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ABSTRACT

Distinguishing between real and AI-generated images presents a timely and signifi-
cant challenge. Despite extensive research in the (semi-)supervised regime, only
recently, zero-shot and few-shot solutions have emerged as promising approaches
to this task: They alleviate the ongoing data maintenance, which quickly becomes
outdated due to advances in generative technologies. We identify two main gaps:
(1) a lack of theoretical grounding for the methods, and (2) significant room for
performance improvements in zero-shot and few-shot regimes. Our approach is
founded on understanding and quantifying the biases inherent in generated con-
tent, where we use these quantities as criteria for characterizing generated images.
Specifically, we explore the biases induced by the implicitly learned manifold of
a pre-trained diffusion model: Through score-function analysis, curvature and
gradient of the probability manifold are approximated in the zero-shot setting -
yielding a scalar criterion for classification. We further extend our contribution to
the few-shot setting by employing a mixture-of-experts methodology. Empirical
results across 20 generative models demonstrate that our method outperforms
current approaches in both zero-shot and few-shot settings. This work advances the
theoretical understanding and practical usage of generated content biases through
the lens of manifold analysis.

1 INTRODUCTION

Recent advancements in generative models, particularly diffusion-based techniques, have resulted in
the creation of synthesized images that are increasingly difficult to distinguish from authentic ones.
This poses significant challenges in content verification, security, and combating disinformation,
driving the demand for reliable mechanisms to detect AI-generated images.

A wide array of contemporary research has focused on this task, employing methods ranging from
standard convolutional neural networks (CNNs) (Wang et al., 2020; Baraheem & Nguyen, 2023;
Epstein et al., 2023; Bird & Lotfi, 2024) to approaches that distinguish hand-crafted and learned
characteristics (Bammey, 2023; Martin-Rodriguez et al., 2023; Zhong et al., 2023; Wang et al.,
2023; Tan et al., 2024; Chen et al., 2024). Despite these efforts, there is a consensus on the
critical importance of generalization to unseen generative techniques in this field (Bontcheva et al.,
2024): These techniques evolve quickly, presenting substantial challenges in maintaining up-to-date
generated datasets, which are crucial for supervised detection methods. Methods that generalize well
to unseen generative techniques alleviate the need for constant data collection and retraining.

Targeted efforts to enhance such generalization have been actively pursued in a specific semi-
supervised setting, where models are trained on one generative technique and evaluated on another
(Ojha et al., 2023; Sha et al., 2023). Notably, these methods still require data consisting of hundreds
of thousands of diverse generated images. In recent months, zero-shot and few-shot techniques have
emerged for this task (Cozzolino et al., 2024; Ricker et al., 2024; He et al., 2024). Zero-shot methods
use pre-trained models to solve tasks they were not trained for without designated (or any additional)
training. Few-shot methods employ a similar tactic but involve minimal data to adapt the pre-trained
model (e.g. incorporating a lightweight classifier). While these methods hold great potential by
eliminating the need for extensive training and data maintenance, there remains significant room for
improvement in terms of operating on a wide array of (unseen) generative techniques. Moreover,
current methods lack theoretical grounding and rely primarily on empirical experimentation - a
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Figure 1: The proposed zero-shot detection pipeline, which circumvents the need for generated data.
An input image x0 is subjected to a pre-trained diffusion model and spherical perturbations. This sets
the stage for our mathematical characterization of x0, resulting in a criterion for the detection task.

surprising gap given the success of generated text detection methods like the widely recognized
Mitchell et al. (2023), which provides theoretical motivation through curvature-based criteria.

This work advances solutions to these gaps. It is grounded in theoretical understanding - capitalizing
on the diffusion model’s implicitly learned probability manifold p to quantify inherent biases of its
generated outputs. Our main hypothesis is that such bias-driven quantities can serve as criteria
to detect generated content. We present novel derivations aimed at quantifying the stability of
output images along the diffusion models’ generation process, yielding a new stability criterion. By
design, these stable points correspond to images the model is biased to produce. We evaluate this
criterion for detecting generated images in both zero-shot and few-shot settings. For our criterion, we
leverage diffusion models’ ability to approximate the score function, expressed as

S = ∇ log p, (1)
to explore novel ways of analyzing the manifold defined by a function surface log p. To this end, we
consider the (hyper) surface curvature H 1

H ∝ ∇ ·
(
∇ log p

|∇ log p|

)
, (2)

see details on this formulation and its relation to the (negative) subgradient of the total-variation
energy in Kimmel et al. (1997); Aubert et al. (2006). Note that unlike S, it is not straightforward
to access H . In this work, we develop mathematically-founded ways to access such properties, and
devise a first-of-its-kind curvature-based zero-shot framework for generated image detection (Fig. 1).
Extended capabilities to the few-shot regime are provided as well.

Key Contributions:

• We establish a theoretical framework by integrating manifold analysis with diffusion model
score functions, introducing a novel, bias-driven criterion for distinguishing real and gener-
ated images. This sets the foundation for further theoretical investigations in the domain.

• We propose the first zero-shot analysis of pre-trained diffusion models for generated image
detection. Remarkably - this analysis demonstrates excellent generalization to unseen
generative techniques.

• Our method demonstrates superior performance over existing approaches in both zero-shot
and few-shot settings, validated through comprehensive experiments on a diverse dataset of
approximately 200,000 images across 20 generative models.

These contributions advance both the theory and application of the detection capabilities in image
generation technologies. To reproduce our results, see our official implementation2.

2 RELATED WORKS

The evolution of detecting AI-generated image technologies has primarily relied on supervised
learning methodologies. The common approach utilizes standard CNNs trained on a mix of real and

1Various high-dimensional curvature definitions exist, this is our choice.
2https://tinyurl.com/zeroshotimplementation
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generated images to distinguish between them, such as Wang et al. (2020); Baraheem & Nguyen
(2023); Epstein et al. (2023); Bird & Lotfi (2024). Building on this, subsequent research by Bammey
(2023); Martin-Rodriguez et al. (2023); Zhong et al. (2023); Wang et al. (2023); Tan et al. (2024);
Chen et al. (2024) advanced these techniques by identifying and integrating key phenomenological
features that enhance the distinction between real and generated images. Yet, these approaches rely on
extensive generated image datasets from various generation techniques, limiting their generalizability
to generated images from unseen generative techniques Ojha et al. (2023).

Recent studies have proposed alternative methods to enhance generalization in detecting images
generated by unseen generative techniques. Those unsupervised and semi-supervised methods Zhang
et al. (2022a;b); Qiao et al. (2024); Cioni et al. (2024) aim to reduce the reliance on extensive
labeled datasets; however, they still rely on access to generative methods during training, leading
to biases towards those generation techniques. Ojha et al. (2023) and Sha et al. (2023) introduced
a notable approach to improving generalizability by using CLIP’s feature space to analyze content
from a limited set of generative techniques, achieving unmatched generalization to unseen methods.
Cozzolino et al. (2024) extends this approach and capitalizes on generalization in the low-data regime.
Using few-shot analysis with pre-trained CLIP, they outperform existing methods.

To eliminate data maintenance and training altogether, zero-shot approaches emerged for generated
image detection. To the best of our knowledge, Ricker et al. (2024) and He et al. (2024) are the
only such methods. The former employed a pre-trained auto-encoder (AE) for out-of-distribution
analysis - a well-established technique, e.g. An & Cho (2015). Pre-trained on real images, the AE is
expected to encode-decode them better than generated images. Therefore, the reconstruction error is
their criterion for detection. He et al. (2024) compares the image representation similarity between
an image and its noise-perturbed counterpart. They offer novel insights into the desired qualities
of pre-trained representations for the detection task. Our proposed detection method is the first
to analyze diffusion models in the zero-shot setting for the detection task, showing unprecedented
generalizability to unseen techniques and outperforming both Ricker et al. (2024) and He et al. (2024)
in terms of operating on a wide array of (unseen) generative techniques.

3 PRELIMINARIES

3.1 DIFFUSION MODEL SETTING

Diffusion models are generative models that produce high-quality samples in various domains. They
operate by an iterative generation process of noise reduction based on a pre-set noise schedule. Let
the data manifold be Ω ⊂ Rd, where d is the data dimensionality, and denote a sample x ∈ Ω. Each
iteration t involves denoising a noised signal xt via a neural network f(xt, t; θ) (θ are the tuneable
weights), subsequently progressing to xt−1. This sequence begins at t = T by sampling a tensor
of iid normally distributed entries i.e. xT ∼ N (0, I), and terminates at x0 ∈ Ω, representing the
final output. In our setting x0 is an image. This generation process is known as reverse diffusion,
where during training, f is optimized to reverse a forward diffusion process, defined using scheduling
parameter αt ∈ R+ ∀t, and noise ϵ ∼ N (0, I) as follows

xt =
√
1− αtx0 +

√
αtϵ. (3)

3.2 SCORE-FUNCTION IN DIFFUSION MODELS

The score-function is defined as ∇ log p(x), where p(x) is the probability of x. Let pαt
(xt) be the

probability of xt considering Equation (3). The founding works of today’s diffusion models Song &
Ermon (2019; 2020); Kadkhodaie & Simoncelli (2021) capitalize on Equation (3), analyzing it from
a score-function perspective based on the following seminal result by Miyasawa et al. (1961)

∇ log pαt(xt) =
1

αt

(√
1− αtEx[x0|xt]− xt

)
, (4)

where Ex[x0|xt] is the Minimum Mean-Squared-Error (MMSE) denoiser of xt. It is replaced with
the output of a denoising model x̂0 = f(xt, t; θ), for which

∇ log pαt(xt) ≈
1

αt

(√
1− αtf(xt, t; θ)− xt

)
. (5)
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Often, f(xt, t; θ) predicts noise, i.e. x̂0 = 1√
1−αt

(
xt −

√
αtf(xt, t; θ)

)
. Finally, replacing

f(xt, t; θ) with the true x0 we have ∇ log pαt
(x) = − 1√

αt
ϵ, i.e. Equation (5) approximates ϵ

up to a known factor. It is straightforward that, despite Ω being a zero-measure of Rd (Ω is assumed
to have a dimension much lower than d), the probability of xt is non-zero on the entire Rd space.

With∇ log p, the generation process can be simulated as Itô’s SDE Ito et al. (1951),

ẋ(τ) = ∇x log p(x(τ)) +
√
2wτ , (6)

where ẋ(τ) is the time derivative of x(τ), and wτ the time derivative of Brownian motion w(τ), i.e.
it injects noise to the process. In Song & Ermon (2019), a generative process that accounts for a pαt

that changes in time was introduced - generalizing Equation (6). With that said, this paper employs a
fixed-point analysis of pαt for a fixed αt. Remark: The commonly used time here is reversed, i.e.
large τ implies small t. The consensus in diffusion models research and this paper is to reliably use t.

4 METHOD

Here we present our mathematical perspective, derivations and practical choices for detection. For
analyzeable and illustrative cases, demonstrating derivations and assumptions - see Figs. 3, 4(b-c).

4.1 KEY QUANTITIES AND CRITERIONS IN OUR FIXED-POINT GEOMETRIC ANALYSIS

In the setting of Sec. 3, a generated sample x0, following Equation (6), is expected to be near a stable
local maximum in the learnt log probability manifold - and x0 to be a point of positive curvature
and low gradient. Conversely, real data points that are unlikely to be generated will not exhibit these
characteristics. Essentially, the learned manifold is expected to be “bumpier” than the actual data
manifold, with generated data appearing as peaks on this bumpy surface. For a graphical illustration
of this idea, refer to Fig. 2. To test x0 for these characteristics, we work in its local neighbourhood.
Let us employ a fixed-point analysis, “freezing” the generative process at a small fixed t. We assume
αt is small enough for pαt to approximate the data distribution and large enough for pαt to be smooth.
Since t is fixed, we use α (without t) from now on. Relying on the smoothness of pα, we can
use log pα to construct a d-manifold embedded in Rd+1 as a parametric hyper-surface of the form
(x, log pα(x)), for which the total-variation curvature of Equation (2) applies.

Denote B0 the local neighbourhood of x0 and ∂B0 as its boundary, and their respective volumes
|B0|, |∂B0|. Let ⟨·, ·⟩, ∥ · ∥2 denote the Euclidean inner product and norm. A gradient criterion

D(x0) :=
1

|∂B0|

∫
∂B0

∥∇ log pα(x)∥2dx, (7)

will be employed, as well as a curvature criterion

κ(x0) :=
−1
|B0|

∫
B0

∇ · ∇ log pα(x)

∥∇ log pα(x)∥2
dx. (8)

Note the minus sign, which ensures that an inward pointing gradient (negative divergence) is associ-
ated with positive curvature, and vice versa. We choose B0 to be the ball

B0 = {x : ∥
√
1− αx0 − x∥2 <

√
dα}. (9)

This B0 is practical: Its spherical boundary ∂B0 (and its close neighbourhood) is highly probable
under pα, and the score function on ∂B0 can be approximated via the diffusion model at a fixed t (
Equation (5))3 4. Additionally, ∂B0 is easily sampled as

x̃ =
√
1− αx0 +

√
αud, (10)

where ud ∼ Unif(Sd−1(
√
d)) - a uniform distribution on the (d− 1)-dimensional sphere centered at

0⃗ with radius
√
d. Clarification: ∇ log pαt(·) can be applied to samples of x̃, yet the score function

will be calculated for a sampled xt, namely Equation (4), Equation (5) still hold, i.e.

∇ log pα(x̃) =
1

α

(√
1− αEx[x0|x̃]− x̃

)
≈ 1

α

(√
1− αf(x̃, t; θ)− x̃

)
:= h(x̃), (11)

3This approximation is the concentration of measure, further reading: Giannopoulos & Milman (2000).
4To ensure x0 ∈ B0 we require 1−

√
1− α <

√
dα∥x0∥2.
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Figure 2: Toy probability surface: Simulation of toy data probability in a two-dimensional space
(d = 2), structured along a one-dimensional manifold (Ω is a curve). (a) The log probability surface
of perturbed samples, considering a uniform probability on the Ω curve. (b) A simulation of the
hypothesis that generative models learn a bumpy version of the manifold: Bumps are randomly
assigned to the manifold and visualized in color on the original surface. (c) The resulting bumpy
surface. (d) Gradient magnitude of the bumpy manifold. (e) Total-variation curvature of the bumpy
manifold. (f) Demonstrates the differential property derived from our analysis, highlighting locally
maximal regions of the bumps which correspond to likely generated data points. We mathematically
establish a way to capture this property through a zero-shot analysis of the diffusion model.

where h(x̃) denotes the diffusion-model approximation of the score function. Notice the relation
between x̃, constructed with α← αt and xt: As d increases, the probability of ∥ϵ∥2 (ϵ of Equation (3))
is concentrated around its mean

√
d, reducing the norm’s stochasticity - making ud and ϵ (and as a

consequence x̃ and xt) interchangeable in high dimension d Laurent & Massart (2000), see Fig. 4. 5

4.2 MATHEMATICAL CLAIMS: ACCESSING KEY QUANTITIES AND CRITERIONS

Claim 1. Given an image x0 and a sample x ∼ x̃|x0, drawn according to Equation (10), we denote
ud(x) =

x−
√
1−αx0√
α

6 and set γ = |∂B0|√
d|B0|

. Then the following relation holds:

−Ex∼x̃|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, γud(x) +∇ log pα(x)⟩ = κ(x0)−D(x0). (12)

This provides a characterization of x0 as a stable maximal point under the backward diffusion process,
Equation (6), quantifying both gradient magnitude (should be low) and curvature (should be high)
aspects.

Proof Outline (full proof in the Appendix D)

First we use Gauss divergence theorem for the curvature term

−|B0|κ(x0) =

∫
B0

∇ · ∇ log pα(x)

∥∇ log pα(x)∥2
dx =

∫
∂B0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, n̂⟩dx, (13)

where n̂ denote the outward-pointing normals to the sphere ∂B0. Using the properties of x̃t|x0,
which is uniformly distributed on ∂B0, we have that Ex∼x̃|x0

(·) = 1
|∂B0|

∫
∂B0

(·). Moreover, by

construction n̂ = x−
√
1−αx0

∥
√
1−αx0−x∥2

= ud(x)√
d
, ∀x ∈ ∂B0. Hence we get

κ(x0) = −
|∂B0|√
d|B0|

Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩. (14)

5Thus, model trained to denoise xt, will perform well for ∇ log pαt(x̃t) in the sense of Equation (5), since
x̃t samples from the highest-probability sub-sphere of p(xt). Infact, in our high-dimensional setting, sampling
xt that is far away from ∂B0 is highly improbable.

6The notation of ud as a function of x, i.e. ud(x), expresses the fact that ud(x), x are constructed as a pair
drawing the same noise. We use this when explicitly formulating expectation as an integral, where it is crucial to
decide on one variable (ud or x) to integrate upon

5
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Figure 3: a) The Local Maxima Region Property. We trained a diffusion model on a 3-modal
Gaussian Mixture Model (GMM) (details in Appendix B). The colormap shows the learned PDF,
with reverse diffusion trajectories overlaid. Starting points (green circles) converge toward local
maxima of the probability, confirming our assumption that the generation process ends near stable
local maxima (red stars). For statistics at scale see Fig. 7 b) Expected Behavior of the Curvature
Criterion κ. We compute κ on two marked circles centered at local maxima and saddle points of a
differentiable analytic function (details in Appendix A). As expected, κ is higher for the local maxima.
c) Error Analysis of κ Estimators. We experiment with both κ values from b), and approximate
them with increasing no. of spherical samples based on (Equation (13)). We average 100 runs and
show std as error bars. Results confirm reliability: 1) The mean remains close to the true value
even with few samples (unbiased estimator). 2) Separation between maxima and saddle points is
maintained, even with as few as 4 samples. d) Consistency and Convergence of κ Estimators. The
standard deviation of κ estimators is plotted against the number of spherical boundary samples in
a log-log plot. Linear regression is applied to quantify the rate of convergence, showing a good fit
with negative regression slopes, confirming exponential convergence. Combined with the empirical
unbiasedness demonstrated in b), this establishes that the κ estimators are empirically consistent.

We then use the same properties of the uniform distribution x̃t|x0, and obtain D(x0) =

Ex∼x̃t|x0
⟨ ∇ log pα(x)
∥∇ log pα(x)∥2

,∇ log pα(x)⟩. Finally - by linearity, and since γ = |∂B0|√
d|B0|

, we have

−Ex∼x̃|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, γau(x)−∇ log pα(x)⟩ = aκ(x0)−D(x0), (15)

where a = 1 for the choice of that γ.
Corollary 2. In the setting of claim 1, we furthermore have the following approximation

−
√
1− α

α
Ex∼x̃t|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, x̂0⟩ ≈ aκ(x0)−D(x0). (16)

Proof Outline (full proof in the Appendix D)

By linearity we decompose the expectation to summands via Equation (11). We have

Ex∼x̃|x0

(
∇ log pα(x)

∥∇ log pα(x)∥2

)
≈ 0, (17)

since integration of normals over the sphere is zero, and ∇ log pα(x) approximates the uniform
spherical noise. Thus, Ex∼x̃|x0

⟨ ∇ log pα(x)
∥∇ log pα(x)∥2

,
√
1− αx0⟩ ≈ 0, since x0 is deterministic. From here,

dividing the (remaining two) summands by α leads to Equation 16, with γa = 1√
α

, and we are done.

Corollary 3. Let b0 represent the statistical bias of predictor x̂0, defined as b0 = x0 −Ex∼x̃|x0
(x̂0).

Transitioning from score-function to the denoising perspective of diffusion models, the summand
which is approximately zero in Corollary 2, given by Ex∼x̃|x0

〈
∇ log pα(x)

∥∇ log pα(x)∥2
, x0

〉
, satisfies

α√
1− α

Ex∼x̃|x0

〈
∇ log pα(x)

∥∇ log pα(x)∥2
, x0

〉
≈ −⟨b0, x0⟩, (18)

see proof in the Appendix. This is yet another quantity, capturing bias towards generating x0, where:

6
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Figure 4: (a) We calibrate a decision threshold based on the mean and standard deviation of 1,000 real
image criteria, ensuring it’s free from generated data influence. Criteria from another dataset’s real
and generated images are also displayed. (b) As a result of ∥ϵ∥ ∼ χ-distribution, as d increases, ϵ
concentrates around a spherical thin shell, with radii

√
d. This demonstrates interchangeable use of xt

and x̃ in high-dimensional space. (c) 2D Visualization of the Concentration of Measure: For each d,
the radii and samples’ are set as the d-dimensional E∥ϵ∥ and var(∥ϵ∥) respectively. Correspondingly,
the radii increases while the variance converges with d, effectively simulating the phenomenon in 2D.

1. This summand equals zero for unbiased noise predictors.

2. If not set to zero, higher values occur when b is (anti-)correlated with x0, indicating a bias in the
(negative) noise prediction towards the clean image. It is intuitive that the noise prediction steers
the iteratively denoised generated image towards its inherent biases - expressed by this summand.

3. In score function analysis settings, the noise predictor is approximated by an MMSE denoiser,
which is unbiased, indeed leading to this summand being zero.

4.3 NUMERICAL FORMULATION AND BEST PRACTICES

Given x0, we approximate the criterion aκ(x0)−D(x0) as expressed in Corr. 2. The implementation,
illustrated in Fig. 1, involves the following steps: 1) Sampling Perturbations: We generate s
spherical perturbations to x0 to produce samples {x̃(i)}si=1 according to Eq. Equation (10). These
perturbations simulate variations around x0 and are crucial for approximating the expectation. 2)
Noise predictions: Feed each perturbed sample x̃(i) to the diffusion model of choice to obtain noise
predictions h(x̃(i)) of Eq. Equation (11). 3) Criterion: Compute:

C(x0) :=

√
1− α

α

1

s

s∑
i=1

〈
−h(x̃(i))

∥h(x̃(i))∥2
, x̂0

〉
≈ aκ(x0)−D(x0),

Practical choices. We map data and noise predictions to CLIP Radford et al. (2021) before calculating
C(x0). When using stable diffusion, this mapping has 2 stages: 1) map from latent space to image
space using stable diffusoin’s decoder, 2) map to CLIP. For threshold calibration we recommend using
real images only to avoid bias to certain generative techniques. We use as threshold the Empirical
mean plus one-standard-deviation - as shown in Fig. 4. x0 is classified as generated if C(x0) exceeds
this threshold, and real otherwise. We can omit

√
1−α
α - it does not depend on x0.

Important take-away: C(x0) approximates manifold-bias criteria. Another surprising perspective
is that it measures similarity between the predictions of noise and data. Nevertheless, this is a result
of our mathematical derivations and is supported hereafter by thorough evidence.

5 EVALUATION

In this section, we empirically validate our hypothesis: Bias-driven quantities can serve as a robust
criterion for detecting generated images. Specifically, we test our mathematically derived criteria for
stable points in the diffusion model’s generation process.

7
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Table 1: Comparison of zero-shot detection methods across various metrics. We report average
AUC, AP, and Accuracy. Additionally, we include a top-10 generative technique performance, where
for each detection method the 10 best-performing cases are selected, and all detection methods are
compared on them. Our method significantly surpasses existing methods.

Model AUC AP Accuracy
RIGID

Top 10 Accuracy
AEROBLADE

Top 10 Accuracy
Ours

Top 10 Accuracy
RIGID 0.439 0.519 0.555 0.666 0.569 0.482
AEROBLADE 0.444 0.492 0.464 0.492 0.565 0.438
Ours 0.835 0.832 0.741 0.678 0.739 0.839

Figure 5: Zero-shot comparison. Plots a.1-a.3 demonstrate the superior AUC performance of our
method across the three main generative technique groups. Error bars represent variability in AUC
between techniques within each group, with our method showing the least variation. Plot b details
AUC per technique, where our method achieves the highest scores in most cases. Although our
criterion originates from a zero-shot analysis of an LDM model, we demonstrate good generalization
to other techniques. Competitors show sensitivity to changes in technique, which hampers their
generalization capabilities (clarified by detailed histograms in the Appendix, Fig. 8).

5.1 EXPERIMENTAL SETTINGS

Datasets. To ensure a diverse representation of the generative techniques, our method is evaluated
across three benchmark datasets within the domain of generated image detection. The CNNSpot
Wang et al. (2020) dataset comprises real and generated images from 20 categories of the LSUN Yu
et al. (2015) dataset, featuring images produced by over ten generative models, primarily GANs. The
Universal Fake Detect Ojha et al. (2023) dataset extends CNNSpot with generated images from
newer models, primarily diffusion models. The GenImage Zhu et al. (2023) dataset features images
produced by commercial generative tools, including Midjourney. In total, our aggregated dataset
consists of 100K of real images and additional 100K images produced from 20 different generation
techniques Karras et al. (2017); Zhu et al. (2017); Karras et al. (2019); Dhariwal & Nichol (2021);
Ramesh et al. (2021); Rombach et al. (2022); Midjourney (2024). For the complete list of generative
models used in our evaluation, see Appendix F.1.

Implementation Details.We used Stable Diffusion 1.4 Rombach et al. (2022) as our diffusion model
and LLaVA 1.5 Liu et al. (2023) for generating text captions required as input by this model. Criterion
hyper-parameters were set as follows: 1) No. of spherical noises s was set to 64; 2) Perturbation
strength α

√
d = 1.28, determining B0 radii and 3) A small scalar δ = 10−8 was added to the

criterion denominator to ensure it is strictly positive. Code and datasets are detailed in Appendix C.

5.2 EMPIRICAL CASES AND RESULTS

To demonstrate the practicality of our method, we compare it against state-of-the-art zero-shot
detection methods and test its effectiveness in a mixture-of-experts (MoE) setting combined with the
leading few-shot technique. Ablation and sensitivity studies are provided as well.
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Figure 6: Few-shot Performance. Left - performance improvement in the MoE setting with
Cozzolino et al. (2024), in a few-shot regime. We report results of MoE with ours vs other zero-shot
methods, and the original Ojha et al. (2023); Cozzolino et al. (2024). Our efficacy proves to be the
best. Right - scatter plot of our criterion and Cozzolino et al. (2024). The decision boundary was
obtained in our MoE setting using SVM. Significant improvement of separability can be observed.

Zero-shot Comparison Across 20 Generation Techniques. In this experiment, we benchmark
our method against two leading zero-shot image detectors: AEROBLADE Ricker et al. (2024)
and RIGID He et al. (2024) under zero-shot settings. AEROBLADE Ricker et al. (2024) uses
the reconstruction error for a given image obtained from a pre-trained variational autoencoder as
the criterion for the detection task. RIGID He et al. (2024) compares the image representation of
the original image and its noise-perturbed counterpart in a pre-trained feature space and uses their
similarity as the detection criterion. Our implementation strictly adheres to the specifications detailed
in their publications, utilizing their publicly available code. All methods used the same calibration set
of 1K real images for threshold calibration and were evaluated with the test set described in Sec. 5.1,
covering 20 diverse generation techniques to assess generalizability. More details in Appendix F.2.

Table 1 presents a comparison of zero-shot detection methods across key performance metrics. The
results show the average score among all generative techniques with our method outperforms existing
methods by a significant margin. Fig. 5 provides an in-depth analysis featuring bar plots that
summarize outcomes across various groups of generative techniques, including GANs, diffusion
models, and commercial tools like Midjourney and DALL-E. This is complemented by a high-
resolution polar plot comparing per-generative technique performance. Note: Table 1 reports on the
balanced test-set of Sec. 5.1. For the per-technique evaluation of Fig. 5 we have re-balanced the
test sets per generative technique, making sure that each technique is evaluated on an equal number
of real and generated images. Our method consistently outperforms AEROBLADE and RIGID
across all groups and in the majority of generative techniques. Our competitors exhibit low AUC in
generative techniques like Glide and CRN due to variations in their criteria across different generative
techniques, as demonstrated in the per-technique histograms provided in the appendix, Fig. 8.

Mixture of Experts with Few-shot Approaches. While zero-shot scenarios often reflect real-
world situations where data is unavailable or not worth managing, some cases may justify handling
small amounts of generated data for significant performance gains. Recently, Cozzolino et al.
(2024) introduced a few-shot detection method leveraging a pre-trained CLIP. They established
new benchmarks for generalization to unseen techniques in data-limited scenarios, reducing data
maintenance costs yet not eliminating it altogether. To prove the applicability of zero-shot methods
in the few-shot regime, we integrate them into a mixture-of-experts (MoE) framework alongside
few-shot approaches, enhancing performance while remaining in the few-shot bounds. Utilizing
an extra small set of examples, we trained a lightweight classifier to combine the outputs from a
zero-shot method and Cozzolino et al. (2024), forging a hybrid approach. In all MoE experiments,
additional 1K labeled samples where used to train the light-weight classifier - these where randomly
selected in an additional train-test split, implemented on the dataset initially used for zero-shot testing.

Several MoE cases where tested, each using a different light-weight classification algorithm. The
random forest classifier excell ed, hence it is used for our quantitative analysis. For visualizing
decision boundaries, we employ an SVM for its smoother and clearer geometric representation.
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Table 2: Sensitivity and ablation analysis results. The table highlights the method’s robustness across
various configurations, including base models, number of perturbations S, spherical noise levels
α (radii=α

√
d), and image corruption techniques. The results show consistent performance with

slight variations, highlighting the method’s robustness. Base settings are: SD v1.4 Model, S = 64,
α = 0.01 (α

√
d = 1.28) and without image corruption.

Exp. Number of Perturbations S (SD v1.4 Model) Level of Spherical Noises α (SD v1.4 Model)
Setting 4 8 16 32 64 α=0.01 α=0.1 α=1
AUC 0.828 0.829 0.8308 0.833 0.835 0.835 0.82 0.815

Exp. Image Corruption Techniques (SD v1.4 Model) Various Base Models
Setting Without Jpeg compression Gaussian blur Sd v1.4 SD v2 base Kandinsky 2.1
AUC 0.835 0.79 0.822 0.835 0.831 0.826

Fig. 6 demonstrates that while all zero-shot methods enhance performance, our method consistently
outperforms others. This also implies that, for users willing to invest in managing a small amount of
data, our method serves as an easy-to-integrate plugin that enhances few-shot frameworks, offering a
flexible trade-off between data availability and performance improvement.

Sensitivity and Ablation Analysis. We conducted evaluations to verify the robustness of our method
across diverse configurations. This section provides key insights from these evaluations with the
main results summarized in Table 2 and further details provided in the Appendix G.2. Various
stable diffusion models. While our method focused on Stable Diffusion v1.4, here we also evaluated
Stable Diffusion v2 Base and Kandinsky 2.1, which differ in size and technique. Results showed
consistent performance with slight AUC decreases. Various no. of perturbations S. We explore
different perturbation No. to assess their impact on the detection performance. The results reveal
that increasing S consistently enhances detection performance, which aligns with our research thesis.
Various spherical noise levels. We varied the spherical noise levels (i.e., radii). These adjustments
resulted in AUC decreases of 1.5% and 2%. Image corruption techniques. In real-world scenarios,
adversaries may use compression or blurring to obscure traces of image generation. To address this,
we evaluated our method under JPEG compression (AUC drop of 3.45%) and Gaussian blur (Kernel
Size = 3, AUC drop of 1.2%), demonstrating its robustness to such techniques.

6 LIMITATIONS

Our theoretical derivations and the resulting quantities are induced by the learned manifold biases
of the analyzed diffusion model. While detection of images generated by this model is expected,
interestingly, our method shows good detection of generations from other generative techniques,
including completely different generative groups (Fig. 5). This cross-technique capability is a notable
main strength, however there is no comprehensive theory to explain it. We hypothesize that different
models, especially those trained on similar datasets, might exhibit similar characteristics within their
probability manifolds and generated images Nalisnick et al. (2018); Kornblith et al. (2019). However,
further research is necessary to substantiate such hypotheses.

7 CONCLUSION

This paper introduces a novel zero-shot framework for detecting AI-generated images, capitalizing on
biases inherent to the implicitly learned manifold of a pre-trained diffusion model. By combining score
function analysis with non-Euclidean manifold geometry, we advance the theoretical understanding
of manifold biases, utilizing this knowledge to quantify discrepancies between real and generated
images. Our main hypothesis - that such bias-driven quantities can effectively detect generated
content - has proven viable: Empirical evaluations confirm that our method outperforms state-of-the-
art zero-shot methods across benchmark datasets. Furthermore, we enhance few-shot performance
without violating the few-shot regime - showing superior performance here as well. This work
establishes a foundation for further research into detection via diffusion-model manifold biases. We
also advocate for broader theoretical and practical investigations into other bias-driven quantities.
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APPENDIX

In this Appendix, we provide additional information relevant to proofs, experimental settings, and
experimental results. This document is presented as follows:

• Reproducibility and Code – links to our code project and dataset, as well as additional
details regarding the implementation of our zero-shot method in our evaluation procedure.

• Full Proofs – detailed steps and justifications of our theoretical findings, which further
support the claims presented in the main paper.

• Experimental Settings Additional Information – description regarding our used dataset
and implementations.

• Experimental Results Additional Information – An extended analysis of the experimental
results from the main manuscript.

A EXPERIMENTAL DETAILS FOR κ ERROR ANALYSIS EXPERIMENTS

In this appendix, we provide the full experimental details to re-produce Fig. 3(b-d) for estimating the
curvature criterion κ using spherical boundary samples. The experiments are designed to validate the
approximation of κ through averaging over the sphere, leveraging the Gauss Divergence Theorem.
The results demonstrate the effectiveness of our method in distinguishing between local maxima and
saddle points of a differentiable analytic function.

We define a two-dimensional differentiable analytic function f : R2 → R, inspired by MATLAB’s
peaks function, which exhibits multiple peaks and valleys. The function is given by:

f(x, y) =
1

C

[
3(1− x)2e−x2−(y+1)2 − 10

(x
5
− x3 − y5

)
e−x2−y2

− 1

3
e−(x+1)2−y2

]
,

where C is a normalization constant ensuring that the integral of f over the domain is 1. Values of f
below a threshold (e.g., 1× 10−5) are set to zero to maintain non-negativity.

We select two circles centered at specific points to evaluate κ. The first circle is centered at a local
maximum (1.2, 0.8), and the second is centered at a saddle point (−0.475,−0.7). Both circles have
a radius of R = 0.5. These points represent distinct features of the function f , allowing us to assess
the sensitivity of κ to curvature differences.

For each circle, the true value of κ is computed using the volume integral of Equation (8). Let BR(c)
denote the circle of radius R centered at c. Numerical integration is performed by summing over the
grid points inside each circle.

We approximate κ using discrete samples along the boundary of each circle, discretizing Equa-
tion (13). The number of boundary samples Nboundary is varied as 2, 4, 8, 16, 32, 64, 128, 256. To
reduce sampling bias, a random angular offset is introduced to the uniformly spaced boundary points
in each run.
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Boundary points are computed as:

(xi, yi) = (xcenter +R cos θi, ycenter +R sin θi),

where θi are the sampled angles. Gradients are interpolated at these boundary points, and the
normalized gradient components are used to compute the dot product with the inward-pointing
normal vector:

nin = − 1

R

(
xi − xcenter
yi − ycenter

)
,(

∇f
∥∇f∥

· nin

)
i

=

(
∂f

∂x

)norm

i

nx,i +

(
∂f

∂y

)norm

i

ny,i.

The approximate κ is then computed as:

κapprox =

Nboundary∑
i=1

(
∇f
∥∇f∥

· nin

)
i

∆s, ∆s =
2πR

Nboundary
.

For each Nboundary, 100 independent runs are performed to compute the mean and standard deviation
of κapprox. Error bars represent the standard deviation.

The results validate the approximation, showing that the mean of κapprox aligns with the true κ,
demonstrating unbiasedness. The variance of κapprox decreases as Nboundary increases, indicating
improved accuracy with more samples. Even with low Nboundary, the estimated κ values for the local
maximum and saddle point are distinctly separated within error margins, supporting the reliability of
the method.

B EXPERIMENTAL DETALS FOR THE LOCAL PROBABILITY MAXIMA
PROPERTY VERIFICATION.

In this section, we present a the experimental details of Fig. 3 (a) to illustrate how generated samples
from a diffusion model tend to converge to stable local maxima on the learned probability manifold.
The learned manifold is approximated using Kernel Density Estimation (KDE) of the generated
samples. Statistics at scale are provided below, Fig. 7.

We constructed a synthetic dataset by sampling from a Gaussian Mixture Model (GMM) in

2D with the following parameters: means =

{(
−5
−5

)
,

(
0
−5

)
,

(
−5
0

)}
., covariances ={(

0.1 0
0 0.1

)
,

(
0.1 0
0 0.1

)
,

(
0.1 0
0 0.1

)}
. and weights =

{
1

3
,
1

3
,
1

3

}
. For the training set we

produce 1000 training data points from the defined GMM.

We trained a diffusion model on this dataset to learn the underlying data distribution. The key
components of the training process we used: T = 100 diffusion steps and define a linear noise
schedule with βt linearly spaced between 1× 10−4 and 0.02. The denoising model is a simple neural
network consisting of fully connected layers with ReLU activation. Standard diffusion model training
is done for nepochs = 1000 epochs, were a a simple MSE loss between predicted and true noise is
used.

We use the trained diffusion model to generate ngen samples = 1000 new samples. For a random subset
of ntrajectories = 5 samples, we record their trajectories during the reverse diffusion process to analyze
their paths towards convergence. Furthermore, to approximate the learned probability manifold, we
apply Kernel Density Estimation (KDE) on the generated samples. In Fig. 4 (a) it is indeed observed
- that the generation trajectories terminate at local maximas

C REPRODUCIBILITY AND CODE

To ensure reproducibility, we provide our code and a detailed description of our computational
environment.
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Figure 7: Termination Analysis of Diffusion Trajectories Near Local Maxima. The plot shows
the fraction of 100 diffusion trajectories terminating near one of the maxima of the Gaussian mixture
model (GMM). A trajectory is considered to terminate near a local maximum if its final point lies
within a Mahalanobis distance of 2.45 from any of the GMM component means, corresponding to
approximately 95% of the mass of a 2D Gaussian. The red dashed line represents the observed
termination-near-maxima fraction (0.94), while the black dashed lines indicate the 95% confidence
interval (0.89 to 0.98), derived via bootstrapping. In the bootstrapping process, the termination
data (binary values indicating whether each of the 100 trajectories terminates near a maximum) was
resampled with replacement 1,000 times to compute the distribution of termination fractions. The
histogram and KDE curve illustrate this bootstrapped distribution. The p-value from a binomial test
(p = 1.528 × 10−37) confirms that the observed termination fraction significantly deviates from
random chance, supporting strong convergence of trajectories toward maxima.
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Code. The implementation of our zero-shot detection method, as well as the train and test sets are
available at the following link: https://tinyurl.com/zeroshotimplementation. To
reproduce our results follow the readme file. Hardware and Programs. All of the experiments were
conducted on the Ubuntu 20.04 Linux operating system, equipped with a Standard NC48ads A100
v4 configuration, featuring 4 virtual GPUs and 440 GB of memory. The experimental code base was
developed in Python 3.8.2, utilizing PyTorch 2.1.2 and the NumPy 1.26.3 package for computational
tasks.

D MATHEMATICAL FULL PROOFS

Claim 1. Given x0, consider Equation (10) , for which samples x ∼ x̃|x0 are drawn uniformly from
the sphere ∂B0, and each x is drawn with a corresponding ud(x) =

x−
√
1−αx0√
α

.7 Then we can use
∇logpα(·), and a tunable parameter γ ∈ R+ to obtain

−Ex∼x̃|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, γud(x) +∇ log pα(x)⟩ = κ(x0)−D(x0). (19)

This provides a characterization of x0 as a stable maximal point under the backward diffusion process,
Equation (6), quantifying both gradient magnitude (should be low) and curvature (should be high)
aspects.

Proof. Let us begin with the curvature term. By Gauss divergence Thm. we have

−|B0|κ(x0) =

∫
B0

∇ · ∇ log pα(x)

∥∇ log pα(x)∥2
dx =

∫
∂B0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, n̂⟩dx, (20)

where n̂ are the outward-pointing normals to the sphere ∂B0. By construction we have n̂ =√
1−αx0−x

∥
√
1−αx0−x∥2

= ud(x)√
d
, ∀x ∈ ∂B0, thus∫

∂B0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, n̂⟩dx =

1√
d

∫
∂B0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩dx. (21)

Using the properties of x̃t|x0, which is uniformly distributed on ∂B0, we have

1√
d

∫
∂B0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩dx =

|∂B0|√
d

Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩, (22)

where |∂B0| denotes the volume of ∂B0. Tracing this back to κ ( Equation (20)) we have

κ(x0) = −
|∂B0|√
d|B0|

Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩. (23)

Let us now analyze the gradient term. We similarly use the properties of the uniform distribution
x̃t|x0, and get

D(x0) =
1

|∂B0|

∫
∂B0

∥∇ log pα(x)∥2dx = Ex∼x̃t|x0
∥∇ log pα(x)∥2. (24)

For convenience, let us plug ∥∇ log pα(x)∥2 = ⟨ ∇ log pα(x)
∥∇ log pα(x)∥2

,∇ log pα(x)⟩ and get

D(x0) = Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,∇ log pα(x)⟩. (25)

Finally, we can obtain any linear combination aκ(x0) + bD(x0) as

7The notation of ud as a function of x, i.e. ud(x), expresses the fact that they are constructed using the same
noise. We use this under the integration sign when expressing explicitly expectations, where it is crucial to
decide on one variable to integrate upon
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aκ(x0) + bD(x0) = a
−|∂B0|√
d|B0|

Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩+ bEx∼x̃t|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,∇ log pα(x)⟩

(26)

= Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, a
−|∂B0|√
d|B0|

ud(x) + b∇ log pα(x)⟩. (27)

Setting b = −1, and tuning γ = |∂B0|√
d|B0|

, we have

−Ex∼x̃|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, γau(x)−∇ log pα(x)⟩ = aκ(x0)−D(x0), (28)

where we can choose a = 1.

Corollary 2. In the setting of claim 1, we furthermore have the following approximation

Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,

√
1− α

α
x̂0⟩ ≈ Ex∼x̃t|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,

1√
α
ud(x) +∇ log pα(x)⟩,

(29)
where we can tune parameter a s.t.

−Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,

√
1− α

α
x̂0⟩ ≈ aκ(x0)−D(x0). (30)

Proof. By Equation (11) we have
√
1− αEx∼x̃|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, x̂0⟩ ≈ Ex∼x̃|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,
√
1− αx0+

√
αud(x)+α∇ log pα(x)⟩

(31)
Notice that

Ex∼x̃|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,
√
1− αx0⟩ = ⟨Ex∼x̃|x0

(
∇ log pα(x)

∥∇ log pα(x)∥2

)
,
√
1− αx0⟩ = 0, (32)

since integration of normals over the sphere is zero, and ∇ log pα(x) approximates the uniform
spherical noise. Thus by linearity of the expectation

Ex∼x̃|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,
√
1− αx0+

√
αud(x)+α∇ log pα(x)⟩ = Ex∼x̃|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,
√
αud(x)+α∇ log pα(x)⟩.

(33)
Tracing back to Equation (31) and dividing by α, we get
√
1− α

α
Ex∼x̃t|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, x̂0⟩ ≈ Ex∼x̃t|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
,

1
√
αt

ud(x) +∇ log pα(x)⟩.

(34)
Finally, similarly to Equation (26), Equation (28), setting a = 1√

αγ
, results with

√
1− α

α
Ex∼x̃t|x0

⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, x̂0⟩ ≈ aκ(x0)−D(x0). (35)

Corollary 3. Let b0 represent the bias of predictor x̂0 in the statistical sense, defined as b0 =
x0 −Ex∼x̃|x0

(x̂0). Transitioning from score-function back to the denoising perspective of diffusion

models, the zeroized summand of Corollary 2, given by Ex∼x̃|x0

〈
∇ log pα(x)

∥∇ log pα(x)∥2
, x0

〉
, can be traced

back to:

Ex∼x̃|x0

〈
∇ log pα(x)

∥∇ log pα(x)∥2
, x0

〉
≈ −⟨b0, x0⟩, (36)

which is yet another quantity that captures bias towards generating x0, where:
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1. This summand is effectively zeroized for unbiased noise predictors.

2. If not zeroized, higher values occur when b is (anti-)correlated with x0, indicating a bias in the
(minus) noise prediction towards the clean image. Since diffusion models denoise pure noise - it is
intuitive that the noise prediction steers the resulting generated image towards its inherent biases -
as is captured by this summand.

3. In score function analysis settings, the noise predictor is approximated by an MMSE denoiser,
which is assumed to be unbiased, indeed leading to the zeroizing of this summand.

Proof.

−Ex∼x̃|x0

〈
∇ log pα(x)

∥∇ log pα(x)∥2
, x0

〉
≈ Ex∼x̃|x0

(⟨x−
√
1− αx̂0, x0⟩)

=
1

α
⟨Ex∼x̃|x0

(
√
1− αx0 + ud −

√
1− αx̂0), x0⟩

=
1

α
⟨
√
1− αx0 +Ex∼x̃|x0

(ud)−
√
1− αEx∼x̃|x0

(x̂0), x0⟩

=

√
1− α

α
⟨x0 + 0−Ex∼x̃|x0

(x̂0), x0⟩

=

√
1− α

α
⟨x0 −Ex∼x̃|x0

(x̂0), x0⟩

=

√
1− α

α
⟨b0, x0⟩

First transition follows Equation (4), Equation (5) and plugs Equation (10). The other transitions use
linearity of the expectation, and the zero mean if the spherical noise ud.

E APPROXIMATION DISCUSSION

Reminder:

D(x0) =
1

|∂B0|

∫
∂B0

∥∇ log pα(x)∥2dx = Ex∼x̃t|x0
∥∇ log pα(x)∥2. (37)

κ(x0) = −
|∂B0|√
d|B0|

Ex∼x̃t|x0
⟨ ∇ log pα(x)

∥∇ log pα(x)∥2
, ud(x)⟩. (38)

∇ log pα(x̃) =
1

α

(√
1− αEx[x0|x̃]− x̃

)
≈ 1

α

(√
1− αf(x̃, t; θ)− x̃

)
:= h(x̃), (39)

C(x0) :=

√
1− α

α

1

s

s∑
i=1

〈
−h(x̃(i))

∥h(x̃(i))∥2
, x̂0

〉
≈ aκ(x0)−D(x0),

F EXPERIMENTAL SETTINGS ADDITIONAL INFORMATION

F.1 DATASETS

As mention in the main manuscript, the evaluation of our proposed method incorporates three
benchmark datasets, namely, CNNSpot Wang et al. (2020), Universal Fake Detect Ojha et al. (2023)
and GenImage Zhu et al. (2023) datasets. In our evaluation, we extracted a subset from each dataset,
containing real images and fake images generated from the following generative models: ProGAN
Karras et al. (2017), StyleGAN Karras et al. (2019), BigGAN Brock et al. (2018),GauGAN Park et al.
(2019), CycleGAN Zhu et al. (2017), StarGAN Choi et al. (2018), Cascaded Refinement Networks
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(CRN) Chen & Koltun (2017), Implicit Maximum Likelihood Estimation (IMLE) Li et al. (2019),
SAN Dai et al. (2019), seeing-dark Chen et al. (2018), deepfake Rossler et al. (2019), Midjourney
Midjourney (2024), Stable Diffusion V1.4 Rombach et al. (2022), Stable Diffusion V1.5 Rombach
et al. (2022), ADM Dhariwal & Nichol (2021), Wukong MindSpore (2024), VQDM Gu et al. (2022),
LDM Rombach et al. (2022) and Glide Nichol et al. (2021). In Figure 5 in the main manuscript, we
divided our dataset into three groups: images generated by GANs (produces by ProGAN, StyleGAN,
StyleGan2, BigGAN, GauGAN, CycleGAN, and CRN models), diffusion models(produces by LDM,
Glide, Stable Diffusion V1.4, Stable Diffusion V1.5 and Guided diffusion models), and commercial
tools (produces by Midjourney, Wukong, VQDM and DALL-E tools). Additionally, for the real
images we used the LSUN, MSCOCO, ImageNet and LAION datasets.

To construct the calibration set for the zero-shot methods, we extracted 1,000 real samples from the
datasets. For the test set, we selected 200,000 samples, ensuring a representative volume from each
generation technique.

F.2 METHODS FOR COMPARISON

We benchmarked our method against two recent and leading image detection zero-shot methods
Ricker et al. (2024); He et al. (2024). These state-of-the-art methods are designed to enhance
generalization by detecting generated images in a zero-shot settings. The implementations closely
follow the specifications outlined in their respective publications. Specifically, we applied Ricker et al.
(2024) directly by employing the code provided in their published paper, selecting the parameters
leading to the highest performance according to their report (such as using the Kandinsky 2.1 model
with the LPIPS similarity metric). Since He et al. (2024) was not available at the time of paper
submission, we carefully reconstructed their implementation based on the details they provided,
applying identical parameters, such as applying the DINO model with perturbation noise level of
0.05 and threshold value of 95%.

In the mixture-of-expert (MoE) experiment we utilized two additional leading image detection
methods Cozzolino et al. (2024); Ojha et al. (2023). These few-shot and semi-supervised methods
are designed to enhance generalization in detecting images created by unseen generative techniques.
The implementations closely follow the specifications outlined in their respective publications.
Specifically, the detection models are trained on images generated by a single model (ProGAN
Karras et al. (2017) from the CNNSpot Wang et al. (2020) dataset) and tested on images from
various other models. In implementing both methods, we initially employed the CLIP embedder
Radford et al. (2021) using the open-source ”clip-vit-large-patch14” model. For Ojha et al. (2023),
we utilized a KNN model with k = 9 and cosine similarity, as this configuration was reported to
achieve the best results in their paper. For Cozzolino et al. (2024), we employed a standard SVM
model Pedregosa et al. (2011). Training of both methods was conducted with 10 different seeds
(1, 5, 9, 16, 17, 24, 43, 54, 59, 65), and the final detection results were averaged to ensure robustness.

G EXPERIMENTAL RESULTS ADDITIONAL INFORMATION

G.1 COMPLEMENTARY RESULTS

In Fig. 8 statistics are gathered from all zero-shot methods to shed light on the variability of the
different criteria (ours, RIGID, and AEROBLADE) across generative techniques. The competitors
exhibit high variability, demonstrating their lack of generalizability. In the main text, under 5 in some
cases the competitors have surprisingly low AUCs . This is due to their criteria being overly sensitive
- as shown in the attached histograms. While in some techniques generated images obtain higher
criteria values compared to real ones (e.g., Wukong), others (e.g., Glide 50) demonstrate a reverse
trend. This makes the setting of a global threshold, such as the proposed 95% percentile of real images
in RIGID, ineffective in some generative techniques it became - reducing their overall AUC. While
incorporating information about the specific generative technique could improve their performance,
it would compromise real-world practicality, and violate the standard testing for generalization to
unseen techniques.
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Ours RIGID AEROBLADE

Figure 8: Histograms of the criterion proposed by our method and the competitors, for all the data as
well as per-generative-technique cases. Even when the competitors exhibit high separability between
real and generated images, they cannot set a global threshold that will capture all techniques - which
is problematic since good generalization to unseen techniques is desired.
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Figure 9: Few-shot MoE. Results of our MoE experiment using different classification algorithms.
All combinations outperform Cozzolino significantly. Our method’s efficacy proves to be the best.

G.2 SENSITIVITY AND ABLATION ANALYSIS ADDITIONAL INFORMATION

Various stable diffusion models. Our approach exploits the implicitly learned probability manifold
of diffusion models to distinguish AI-generated images. While we demonstrated the robustness of
our methodology using the Stable Diffusion v1.4 model, it is critical to verify that our results are
not unduly influenced by specific characteristics of the used model. Consequently, we broadened
our assessment scope to include newer models such as Stable Diffusion v2 Base and Kandinsky
2.1, noting these versions exhibit variations in architecture scale and generative algorithms. The
methodology deployed in these expanded evaluations was the same as our original experiments
(described in Sec. 5.1 of our manuscript), maintaining consistency in the calibration and test sets
employed. This consistent experimental framework ensures that any observed performance variations
are attributable solely to the model differences rather than experimental conditions. Preliminary
findings indicate a modest performance decrement of approximately 2% with both Stable Diffusion
v2 Base and Kandinsky 2.1, suggesting slight variances in generative fidelity and stability across
model versions.

Various classification algorithms for MoE settings. In the main manuscript, we present the results
of our MoE experiment when using a random forest algorithm to combine the results of the methods
used in the MoE. Fig. 9 presents the results when different classification algorithms are used: decision
tree, support-vector-machine (SVM), K-nearest-neighbors (KNN), and logistic regression. All models
were set using the default parameters of the scikit-learn Python library. As can be seen in Fig. 9, our
method’s efficacy proves to be the best regardless of the algorithm used.

Various no. of perturbations S. One of the hyperparameters of our method is the volume of
perturbations. In this experiment, we explore different perturbation sizes to assess their impact on
the detection performance. For consistency, we maintained the same experiment methodologies

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 10: AUC Detection Performance Analysis Across Different Numbers of Perturbations
and Generation Techniques. The number of perturbations shows minimal impact on performance.

as described in Sec. 5.1 of our manuscript, focusing solely on variations in perturbation size. We
tested perturbation sizes of 4, 8, 16, 32, and 64, as implemented in our method. The corresponding
average AUC detection results were 0.828, 0.829, 0.830, 0.833, and 0.835 respectively. The results
reveal a clear trend: increasing S consistently enhances detection performance, which aligns with our
research thesis. These findings reveal a clear trend: as the number of perturbations S increases, so
does the detection performance. This progression supports our research theory since higher volume
of perturbations provide better approximations of the numerical quantities.

Various spherical noise levels. Another hyperparameter in our method involves the levels of spherical
noise, specifically the radii. In this experiment, we systematically adjusted the noise by reducing the
radii, first by a factor of 10 and subsequently by a factor of 100. Additionally, we scaled down the test
set to 16, 000 images for this small-scale study, though the variety of generative techniques assessed
remained constant. These modifications led to performance decreases of 1.5% and 2%, respectively.
These results help us understand the impact of noise adjustments on the robustness of our detection
capabilities.

Robustness to JPEG. In real-world scenarios, images are frequently compressed to JPEG format for
easier storage and transmission. To assess our method’s practicality, we evaluated its performance on
both real and generated JPEG-compressed images. For this small-scale study, we reduced the test set
to 16,000 images, while maintaining the same variety of generative techniques. The results indicated
a modest decrease in accuracy of 3.45%, demonstrating minimal impact on the method’s detection
effectiveness

G.3 RUN-TIME ANALYSIS

We performed a detailed runtime analysis to evaluate the computational efficiency of our method
compared to existing approaches. Using a single A100 GPU, we observed a runtime of 2.1 seconds
per sample with 16 perturbations and 6.9 seconds per sample with 64 perturbations. Importantly,
the 16-perturbation setup can be fully parallelized on a single A100 GPU. A more powerful GPU
would reduce the runtime for 64 perturbations to 2.1 seconds per sample as well. For comparison,
our primary competitor, AEROBLADE, on the same A100 GPU requires 5.4 seconds per sample,
making our method significantly more computationally efficient in terms of runtime.

G.4 DETAILED ZERO-SHOT COMPARISON

Tables 3 shows the entire zero-shot comparison for each detection method, over each detection
technique using the accuracy, area-under-the-curve (AUC) and average precision (AP) metrics.
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Table 3: Performance metrics across different models and methods
Model Accuracy AUC AP

RIGID AEROBLADE Ours RIGID AEROBLADE Ours RIGID AEROBLADE Ours
ADM 0.5144 0.5065 0.5727 0.5715 0.5079 0.6811 0.5635 0.5701 0.6541
BigGan 0.5298 0.5831 0.7756 0.5300 0.5932 0.8575 0.5400 0.6132 0.8680
CRN 0.5000 0.3065 0.7302 0.0945 0.1875 0.8637 0.3202 0.3411 0.8597
CycleGan 0.4640 0.5611 0.7342 0.3760 0.5911 0.9013 0.4119 0.5617 0.9052
DALL-E 0.5071 0.4016 0.7772 0.4951 0.3852 0.8660 0.5152 0.4104 0.8810
GauGan 0.4804 0.5759 0.8794 0.3181 0.6212 0.9770 0.3924 0.6315 0.9792
Glide 100 10 0.4591 0.2939 0.8831 0.0484 0.0588 0.9534 0.3120 0.3142 0.9588
Glide 100 27 0.4594 0.3026 0.8713 0.0662 0.1017 0.9462 0.3139 0.3252 0.9533
Glide 50 27 0.4591 0.3000 0.8843 0.0471 0.0754 0.9588 0.3114 0.3159 0.9625
Guided 0.4803 0.5421 0.7390 0.3513 0.5590 0.8540 0.4135 0.5883 0.8594
IMLE 0.5000 0.3316 0.7311 0.0502 0.2310 0.8699 0.3128 0.3524 0.8763
LDM 100 0.4685 0.4295 0.8232 0.3241 0.4489 0.8781 0.3890 0.4423 0.9096
LDM 200 0.4669 0.4353 0.8268 0.3284 0.4587 0.8758 0.3923 0.4449 0.9081
Midjourney 0.9407 0.4020 0.5545 0.9890 0.3808 0.6278 0.9906 0.4057 0.6086
SAN 0.3746 0.3485 0.6000 0.3516 0.3985 0.6131 0.4359 0.4159 0.5738
SD v1.4 0.8696 0.5264 0.6196 0.9555 0.5747 0.7818 0.9535 0.5403 0.7230
SD v1.5 0.8718 0.5512 0.6300 0.9543 0.6027 0.7955 0.9514 0.5764 0.7339
Stylegan 0.5335 0.6081 0.7045 0.5932 0.6496 0.7225 0.5770 0.6388 0.7649
Stylegan2 0.4705 0.6467 0.6422 0.4641 0.7125 0.7100 0.4565 0.6836 0.7275
ProGan 0.4769 0.5306 0.9032 0.3216 0.5493 0.9689 0.3935 0.5450 0.9738
VDQM 0.5217 0.5282 0.7686 0.4852 0.5486 0.8744 0.5245 0.5939 0.8783
Wukong 0.8777 0.5135 0.6539 0.9471 0.5502 0.7935 0.9552 0.5249 0.7662
Average 0.5557 0.4648 0.7411 0.4392 0.4448 0.8350 0.5194 0.4925 0.8330
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