
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ESTIMATING THE PROBABILITIES OF RARE OUTPUTS
IN LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We consider the problem of low probability estimation: given a machine learning
model and a formally-specified input distribution, how can we estimate the prob-
ability of a binary property of the model’s output, even when that probability is
too small to estimate by random sampling? This problem is motivated by the need
to improve worst-case performance, which distribution shift can make much more
likely. We study low probability estimation in the context of argmax sampling
from small transformer language models. We compare two types of methods: im-
portance sampling, which involves searching for inputs giving rise to the rare out-
put, and activation extrapolation, which involves extrapolating a probability dis-
tribution fit to the model’s logits. We find that importance sampling outperforms
activation extrapolation, but both outperform naive sampling. Finally, we explain
how minimizing the probability estimate of an undesirable behavior generalizes
adversarial training, and argue that new methods for low probability estimation
are needed to provide stronger guarantees about worst-case performance.

1 INTRODUCTION

Modern ML systems undergo black-box optimization to minimize a loss function on samples drawn
from a training distribution. Although models produced in this way perform desirably on average
over this distribution, they can still produce highly undesirable outputs on very rare inputs. This is
a problem, because these rare inputs can become much more likely in the presence of distribution
shift, especially one chosen adversarially, such as with large language model “jailbreaks” (Carlini
et al., 2024; Wei et al., 2024).

Preventing such highly undesirable outputs is a notoriously challenging problem. The most common
remedy is adversarial training, in which inputs that produce these undesirable outputs are searched
for and used as additional training data (Goodfellow et al., 2014; Madry, 2017), but the transfer
between different search methods is generally weak (Kang et al., 2019; Wei et al., 2024). In this
work, we propose the more modest goal of simply estimating the probability that an input drawn
from some distribution will produce a certain kind of output, which has been considered before in
the context of computer vision in Webb et al. (2019). We will show that even this intermediate goal
is challenging, but successful methods could enable new ways of preventing undesirable outputs by
minimizing their estimated probability.

To advance work on this problem, we study low probability estimation in the context of small trans-
former language models. We consider various formally-defined input distributions in which each
input token is sampled independently, and develop methods for estimating the probability that a
particular target token will have the largest output logit. We constrain the computational budget of
our methods and obtain ground truth probabilities by random sampling using a much larger compu-
tational budget. The target tokens are chosen to have ground truth probabilities between 10−9 and
10−5, which are too small for random sampling to produce a good estimate under the constrained
computational budget.

In this context, we study two types of methods:

• Importance sampling. We define a new input distribution under which the rare event is
much more likely, sample from that distribution, and re-weight samples to obtain an un-
biased estimate for the original distribution. Our Independent Token Gradient Importance

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Left: To evaluate the performance of our low probability estimation methods, we compare
their estimates against ground-truth probabilities obtained by brute-force sampling with a larger
computational budget. Right: The estimates of Metropolis–Hastings Importance Sampling on the
icl input distribution and 4-layer model, after a fit has been applied. Each point represents a
different target token.

Sampling (ITGIS) method treats token positions independently and uses gradients to obtain
this new input distribution, while our Metropolis–Hastings Importance Sampling (MHIS)
method uses a Markov chain Monte Carlo algorithm to sample from a distribution with
non-independent tokens.

• Activation extrapolation. We use random samples to fit a probability distribution to the
model’s logits, and extrapolate into the tails of this distribution to produce a probability
estimate. Our Quadratic Logit Decomposition (QLD) method applies a presumption of
independence to the empirical distribution of logits, motivated by Christiano et al. (2022),
and our Gaussian Logit Difference (GLD) method is a simple baseline that fits a Gaussian
to the difference between the maximum logit and target logit.

In our setting, both types of methods outperform random sampling, and importance sampling tends
to outperform activation extrapolation. Nevertheless, we remain interested in activation extrapola-
tion and similar approaches because they produce new methods for reducing the probabilities of rare
outputs, whereas importance sampling essentially recovers standard adversarial training.

The remainder of the paper is structured as follows. In Section 2, we formally define the problem
of low probability estimation, both in general and in our language model setting. In Section 3,
we describe our four methods in more detail. In Sections 4 and 5, we describe the models and
input distributions on which we test our methods and convey our experimental findings. Finally, in
Sections 6, 7 and 8, we discuss the limitations and implications of our results, related work, and
future directions.

2 PROBLEM STATEMENT

Given an input space X , an output space Y , an input distribution D ∈ ∆(X), a model M : X → Y ,
and a formal boolean property of model outputs C : Y → {0, 1}, low probability estimation is the
problem of efficiently estimating

Pr
x∼D

[C(M(x)) = 1].

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

We sometimes refer to the event C(M(x)) = 1 as the “target behavior”, or just “the behavior.” If the
probability of the behavior large enough (say, larger than 1/n), it is easy to estimate by drawing n
independent samples from X and using the sample mean of C(M(x)). However, if the probability
is significantly smaller than 1/n, this sample mean is almost always 0, making it uninformative at
distinguishing between small probabilities like 10−10 and 10−20.

2.1 OUR SETTING

In this paper, we study low probability estimation in the setting of argmax sampling from language
models with single-token behaviors. Let M : V∗ → V be a transformer language model that
predicts the next token given a string of previous tokens, where V is the token vocabulary. Note that
we sample at temperature 0, so M is deterministic. Given a distributionD over V∗ and a target token
t ∈ V , the low probability estimation problem for single-token behaviors is the task of estimating

Pr
x∼D

[M(x) = t].

Letting Mi(x) be the logit the model assigns to token i ∈ V , this can also be written as:
Pr
x∼D

[Mt(x) > Mi(x) ∀i ̸= t].

In general,D can be any distribution that can be formally specified. However, in this paper we focus
only on distributions D with independent tokens. That is, we specify an input length k and token
distributions D1, . . . ,Dk ∈ ∆(V), then write D as the product D1 × · · · × Dk. Table 1 shows the
8 distributions that were tested, with tokens colored for clarity. To prevent overfitting, the methods
were only run on the first four distributions during development, and they were finalized before
testing on the last four distributions. The results were qualitatively the same on both halves of the
split.

Table 1: Input distributions and examples. See Table 2 for more detailed descriptions.

Name Short description Tokenized example
hex Hexadecimal characters <|BOS|>aa5acbf6aad468813f94c2fbbff4dc65eadc1553

camel CamelCase Python tokens <|BOS|>LayoutCredServicesVirtualUseTimeInterface

ColorBodyAlRowHeightRepFontAndMetaRequestGroupsOne

LabelPasswordAndRaVideoFailedValueGuiTypeMicrosoft

SlotDeId

colon Python tokens, ending with ‘:’ <|BOS|> et-= """]: (\n : Thisc

\r\n (’/\nFilereturn\n\n <|EOS|>

’].2default.**1 self(def’)",:

if Python tokens, starting with
‘ if’

<|BOS|> if: else,-post\n \n 2\n\n5 found

fromout, self- node +=\n \n =\n(this ’values

(),.(do

caps “He/She screamed:”, followed
by caps and punctuation

<|BOS|>He screamed: "ESOTTULEBOV.,WR!!IMITLEER.,ARY

...IIESSION

english English words <|BOS|>ating. is invent School not found from cm

an in one to shooting everyone Cor George around

responsive employees ground on stone various,

spanish Spanish tokens <|BOS|> lo no bu dees cr socialjosabiler m de enidad

areljd final de v de lo much

icl In-context learning prompt <|BOS|>A for American N for nothing O for orange N

for nice Y for your M for Monday O for operating U

for unless S for sleep V for

3 ESTIMATION METHODS

We introduce four methods in this section: two importance sampling methods (Independent Token
Gradient and Metropolis–Hastings), and two activation extrapolation methods (Quadratic Logit De-
composition and Gaussian Logit Difference). We also compare against the baseline of outputting an
optimal constant, which can be thought of as the performance of naive sampling because we only
evaluate the methods on tokens with ground truth probabilities less than the reciprocal of the allotted
sampling budget (see Section 4).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3.1 IMPORTANCE SAMPLING METHODS

Naive sampling fails to produce good estimates for low probability events because it takes too many
samples from D to observe a positive example. To address this, we can instead draw samples from
a different distribution that up-weights regions of input space most likely to produce the behavior
of interest. If we re-weight our observations properly, this gives an unbiased estimator for the
true probability. This is known as importance sampling, and it enjoys the same advantages that
adversarial training has over standard training: by using a narrower input distribution, we can more
efficiently discover positive examples of the target behavior.

Formally, let p(x) be the probability mass function of D, and let q(x) be the PMF of any other
distribution. Then

Pr
x∼p

[M(x) = t] = Ex∼p[1[M(x) = t]] = Ex∼q

[
p(x)

q(x)
1[M(x) = t]

]
,

but the latter may have less variance (and so require fewer samples to get a good estimate).

The following two importance sampling methods take q(x) to be a Boltzmann posterior with prior
p(x). The first defines q(x) with independent tokens, while the second defines q(x) to have non-
independent tokens and so requires a more sophisticated sampling method.

3.1.1 INDEPENDENT TOKEN GRADIENT IMPORTANCE SAMPLING (ITGIS)

We want q to up-weight tokens that contribute to t being outputted. One way to do this is to continue
to treat each input token as independent, but change the probability of tokens according to their
average linear contribution to the logit of t. Let x = (x1, . . . , xk) ∈ Vk be an input of length k, and
say that p(x) factors as p1(x1) · · · pk(xk). Then we define q(x) = q1(x1) · · · qk(xk), where

qi(xi) ∝ pi(xi) · exp
(
si(xi)

T

)
and

si(xi) = Ex′∼q[∇x′Mt(x
′)]i,xi

.

T is a temperature parameter, and the gradient is taken by treating x′ as a one-hot vector in Rk×|V|.
Intuitively, the gradient ∇x′Mt(x

′)i,xi
gives us a linear approximation to how much the logit of t

would change if we replaced i-th token of x′ with xi (up to an additive constant w.r.t. xi). Thus, si
scores each token value according to its average linear contribution to Mt, and qi is defined as the
Boltzmann distribution with respect to this score function.1

However, since si and q are both defined in terms of each other, we can’t calculate si directly. To
overcome this, we construct a sequence of score functions s(0)i , s

(1)
i , . . . and associated distributions

q(0), q(1), . . . that are adaptively refined with respect to each other (see Appendix B.i for details).
Sampling from each q(j) lets us calculate an importance sampling estimate, and the final output of
the method is the average value of these estimates across all j.

3.1.2 METROPOLIS–HASTINGS IMPORTANCE SAMPLING (MHIS)

A problem with ITGIS is that the new sampling distribution q(x) still treats all tokens as indepen-
dent, and it only accounts for linear effects of tokens on the target logit. Thus, ITGIS may fail to
sample into the most important regions of the input space if the model is sensitive to non-linear
interactions between tokens (e.g., if the model’s target logit is only high when the last two tokens of
the input are the same as each other).

To remedy this, we can define an importance sampling distribution that doesn’t have independent
tokens. We must use a score function that depends on the entire input; the most natural choice is the
target logit Mt(x). We define

q(x) ∝ p(x) · exp
(
Mt(x)

T

)
,

1It can be shown that, given a score function s(x) and a prior p(x), the distribution that maximizes
Ex∼q[s(x)]− T ·KL(q∥p) is q(x) ∝ p(x) · exp(s(x)/T).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

again using a Boltzmann distribution to up-weight regions of input space that are more likely to have
positive samples.

Unlike ITGIS, we cannot explicitly compute q because it does not factor into independent distribu-
tions over each token. Instead, we use the Metropolis–Hastings algorithm to produce a random walk
in input space that has a stationary distribution of q.2 To do so, we must define a proposal distri-
bution ϕ(x′|x) that suggests the next element of the walk. To encourage fast mixing, this proposal
distribution should be good at exploring into regions of input space that q weights highly.

Here we take inspiration from Greedy Coordinate Gradient, an algorithm that optimizes a discrete
prompt to jailbreak a model using gradients (Zou et al., 2023). We adapt this optimization procedure
into a proposal distribution: to pick a proposed next step x′ of the walk, we choose a random token
position i to replace, compute the gradient of s(x) with respect to xi, then sample a replacement
token for position i according to a Boltzmann distribution defined by this gradient (similarly to
ITGIS). The final output of the method is the average importance sampling estimate taken after a
burn-in period. For a precise description of the algorithm, see Appendix B.ii.

3.2 ACTIVATION EXTRAPOLATION METHODS

The importance sampling methods search for explicit examples of inputs that cause the given behav-
ior. This makes their task at least as hard as the adversarial training search problem—if it is difficult
to find an x ∈ supp(D) such that M(x) = t, the importance sampling estimators will likely fail to
produce a positive estimate.

We hope to find low probability estimation methods that work even when the search problem for
importance sampling is hard. To do this, we introduce activation extrapolation: first fit a distribution
to the activations or logits of M , then estimate the probability of the output property of interest under
this idealized distribution. Our first such method is Quadratic Logit Decomposition, which applies a
presumption of independence between uncorrelated subspaces the model’s pre-unembed activations.
We also develop Gaussian Logit Difference, which is intended as a simple baseline method.

3.2.1 QUADRATIC LOGIT DECOMPOSITION (QLD)

Let the random vector v(x) ∈ Rd be the activation of the model right before applying the unembed
matrix WU ∈ Rd×|V|. That is, v(x) ·WU represents the model’s output logit vector M(x)1,...,|V|.
We first collect n samples of v (call them v(1), . . . ,v(n)). We then choose some unit direction
d ∈ Rd (see below), then decompose each v(i) into a(i) + b(i), where a lies in the subspace
spanned by d, and b lies in the complementary subspace that is orthogonal in a whitened basis.3
This decomposition is chosen such that the random vectors a and b are uncorrelated across the n
samples.

Next, by treating the random vectors a and b as independent, we can use our n samples of each to
obtain n2 “synthetic” samples of u. The final output of QLD is the proportion of these synthetic
samples that cause t to be outputted:

1

n2

∣∣∣{(i, j) ∈ [n]2
∣∣a(i) + b(j) ∈ S

}∣∣∣ ,
where S ⊆ Rd is the “acceptance region” of activation space corresponding to activations that result
in the target logit being highest after unembedding. Despite the fact that there are n2 synthetic
samples, this proportion can be computed in Õ(n) time by first sorting the samples a(i). A more
complete description of the QLD algorithm can be found in Appendix B.iii.

Choice of direction. We rely on the following two assumptions for QLD to perform well: 1) a
and b are independent (so that our estimate is unbiased), and 2) the contribution towards the output
behavior is split roughly equally between these two terms (to minimize the variance of our estimate).

2Metropolis–Hastings is a Markov Chain Monte Carlo method for sampling from a distribution with an
unknown normalizing constant. See Robert (2016) for a description of the algorithm.

3Actually, a, b, and d are all defined in the whitened space of v; see Appendix B.iii.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

See Appendix C for more discussion of this motivation. After some initial experimentation with a
variety of candidate directions,4 we decided to set d to be the direction of the shortest vector in
whitened space that results in the model outputting t. It can also be thought of as the maximum like-
lihood value of v under a Gaussian prior, conditioned on observing the model output t. Appendix D
describes the algorithm we use to compute d.

3.2.2 GAUSSIAN LOGIT DIFFERENCE

On any given input, we can record the difference ∆t := Mt(x)−maxi Mi(x). We wish to estimate
the probability that ∆t ≥ 0. A natural estimation method, which we view as a simple baseline, is to
treat ∆t as Gaussian by estimating its mean µ and standard deviation σ with samples, then calculate
Pr[N (µ, σ2) ≥ 0]. In practice, we use a slightly different functional form that captures the Gaussian
PDF, which approximates the CDF well in the tails. The output of the Gaussian Logit Difference
method is:

exp

(
−
(

aµ

σ + ϵ

)2

+ b

)
+ c,

where a, b, c, and ϵ are parameters that are fit to minimize loss across all target tokens associated
with a given distribution (see Section 4.2).

4 EXPERIMENTAL SETUP

We apply our methods on three models: a 1-layer, a 2-layer, and a 4-layer transformer from Nanda &
Bloom (2022). All models have a hidden dimension of d = 512, a vocabulary size of |V| = 48262,
GELU non-linearities (Hendrycks & Gimpel, 2023), and were trained on the C4 dataset (Raffel
et al., 2023) and CodeParrot (Tunstall et al., 2022).

For each of the 8 distributions (listed in Table 1) and for each model, we generate ground-truth token
probabilities by running forward passes on 232 random samples. We then select a random set of 256
tokens among those with ground-truth probabilities between 10−9 and 10−5, and we test all of our
methods on these tokens.5

We give each method a computational budget of 216 model calls (see details in Appendix F). This
budget was chosen so that naive sampling would almost never result in any positive estimates for
the range of token probabilities we test (216 < 105), but the theoretical quadratic gains from QLD
would still be enough to get signal on the entire range of probabilities ((216)2 > 109).

Our code is available at [link to be added later].

4.1 ITAKURA–SAITO LOSS

We measure the quality of the method with a loss function inspired by the Itakura–Saito divergence
(Itakura & Saito, 1968). If p is the ground-truth probability of a particular target token, then an
estimate of q incurs a loss of:

DIS(p, q) =
p

q
− ln

p

q
− 1.

Two considerations went into the choice of this loss function. First, Itakura–Saito loss is a proper
scoring rule (Buja et al., 2019). Second, since it only depends on the ratio p/q, Itakura–Saito loss
is sensitive to small probabilities: if p = 10−100 and q = 10−10, then DIS(p, q) is very large.
In contrast, the squared error loss function (p − q)2 would be extremely small. Intuitively, this
sensitivity is desirable because we care how our methods perform on a wide (as measured in log-
space) range of ground-truth probabilities. We don’t want the performance metric to be dominated
by a method’s behavior on only the most probable tokens.

For completeness, we also report our results using squared error in log-space (Appendix H), even
though this is not a proper scoring rule. The results are qualitatively identical.

4Other candidate directions included 1) the t-th column of WU pulled back into whitened space and 2) the
expectation of N (0, Idd) conditioned on lying in the whitened acceptance region.

5The hex distribution only had 159 and 135 such tokens for the 2- and 4-layer models, respectively, so we
instead used every token that fell into the given range. See Appendix E for more details.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

4.2 AFFINE FITS

Many methods often report estimates of 0, but DIS is undefined for q = 0. To address this, we
fit a transformation x 7→ axc + b to the outputs of each method, where a, b and c are chosen
to minimize Itakura–Saito loss. axc can be thought of an affine transformation in log-space, and
adding b prevents values from being too small while barely affecting larger outputs. To ensure that
this transformation is not overfitting to the particular set of 256 tokens, we report the leave-one-out
cross-validation (LOOCV) loss of each method. We train a separate fit for each (method, input
distribution) pair. 6

5 RESULTS

Figure 2 shows the performance of each method. The relative ordering is clear: both importance
sampling methods outperform Quadratic Logit Decomposition, which in turn outperforms Gaussian
Logit Difference. GLD is barely better than outputting an optimal constant (which can be interpreted
as the performance of naive sampling). Figure 4 shows that there is a fair amount of variation in
method performance across the 8 distributions: some behaviors like hex and icl favor MHIS,
while others like spanish heavily favor ITGIS. A more detailed table of results is in Appendix G.

Among the two importance sampling methods, ITGIS does better on smaller models, while MHIS
does better on larger models. We believe this is because larger models are less easily approximated as
linear functions and are more likely to have complex behaviors arising from inter-token interactions.

Figure 3 displays example scatter plots of ITGIS, MHIS, and QLD estimates before a fit is applied.
Each point represents the ground-truth and estimated probability of a different target token. More
scatter plots can be found in Appendix J; note that the qualitative performances of the methods can
vary significantly on different input distributions. We perform an ablation study on our choice of
loss function in Appendix H, in which we score methods based on squared error in log-space instead
of Itakura–Saito loss.

6 DISCUSSION

6.1 DISTRIBUTION SHIFT AS MOTIVATION

One might ask: if a particular model behavior is so rare that it never arises during training, why
would we care about estimating its probability? There are a few reasons. First, some AI systems
may be run on many more inputs during the course of deployment than during training. Thus, if a
certain model behavior would be so catastrophic that it is unacceptable for it to occur even once in
deployment, we cannot rely on training to drive down its probability low enough. Second, there may
be distributional shift between training and deployment such that events that occur extremely rarely
during training become more likely in deployment. This could occur because of an input chosen
adversarially, but it could also occur because of goal misgeneralization (Shah et al., 2022).

A particularly challenging case is deceptive alignment, the possibility that an ML model would look
for clues about whether it is in a training or a deployment environment, and only behave well in
training (Hubinger et al., 2021). To detect whether a model is deceptively aligned, one could craft
an input distribution that is “wide enough” to assign some probability mass, even if very small, to
any possible deployment-time input, then apply low probability estimation methods to detect if the
model would ever perform a catastrophic behavior on this distribution.7 For more discussion of this
idea, see Xu (2024).

6Note that the Gaussian Logit Difference method has a special functional form of its fit ((µ, σ) 7→
exp

(
− (aµ/(σ + ϵ))2 + b

)
+ c instead of x 7→ axc + b) but is otherwise evaluated in the same way.

7To prevent false positives, this would require a very demanding definition of catastrophe that would be
impossible for the model to trigger “by accident.”

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 2: The Itakura–Saito loss of all methods across different model sizes. The solid lines indicate
the loss of each method averaged over all 8 distributions, with bands showing standard error. The
colored points indicate the loss on individual distributions, with horizontal jitter added for visibility.
Lower is better.

Figure 3: Examples of method outputs on two different behaviors and models, before a fit is applied.
Estimates of 0 are placed at the bottom of each graph for visibility.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 4: The Itakura–Saito loss of all methods across different distributions, averaged over all 3
model sizes. Lower is better.

6.2 RELATION TO RED-TEAMING AND ADVERSARIAL TRAINING

Our importance sampling methods for low probability estimation involve finding inputs for which
the rare event occurs. This amounts to the well-studied task of “red-teaming”. As long as the
required importance sampling ratios can be computed, any method for red-teaming can be turned
into an importance sampling method for low probability estimation, as we demonstrate with our
adaptation of Greedy Coordinate Gradient into MHIS (Zou et al., 2023). However, our activation
extrapolation methods such as QLD do not correspond to any red-teaming method.

A further reason to be interested in low probability estimation is that it could be used to reduce the
probability of the rare event, by optimizing the model to produce a lower estimate. For example, this
could be done using gradient descent, if the estimate were a differentiable function of the model’s
parameters. For an importance sampling method, this amounts to finding inputs for which the rare
event occurs (i.e., red-teaming) and using them as training data, which is essentially the well-known
method of adversarial training (Goodfellow et al., 2014). However, since our activation extrapola-
tion methods do not correspond to any red-teaming method, new activation extrapolation methods
potentially provide us with new ways to reduce the probabilities of rare events.

6.3 IMPORTANCE SAMPLING VERSUS ACTIVATION EXTRAPOLATION

In our experiments, we found that importance sampling methods outperformed activation extrapo-
lation. Nevertheless, there are theoretical cases in which importance sampling performs worse than
other methods. For example, consider a model that outputs the SHA-256 hash of its input: find-
ing any input that gives rise to a particular output is computationally infeasible, yet it is still easy
to estimate the probability of a particular output by modeling the output of the hash function as
random.

More generally, we are excited about low probability estimation as a concrete problem for which for
which it may be necessary to leverage internal model activations. In place of importance sampling,
we may be able to use deductive estimates based on a presumption of independence (Christiano
et al., 2022). Our Quadratic Logit Decomposition method is an early proof of concept of this, even
though it is outperformed by importance sampling in our setting.

6.4 LIMITATIONS

There are two main limitations of our experimental setup. First, we only use input distributions
that factor into independent tokens. This choice is necessary for the definition of ITGIS. It is also

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

very convenient for the implementation of MHIS, because it gives efficient sampling access to the
proposal distribution. To move beyond independent token input distributions, we could define the
input distribution to be the output of a separate generative model and adapt some of the current
estimation methods appropriately.

Second, we only study model behaviors that consist of a single token sampled at temperature 0. This
is unrealistic because in practice, if we were concerned about specific single-token outputs, it would
be easy to filter them out. In contrast, the types of behaviors we actually worry about likely involve
long chains of autoregressive generation or interaction with the external world (e.g., when forming
and executing a plan). We are excited to see future work extending our setting in this direction.

Nevertheless, it is worth noting that formally-defined distributions and behaviors are more general
than they may initially seem. For example, we could formalize the event “M writes buggy code”,
as: When M ’s output is given to GPT-4 along with the prompt “Does this code contain any bugs?
Let’s think step by step.”, does GPT-4 end its response with YES?

7 RELATED WORK

The problem of low probability estimation was previously considered in the context of computer
vision by Webb et al. (2019), where they propose using an Adaptive Multi-Level Splitting algorithm
with Metropolis Hastings. However, they only study the problem in the context of computer vision
with continuous input spaces, and their approaches still require finding positive samples, unlike our
activation extrapolation methods. Phuong et al. (2024) and Højmark et al. (2024) attempt to estimate
the probability that a language model passes certain capability evaluations, even when its success
rate is low, though their methods are not directly applicable to our formal setting.

Our importance sampling methods can be viewed as solving a special case of controlled text genera-
tion (Zhang et al., 2023) in which we want to sample from an autoregressive distribution conditioned
on a property of the full output (in our case, that the last token is t). Yang & Klein (2021) do this
by training Future Discriminators to steer model generation towards the desired attribute. Lew et al.
(2023) approach the problem with a Sequential Monte Carlo steering approach; however, their in-
filling algorithm doesn’t provide any benefit over naive sampling when all tokens except the last are
independent. These works don’t consider the problem of low probability estimation.

Zhao et al. (2024) focus on the problem of estimating the partition function of an unnormalized
target distribution over sequences, which is a more general case of our low probability estimation
problem. Their Twisted Sequential Monte Carlo methods can be viewed as more advanced versions
of our importance sampling methods. In contrast, in this work we focus on motivating the low
probability estimation problem and introducing methods that do not involve searching for positive
samples, such as activation extrapolation.

Finally, there is a large body of work applying adversarial training to improve worst-case model
performance (Bai et al., 2021; Goodfellow et al., 2014; Ilyas et al., 2019), especially in the context of
language models (Madry, 2017; Liu et al., 2020). Perez et al. (2022) explores using language models
themselves to aid in red-teaming other models. Latent adversarial training (Casper et al., 2024;
Sheshadri et al., 2024) generalizes standard adversarial training by optimizing over perturbations in
activation space; this means that, like activation extrapolation methods, it can be effective even when
the adversarial training search problem over input space is hard.

8 CONCLUSION

In this paper, we introduce the problem of low probability estimation along with four novel esti-
mation methods. We define and collect ground-truth probabilities for 8 different input distributions,
then use them to evaluate the performance of our proposed methods. We find that the two importance
sampling-based methods perform the best, with larger models favoring MHIS over ITGIS.

We are excited for future work that extends our empirical setup to non-independent input distribu-
tions and output behaviors that involve more than one token. We are also looking forward to future
papers that develop more accurate estimation methods, especially methods like QLD that move be-
yond importance sampling.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Tao Bai, Jinqi Luo, Jun Zhao, Bihan Wen, and Qian Wang. Recent advances in adversarial training
for adversarial robustness, 2021. URL https://arxiv.org/abs/2102.01356.

Andreas Buja, Lawrence Brown, Arun Kumar Kuchibhotla, Richard Berk, Ed George, and Linda
Zhao. Models as approximations ii: A model-free theory of parametric regression, 2019. URL
https://arxiv.org/abs/1612.03257.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Pang
Wei W Koh, Daphne Ippolito, Florian Tramer, and Ludwig Schmidt. Are aligned neural networks
adversarially aligned? Advances in Neural Information Processing Systems, 36, 2024.

Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell. Defending against un-
foreseen failure modes with latent adversarial training, 2024. URL https://arxiv.org/
abs/2403.05030.

Paul Christiano, Eric Neyman, and Mark Xu. Formalizing the presumption of independence, 2022.
URL https://arxiv.org/abs/2211.06738.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

L.G. Gubin, Boris Polyak, and E.V. Raik. The method of projections for finding the common point
of convex sets. USSR Computational Mathematics and Mathematical Physics, 7:1–24, 12 1967.
doi: 10.1016/0041-5553(67)90113-9.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL https://
arxiv.org/abs/1606.08415.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant. Risks from
learned optimization in advanced machine learning systems, 2021. URL https://arxiv.
org/abs/1906.01820.

Axel Højmark, Govind Pimpale, Arjun Panickssery, Marius Hobbhahn, and Jérémy Scheurer. An-
alyzing probabilistic methods for evaluating agent capabilities, 2024. URL https://arxiv.
org/abs/2409.16125.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features, 2019. URL https://arxiv.
org/abs/1905.02175.

F. Itakura and S. Saito. Analysis synthesis telephony based on the maximum likelihood method. In
Proc. 6th of the International Congress on Acoustics, pp. C–17–C–20, Los Alamitos, CA, 1968.
IEEE.

Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, and Jacob Steinhardt. Transfer of adversarial
robustness between perturbation types. arXiv preprint arXiv:1905.01034, 2019.

Alexander K. Lew, Tan Zhi-Xuan, Gabriel Grand, and Vikash K. Mansinghka. Sequential monte
carlo steering of large language models using probabilistic programs, 2023. URL https://
arxiv.org/abs/2306.03081.

Xiaodong Liu, Hao Cheng, Pengcheng He, Weizhu Chen, Yu Wang, Hoifung Poon, and Jianfeng
Gao. Adversarial training for large neural language models, 2020. URL https://arxiv.
org/abs/2004.08994.

Aleksander Madry. Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083, 2017.

Neel Nanda and Joseph Bloom. Transformerlens. https://github.com/
TransformerLensOrg/TransformerLens, 2022.

11

https://arxiv.org/abs/2102.01356
https://arxiv.org/abs/1612.03257
https://arxiv.org/abs/2403.05030
https://arxiv.org/abs/2403.05030
https://arxiv.org/abs/2211.06738
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/2409.16125
https://arxiv.org/abs/2409.16125
https://arxiv.org/abs/1905.02175
https://arxiv.org/abs/1905.02175
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2306.03081
https://arxiv.org/abs/2004.08994
https://arxiv.org/abs/2004.08994
https://github.com/TransformerLensOrg/TransformerLens
https://github.com/TransformerLensOrg/TransformerLens

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia
Glaese, Nat McAleese, and Geoffrey Irving. Red teaming language models with language models,
2022. URL https://arxiv.org/abs/2202.03286.

Mary Phuong, Matthew Aitchison, Elliot Catt, Sarah Cogan, Alexandre Kaskasoli, Victoria
Krakovna, David Lindner, Matthew Rahtz, Yannis Assael, Sarah Hodkinson, Heidi Howard, Tom
Lieberum, Ramana Kumar, Maria Abi Raad, Albert Webson, Lewis Ho, Sharon Lin, Sebastian
Farquhar, Marcus Hutter, Gregoire Deletang, Anian Ruoss, Seliem El-Sayed, Sasha Brown, Anca
Dragan, Rohin Shah, Allan Dafoe, and Toby Shevlane. Evaluating frontier models for dangerous
capabilities, 2024. URL https://arxiv.org/abs/2403.13793.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer, 2023. URL https://arxiv.org/abs/1910.10683.

Christian P. Robert. The metropolis-hastings algorithm, 2016. URL https://arxiv.org/
abs/1504.01896.

Rohin Shah, Vikrant Varma, Ramana Kumar, Mary Phuong, Victoria Krakovna, Jonathan Uesato,
and Zac Kenton. Goal misgeneralization: Why correct specifications aren’t enough for correct
goals. arXiv preprint arXiv:2210.01790, 2022.

Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry
Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, and Stephen Casper. La-
tent adversarial training improves robustness to persistent harmful behaviors in llms, 2024. URL
https://arxiv.org/abs/2407.15549.

Lewis Tunstall, Leandro von Werra, and Thomas Wolf. Natural Language Processing with
Transformers: Building Language Applications with Hugging Face. O’Reilly Media, Incor-
porated, 2022. ISBN 1098103246. URL https://books.google.ch/books?id=
7hhyzgEACAAJ.

Stefan Webb, Tom Rainforth, Yee Whye Teh, and M. Pawan Kumar. A statistical approach to as-
sessing neural network robustness, 2019. URL https://arxiv.org/abs/1811.07209.

Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How does LLM safety training
fail? Advances in Neural Information Processing Systems, 36, 2024.

Mark Xu. Estimating tail risk in neural networks. https://alignment.org/blog/
estimating-tail-risk-in-neural-networks/, September 2024. Alignment Re-
search Center blog post.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. In Pro-
ceedings of the 2021 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies. Association for Computational Linguistics,
2021. doi: 10.18653/v1/2021.naacl-main.276. URL http://dx.doi.org/10.18653/
v1/2021.naacl-main.276.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable
text generation using transformer-based pre-trained language models, 2023. URL https://
arxiv.org/abs/2201.05337.

Stephen Zhao, Rob Brekelmans, Alireza Makhzani, and Roger Grosse. Probabilistic inference in
language models via twisted sequential monte carlo, 2024. URL https://arxiv.org/abs/
2404.17546.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models, 2023. URL https://arxiv.
org/abs/2307.15043.

12

https://arxiv.org/abs/2202.03286
https://arxiv.org/abs/2403.13793
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1504.01896
https://arxiv.org/abs/1504.01896
https://arxiv.org/abs/2407.15549
https://books.google.ch/books?id=7hhyzgEACAAJ
https://books.google.ch/books?id=7hhyzgEACAAJ
https://arxiv.org/abs/1811.07209
https://alignment.org/blog/estimating-tail-risk-in-neural-networks/
https://alignment.org/blog/estimating-tail-risk-in-neural-networks/
http://dx.doi.org/10.18653/v1/2021.naacl-main.276
http://dx.doi.org/10.18653/v1/2021.naacl-main.276
https://arxiv.org/abs/2201.05337
https://arxiv.org/abs/2201.05337
https://arxiv.org/abs/2404.17546
https://arxiv.org/abs/2404.17546
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

A INPUT DISTRIBUTIONS

Table 2: Definitions of input distributions.

Name Tokens Description
hex 33 Tokens that consist solely of hexadecimal characters, weighted by their frequency in

long, uniformly-random hexadecimal strings.
camel 33 Tokens that start with a capital letter, then have only lowercase letters, weighted by their

frequency in Python code.
colon 34 Tokens weighted by frequency in Python code. Always ends with a colon.
if 34 Tokens weighted by frequency in Python code. Always starts with ‘ if’.

caps 21 Tokens that consist only of capital letters or punctuation, weighted by frequency in
English text. Starts with ‘He screamed: "’ or ‘She screamed: "’.

english 26 Tokens that consist only of letters and start with a space, as well as punctuation.
Weighted by frequency in English text.

spanish 25 Tokens that consist only of letters and spaces. Weighted by frequency in Spanish text.
icl 29 A simple in-context learning prompt of the form ‘A for N for O for ... S

for ? for’ , where the underscores are replaced with random tokens that start
with the corresponding letter (weighted by frequency in English text), and the ? is re-
placed with a uniformly random letter. The actual distribution uses a different sequence
of letters but was changed to ‘ANONYMOUS’ for this submission.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

B FULL ESTIMATION ALGORITHMS

I ALGORITHM FOR ITGIS

The algorithm for ITGIS is as follows. Initialize s
(0)
i ≡ 0 for all i and a step counter j = 0. Then,

repeatedly:

1. Increase the step counter j by 1.

2. Compute the distribution q(j−1) as defined by the previous score function s
(j−1)
i . This can

be explicitly computed as a list of |V| probabilities per token position.

3. Draw a batch of samples from from q(j−1). Use the empirical mean of their gradient to
estimate ŝ

(j)
i (x) = Ex′∼q(j−1) [∇x′Mt(x

′)]i,x for all i ∈ [k], x ∈ V .

4. Update the next s(j)i for all i according to an exponentially-weighted moving average:

s
(j)
i =

ŝ
(j)
i + αŝ

(j−1)
i + · · ·+ αj−1ŝ

(1)
i

1 + α+ α2 + · · ·+ αj−1
.

In practice, we use α = 0.9.

5. Calculate the average value of the importance sampling estimator p(x)
q(j−1)(x)

1[M(x) = t]

for all samples in this batch.

The final output of the method is the average value of this importance sampling estimator across all
batches. The number of batches and samples per batch is specified in Appendix F. See Algorithm 1
for pseudocode.

Algorithm 1 Independent Token Gradient Importance Sampling (ITGIS)

Require: Model M , target token t, input length k, token distributions p1, . . . , pk, temperature T ,
iterations n, batch size B

1: s
(0)
i ← 0 ∈ R|V| for all i ∈ [k] # Initialize score functions

2: estimates← []

3: for j ← 1 to n do
4: for i← 1 to k do
5: q

(j−1)
i (x)← pi(x) · exp(s(j−1)

i (x)/T) for all x ∈ V
6: Normalize q

(j−1)
i to have sum 1

7: end for

8: Sample B inputs {x(b)}Bb=1 from q
(j−1)
1 × · · · × q

(j−1)
k

9: for i← 1 to k do
10: ŝ

(j)
i (x)← 1

B

∑B
b=1[∇xMt(x

(b))]i,x for all x ∈ V
11: end for

12: α← 0.9
13: for i← 1 to k do
14: s

(j)
i ←

ŝ
(j)
i +αŝ

(j−1)
i +···+αj−1ŝ

(1)
i

1+α+α2+···+αj−1

15: end for

16: estimate← 1
B

∑B
b=1

∏k
i=1 pi(x

(b)
i)∏k

i=1 q
(j−1)
i (x

(b)
i)

1[M(x(b)) = t]

17: Append estimate to estimates
18: end for

19: return 1
n

∑n
j=1 estimates[j]

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

II ALGORITHM FOR MHIS

We define the proposal distribution ϕ(·|x) to be the distribution induced by the following procedure:

1. Choose a random token position i ∈ [k] to modify.

2. Calculate the gradient at that token [∇xMt(x)]i ∈ R|V| (treating x = (x1, . . . , xk) as a
one-hot vector in Rk×|V|). Call this gradient g.

3. Sample a replacement token x′i from the distribution proportional to

pi(x
′
i) · exp

(gx′
i

T

)
.

4. Output x′ = (x1, . . . , x′
i, . . . , xk).

Note that the transition probability in Metropolis–Hastings only depends on the ratio

q(x′)ϕ(x|x′)

q(x)ϕ(x′|x)
=

pi(x′
i)

pi(xi)
· exp

(
Mt(x

′)−Mt(x)

T

)
· ϕ(x|x

′)

ϕ(x′|x)
,

which is easy to compute given forwards and backwards passes at x and x′.

We use an initial burn-in period (see Appendix F) for the random walk before recording samples
x(1), . . . ,x(n). The final output of the method is the empirical importance sampling estimate

1

n

n∑
j=1

p(x(j))

q(x(j))
1[M(x(j)) = t].

This requires computing q(x), which involves the normalization constant. To save samples, we
estimate the normalization constant using the identity:

Ex∼p

[
exp

(
Mt(x)

T

)]
= Ex∼q

[
exp

(
−Mt(x)

T

)]−1

.

The right-hand side can be estimated using the n samples we already have from (approximately) q.
In practice, the way we estimate the normalizing constant does not matter much (most of the error
comes from other steps). See Algorithm 2 for pseudocode.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 2 Metropolis–Hastings Importance Sampling (MHIS)

Require: Model M , target token t, input length k, token distributions p1, . . . , pk, temperature T ,
number of burn-in steps nburn, number of samples n

1: Initialize x by sampling from p1 × · · · × pk
2: samples← []
3: for step← 1 to nburn + n do
4: i← Unif([k]) # Choose random position
5: g← [∇xMt(x)]i
6: Sample x′

i from ∝ pi(x
′
i) · exp(gx′

i
/T) # Proposed token

7: x′ ← (x1, . . . , x′i, . . . ,xk) # Proposed new state
Compute acceptance ratio r = q(x′)ϕ(x|x′)

q(x)ϕ(x′|x)
8: r ← AcceptanceRatio(M, t, T, (p1, . . . , pk),x,x

′)
9: if Unif(0, 1) < r then

10: x← x′ # Accept proposal
11: end if

12: if step > nburn then
13: Append x to samples
14: end if
15: end for

16: Z ←
(

1
n

∑n
j=1 exp(−Mt(samples[j])/T)

)−1

Est. normalizing constant

17: return 1
n

∑n
j=1

exp(Mt(samples[j])/T)
Z 1[M(samples[j]) = t]

III ALGORITHM FOR QLD

Recall that v(x) ∈ Rd is the random vector representing the activations of the model right before
the unembedding step. After collecting n samples of v(1), . . . ,v(n), we compute their empirical
mean µ ∈ Rd and covariance Σ ∈ Rd×d. Then define u to be the whitened version of v:

u := A−1(v − µ)

v = Au+ µ,

where A ∈ Rd×d is any matrix such that AA⊤ = Σ. Note that u has mean 0 and covariance Idd.
From now on, we principally work in this whitened representation of activation space, as it has the
convenient property that the u · e and u · e′ are uncorrelated iff e and e′ are orthogonal.

We choose the unit vector d ∈ Rn to point in the direction of the shortest accepting vector (Ap-
pendix D), then decompose our whitened samples u(1), . . . ,u(n) into components parallel and per-
pendicular to d:

a(i) := dd⊤u(i)

b(i) := u(i) − a(i).

Finally, we output:
1

n2

∣∣∣{(i, j) ∈ [n]2
∣∣a(i) + b(j) ∈ S

}∣∣∣ ,
where

S :=
{
u ∈ Rd

∣∣ argmaxi((Au+ µ) ·WU)i = t
}
.

This proportion can be computed in Õ(n) time—we don’t need to explicitly iterate over all n2 pairs.
By the convexity of the acceptance region S, for any fixed b there is a single interval [ℓ, r] such
that a ∈ [ℓ, r] ⇔ ad + b ∈ S. We can efficiently compute the bounds of this interval for every
sample b(j) by solving a linear system of inequalities, and then we can calculate how many a(i) fall
into each range in O(log n) time after sorting. Thus, the computational cost of QLD is dominated
by running n forwards passes of M to generate the samples u(1), . . . ,u(n). See Algorithm 3 for
pseudocode.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Algorithm 3 Quadratic Logit Decomposition (QLD)

Require: Model M with unembed matrix WU , target token t, sample size n
1: Sample n inputs x(1), . . . ,x(n) from input distribution
2: Compute pre-unembed activations v(i) ∈ Rd by running M on x(i) for i ∈ [n]
3: µ← 1

n

∑n
i=1 v

(i)

4: Σ← 1
n

∑n
i=1(v

(i) − µ)(v(i) − µ)⊤

5: Find A such that AA⊤ = Σ+ ϵ · Idd # via Cholesky decomposition
6: for i← 1 to n do
7: u(i) ← A−1(v(i) − µ) # Whitened activations
8: end for

9: d← ShortestAcceptingVector(A,µ,WU , t) # See Appendix D
10: for i← 1 to n do
11: a(i) ← dd⊤u(i) # Parallel component
12: b(i) ← u(i) − a(i) # Perpendicular component
13: end for

14: Sort {a(i)}ni=1 in ascending order
15: count← 0
16: for j ← 1 to n do

Solve linear inequalities to get [ℓj , rj] such that a ∈ [ℓj , rj]⇔ ad+ b(j) ∈ S

17: [ℓj , rj]← FindAcceptanceInterval(b(j),d,A,µ,WU , t)

18: count← count + |{i : a(i) ∈ [ℓj , rj]}| # Binary search for bounds
19: end for

20: return count/n2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

C PRINCIPLES FOR CHOOSING A DECOMPOSITION IN QLD

In this section, we justify the claim that we rely on the following two assumptions of the decom-
position u = a + b for QLD to perform well: 1) a and b are independent, and 2) the contribution
towards the output behavior is split roughly equally between the two terms.

The first assumption is straightforward: if a and b are not independent, then a+b′ (where b′ comes
from an i.i.d. copy of u) does not have the same distribution as u. The failure of this assumption
introduces bias into the estimation method. Working in whitened space ensures that a and b are
uncorrelated, which is a first step towards independence.

The second assumption—that the contribution to the target behavior is roughly equally split between
a and b—is necessary for QLD to have an advantage over naive sampling. For purposes of illustra-
tion, say that d = 2 (so that both a and b can be treated as scalars), and that a,b iid∼ N (0, 1). Then,
consider three ways that the contribution to the target behavior could be split:

• Scenario 1 (no split): The target token is outputted iff a > 10. In this case, QLD provides
no advantage over naive sampling, as the proportion of (a(i),b(j)) pairs in the acceptance
region is exactly the same as the proportion of (a(i),b(i)) pairs. If p is the probability of
the behavior, then p−1 samples are required to consistently obtain a positive estimate.

• Scenario 2 (even split): The target token is outputted iff a+ b > 10
√
2. In this case, QLD

has a quadratic advantage over naive sampling. It only requires around p−1/2 samples for
QLD to consistently obtain a positive estimate.

• Scenario 3 (uneven split): The target token is outputted iff a+ 2b > 10
√
5. The contribu-

tion here is split between a and b, though not equally, so QLD’s efficiency falls in between
the previous two scenarios. We can calculate that it requires around p−5/9 samples for
QLD to consistently obtain a positive estimate.8

In practice, the condition for outputting the target token is more complex than a single linear con-
straint on a and b. Nevertheless, these examples motivate the idea that the more evenly we can split
contribution between two subspaces, the lower variance our estimator will have.

Given that b has d− 1 dimensions while a only has 1, most choices of d will end up giving b much
more influence over the behavior than a. This motivates us to identify a particularly important direc-
tion with d; in some informal sense we want to find a direction that is “d/2 times more important”
than the average direction.

When we run QLD with many more samples than its standard budget of 216, its performance im-
proves but plateaus at a level that is still worse than the sampling methods. This shows that QLD is
currently limited by a poor independence assumption, as the error arising from an unequal split of
contribution should vanish with a sufficient number of samples.

8In general, if the condition is αa+
√
1− α2b > 10, it requires roughly p

−1/
(
α+

√
1−α2

)2

samples.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

D COMPUTING THE SHORTEST ACCEPTING VECTOR

Recall that the acceptance region S ⊆ Rd is the subset of whitened pre-unembed space that results
in the model outputting t:

S :=
{
u ∈ Rd

∣∣ argmaxi((Au+ µ) ·WU)i = t
}
.

We define d to point in the direction of the shortest vector in S, i.e., argminu∈S ∥u∥. This vector
can be approximated using an iterative convex projection algorithm.

S ⊆ Rd is an intersection of |V − 1| half-spaces H1, . . . ,Ht−1, Ht+1, . . . HV , where Hi represents
the set of all activations (in whitened pre-unembed space) that result in the logit on token t being
larger than the logit on token i.

Given any convex set C (such as a half-plane), the projection of x /∈ C onto C is argminx′∈C ∥x−
x′∥2. Given a collection of convex sets, there exists a simple algorithm for finding a point in their
intersection: start with an arbitrary point x, then repeatedly project x onto a random convex set that
does not already contain x. Eventually, this process converges to a point in their intersection (Gubin
et al., 1967).

We apply this method to find an element of S. To ensure that it is the shortest element, we also
project x onto balls centered at 0 with smaller and smaller radii by multiplying x by 0.99. The exact
procedure is described in Algorithm 4.9 In practice, it always takes much less than 100 · nreps steps
for the algorithm to return a value.

Algorithm 4 Random Constraint Projection

Require: Half-spaces H1, . . . ,Ht−1, Ht+1, . . . ,H|V|, number of repetitions nreps

1: x← 0 ∈ Rd

2: for step cnt← 1 to 100 · nreps do
3: Pick a random i among all i such that x /∈ Hi

4: Project x onto Hi

5: if x lies in S (up to some tolerance ϵ) then
6: if step cnt < nreps then
7: Scale x by 0.99.
8: else
9: return x

10: end if
11: end if
12: end for

9We found a few minor bugs in our implementation of the ϵ-tolerance in our algorithm after we ran experi-
ments, but we don’t expect them to have affected the results at all.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

E GROUND TRUTH TOKEN DISTRIBUTION

Figure 5: The ground truth probabilities of tokens for each distribution and model size, sorted from
most to least probable (the height of the curve at position x is the probability of the x-th most
common token). Any tokens that appeared 0 times across all 232 samples are not plotted.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

F COMPUTATIONAL BUDGETS

Each estimation method was given a budget of roughly 216 model calls. More specifically:

• Independent Token Gradient Importance Sampling uses 28 batches of size 28, for a total
of 216 samples. The average gradient is updated after each batch. Note that this method
requires backwards passes as well as forwards passes.

• Metropolis–Hastings Importance Sampling uses 210 + 211 batches of size 25, for a total
of 1.5 · 216 samples (the batch size indicates the number of independent random walks the
method simulates). The first 210 batches are used as a burn-in period for the random walk
and are discarded, so only 216 samples are actually used to calculate the estimate.

• Quadratic Logit Decomposition uses n = 216 samples of the pre-unembed activation v.
The MLE direction is approximated with nreps = 200 iterations of the Random Constraint
Projection algorithm (Appendix D); this makes up a trivial fraction of the total compute
usage of the method).

• Gaussian Logit Difference uses 216 samples of the logit difference to estimate µ and σ, the
mean and standard deviation of the difference between the target logit and the maximum
logit. Note that in practice, the µ and σ can be accurately estimated with much fewer than
216 samples.

In practice, ITGIS and MHIS take the longest to test because they require separate samples for each
target token. In contrast, QLD reuses the same 216 samples of v for all 256 target tokens associated
with a given behavior.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

G ALL METHOD PERFORMANCES

Table 3 shows the Itakura–Saito loss (p/q − ln(p/q) − 1) of all estimation methods on all input
distributions and model sizes.

Table 3: Itakura–Saito loss comparison of all methods, distributions, and model sizes.

(a) 1-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.5891 2.2163 2.0038 2.0484 1.3960
camel 2.5908 2.4419 2.0648 1.1997 2.0187
colon 2.7770 2.7091 1.2786 1.2209 1.0267
if 2.2424 2.1872 1.2321 1.0916 1.4455
caps 2.6619 2.6147 1.9413 1.4788 2.4023
english 1.9095 1.8120 1.2409 1.4539 0.7017
spanish 2.6079 2.4463 1.5628 1.6396 2.1538
icl 2.5467 2.4328 2.2373 0.7992 1.2344

Average 2.4906 2.3575 1.6952 1.3665 1.5474

(b) 2-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.8839 2.8453 2.7698 2.6652 1.4985
camel 2.3242 2.2268 2.2679 1.9221 2.0637
colon 2.9893 2.8335 2.1215 2.2986 1.9042
if 2.6172 2.4377 1.8397 1.0301 1.2516
caps 2.6345 2.6820 2.4847 1.9271 1.6981
english 2.0989 2.0956 1.3462 0.9908 1.4480
spanish 2.5442 2.3662 1.5670 1.0951 2.3095
icl 2.6381 2.5419 2.3601 1.6420 1.0502

Average 2.5913 2.5036 2.0946 1.6964 1.6530

(c) 4-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 2.4803 2.2934 2.4282 2.3090 2.0830
camel 2.4895 2.3271 2.4534 2.0937 2.2961
colon 2.9325 2.7319 2.4382 2.1295 1.1710
if 2.6477 2.5408 1.8313 1.8430 0.9261
caps 2.5970 2.5382 2.4142 2.0484 1.2972
english 2.7008 2.7432 1.5681 0.9943 1.3051
spanish 2.6415 2.5022 1.7716 1.6611 2.1936
icl 2.5029 2.1925 2.3866 2.2971 0.5477

Average 2.6240 2.4837 2.1615 1.9220 1.4775

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

H SQUARED ERROR IN LOG-SPACE

Figure 6 and Table 4 show the method performances when measured using squared error in log-
space loss (i.e., (log p− log q)2) instead of Itakura–Saito loss. The results are qualitatively identical
using either metric. Note that we use separate affine fits to minimize each loss function—in Table 4
we naturally report the results of the fit corresponding to squared error in log-space. However, the
importance sampling temperatures are not changed between the two metrics (they were tuned while
minimizing Itakura–Saito loss).

Figure 6: The squared error in log-space loss of all methods across different model sizes. The
solid lines indicate the loss of each method averaged over all 8 distributions, with bands indicating
standard error. The colored points indicate the loss on individual distributions, with horizontal jitter
added for visibility.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 4: Squared error in log-space loss comparison of all methods, distributions, and model sizes.

(a) 1-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 6.0093 5.1815 4.4863 3.7179 2.1963
camel 7.7295 6.4975 5.8488 1.5156 4.3248
colon 6.8554 5.4361 2.1379 2.3549 1.8061
if 5.3977 4.9287 2.9356 1.9555 3.2223
caps 8.0927 7.5675 4.1349 3.2173 6.5550
english 6.0051 5.3220 3.2639 1.8357 1.6395
spanish 5.7990 5.5649 2.9740 2.1231 4.2612
icl 5.9035 5.6915 4.8023 1.0222 2.3030

Average 6.4740 5.7737 3.8230 2.2178 3.2885

(b) 2-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 8.0536 7.3674 7.6533 6.8004 1.9913
camel 7.6849 6.3518 7.2325 4.2695 5.6046
colon 7.1728 5.6416 3.3924 4.1851 2.8242
if 6.3346 5.6923 3.3695 1.7059 2.1639
caps 7.7682 6.8605 5.4771 3.0411 3.3432
english 5.2742 5.1185 3.4466 1.6335 3.2728
spanish 6.3718 5.6877 3.8404 2.1582 4.6937
icl 6.2785 6.2061 5.0740 2.0615 1.3515

Average 6.8673 6.1158 4.9357 3.2319 3.1556

(c) 4-layer model

Distribution Constant GLD QLD ITGIS MHIS

hex 7.5559 6.9208 7.0750 6.4364 3.1605
camel 7.5597 6.5413 7.1263 3.5067 5.5501
colon 7.1791 6.6035 3.5817 4.3916 1.7897
if 6.6900 5.9072 3.8987 3.7153 1.6824
caps 9.1105 8.2957 6.1383 4.3615 2.2514
english 5.5003 5.4866 3.3561 1.9180 2.1938
spanish 7.0490 6.4641 4.2083 3.4425 4.8425
icl 5.1793 4.4569 4.4772 4.5584 1.0216

Average 6.9780 6.3345 4.9827 4.0413 2.8115

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

I TEMPERATURE TUNING

Both importance sampling methods require choosing a temperature parameter T . To tune T , we
sweep over 9 different temperatures from 0.2 to 5, uniformly spaced in log-space. We choose the
value of T that achieves the lowest loss on 100 randomly chosen tokens with ground-truth probabil-
ities in the range [10−5, 10−3] to prevent over-fitting. We tune separate temperatures for each dis-
tribution, model size, and importance sampling method, shown in Table 5. It is likely that spending
more effort to tune these temperatures (e.g., by tuning on more and rarer tokens) would moderately
improve the final performances of the importance sampling methods.

Table 5: Temperatures T used for the different methods.

1 layer 2 layers 4 layers
Distribution ITGIS MHIS ITGIS MHIS ITGIS MHIS

hex 1.00 0.67 1.50 0.67 5.00 0.67
camel 1.00 2.24 1.50 2.24 1.00 2.24
colon 1.00 1.00 1.00 1.50 0.67 1.00
if 1.00 2.24 0.45 1.50 1.00 1.00
caps 1.50 3.34 0.45 1.50 0.67 1.00
english 0.45 1.50 0.67 2.24 0.45 1.50
spanish 0.67 2.24 0.67 2.24 1.00 2.24
icl 0.45 1.00 0.30 0.67 3.34 0.67

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

J PLOTS OF METHOD OUTPUTS

Figures 7, 8, and 9 show the outputs of the four methods on all three model sizes, using log-log plots
of ground-truth probability vs method output. All graphs show the outputs after the Itakura–Saito
fit has been applied (see Section 4.2). The horizontal lines of points reveal the value of the additive
constant in the fit; any outputs of 0 will all lie on this line after the fit is applied.

Figure 7: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the
1-layer model. The horizontal axis represents the ground-truth token probability, while the vertical
axis is the output of the model after a fit.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 8: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the
2-layer model. The horizontal axis represents the ground-truth token probability, while the vertical
axis is the output of the model after a fit.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Figure 9: The outputs of methods, after a fit is applied, on all 256 tokens for each distribution on the
4-layer model. The horizontal axis represents the ground-truth token probability, while the vertical
axis is the output of the model after a fit.

28

	Introduction
	Problem Statement
	Our setting

	Estimation Methods
	Importance Sampling Methods
	Independent Token Gradient Importance Sampling (ITGIS)
	Metropolis–Hastings Importance Sampling (MHIS)

	Activation Extrapolation Methods
	Quadratic Logit Decomposition (QLD)
	Gaussian Logit Difference

	Experimental Setup
	Itakura–Saito Loss
	Affine Fits

	Results
	Discussion
	Distribution shift as motivation
	Relation to red-teaming and adversarial training
	Importance sampling versus activation extrapolation
	Limitations

	Related Work
	Conclusion
	Input distributions
	Full Estimation Algorithms
	Algorithm for ITGIS
	Algorithm for MHIS
	Algorithm for QLD

	Principles for choosing a decomposition in QLD
	Computing the Shortest Accepting Vector
	Ground Truth Token Distribution
	Computational Budgets
	All Method Performances
	Squared Error in Log-Space
	Temperature Tuning
	Plots of Method Outputs

