex and icl favor MHIS,
while others like spanish heavily favor ITGIS. A more detailed table of results is in Appendix G.

Among the two importance sampling methods, ITGIS does better on smaller models, while MHIS
does better on larger models. We believe this is because larger models are less easily approximated as
linear functions and are more likely to have complex behaviors arising from inter-token interactions.

Figure 3 displays example scatter plots of ITGIS, MHIS, and QLD estimates before a fit is applied.
Each point represents the ground-truth and estimated probability of a different target token. More
scatter plots can be found in Appendix J; note that the qualitative performances of the methods can
vary significantly on different input distributions. We perform an ablation study on our choice of
loss function in Appendix H, in which we score methods based on squared error in log-space instead
of Itakura–Saito loss.

6 DISCUSSION

6.1 DISTRIBUTION SHIFT AS MOTIVATION

One might ask: if a particular model behavior is so rare that it never arises during training, why
would we care about estimating its probability? There are a few reasons. First, some AI systems
may be run on many more inputs during the course of deployment than during training. Thus, if a
certain model behavior would be so catastrophic that it is unacceptable for it to occur even once in
deployment, we cannot rely on training to drive down its probability low enough. Second, there may
be distributional shift between training and deployment such that events that occur extremely rarely
during training become more likely in deployment. This could occur because of an input chosen
adversarially, but it could also occur because of goal misgeneralization (Shah et al., 2022).

A particularly challenging case is deceptive alignment, the possibility that an ML model would look
for clues about whether it is in a training or a deployment environment, and only behave well in
training (Hubinger et al., 2021). To detect whether a model is deceptively aligned, one could craft
an input distribution that is “wide enough” to assign some probability mass, even if very small, to
any possible deployment-time input, then apply low probability estimation methods to detect if the
model would ever perform a catastrophic behavior on this distribution.7 For more discussion of this
idea, see Xu (2024).

6Note that the Gaussian Logit Difference method has a special functional form of its fit ((µ, σ) 7→
exp

(
− (aµ/(σ + ϵ))2 + b

)
+ c instead of x 7→ axc + b) but is otherwise evaluated in the same way.

7To prevent false positives, this would require a very demanding definition of catastrophe that would be
impossible for the model to trigger “by accident.”
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Figure 2: The Itakura–Saito loss of all methods across different model sizes. The solid lines indicate
the loss of each method averaged over all 8 distributions, with bands showing standard error. The
colored points indicate the loss on individual distributions, with horizontal jitter added for visibility.
Lower is better.

Figure 3: Examples of method outputs on two different behaviors and models, before a fit is applied.
Estimates of 0 are placed at the bottom of each graph for visibility.
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Figure 4: The Itakura–Saito loss of all methods across different distributions, averaged over all 3
model sizes. Lower is better.

6.2 RELATION TO RED-TEAMING AND ADVERSARIAL TRAINING

Our importance sampling methods for low probability estimation involve finding inputs for which
the rare event occurs. This amounts to the well-studied task of “red-teaming”. As long as the
required importance sampling ratios can be computed, any method for red-teaming can be turned
into an importance sampling method for low probability estimation, as we demonstrate with our
adaptation of Greedy Coordinate Gradient into MHIS (Zou et al., 2023). However, our activation
extrapolation methods such as QLD do not correspond to any red-teaming method.

A further reason to be interested in low probability estimation is that it could be used to reduce the
probability of the rare event, by optimizing the model to produce a lower estimate. For example, this
could be done using gradient descent, if the estimate were a differentiable function of the model’s
parameters. For an importance sampling method, this amounts to finding inputs for which the rare
event occurs (i.e., red-teaming) and using them as training data, which is essentially the well-known
method of adversarial training (Goodfellow et al., 2014). However, since our activation extrapola-
tion methods do not correspond to any red-teaming method, new activation extrapolation methods
potentially provide us with new ways to reduce the probabilities of rare events.

6.3 IMPORTANCE SAMPLING VERSUS ACTIVATION EXTRAPOLATION

In our experiments, we found that importance sampling methods outperformed activation extrapo-
lation. Nevertheless, there are theoretical cases in which importance sampling performs worse than
other methods. For example, consider a model that outputs the SHA-256 hash of its input: find-
ing any input that gives rise to a particular output is computationally infeasible, yet it is still easy
to estimate the probability of a particular output by modeling the output of the hash function as
random.

More generally, we are excited about low probability estimation as a concrete problem for which for
which it may be necessary to leverage internal model activations. In place of importance sampling,
we may be able to use deductive estimates based on a presumption of independence (Christiano
et al., 2022). Our Quadratic Logit Decomposition method is an early proof of concept of this, even
though it is outperformed by importance sampling in our setting.

6.4 LIMITATIONS

There are two main limitations of our experimental setup. First, we only use input distributions
that factor into independent tokens. This choice is necessary for the definition of ITGIS. It is also

9
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very convenient for the implementation of MHIS, because it gives efficient sampling access to the
proposal distribution. To move beyond independent token input distributions, we could define the
input distribution to be the output of a separate generative model and adapt some of the current
estimation methods appropriately.

Second, we only study model behaviors that consist of a single token sampled at temperature 0. This
is unrealistic because in practice, if we were concerned about specific single-token outputs, it would
be easy to filter them out. In contrast, the types of behaviors we actually worry about likely involve
long chains of autoregressive generation or interaction with the external world (e.g., when forming
and executing a plan). We are excited to see future work extending our setting in this direction.

Nevertheless, it is worth noting that formally-defined distributions and behaviors are more general
than they may initially seem. For example, we could formalize the event “M writes buggy code”,
as: When M ’s output is given to GPT-4 along with the prompt “Does this code contain any bugs?
Let’s think step by step.”, does GPT-4 end its response with YES?

7 RELATED WORK

The problem of low probability estimation was previously considered in the context of computer
vision by Webb et al. (2019), where they propose using an Adaptive Multi-Level Splitting algorithm
with Metropolis Hastings. However, they only study the problem in the context of computer vision
with continuous input spaces, and their approaches still require finding positive samples, unlike our
activation extrapolation methods. Phuong et al. (2024) and Højmark et al. (2024) attempt to estimate
the probability that a language model passes certain capability evaluations, even when its success
rate is low, though their methods are not directly applicable to our formal setting.

Our importance sampling methods can be viewed as solving a special case of controlled text genera-
tion (Zhang et al., 2023) in which we want to sample from an autoregressive distribution conditioned
on a property of the full output (in our case, that the last token is t). Yang & Klein (2021) do this
by training Future Discriminators to steer model generation towards the desired attribute. Lew et al.
(2023) approach the problem with a Sequential Monte Carlo steering approach; however, their in-
filling algorithm doesn’t provide any benefit over naive sampling when all tokens except the last are
independent. These works don’t consider the problem of low probability estimation.

Zhao et al. (2024) focus on the problem of estimating the partition function of an unnormalized
target distribution over sequences, which is a more general case of our low probability estimation
problem. Their Twisted Sequential Monte Carlo methods can be viewed as more advanced versions
of our importance sampling methods. In contrast, in this work we focus on motivating the low
probability estimation problem and introducing methods that do not involve searching for positive
samples, such as activation extrapolation.

Finally, there is a large body of work applying adversarial training to improve worst-case model
performance (Bai et al., 2021; Goodfellow et al., 2014; Ilyas et al., 2019), especially in the context of
language models (Madry, 2017; Liu et al., 2020). Perez et al. (2022) explores using language models
themselves to aid in red-teaming other models. Latent adversarial training (Casper et al., 2024;
Sheshadri et al., 2024) generalizes standard adversarial training by optimizing over perturbations in
activation space; this means that, like activation extrapolation methods, it can be effective even when
the adversarial training search problem over input space is hard.

8 CONCLUSION

In this paper, we introduce the problem of low probability estimation along with four novel esti-
mation methods. We define and collect ground-truth probabilities for 8 different input distributions,
then use them to evaluate the performance of our proposed methods. We find that the two importance
sampling-based methods perform the best, with larger models favoring MHIS over ITGIS.

We are excited for future work that extends our empirical setup to non-independent input distribu-
tions and output behaviors that involve more than one token. We are also looking forward to future
papers that develop more accurate estimation methods, especially methods like QLD that move be-
yond importance sampling.
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A INPUT DISTRIBUTIONS

Table 2: Definitions of input distributions.

Name Tokens Description
hex 33 Tokens that consist solely of hexadecimal characters, weighted by their frequency in

long, uniformly-random hexadecimal strings.
camel 33 Tokens that start with a capital letter, then have only lowercase letters, weighted by their

frequency in Python code.
colon 34 Tokens weighted by frequency in Python code. Always ends with a colon.
if 34 Tokens weighted by frequency in Python code. Always starts with ‘ if’.

caps 21 Tokens that consist only of capital letters or punctuation, weighted by frequency in
English text. Starts with ‘He screamed: "’ or ‘She screamed: "’.

english 26 Tokens that consist only of letters and start with a space, as well as punctuation.
Weighted by frequency in English text.

spanish 25 Tokens that consist only of letters and spaces. Weighted by frequency in Spanish text.
icl 29 A simple in-context learning prompt of the form ‘A for N for O for ... S

for ? for’ , where the underscores are replaced with random tokens that start
with the corresponding letter (weighted by frequency in English text), and the ? is re-
placed with a uniformly random letter. The actual distribution uses a different sequence
of letters but was changed to ‘ANONYMOUS’ for this submission.
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B FULL ESTIMATION ALGORITHMS

I ALGORITHM FOR ITGIS

The algorithm for ITGIS is as follows. Initialize s
(0)
i ≡ 0 for all i and a step counter j = 0. Then,

repeatedly:

1. Increase the step counter j by 1.

2. Compute the distribution q(j−1) as defined by the previous score function s
(j−1)
i . This can

be explicitly computed as a list of |V| probabilities per token position.

3. Draw a batch of samples from from q(j−1). Use the empirical mean of their gradient to
estimate ŝ

(j)
i (x) = Ex′∼q(j−1) [∇x′Mt(x

′)]i,x for all i ∈ [k], x ∈ V .

4. Update the next s(j)i for all i according to an exponentially-weighted moving average:

s
(j)
i =

ŝ
(j)
i + αŝ

(j−1)
i + · · ·+ αj−1ŝ

(1)
i

1 + α+ α2 + · · ·+ αj−1
.

In practice, we use α = 0.9.

5. Calculate the average value of the importance sampling estimator p(x)
q(j−1)(x)

1[M(x) = t]

for all samples in this batch.

The final output of the method is the average value of this importance sampling estimator across all
batches. The number of batches and samples per batch is specified in Appendix F. See Algorithm 1
for pseudocode.

Algorithm 1 Independent Token Gradient Importance Sampling (ITGIS)

Require: Model M , target token t, input length k, token distributions p1, . . . , pk, temperature T ,
iterations n, batch size B

1: s
(0)
i ← 0 ∈ R|V| for all i ∈ [k] # Initialize score functions

2: estimates← []

3: for j ← 1 to n do
4: for i← 1 to k do
5: q

(j−1)
i (x)← pi(x) · exp(s(j−1)

i (x)/T ) for all x ∈ V
6: Normalize q

(j−1)
i to have sum 1

7: end for

8: Sample B inputs {x(b)}Bb=1 from q
(j−1)
1 × · · · × q

(j−1)
k

9: for i← 1 to k do
10: ŝ

(j)
i (x)← 1

B

∑B
b=1[∇xMt(x

(b))]i,x for all x ∈ V
11: end for

12: α← 0.9
13: for i← 1 to k do
14: s

(j)
i ←

ŝ
(j)
i +αŝ

(j−1)
i +···+αj−1ŝ

(1)
i

1+α+α2+···+αj−1

15: end for

16: estimate← 1
B

∑B
b=1

∏k
i=1 pi(x

(b)
i )∏k

i=1 q
(j−1)
i (x

(b)
i )

1[M(x(b)) = t]

17: Append estimate to estimates
18: end for

19: return 1
n

∑n
j=1 estimates[j]
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II ALGORITHM FOR MHIS

We define the proposal distribution ϕ(·|x) to be the distribution induced by the following procedure:

1. Choose a random token position i ∈ [k] to modify.

2. Calculate the gradient at that token [∇xMt(x)]i ∈ R|V| (treating x = (x1, . . . , xk) as a
one-hot vector in Rk×|V|). Call this gradient g.

3. Sample a replacement token x′i from the distribution proportional to

pi(x
′
i) · exp

(gx′
i

T

)
.

4. Output x′ = (x1, . . . , x′
i, . . . , xk).

Note that the transition probability in Metropolis–Hastings only depends on the ratio

q(x′)ϕ(x|x′)

q(x)ϕ(x′|x)
=

pi(x′
i)

pi(xi)
· exp

(
Mt(x

′)−Mt(x)

T

)
· ϕ(x|x

′)

ϕ(x′|x)
,

which is easy to compute given forwards and backwards passes at x and x′.

We use an initial burn-in period (see Appendix F) for the random walk before recording samples
x(1), . . . ,x(n). The final output of the method is the empirical importance sampling estimate

1

n

n∑
j=1

p(x(j))

q(x(j))
1[M(x(j)) = t].

This requires computing q(x), which involves the normalization constant. To save samples, we
estimate the normalization constant using the identity:

Ex∼p

[
exp

(
Mt(x)

T

)]
= Ex∼q

[
exp

(
−Mt(x)

T

)]−1

.

The right-hand side can be estimated using the n samples we already have from (approximately) q.
In practice, the way we estimate the normalizing constant does not matter much (most of the error
comes from other steps). See Algorithm 2 for pseudocode.
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Algorithm 2 Metropolis–Hastings Importance Sampling (MHIS)

Require: Model M , target token t, input length k, token distributions p1, . . . , pk, temperature T ,
number of burn-in steps nburn, number of samples n

1: Initialize x by sampling from p1 × · · · × pk
2: samples← []
3: for step← 1 to nburn + n do
4: i← Unif([k]) # Choose random position
5: g← [∇xMt(x)]i
6: Sample x′

i from ∝ pi(x
′
i) · exp(gx′

i
/T ) # Proposed token

7: x′ ← (x1, . . . , x′i, . . . ,xk) # Proposed new state
# Compute acceptance ratio r = q(x′)ϕ(x|x′)

q(x)ϕ(x′|x)
8: r ← AcceptanceRatio(M, t, T, (p1, . . . , pk),x,x

′)
9: if Unif(0, 1) < r then

10: x← x′ # Accept proposal
11: end if

12: if step > nburn then
13: Append x to samples
14: end if
15: end for

16: Z ←
(

1
n

∑n
j=1 exp(−Mt(samples[j])/T )

)−1

# Est. normalizing constant

17: return 1
n

∑n
j=1

exp(Mt(samples[j])/T )
Z 1[M(samples[j]) = t]

III ALGORITHM FOR QLD

Recall that v(x) ∈ Rd is the random vector representing the activations of the model right before
the unembedding step. After collecting n samples of v(1), . . . ,v(n), we compute their empirical
mean µ ∈ Rd and covariance Σ ∈ Rd×d. Then define u to be the whitened version of v:

u := A−1(v − µ)

v = Au+ µ,

where A ∈ Rd×d is any matrix such that AA⊤ = Σ. Note that u has mean 0 and covariance Idd.
From now on, we principally work in this whitened representation of activation space, as it has the
convenient property that the u · e and u · e′ are uncorrelated iff e and e′ are orthogonal.

We choose the unit vector d ∈ Rn to point in the direction of the shortest accepting vector (Ap-
pendix D), then decompose our whitened samples u(1), . . . ,u(n) into components parallel and per-
pendicular to d:

a(i) := dd⊤u(i)

b(i) := u(i) − a(i).

Finally, we output:
1

n2

∣∣∣{(i, j) ∈ [n]2
∣∣a(i) + b(j) ∈ S

}∣∣∣ ,
where

S :=
{
u ∈ Rd

∣∣ argmaxi((Au+ µ) ·WU )i = t
}
.

This proportion can be computed in Õ(n) time—we don’t need to explicitly iterate over all n2 pairs.
By the convexity of the acceptance region S, for any fixed b there is a single interval [ℓ, r] such
that a ∈ [ℓ, r] ⇔ ad + b ∈ S. We can efficiently compute the bounds of this interval for every
sample b(j) by solving a linear system of inequalities, and then we can calculate how many a(i) fall
into each range in O(log n) time after sorting. Thus, the computational cost of QLD is dominated
by running n forwards passes of M to generate the samples u(1), . . . ,u(n). See Algorithm 3 for
pseudocode.
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Algorithm 3 Quadratic Logit Decomposition (QLD)

Require: Model M with unembed matrix WU , target token t, sample size n
1: Sample n inputs x(1), . . . ,x(n) from input distribution
2: Compute pre-unembed activations v(i) ∈ Rd by running M on x(i) for i ∈ [n]
3: µ← 1

n

∑n
i=1 v

(i)

4: Σ← 1
n

∑n
i=1(v

(i) − µ)(v(i) − µ)⊤

5: Find A such that AA⊤ = Σ+ ϵ · Idd # via Cholesky decomposition
6: for i← 1 to n do
7: u(i) ← A−1(v(i) − µ) # Whitened activations
8: end for

9: d← ShortestAcceptingVector(A,µ,WU , t) # See Appendix D
10: for i← 1 to n do
11: a(i) ← dd⊤u(i) # Parallel component
12: b(i) ← u(i) − a(i) # Perpendicular component
13: end for

14: Sort {a(i)}ni=1 in ascending order
15: count← 0
16: for j ← 1 to n do

# Solve linear inequalities to get [ℓj , rj ] such that a ∈ [ℓj , rj ]⇔ ad+ b(j) ∈ S

17: [ℓj , rj ]← FindAcceptanceInterval(b(j),d,A,µ,WU , t)

18: count← count + |{i : a(i) ∈ [ℓj , rj ]}| # Binary search for bounds
19: end for

20: return count/n2
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C PRINCIPLES FOR CHOOSING A DECOMPOSITION IN QLD

In this section, we justify the claim that we rely on the following two assumptions of the decom-
position u = a + b for QLD to perform well: 1) a and b are independent, and 2) the contribution
towards the output behavior is split roughly equally between the two terms.

The first assumption is straightforward: if a and b are not independent, then a+b′ (where b′ comes
from an i.i.d. copy of u) does not have the same distribution as u. The failure of this assumption
introduces bias into the estimation method. Working in whitened space ensures that a and b are
uncorrelated, which is a first step towards independence.

The second assumption—that the contribution to the target behavior is roughly equally split between
a and b—is necessary for QLD to have an advantage over naive sampling. For purposes of illustra-
tion, say that d = 2 (so that both a and b can be treated as scalars), and that a,b iid∼ N (0, 1). Then,
consider three ways that the contribution to the target behavior could be split:

• Scenario 1 (no split): The target token is outputted iff a > 10. In this case, QLD provides
no advantage over naive sampling, as the proportion of (a(i),b(j)) pairs in the acceptance
region is exactly the same as the proportion of (a(i),b(i)) pairs. If p is the probability of
the behavior, then p−1 samples are required to consistently obtain a positive estimate.

• Scenario 2 (even split): The target token is outputted iff a+ b > 10
√
2. In this case, QLD

has a quadratic advantage over naive sampling. It only requires around p−1/2 samples for
QLD to consistently obtain a positive estimate.

• Scenario 3 (uneven split): The target token is outputted iff a+ 2b > 10
√
5. The contribu-

tion here is split between a and b, though not equally, so QLD’s efficiency falls in between
the previous two scenarios. We can calculate that it requires around p−5/9 samples for
QLD to consistently obtain a positive estimate.8

In practice, the condition for outputting the target token is more complex than a single linear con-
straint on a and b. Nevertheless, these examples motivate the idea that the more evenly we can split
contribution between two subspaces, the lower variance our estimator will have.

Given that b has d− 1 dimensions while a only has 1, most choices of d will end up giving b much
more influence over the behavior than a. This motivates us to identify a particularly important direc-
tion with d; in some informal sense we want to find a direction that is “d/2 times more important”
than the average direction.

When we run QLD with many more samples than its standard budget of 216, its performance im-
proves but plateaus at a level that is still worse than the sampling methods. This shows that QLD is
currently limited by a poor independence assumption, as the error arising from an unequal split of
contribution should vanish with a sufficient number of samples.

8In general, if the condition is αa+
√
1− α2b > 10, it requires roughly p

−1/
(
α+

√
1−α2

)2

samples.
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D COMPUTING THE SHORTEST ACCEPTING VECTOR

Recall that the acceptance region S ⊆ Rd is the subset of whitened pre-unembed space that results
in the model outputting t:

S :=
{
u ∈ Rd

∣∣ argmaxi((Au+ µ) ·WU )i = t
}
.

We define d to point in the direction of the shortest vector in S, i.e., argminu∈S ∥u∥. This vector
can be approximated using an iterative convex projection algorithm.

S ⊆ Rd is an intersection of |V − 1| half-spaces H1, . . . ,Ht−1, Ht+1, . . . HV , where Hi represents
the set of all activations (in whitened pre-unembed space) that result in the logit on token t being
larger than the logit on token i.

Given any convex set C (such as a half-plane), the projection of x /∈ C onto C is argminx′∈C ∥x−
x′∥2. Given a collection of convex sets, there exists a simple algorithm for finding a point in their
intersection: start with an arbitrary point x, then repeatedly project x onto a random convex set that
does not already contain x. Eventually, this process converges to a point in their intersection (Gubin
et al., 1967).

We apply this method to find an element of S. To ensure that it is the shortest element, we also
project x onto balls centered at 0 with smaller and smaller radii by multiplying x by 0.99. The exact
procedure is described in Algorithm 4.9 In practice, it always takes much less than 100 · nreps steps
for the algorithm to return a value.

Algorithm 4 Random Constraint Projection

Require: Half-spaces H1, . . . ,Ht−1, Ht+1, . . . ,H|V|, number of repetitions nreps

1: x← 0 ∈ Rd

2: for step cnt← 1 to 100 · nreps do
3: Pick a random i among all i such that x /∈ Hi

4: Project x onto Hi

5: if x lies in S (up to some tolerance ϵ) then
6: if step cnt < nreps then
7: Scale x by 0.99.
8: else
9: return x

10: end if
11: end if
12: end for

9We found a few minor bugs in our implementation of the ϵ-tolerance in our algorithm after we ran experi-
ments, but we don’t expect them to have affected the results at all.
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E GROUND TRUTH TOKEN DISTRIBUTION

Figure 5: The ground truth probabilities of tokens for each distribution and model size, sorted from
most to least probable (the height of the curve at position x is the probability of the x-th most
common token). Any tokens that appeared 0 times across all 232 samples are not plotted.
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F COMPUTATIONAL BUDGETS

Each estimation method was given a budget of roughly 216 model calls. More specifically:

• Independent Token Gradient Importance Sampling uses 28 batches of size 28, for a total
of 216 samples. The average gradient is updated after each batch. Note that this method
requires backwards passes as well as forwards passes.

• Metropolis–Hastings Importance Sampling uses 210 + 211 batches of size 25, for a total
of 1.5 · 216 samples (the batch size indicates the number of independent random walks the
method simulates). The first 210 batches are used as a burn-in period for the random walk
and are discarded, so only 216 samples are actually used to calculate the estimate.

• Quadratic Logit Decomposition uses n = 216 samples of the pre-unembed activation v.
The MLE direction is approximated with nreps = 200 iterations of the Random Constraint
Projection algorithm (Appendix D); this makes up a trivial fraction of the total compute
usage of the method).

• Gaussian Logit Difference uses 216 samples of the logit difference to estimate µ and σ, the
mean and standard deviation of the difference between the target logit and the maximum
logit. Note that in practice, the µ and σ can be accurately estimated with much fewer than
216 samples.

In practice, ITGIS and MHIS take the longest to test because they require separate samples for each
target token. In contrast, QLD reuses the same 216 samples of v for all 256 target tokens associated
with a given behavior.
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G ALL METHOD PERFORMANCES

Table 3 shows the Itakura–Saito loss (p/q − ln(p/q) − 1) of all estimation methods on all input
distributions and model sizes.

Table 3: Itakura–Saito loss comparison of all methods, distributions, and model sizes.

(a) 1-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.5891 2.2163 2.0038 2.0484 1.3960
camel 2.5908 2.4419 2.0648 1.1997 2.0187
colon 2.7770 2.7091 1.2786 1.2209 1.0267
if 2.2424 2.1872 1.2321 1.0916 1.4455
caps 2.6619 2.6147 1.9413 1.4788 2.4023
english 1.9095 1.8120 1.2409 1.4539 0.7017
spanish 2.6079 2.4463 1.5628 1.6396 2.1538
icl 2.5467 2.4328 2.2373 0.7992 1.2344

Average 2.4906 2.3575 1.6952 1.3665 1.5474

(b) 2-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.8839 2.8453 2.7698 2.6652 1.4985
camel 2.3242 2.2268 2.2679 1.9221 2.0637
colon 2.9893 2.8335 2.1215 2.2986 1.9042
if 2.6172 2.4377 1.8397 1.0301 1.2516
caps 2.6345 2.6820 2.4847 1.9271 1.6981
english 2.0989 2.0956 1.3462 0.9908 1.4480
spanish 2.5442 2.3662 1.5670 1.0951 2.3095
icl 2.6381 2.5419 2.3601 1.6420 1.0502

Average 2.5913 2.5036 2.0946 1.6964 1.6530

(c) 4-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.4803 2.2934 2.4282 2.3090 2.0830
camel 2.4895 2.3271 2.4534 2.0937 2.2961
colon 2.9325 2.7319 2.4382 2.1295 1.1710
if 2.6477 2.5408 1.8313 1.8430 0.9261
caps 2.5970 2.5382 2.4142 2.0484 1.2972
english 2.7008 2.7432 1.5681 0.9943 1.3051
spanish 2.6415 2.5022 1.7716 1.6611 2.1936
icl 2.5029 2.1925 2.3866 2.2971 0.5477

Average 2.6240 2.4837 2.1615 1.9220 1.4775
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H SQUARED ERROR IN LOG-SPACE

Figure 6 and Table 4 show the method performances when measured using squared error in log-
space loss (i.e., (log p− log q)2) instead of Itakura–Saito loss. The results are qualitatively identical
using either metric. Note that we use separate affine fits to minimize each loss function—in Table 4
we naturally report the results of the fit corresponding to squared error in log-space. However, the
importance sampling temperatures are not changed between the two metrics (they were tuned while
minimizing Itakura–Saito loss).

Figure 6: The squared error in log-space loss of all methods across different model sizes. The
solid lines indicate the loss of each method averaged over all 8 distributions, with bands indicating
standard error. The colored points indicate the loss on individual distributions, with horizontal jitter
added for visibility.
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Table 4: Squared error in log-space loss comparison of all methods, distributions, and model sizes.

(a) 1-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 6.0093 5.1815 4.4863 3.7179 2.1963
camel 7.7295 6.4975 5.8488 1.5156 4.3248
colon 6.8554 5.4361 2.1379 2.3549 1.8061
if 5.3977 4.9287 2.9356 1.9555 3.2223
caps 8.0927 7.5675 4.1349 3.2173 6.5550
english 6.0051 5.3220 3.2639 1.8357 1.6395
spanish 5.7990 5.5649 2.9740 2.1231 4.2612
icl 5.9035 5.6915 4.8023 1.0222 2.3030

Average 6.4740 5.7737 3.8230 2.2178 3.2885

(b) 2-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 8.0536 7.3674 7.6533 6.8004 1.9913
camel 7.6849 6.3518 7.2325 4.2695 5.6046
colon 7.1728 5.6416 3.3924 4.1851 2.8242
if 6.3346 5.6923 3.3695 1.7059 2.1639
caps 7.7682 6.8605 5.4771 3.0411 3.3432
english 5.2742 5.1185 3.4466 1.6335 3.2728
spanish 6.3718 5.6877 3.8404 2.1582 4.6937
icl 6.2785 6.2061 5.0740 2.0615 1.3515

Average 6.8673 6.1158 4.9357 3.2319 3.1556

(c) 4-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 7.5559 6.9208 7.0750 6.4364 3.1605
camel 7.5597 6.5413 7.1263 3.5067 5.5501
colon 7.1791 6.6035 3.5817 4.3916 1.7897
if 6.6900 5.9072 3.8987 3.7153 1.6824
caps 9.1105 8.2957 6.1383 4.3615 2.2514
english 5.5003 5.4866 3.3561 1.9180 2.1938
spanish 7.0490 6.4641 4.2083 3.4425 4.8425
icl 5.1793 4.4569 4.4772 4.5584 1.0216

Average 6.9780 6.3345 4.9827 4.0413 2.8115
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I TEMPERATURE TUNING

Both importance sampling methods require choosing a temperature parameter T . To tune T , we
sweep over 9 different temperatures from 0.2 to 5, uniformly spaced in log-space. We choose the
value of T that achieves the lowest loss on 100 randomly chosen tokens with ground-truth probabil-
ities in the range [10−5, 10−3] to prevent over-fitting. We tune separate temperatures for each dis-
tribution, model size, and importance sampling method, shown in Table 5. It is likely that spending
more effort to tune these temperatures (e.g., by tuning on more and rarer tokens) would moderately
improve the final performances of the importance sampling methods.

Table 5: Temperatures T used for the different methods.

1 layer 2 layers 4 layers
Distribution ITGIS MHIS ITGIS MHIS ITGIS MHIS

hex 1.00 0.67 1.50 0.67 5.00 0.67
camel 1.00 2.24 1.50 2.24 1.00 2.24
colon 1.00 1.00 1.00 1.50 0.67 1.00
if 1.00 2.24 0.45 1.50 1.00 1.00
caps 1.50 3.34 0.45 1.50 0.67 1.00
english 0.45 1.50 0.67 2.24 0.45 1.50
spanish 0.67 2.24 0.67 2.24 1.00 2.24
icl 0.45 1.00 0.30 0.67 3.34 0.67
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J PLOTS OF METHOD OUTPUTS

Figures 7, 8, and 9 show the outputs of the four methods on all three model sizes, using log-log plots
of ground-truth probability vs method output. All graphs show the outputs after the Itakura–Saito
fit has been applied (see Section 4.2). The horizontal lines of points reveal the value of the additive
constant in the fit; any outputs of 0 will all lie on this line after the fit is applied.

Figure 7: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the
1-layer model. The horizontal axis represents the ground-truth token probability, while the vertical
axis is the output of the model after a fit.
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Figure 8: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the
2-layer model. The horizontal axis represents the ground-truth token probability, while the vertical
axis is the output of the model after a fit.
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Figure 9: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the
4-layer model. The horizontal axis represents the ground-truth token probability, while the vertical
axis is the output of the model after a fit.
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