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Abstract

The convergence of next-generation wireless systems and distributed Machine
Learning (ML) demands Federated Learning (FL) methods that remain efficient
and robust with wireless connected peers and under network churn. Peer-to-
peer (P2P) FL removes the bottleneck of a central coordinator, but existing ap-
proaches suffer from excessive communication complexity, limiting their scalabil-
ity in practice. We introduce MAR-FL, a novel P2P FL system that leverages it-
erative group-based aggregation to substantially reduce communication overhead
while retaining resilience to churn. MAR-FL achieves communication costs that
scale as O(N logN), contrasting with the O(N2) complexity of previously ex-
isting baselines, and thereby maintains effectiveness especially as the number of
peers in an aggregation round grows. The system is robust towards unreliable FL
clients and can integrate private computing.

1 Introduction
The convergence of Artificial Intelligence (AI) and next-generation wireless networks is driving
a fundamental transformation in how we approach distributed computing and collaborative learn-
ing. As 6G and WiFi 9 standardization efforts begin to shape the future of global communication
infrastructure, the ability to leverage distributed computational resources across wireless networks
becomes not just an opportunity but a necessity for realizing the vision of AI-native wireless sys-
tems. The rapid proliferation of data across distributed sources – from edge devices to base stations
– has created unprecedented opportunities for Machine Learning (ML), yet accessing and utilizing
these dispersed data repositories remains a fundamental challenge (Kairouz et al., 2021; Li et al.,
2020). While centralized ML has driven remarkable advances in AI, it faces increasing limitations:
data privacy regulations restrict data movement across organizational and geographical boundaries,
bandwidth constraints in wireless environments make centralized data aggregation impractical, and
the concentration of computational resources in large-scale data centers creates geographical and
economic disparities in AI development capabilities (Kairouz et al., 2021; Zhang et al., 2020). Fed-
erated Learning (FL) has emerged as a useful paradigm that enables collaborative model training
over wide-area networks while keeping data localized, effectively tapping into vast data silos that
would otherwise remain inaccessible for AI development (McMahan et al., 2017; Kairouz et al.,
2021; Li et al., 2020; Zhang et al., 2020).

The promise of FL extends beyond privacy preservation to address a critical infrastructure challenge
particularly relevant to next-generation wireless networks: the democratization of AI training ca-
pabilities at the network edge. Current AI development is increasingly dominated by regions with
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Table 1: Related work overview. Our system is the first to deliver communication-efficient end-to-
end P2P FL.

Approach Allows partial
communication

Provides
global aggregation No sparsification Peer dropout

tolerance
Enables private

training Source

RDFL – ✓ ✓ – – Hu et al. (2020)
SAPS ✓ – – – – Tang et al. (2020)
BrainTorrent ✓ – ✓ ✓ – Roy et al. (2019)
MAR-FL (ours) ✓ ✓ ✓ ✓ ✓ This paper

access to massive, centralized computing infrastructure and abundant power resources. However,
many regions – particularly in Europe – face significant constraints in building comparable large-
scale AI data centers due to power grid limitations, environmental regulations, and infrastructure
costs (EU Agency for the Cooperation of Energy Regulators, 2024). This disparity threatens to
create a widening gap in AI capabilities between regions with different infrastructure capacities.

In the context of emerging wireless systems, where edge intelligence and distributed processing
are fundamental design principles, FL offers a compelling alternative by enabling the orchestra-
tion of scattered computational resources – from mobile devices to small cell base stations – into a
collective training infrastructure without requiring massive capital investments or power concentra-
tion (McMahan et al., 2017; Kairouz et al., 2021; Li et al., 2020).

Peer-to-peer (P2P) FL systems represent the natural evolution of this distributed paradigm, aligning
perfectly with the vision of AI-native wireless networks where intelligence is embedded throughout
the network and does not require a centralized coordination server. By eliminating the central coor-
dinator, P2P FL removes the communication and memory bottleneck of client-server FL – where the
server must coordinate massive numbers of unreliable devices in cross-device settings and shuttle
large models in cross-silo settings – thereby throttling scalability and slowing training (Alqahtani
and Demirbas, 2019; Huang et al., 2023). It also eliminates the single point of failure: progress
no longer hinges on server-side compute or networking capacity, which can otherwise jeopardize
training (Tang et al., 2020). Freed from these constraints, P2P FL can harness available compu-
tational resources wherever they exist—from idle GPUs in edge servers to distributed computing
nodes in radio access networks—creating a resilient, fault-tolerant training infrastructure that adapts
to the dynamic resource availability inherent in wireless environments. This decentralized approach
is particularly valuable in scenarios where network topology changes rapidly, devices join and leave
unpredictably, and no single entity can or should control the training process (e.g., multi-operator
collaborations or community-driven deployments). These challenges create a fundamental research
question: Can we design a communication-efficient P2P FL system that maintains training quality
while handling the high peer churn rates and sudden training dropouts characteristic of wireless
environments?

Contributions. In this paper, we present Moshpit All-Reduce FL (MAR-FL), a novel P2P FL
system that builds on dynamic iterative group formation to significantly improve communication
efficiency and tolerance towards unexpected peer churn. MAR-FL allows scalable decentralized
learning by reducing the overall communication load and the required number of interactions be-
tween peers. Our system incorporates Knowledge Distillation (KD) to boost training performance
and supports optional Differential Privacy (DP) to mitigate remaining risks of private information
leakage. We conduct a comprehensive experimental evaluation that compares MAR-FL against
client–server FL and P2P FL techniques, assessing communication efficiency, scalability, and ro-
bustness to network churn.

Related work. Despite compelling advantages over client-server FL, existing P2P FL systems
face severe practical limitations preventing deployment in bandwidth-limited wireless networks
(Table 1). The Galaxy Federated Learning system’s Ring Decentralized FL (RDFL) (Hu et al.,
2020) incurs communication costs orders of magnitude higher than centralized FedAvg, making it
economically infeasible for wireless environments. Moreover, RDFL’s closed ring topology can-
not tolerate the dynamic participation and node failures characteristic of wireless networks due to
mobility, channel fading, or varying signal conditions. Sparsification and Adaptive Peer Selec-
tion (SAPS) (Tang et al., 2020) improves communication efficiency through model sparsification
and single high-throughput peer exchanges per round, but spreads information only locally with-
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out synchronized global aggregation, slowing convergence and making progress sensitive to churn.
BrainTorrent (Roy et al., 2019) provides serverless P2P flexibility through dynamic model fetching
and merging, but relies on uncoordinated gossip-based learning that suffers from inefficient global
information propagation and vulnerability to node churn.

Structure. We introduce our new MAR-FL system in Section 2 and evaluate it in Section 3. We
conclude in Section 4.

2 MAR-FL: Communication-efficient P2P Federated Learning
The overall objective of our P2P FL system is to reduce the communicational effort required to ob-
tain globally averaged models, while retaining resilience to real-world network churn. Consequently,
we deploy Moshpit All-Reduce (MAR) as fully decentralized aggregation mechanism.

2.1 Problem Formulation

We consider a P2P FL setting with N peers, each holding a private local dataset Di, which may be
heterogeneous and non-i.i.d. across peers. Training proceeds over T iterations; in each iteration,
peers perform local updates and exchange models over bandwidth-limited wireless links to conduct
global aggregation. The system thereby faces the central FL challenge of communication costs:
due to wireless links and connections operating at lower rates than intra- or inter-datacenter links,
communication is costly and often by orders of magnitude slower than local computation (Kairouz
et al., 2021; Li et al., 2020). Consequently, our objective is to minimize the communication cost of
P2P FL systems.

2.2 Proposed System

Algorithm 1: MAR-FL (for i-th peer)
Input: θ0, m0, η, µ, Di, B, T , N , usekd

1 for t = 1, 2, . . . , T do
2 if i ∈ Ut then
3 (θt

i ,m
t
i)←

Momentum-SGD(θt−1,mt−1, Di, B, η, µ)
4 else
5 (θt

i ,m
t
i)← (θt−1,mt−1)

6 if i ∈ At then
7 St := { (j, θt

j ,m
t
j) | j ∈ At}

8 if usekd then
9 (θt

i ,m
t
i)← Moshpit-KD(St)

10 (θt,mt)← Moshpit-AR(St)

11 return θT

Integrating MAR into FL. For global model ag-
gregation in fully decentralized FL, we adopt the
idea of Moshpit SGD (Ryabinin et al., 2021),
where peers conduct MAR to dynamically form
small independent groups and repeat this group
matchmaking across multiple rounds until lo-
cal information from all peers has propagated
through the network. This procedure has two
main benefits: global model averaging can be
achieved without all-to-all communication, and
peer dropouts only affect a single group (i.e., a
very restricted number of peers). The overall
MAR-FL training process (Algorithm 1) starts for
every peer i ∈ [N ] with the same randomly ini-
tialized model θ0 and momentum vector m0, where N denotes the total number of peers and T the
total number of FL iterations. In each FL iteration t ∈ {1, . . . , T}, every participating peer i ∈ Ut,
where Ut ⊆ [N ], performs a local Momentum-SGD update on B mini-batches of its local data Di,
using stepsize η and momentum µ. The update follows the damped momentum update proposed
by Reddi et al. (2020) and yields a local peer state (θti ,m

t
i). A set of aggregation peers At ⊆ [N ]

then performs MAR on its aggregation state set St, where St := {(j, θtj ,mt
j) | j ∈ At}, to obtain

a globally averaged state (θt,mt). This is done in multiple group formation rounds g ∈ Gt per FL
iteration t. KD is integrated if the usekd flag is set. After T iterations, each peer holds the final
collaboratively trained global model θT .

Coordinating FL peers. Synchronization of peers during group formation is coordinated through
Distributed Hash Tables (DHT). Our system thereby relies on a Hivemind Kademlia DHT solely for
lightweight coordination – barriers and group-formation metadata – while model and momentum
weights never traverse the DHT. A single DHT get/store involves at most O(logN) hops. In our im-
plementation, coordination occasionally scans peer announcements (issuing O(N) look-ups), so the
control-plane cost per round is O(N logN) and remains negligible compared to model-exchange
traffic. To assemble into groups, each peer manages its own group key and forms groups with peers
sharing the same key value in the DHT. To avoid redundant information exchange in consecutive
MAR rounds, peers are prevented from revisiting one another within a single FL iteration by group
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key initialization and updates that leverage their chunk indices from d−1 previous MAR rounds. We
therefore adopt techniques proposed by Ryabinin et al. (2021). In an optimal MAR-FL setup, exact
global averaging can be achieved after d rounds of MAR when the group size is M and the group key
dimension is d, so that the total number of peers N satisfies N = Md. With fixed MAR group size
M , each round makes a peer talk to at most (M − 1) others, and achieving (near-)global averaging
needs G ≈ ⌈logM N⌉ rounds (exactly G=d when N=Md). Hence, each peer performs O(logM N)
exchanges per iteration and, over all peers, the system incurs O(N logM N) = O(N logN) com-
munication per iteration, versus O(N2) for P2P FL systems using all-to-all communication.

Algorithm 2: Moshpit-KD (for i-th peer
in MKD round g of FL iteration t)

Input: θg−1
i , mg−1

i , Cg , {θ g−1
c }c∈Cg , B, E, η, µ, τ ,

ρℓ, K
Output: θg

i , mg
i

1 (Ctop
g , ℓ, { z(c)

b }
b∈B, c∈Ctop

g

)
←

TeacherSel(θg−1
i ,mg−1

i , Cg, {θ g−1
c }c∈Cg ,B, τ, ρℓ)

2 for b ∈ B do
3 z̄b ← 1

ℓ

∑
c∈Ctop

g
z
(c)
b .

4 (θg
i ,m

g
i )← (θg−1

i ,mg−1
i )

5 for e = 1, 2, . . . , E do
6 for b ∈ B do
7 ŝb ← fθg

i
(xb)

8 LKL ← τ2 ·
DKL

(
softmax(z̄b/τ)

∥∥ softmax(ŝb/τ)
)

9 LCE ← CE
(
yb, softmax(ŝb)

)
10 λ← max

(
0, 1− t−1

K

)
11 L← λLKL + (1− λ)LCE

12 mg
i ← µmg

i + (1− µ)∇θ
g
i
L

13 θg
i ← θg

i − ηmg
i

14 return θg
i ,m

g
i

Concept of KD. Our MAR-FL system allows
the integration of KD to accelerate model con-
vergence. Let Cg ⊆ At be the candi-
date teacher peers in MKD round g with local
models {θ g−1

c }c∈Cg
, where At refers to Algo-

rithm 1. Candidate teachers are collected us-
ing the same procedure MAR uses for global
model averaging; hence, we call this mecha-
nism Moshpit-KD (MKD). The MKD process
of an entire FL iteration proceeds over multi-
ple MKD rounds g ∈ {1, . . . , G}, where each
round g includes group formation and candidate
teacher collection followed by the actual distill-
ing of knowledge. To balance model utility and
communication overhead, we use MKD only in
the first K FL iterations. Algorithm 2 illustrates
MKD round g in FL iteration t ∈ {1, . . . ,K},
where K ≤ T denotes the number of FL iter-
ations in which we actually apply MKD, with
T being the total number of MAR-FL iterations
in Algorithm 1. To account for data heterogene-
ity in FL (Shao et al., 2024), MKD selects a subset of top-ℓ teachers C top

g ⊆ Cg with the lowest
Kullback–Leibler (KL) divergence, where ρℓ is the selection ratio (details in Appendix A.1). Stu-
dent i then distills knowledge from these selected teachers: over E local epochs, starting from the
previous MKD round’s state (θg−1i ,mg−1

i ), the student updates on each available local mini-batch
b∈B by computing a student loss L and applying Momentum-SGD (Reddi et al., 2020) with learn-
ing rate η and momentum µ to eventually obtain an updated state (θgi ,m

g
i ). In MKD round g = 1,

the previous state (θ0i ,m
0
i ) refers to the student’s state before any MKD is applied (i.e., after local

model update). The student loss L aligns to the loss term proposed by Hinton et al. (2015): L is the
weighted sum of the KL divergence DKL between softened probability distributions over teacher-
ensemble and student classes, rescaled by the squared temperature τ2, and a CE term LCE on hard
labels yb. Averaged teacher-ensemble logits are hereby denoted as z̄b and student logits as ŝb. As we
use MKD only in the first K FL iterations, we facilitate a gradual transition from the use of MKD
to its complete omission by linearly reducing the weighting λ of the KL term LKL.

Privacy considerations. To allow privacy preserving training, we adapt the DP-FedAvg with adap-
tive clipping (Andrew et al., 2021) to fit our serverless P2P system (Algorithm 4, see Appendix A.2).
In each FL iteration, every peer first computes the difference between its current local model and the
previously aggregated global model. This update is then clipped to an adaptive bound and perturbed
with Gaussian noise. The privatized update is used to compute a DP-safe local model and peers run
MAR. After the final round of MAR, the clipping bound is updated to track a globally averaged clip-
ping rate. This procedure fully decentralizes DP with adaptive clipping and renders it ready to use
with MAR-FL: privacy loss accrues entirely from local computations, while MAR merely averages
privatized models across groups.

2.3 Convergence Analysis

The convergence of MAR-FL follows from the model mixing dynamics of MAR, analyzed
by Ryabinin et al. (2021). In the optimal case where the total number of peers N forms a per-
fect d-dimensional grid N = Md and there are no peer dropouts, MAR computes the exact global
average after exactly d rounds of communication – i.e., within a single FL iteration t when that
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iteration schedules d MAR rounds. For general settings, MAR exhibits exponential convergence to
the global average θ̄. Specifically, if peers are randomly partitioned each iteration into r groups that
average locally, the expected average distortion after T averaging iterations satisfies:

E

[
1

N

N∑
i=1

∥θTi − θ̄∥2
]
=

(
r − 1

N
+

r

N2

)T
1

N

N∑
i=1

∥θi − θ̄∥2. (1)

While this rate is derived for a simplified random-grouping model, our system’s MAR implemen-
tation avoids revisiting peers via deterministic key updates, which in practice accelerates mixing
relative to purely random grouping. Crucially, the bound is independent of the spectral properties of
the communication graph, avoiding the scaling limits typical of gossip-based decentralized FL.

3 Experiments

(a) MNIST

(b) 20NG

Figure 1: Performance gap evaluation.
MAR-FL improves communication ef-
ficiency by up to 10× compared to ex-
isting P2P FL baselines.

Figure 2: With MKD, the communica-
tion load of systems using MAR-FL is
further reduced, as we require over 2×
less communication to reach 50% accu-
racy. Plot shows results on 20NG. Re-
sults on MNIST are available in the ap-
pendix.

This section presents our experimental setup and eval-
uates results in detail, while emphasizing communica-
tion cost, scalability, robustness and trade-offs concerning
model utility.

3.1 Setup

In the following we delineate ML datasets and models,
reference baselines, and parametrization used to evaluate
and contextualize MAR-FL. Underlying objectives are
described. We use a simulation environment for all of
our experiments. Due to constraints of our simulation en-
vironment, model evaluation is conducted every fifth FL
iteration. We simulate all experiments on a single node
with 4×H100 GPUs, 768 GB of memory, and 96 CPU
cores. Our code is publicly available.1 Additional details
on the experimental setup can be found in the appendix.

Datasets and models. We evaluate MAR-FL on two
widely used ML datasets, namely MNIST (LeCun et al.,
2010) and 20 Newsgroups (20NG) (Lang, 1995). For
MNIST, we use a CNN-based architecture and for 20NG
we use a frozen DistilBERT model (Sanh et al., 2019)
with a classification head. We employ a Latent Dirichlet
Allocation (α = 1.0) to create non-i.i.d. subsets for 16,
64, and 125 FL peers. If not specified otherwise, experi-
ments run on 125 FL peers. Per aggregation round, each
peer trains on 64 and 16 samples for MNIST and 20NG,
respectively.

FL baselines. We directly compare MAR-FL to the
client-server FedAvg standard and established P2P FL
techniques, specifically RDFL (ring all-reduce), which is
at the center of the Galaxy Federated Learning frame-
work.2 We further evaluate MAR-FL against a naı̈ve
all-to-all All-Reduce FL algorithm (AR-FL), where all
peers communicate with each other. Even though we
discuss BrainTorrent and SAPS in our related work
section, their limitations regarding communication effi-
ciency make practical deployments prohibitively expen-
sive, which is why we omit the two techniques as base-
lines.

1Github: https://github.com/felix-fjm/mar-fl
2We do not compare against Galaxy Federated Learning as a whole since the framework largely depends on

a distributed ledger/blockchain for training verification. Verification is beyond the scope of our work.
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Figure 3: MAR-FL is affected by partial
participation but resilient towards sud-
den dropouts.
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Figure 4: MAR-FL is compatible with
DP and exhibits the same performance
characteristics as FedAvg. Plot shows
results on 20NG. Results on MNIST are
available in the appendix.

Parametrization of MAR-FL. We use exact aggregation
of peer groups, if not specified otherwise. For evaluat-
ing the compound benefits of MAR-FL and KD, we use a
teacher selection ratio ρℓ = 0.4 (Hu et al., 2020), student
loss temperature τ = 3.0 (Hinton et al., 2015) and one
epoch. Parameter choices for adaptive DP align to An-
drew et al. (2021) and are listed in Appendix A.2.

Local model aggregation. For peer-side local aggrega-
tion, we use SGD with momentum (Reddi et al., 2020),
set the learning rate to η = 0.1 and the momentum to
µ = 0.9. Across techniques, we use full peer participa-
tion if not specified otherwise (typical setup for cross-silo
FL applications).

Partial participation and network churn. To assess the
effect of partial participation and network churn, we vary
participation rates and dropout likelihoods. Participation
rates control how many peers participate in an entire FL
iteration consisting of local updates and global aggrega-
tion, while dropout likelihoods simulate unreliable peer
connectivity (i.e., peer has conducted local update but
does not participate in global aggregation).

Privacy. To investigate privacy-preserving training and
its effect on model utility, we vary the noise multiplier
to control the extent of privatization. The peer sampling
rate, where lower values reduce the privacy loss, is fixed
at 100%. Results on scalability and partial participation
will reveal whether our system can leverage this rate to
enhance privacy without degrading training performance.

3.2 Results

Communication efficiency and scalability. Across both
ML tasks (MNIST and 20NG), MAR-FL matches the
training performance of all three baselines (see Ap-
pendix C.1). This parity is expected because, with suit-
able MAR parameters, each iteration of MAR-FL attains
an exact global average (e.g., group size 5 and 3 MAR
rounds for 125 peers: 125 = 53). While obtaining iden-
tical model utility, MAR-FL requires far less communication per iteration, up to 10× less commu-
nication than RDFL or AR-FL. The communication complexity of MAR-FL, O(N logN), yields
stronger performance as systems scale (Figure 1). In contrast, RDFL and AR-FL exhibit a complex-
ity of O(N2).

Improving communication efficiency with MKD. MAR-FL achieves substantially higher com-
munication efficiency than our P2P FL baselines, narrowing the gap to the client-server FedAvg
standard. To improve communication efficiency even further, MKD can be used. MKD accelerates
model convergence so that a target accuracy can be reached with less total communication (Fig-
ure 2), although increasing the per-iteration load. The trade-off between communication costs and
model utility can be controlled by the number of KD iterations.

Partial participation and network churn. Partial participation leads to a substantial degradation
of MAR-FL’s training performance, while configured network churn and unreliable connectivity do
not cause additional accuracy drops (Figure 3); our three baselines show the same pattern. While
the training performance of all three P2P techniques is equally affected by these real-world system
disturbances, MAR-FL consistently preserves its net benefit over all baselines in communication
efficiency, providing evidence for the enhanced practicality of our system. Even with 50% partic-
ipation and 20% dropout likelihood, RDFL and AR-FL require more than 5× the communication
of MAR-FL to reach the same model utility. The robustness towards unreliable connectivity (i.e.,
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peer has conducted local update but does not participate in global aggregation) can be attributed to
the fact that averaging incomplete global models over multiple FL iterations eventually converges to
almost exact global averages. In Appendix C.2, where we provide further results on partial partici-
pation, we outline how this phenomenon can be exploited to increase the communication efficiency
of MAR-FL. The appendix also includes additional results for FedAvg, RDFL, and AR-FL.

Differentially private training. When conducting DP-safe model aggregation in MAR-FL, increas-
ing the strength of DP by raising the noise multiplier σ reduces the privacy loss ε but eventually
degrades model utility (Figure 4). Since our observations align with the effect of DP on standard
FedAvg (Andrew et al., 2021; Wei et al., 2020), this confirms that DP is readily supported within
our fully decentralized system. We emphasize that the privacy loss ε can be substantially reduced
by decreasing the peer-sampling rate (i.e., partial participation in local updates) (Wei et al., 2020;
Mironov, 2017), so that our communication-efficient and scalable MAR-FL system provides a foun-
dation for comprehensive privacy preservation.

4 Conclusions
We introduce MAR-FL, a P2P FL system that leverages iterative group-based aggregation to sub-
stantially reduce communication costs compared to existing P2P FL techniques. On 125 peers,
MAR-FL requires about 10× less total communication than RDFL or AR-FL while achieving iden-
tical model utility. MAR-FL scales with O(N logN), enabling efficient training as the number of
peers grows. Moreover, our system remains robust under unreliable peers, supports KD to further
reduce communication, and integrates DP. Our findings position MAR-FL as a practical foundation
for scalable, communication-efficient P2P FL in next-generation wireless settings.

Limitations. While MAR-FL improves the communication efficiency of P2P FL, there is still a
performance gap towards client-server FL. Such performance penalties cause higher operating costs,
which typically hinders practical adoption. We offer a starting point for using DP with MAR-FL but
analyzing the impact of group-based aggregation in combination with momentum on DP dynamics
remains open.

Future work. Future work includes a thorough analysis of partial participation and network churn –
bringing our system even closer to real-world applicability. Exploring approximate aggregation and
adaptive group-based information propagation could further improve communication efficiency and
narrow the gap to client–server FedAvg. Experimental evaluations of integrating DP into MAR-FL
should exploit our system’s scalability to compress peer-sampling rates; maintaining model utility
while reducing the privacy loss. Finally, we emphasize the importance of P2P FL: by omitting a cen-
tralized server, MAR-FL avoids communication and memory bottlenecks inherent in client–server
FL and moves FL closer to its promising applications.
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Appendix

A Additional Details on the MAR-FL Method

A.1 Details on MKD

Algorithm 3: Teacher selection in MKD (for i-th
peer in MKD round g of FL iteration t)

Input: θg−1
i , mg−1

i , Cg , {θ g−1
c }c∈Cg , B, τ , ρℓ

Output: Ctop
g , ℓ, { z(c)

b }
b∈B, c∈Ctop

g

1 for b ∈ B do
2 sb ← f

θ
g−1
i

(xb)

3 for c ∈ Cg do
4 for b ∈ B do
5 z

(c)
b ← f

θ
g−1
c

(xb)

6 S(c)←
∑

b∈B DKL

(
softmax(z

(c)
b /τ)

∥∥ softmax(sb/τ)
)

.

7 ℓ← max{1, ⌊ρℓ |Cg|⌋}.
8 Ctop

g ← ℓ teachers with smallest S(c).

9 return C top
g , ℓ, { z(c)

b }
b∈B, c∈C

top
g

Teacher selection in MKD. In MKD
round g, candidate teachers Cg de-
pict a collected subset of participat-
ing aggregation peers At of FL it-
eration t from Algorithm 1. From
these candidate teachers, a top-ℓ ra-
tio is selected for actual distilling of
knowledge. A peer i thereby selects
ℓ teachers Ctop

g ⊆ Cg which yield
the ρℓ smallest KL divergence when
for each candidate teacher model
{θ g−1

c }c∈Cg
comparing the softened

output distribution softmax(z
(c)
b /τ)

with its own softened output distribu-
tion softmax(sb/τ). The softening
of output distributions is conducted by normalizing the logits z

(c)
b and sb with a temperature τ .

Student logits sb are obtained by passing local mini-batches B through the student model θg−1i ,
while teacher logits z(c)b are obtained by passing local mini-batches B through a candidate teacher
model θ g−1

c . We use the KL-based rating of collected peer models to account for non-i.i.d. data
in FL. Shao et al. (2024) emphasize that non-i.i.d. data distributions depict a crucial challenge for
KD in FL, because local models cannot produce meaningful predictions on data outside of their
own distributions. Even softening of output distributions is not solving this issue, as ensembles
of inconsistent local predictions still exhibit high entropy, which leads to distilling ambiguous and
misleading knowledge.

Deriving the MKD student loss. In Algorithm 2 we denote the student loss term L as weighted
sum of the KL divergence DKL between softened probability distributions over teacher-ensemble
and student classes, rescaled by the squared temperature τ2, and a CE term LCE on hard labels
yb. This student loss can be derived from the student loss proposed by Hinton et al. (2015). Let
pz = softmax(z/τ) be the teacher distribution and ps = softmax(s/τ) the student distribution
at the same temperature τ , where teacher logits are denoted by z and student logits by s. Higher
values of τ shrink differences between logits so that the distribution is softer, which can reveal
relative similarities among classes (i.e., dark knowledge). Hinton et al. (2015) train the student with
a weighted sum of CE to soft targets at τ > 1 and CE to the hard labels y at τ = 1, scaling the
soft-target gradients by τ2:

LHinton = (1− α) CE(y, softmax(s)) + ατ2 CE(pz, ps). (2)

Starting from this two-term objective, one can use the identity

CE(pz, ps) = H(pz) +DKL(pz ∥ ps). (3)

and note that H(pz) is constant with respect to the student. Dropping that constant and absorbing
ατ2 into the KL weight gives

L ≡ (1− α) CE(y, softmax(s)) + ατ2 DKL(pz ∥ ps), (4)

which is the student loss term L used in our MKD approach when α = max
(
0, 1− t−1

K

)
.

A.2 Fully Decentralized DP

Andrew et al. (2021) propose DP-FedAvg with adaptive gradient clipping for client-server FL, in
which a central server mediates the DP-safe model aggregation. We adapt this approach to fit our
serverless P2P system. Our system’s DP-safe model aggregation illustrated in Algorithm 4 corre-
sponds to MAR in Algorithm 1 when DP is activated. For simplicity, the local pre-aggregation state
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(θti , m
t
i), the peer’s last obtained global model θ̄t−1i , and the peer’s last obtained smoothed delta

∆̄t−1
i are all denoted as if peer i had participated in the previous local update and aggregation. This

is not necessarily the case, since our system allows for partial participation and network churn. The
last global model θ̄t−1i could, for example, date back to the penultimate aggregation step (i.e., to FL
iteration (t− 2)). To clarify that the last global model and last obtained smoothed delta might differ
among peers, both are denoted using the peer indicator i. After initializing the noise-calibrating
parameters σb and σ∆ using the number of participating aggregation peers nt and noise multiplier
σmult, peer i prepares its DP-safe local model θ̂t,0i . This is done by computing the local model
update vector ∆i, clipping, blurring, and smoothing it with factor β to obtain ∆̄t,0

i , and then finally
deriving θ̂t,0i , where ηu denotes the stepsize (we set β = 0.9 and ηu = 0.1). The noisy clipped
local delta is denoted by ∆̃i. A binary indicator bt,0i reveals whether peer i has clipped its ∆i to the
clipping bound Ct. The squared noise calibration σ2

∆ is rescaled by nt to account for noising local
model deltas instead of their aggregated sum as Andrew et al. (2021) do.

Algorithm 4: DP-safe model aggregation in
MAR-FL (for i-th peer in FL iteration t)

Input: G,At, nt, θt
i , mt

i , θ̄t−1
i , ∆̄t−1

i , β, σmult, Ct, γ, ηu, ηC

Output: θt, mt, Ct+1, ∆̄t

1 σb ← nt/20

2 z∆ ←
(
σ−2
mult − (2σb)

−2
)−1/2

3 σ∆ ← z∆Ct

4 ∆i ← θt
i − θ̄t−1

i

5 bt,0i ← 1{ ∥∆i∥ ≤ Ct }

6 ∆̃i ← ∆i ·min
(
1,

Ct
∥∆i∥

)
+N

(
0, I

σ2
∆

nt

)
7 ∆̄t,0

i ←
{
β ∆̄t−1

i + ∆̃i, ∆̄t−1
i ̸= ⊥

∆̃i, otherwise

8 θ̂t,0
i ← θ̄t−1

i + ηu ∆̄t,0
i

9 mt,0
i ← mt

i
10 for g = 1, 2, . . . , G do
11 Pt := { (j, θ̂t,g−1

j , mt,g−1
j , bt,g−1

j , ∆̄t,g−1
j ) | j ∈

At }
12 if g < G then
13 (θ̂t,g

i , mt,g
i , bt,gi , ∆̄t,g

i )← MARg(Pt)
14 else
15 (θt, mt, b̄t, ∆̄t)← MARg(Pt)

16 b̃ t ← b̄t +
N(0, σ2

b )

nt

17 Ct+1 ← Ct · exp
(
− ηC (b̃ t − γ)

)
18 return θt, mt, Ct+1, ∆̄t

Over G rounds of MAR, each group-
based MAR aggregation step MARg it-
eratively averages relevant peer infor-
mation Pt from the set of participating
aggregation peers At until each peer
i ∈ At obtains: (i) a global state
(θt, mt), (ii) a global clipping indica-
tor b̄t, and (iii) a global smoothed delta
∆̄t. The information peer i has so
far aggregated up to MAR round g ∈
{1, 2, ..., G} of the current FL iteration
t is denoted as (θ̂t,gi , mt,g

i , bt,gi , ∆̄t,g
i ).

A simple aggregation of binary indica-
tors is not DP-safe as it reveals whether
a peer i has clipped its model up-
date vector ∆i. To prevent this sen-
sitive information leakage, a privacy-
preserving mechanism (e.g., Secure
Aggregation) has to be deployed for
global binary indicator computation.
When blurring the averaged binary in-
dicator, sampled noise N (0, σ2

b ) is
rescaled by the number of participating
peers nt, because we add noise to an
average value and not to a sum as An-
drew et al. (2021) do. The global averaging of smoothed deltas from all participating peers i ∈ At

ensures that during global model aggregation of the next FL iteration (t + 1), the privatized local
delta ∆̃i is mixed with a privatized global momentum delta ∆̄t

i before being applied to the last
global model θ̄ti . This yields variance reduction and global alignment when computing a DP-safe
local model. Eventually, the clipping bound is updated to Ct+1, tracking a target quantile γ of glob-
ally averaged clipping, where ηC denotes the stepsize (we set γ = 0.5 and ηC = 0.2). After each
aggregation, the DP-safe global model θt is stored as the peer’s last global model θ̄ti , to be used in
its next global aggregation iteration; analogously for ∆̄t. We note that the local momentum vectors
mt

i are not private as noise is applied only when each peer communicates their final model update
for an aggregation round.

B Additional Experimental Details

B.1 Simulation Environment

We run all experiments on a high-performance computing (HPC) cluster using Slurm as the job
scheduler. Each experiment runs on a single node with 4×H100 GPUs, 768 GB memory, and 96
CPU cores, reserving the entire node. After resource allocation, the job launches an Enroot run-
time inside the allocation. The runtime is built from an Enroot SquashFS image created by im-
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porting the NGC container nvcr.io/nvidia/pytorch:22.04-py3. Inside the container we
use Python 3.8, PyTorch, and our MAR-FL and baseline implementations.

B.2 Implementation Details

Process model. We simulate peers as separate Python multiprocessing processes,
each spawned by a dispatcher. Processes are created under a spawn context, assigned
a unique peer ID, and pinned to specific CPU cores to simulate vCPUs. A shared
multiprocessing.Manager() exposes two queues (task/results) and a shared dictionary for
model exchange between the dispatcher and peers.

Dispatcher. A central dispatcher loop orchestrates FL iterations by: (i) selecting participating peers
for local updates and aggregation (modeling partial participation and churn), (ii) enqueueing per-
peer tasks (update, aggregate, skip, shutdown) on the task queue, (iii) collecting results,
logging timings, and monitoring communication volume, (iv) performing early-stopping and robust-
ness checks, and (v) periodically clearing stale entries from the shared dictionary.

Peer lifecycle. Each peer process follows three steps: (i) initialize a Hivemind DHT node to syn-
chronize lightweight barriers and group-formation metadata (note that no model tensors are sent
over the DHT), (ii) load its local data partition (MNIST or 20NG) and the ML model (CNN or
DistilBERT head), and (iii) repeatedly execute tasks pulled from the task queue.

Group formation and synchronization (MAR-FL). At the beginning of the first MAR round,
every peer initializes its group key. In each MAR round, peers then: (i) publish their presence
via the DHT and collect peers with the same key, (ii) enforce group symmetry by cross-checking
gathered group members through DHT keys, (iii) perform communication and aggregation within
that group, and (iv) update the group key via a deterministic schedule before the next round. To
prevent repeatedly matching with the same peers, group key updates leverage each peer’s chunk
index. This procedure aligns with the MAR algorithm of Ryabinin et al. (2021).

B.3 Experimental Setup

Datasets and models. To evaluate MAR-FL and all baselines on two distinct learning prob-
lems, we use one vision task (image classification) and one language task (text classification). For
handwritten-digit recognition we employ a small two-block convolutional network with a compact
multilayer-perceptron head that outputs class logits. MNIST images are loaded via torchvision
and normalized in the usual way. For topic classification we use a lightweight classifier head on top
of a frozen DistilBERT encoder (Sanh et al., 2019); the sequence representation is obtained from
the classification token’s (CLS token) hidden state, and the head produces 20-way logits. Text is
tokenized with a BERT-base uncased tokenizer and sequences are padded to a fixed length. The 20
Newsgroups dataset is loaded from Hugging Face Datasets (SetFit/20 newsgroups).

FL baselines. We do not utilize Butterfly All-Reduce (BAR) as an additional P2P FL baseline. BAR
aims to reduce total communication load by assigning disjoint parameter chunks to different peers
and only partially aggregating at each node. Under heterogeneous participation or network churn this
yields incomplete/partially aggregated models, where the network might be stalled waiting for entire
chunks of the model architecture. BAR consequently requires peers to be totally reliable. Hence we
compare MAR-FL against FedAvg, RDFL, and AR-FL, which better reflect the characteristics of
aggregation relevant to FL.

C Additional Results

C.1 Qualitative Results between MAR-FL and our Baselines

Qualitative identity. On MNIST and 20NG, MAR-FL achieves the same training performance
as client-server FedAvg and the two P2P FL baselines (see Figure 5), as all four techniques yield
identical global model averages under the given configurations.

Partial participation. On MNIST, MAR-FL incurs some loss in model utility under partial par-
ticipation (see Figure 6), though the degradation is milder than on 20NG. However, even with
only 50% peer participation and a 20% dropout likelihood, MAR-FL remains more than 5× as
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Figure 5: MAR-FL yields the same test accuracy as client-server FedAvg and our P2P FL baselines.

communication-efficient as our two P2P FL baselines. On 20NG, Figure 7 shows that FedAvg and
both P2P baselines degrade to a similar extent, consistent with the behavior observed for MAR-FL
(see Figure 3).

C.2 Qualitative Results of MAR-FL

Heterogeneous peer data. We employ Latent Dirichlet Allocation (α = 1.0) to create non-i.i.d.
local data splits among participating peers. While our simulation of real-world heterogeneous data
distributions has no significant effect when training MAR-FL on MNIST, performance on 20NG is
noticeably impaired compared to training with nearly i.i.d. local data splits (see Figure 8).

Improving communication efficiency with MKD. As on 20NG, MKD also accelerates conver-
gence for MAR-FL on MNIST, enabling a target accuracy of 95% to be reached with up to 3×
lower total communication (see Figure 9), despite the increased per-iteration load from global ag-
gregation. The number of KD iterations k is chosen such that – without data loader shuffling – for
k = 8 on MNIST and k = 6 on 20NG each peer processes its entire local dataset twice, while for
k = 40 on MNIST and k = 30 on 20NG it is seen ten times.

Differentially private training. As observed for 20NG, increasing privatization for MAR-FL on
MNIST (i.e., raising the noise multiplier value σ) eventually degrades training performance (see Fig-
ure 10).

Leveraging approximate aggregation. As illustrated in Figure 11, MAR-FL’s iterative group-
based aggregation mechanism can be tuned to reduce communication while maintaining model util-
ity. For example, with 125 peers, MAR-FL achieves an exact global model average when using
group size 5 and 3 MAR rounds, since 53 = 125 (with group key dimension d = 3). By relaxing
these parameters (e.g., group size 3 and 4 MAR rounds), each iteration yields only approximate
model averages. A well-designed group key update strategy is thus essential to closely approximate
global averaging while minimizing the number of peer interactions per iteration. Over multiple iter-
ations, these approximations converge to near-exact global averages, ensuring no substantial loss in
model utility while significantly lowering communication cost. In our experiments, communication
was reduced by up to 33% when using group size 3 and 4 MAR rounds with 125 peers (group key
dimension d = 4).

12



0 10 20 30 40 50 60 70
Iteration

0%

20%

40%

60%

80%

100%

Te
st

 a
cc

ur
ac

y

Participation rate (pr) &
dropout likelihood (dl)

pr=100%, dl=0%
pr=100%, dl=20%
pr=50%, dl=0%
pr=50%, dl=20%

(a) Model Performance for MAR-FL only (b) Communication Cost

Figure 6: MAR-FL is affected by partial participation but resilient towards sudden dropouts. Plots
show results on MNIST.
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(b) RDFL
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Figure 7: Under partial participation and unreliable clients, FedAvg and our P2P FL baselines exhibit
the same impact on training performance as shown for MAR-FL in Figure 3. Plots show results on
20NG.
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Figure 8: Training performance of MAR-FL under i.i.d. and non-i.i.d. local data splits: performance
on MNIST remains stable, whereas on 20NG non-i.i.d. splits lead to a noticeable degradation.

Figure 9: On MNIST, KD enables MAR-FL to
reach a target accuracy of 95% with substan-
tially lower communication cost (up to 3×).
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in the same performance degradation patterns as
when applying DP to FedAvg. Plot shows re-
sults on MNIST.

13



0 10 20 30 40 50 60 70
Iteration

0%

20%

40%

60%

80%

100%

Te
st

 a
cc

ur
ac

y

MAR group size (gs) &
number of MAR iterations (it)

gs=5, it=3
gs=3, it=4
gs=4, it=3

(a) Model Performance on MNIST (b) Communication Cost on MNIST

0 10 20 30 40 50 60 70 80 90 100 110 120 130
Iteration

0%

10%

20%

30%

40%

50%

60%

Te
st

 a
cc

ur
ac

y

MAR group size (gs) &
number of MAR iterations (it)

gs=5, it=3
gs=3, it=4
gs=4, it=3

(c) Model Performance on 20NG (d) Communication Cost on 20NG

Figure 11: On both ML tasks, appropriately configured approximate aggregation enables MAR-FL
to preserve model utility while further reducing communication costs by up to 33%.
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