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ABSTRACT

The progress in deep reinforcement learning research has allowed us to construct
policies that can solve complex problems in high-dimensional MDPs leading to
the creation of AI agents that can strategize and reason solely by interacting with
an environment without any supervision. Yet, the knowledge we have on the un-
derlying structure of the deep neural policy manifold is limited. In this paper, we
discover that there is a strong correlation between the advantage function and the
gradient of the loss targeting directions of instability. By leveraging this intrinsic
correlation, we propose a novel algorithm that can diagnose deep neural policy
decision volatilities when their environment contains instabilities. We provide
theoretical foundations for this intrinsic correlation, and we conduct extensive
empirical analysis in the Arcade Learning Environment with high-dimensional
observations. From algorithmic and architectural changes to natural distributional
shifts and worst-case perturbations, our proposed method can identify and diag-
nose the differences by leveraging the intrinsic correlation. Our analysis reveals
foundational properties of the deep neural policies trained in high-dimensional
MDPs, and our work, while laying the groundwork for reliability, is further a fun-
damental step towards constructing stable and generalizable policies.

1 INTRODUCTION

From algorithmic to architectural advances, deep reinforcement learning research has led to building
policies that can solve tasks purely from high-dimensional observations (Mnih et al., 2015). From
highly complicated board games (Schrittwieser et al., 2020) to foundation models, and with diverse
risk-critical settings from finance to pharmaceuticals, deep reinforcement learning is widely installed
in many different fields (Fawzi et al., 2022; Mankowitz et al., 2023; Krishnamurthy et al., 2024;
Su et al., 2025). On the other hand, while the capabilities of policies have experienced accelerated
growth over the years, the knowledge we have on the functions learnt by deep reinforcement learning
policies and the structure of the deep neural policy loss landscape is strictly limited.

In this direction, a line of research focused on demonstrating volatilities and instabilities of the
models via introducing perceptually indistinguishable perturbations, i.e. adversarial, to the input
(Szegedy et al., 2014; Goodfellow et al., 2015; Madry et al., 2017). Not only do these directions of
instability raise serious concerns on the robustness and stability of deep neural policies, further the
training techniques that are proposed to overcome these problems result in base performance loss
(Gourdeau et al., 2019), generalization issues (Korkmaz, 2023), invariance to ground truth semanti-
cally meaningful changes (Tramèr et al., 2020; Kumano et al., 2024) and computational intractabil-
ity (Bhagoji et al., 2019), while these directions further reveal surprising geometric properties of
the policy loss landscape (Korkmaz & Brown-Cohen, 2023). Thus, it is of crucial importance to
understand the underlying geometry of the deep neural policy manifold, both to develop scientific
understanding of the functions learnt by these policies, and to diagnose and mitigate the risks already
identified. In this paper, we study geometric properties of the directions of instability in the deep
reinforcement learning loss landscape, and how they relate to the advantage function, a fundamen-
tal quantity computed and utilized widely across reinforcement learning algorithms. Investigating
this geometry reveals an intriguing relationship which we develop further to make the following
contributions.
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Contributions. We discover that there is an intrinsic correlation between the negative average of
the advantage function and directions of instability in deep reinforcement learning. We provide
foundational analysis to investigate and characterize the intrinsic correlation. We first theoretically
unravel the discovered phenomenon by providing a mathematically rigorous relationship between
approximate convexity of the negative average advantage and the observed correlation in Section
3. We propose an algorithm to identify the uncertainties within an MDP by leveraging the intrinsic
correlation. We then conduct extensive experiments in the Arcade Learning Environment in Section
4, and our results verify the theoretical analysis and demonstrate that we can diagnose the environ-
ment the policy is in via leveraging this intrinsic correlation. Our work shows that from natural
non-robust directions to adversarial directions the intrinsic correlation gives away the signal of the
presence of instabilities. We further investigate different algorithms and architectural changes and
the intrinsic correlation between negative average advantage and directions of instability. Our anal-
ysis further demonstrates that algorithms that perform better have higher correlation between these
values. Thence, our results reveal a profound and pivotal property of the deep reinforcement learn-
ing manifold that there is a strict connection between performance of a deep neural policy and the
approximate convexity of the negative average advantage.

2 BACKGROUND AND PRELIMINARIES

Preliminaries. A Markov Decision Process is represented as a tuple M = ⟨S,A,P, r, γ, µ0⟩
where S represents the state space, A represents the actions space, r(s, a) : S × A → R is the
reward function in which provides the rewards received when in state s the policy takes action a and
transitions to state ŝ, γ represents the discount factor to prioritize short-term vs long-term rewards
and P(s, a, ŝ) on S × A × S is the transition probability function. The objective in reinforcement
learning is to learn an optimal policy via interacting with an environment ε to maximize the expected
cumulative rewards R = Eat∼π(st,·),st+1∼P(s,a,·)

∑
t γ

tr(st, at) obtained by the policy π(s, a). Q-
learning achieves this objective via iterative Bellman update (Bellman, 1957). Precisely, Q-learning
is

BπQ(s, a) = E[r(s, a)] + γEa∼π(s,·),ŝ∼P(s,a,·) max
â

Q(ŝ, â).

Bπ represents the Bellman operator and V(s) = maxa Q(s, a) determines the value of the state.

Computation of Adversarial Directions. The vulnerabilities of deep neural networks have been
demonstrated in the early work of Szegedy et al. (2014). By adding imperceptible perturbations
computed by a box-constrained optimization to the sample, the authors were able to change the
decision of the model. While this method is computationally draining, later the work of Goodfellow
et al. (2015) proposed the fast gradient sign method via linearizing the cost function at the sample
where the adversarial direction that needs to be computed. Further, this objective has been extended
to an iterative version by Kurakin et al. (2016).

xK+1
adv = clipϵ(x

K
adv + αsign(∇xJ(x

K
adv, y)))

Another natural extension of optimizing this objective was first extended to momentum iterative
Dong et al. (2018), and later is computed via Nesterov Momentum proposed in Ezgi (2020) in deep
reinforcement learning

vt+1 = µ · vt +
∇sadvJ(s

t
adv + µ · vt, a)

∥∇sadvJ(s
t
adv + µ · vt, a)∥1

and st+1
adv = stadv + α · vt+1

∥vt+1∥2
where µ is the decaying factor. Another line of adversarial direction computation is focused on
computing the minimum distance to a decision boundary where the optimal decision of the policy
is not executed under the adversarial direction. In particular, Carlini & Wagner (2017) formulation
targets to optimize the objective

min
x∈X

c · J(xadv) + ∥x− xadv∥22

The elastic-net regularization (i.e. ENR) is the same objective of the Carlini & Wagner (2017)
formulation with the ℓ1-norm regularized version (Chen et al., 2018).

min
x∈X

c · J(xadv) + κ1 ∥x− xadv∥1 + κ2 ∥x− xadv∥22
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Issues with Robustness and Functional Instabilities of Deep Reinforcement Learning. Early
studies in the adversarial view demonstrated that deep neural policies are vulnerable to impercepti-
ble perturbations introduced to their input (Huang et al., 2017) computed via the fast gradient sign
method Goodfellow et al. (2015). Following this line of work several studies proposed further op-
timization techniques to compute these adversarial directions (e.g. Nesterov Momentum). Further
studies demonstrated via the Carlini & Wagner (2017) and ENR formulation (Chen et al., 2018) that
deep reinforcement learning policies learn adversarial features that can be shared across MDPs and
across algorithms including certified robust trained policies (Ezgi, 2022). To address these volatility
issues of deep neural policies a large body of work focused on techniques to obtain robustness. In
particular, Pinto et al. (2017); Gleave et al. (2020) proposed to model this interaction as zero-sum
Markov game and jointly train the policy in the presence of an adversary. Yet, recent work demon-
strated certain geometric properties of the deep neural policy landscape Korkmaz & Brown-Cohen
(2023), and revealed that adversarial training has manifold issues from generalization problems
(Korkmaz, 2023) to black-box adversarial attacks (Korkmaz, 2024), particularly demonstrating that
robust trained deep reinforcement learning policies do not have the same level of generalization
skills as the vanilla trained ones (Korkmaz, 2023).

3 THE INTRINSIC CORRELATION OF AVERAGE NEGATIVE ADVANTAGE AND
DIRECTIONS OF INSTABILITY ON THE DEEP NEURAL POLICY MANIFOLD

Analyzing the functional properties and instabilities of reinforcement has long been the center of
discussion (Schmidhuber, 1991; Tesauro, 1992; Singh & Dayan, 1996). In this section we will
provide the theoretical analysis of the functional properties of the deep neural policy manifold. The
first key quantity in our analysis is the loss J used to identify directions of instability on the deep
neural policy manifold. Given a state-action value function Q(s, a) in state s the argmax policy
takes the action a∗(s) = argmaxa∈A Q(s, a). The softmax policy πQ(s, a) is given by the softmax
function of the Q-values for each action in state s i.e. πQ(s, a) =

expQ(s,a)∑
a′∈A expQ(s,a′) .

Definition 3.1 (Directions of Instability Loss). The instability loss between states s and ŝ is given
by the cross-entropy between the argmax policy in state ŝ and the softmax policy in state s,

J (s, ŝ) = − log πQ(s, argmax
a∈A

Q(ŝ, a))

Intuitively J (s, ŝ) is a smooth measure of how far the policy in state s has deviated from the softmax
policy in state ŝ. Observe that since Q(s, a) is differentiable with respect to s then so is J . Thus, the
gradient ∇sJ (s, ŝ)|s=ŝ corresponds to the direction along which the policy most rapidly deviates
from the argmax policy in state ŝ. The second quantity we study is the gap between the maximum
Q-value and the average Q-value in each state s.
Definition 3.2 (Average Advantage Value). The gap between the maximum and average Q-value is
called the average advantage value and represented by Ω(s, ŝ)

Ω(s, ŝ) = Q(s, argmax
a∈A

Q(ŝ, a))− Ea∼AQ(s, a)

Thus, the gap between the Q-value of the optimal action in state s and the average action in state s is
given by the evaluation of Ω(s, ŝ) with ŝ = s (i.e. Ω(s, s)). As before, since Q(s, a) is differentiable
with respect to s, then so is Ω(s, ŝ). In this section we provide a geometric explanation on how and
why there could be a correlation between average advantage value, i.e. Ω(s, s), and directions of
instabilities, i.e. the norm of the gradient of the softmax cross entropy loss ∥∇sJ (s, ŝ)|s=ŝ∥.

Proposition 3.3 (Directions of Instability). Let πQ(s, a) =
expQ(s,a)∑

a′∈A expQ(s,a′) be the softmax policy
defined by Q. Let a∗(ŝ) = argmaxa∈A Q(ŝ, a). Then the gradient of the cross-entropy loss J (s, ŝ)
is given by ∇sJ (s, ŝ)|s=ŝ = Ea∼πQ(ŝ,a)[∇sQ(s, a)|s=ŝ]−∇sQ(s, a∗(ŝ)|s=ŝ]

Hence, the proximity of the directions of the instability on the deep neural policy manifold
−∇sJ (s, ŝ)|s=ŝ to the gradient of the advantage function ∇sΩ(s, ŝ)|s=ŝ provides the connection
between −∇sJ (s, ŝ)|s=ŝ, ∇sΩ(s, ŝ)|s=ŝ and the softmax policy πQ(s, a) (see proof in A.1).
Lemma 3.4 (Proximity of Gradient of Average Advantage to Directions of Instability). Let ϵ > 0
and suppose that

∑
a∈A|πQ(ŝ, a)− 1

|A| | < ϵ. Then

∥−∇sJ (s, ŝ)|s=ŝ −∇sΩ(s, ŝ)|s=ŝ∥ < ϵmax
a∈A

∥∇sQ(s, a)|s=ŝ∥ .
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Proof. By Proposition 3.3,

∇sJ (s, ŝ)|s=ŝ = Ea∼πQ(ŝ,a)[∇sQ(s, a)|s=ŝ]−∇sQ(s, argmax
a∈A

Q(s, a))|s=ŝ.

Next, the gradient of Ω is given by

∇sΩ(s, ŝ)|s=ŝ = ∇sQ(s, argmax
a∈A

Q(ŝ, a))|s=ŝ −
1

|A|
∑
a∈A

∇sQ(s, a)|s=ŝ

Combining the above two formulas yields

∥−∇sJ (s, ŝ)|s=ŝ −∇sΩ(s, ŝ)|s=ŝ∥ =

∥∥∥∥∥∑
a∈A

(πQ(ŝ, a)−
1

|A|
)∇sQ(s, a)|s=ŝ

∥∥∥∥∥
≤

∑
a∈A

∥∥∥∥πQ(ŝ, a)−
1

|A|
∇sQ(s, a)|s=ŝ

∥∥∥∥ ≤
∑
a∈A

|πQ(ŝ, a)−
1

|A|
| ·max

a∈A
∥∇sQ(s, a)|s=ŝ∥

≤ ϵ ∥∇sQ(s, a)|s=ŝ∥

Thus, Lemma 3.4 shows that a correlation between ∥∇sJ (s, ŝ)|s=ŝ∥ and Ω(s, s) is in fact a cor-
relation between ∥∇sΩ(s, ŝ)|s=ŝ∥ and Ω(s, s). Next we show that this correlation can be entirely
explained by Ω(s, ŝ) being a convex function of s. In particular, along every curve of steepest ascent
for a strictly convex function Ψ, the value of ∥∇Ψ∥ is increasing.
Theorem 3.5 (Gradient Correlation from Convexity). Let Ψ : Rn → R be strictly convex with
Lipschitz continuous gradients, s0 ∈ Rn, and ζ > 0. Let the curve s : [0, ζ] → Rn be the (unique)
solution of s′(ξ) = ∇Ψ(s(ξ)) and s(0) = s0. Then for all ξ1, ξ2 ∈ [0, ζ] with ξ1 < ξ2 we have
∥∇Ψ(s(ξ1))∥ < ∥∇Ψ(s(ξ2))∥ .
Proof. Note that Lipschitz continuity of ∇Ψ implies that the differential equation with boundary
data s(0) = s0 defining s(ξ) has a unique solution. The multivariate chain rule implies that

d

dξ
∥∇Ψ(s(ξ))∥2 = 2∇Ψ(s(ξ))⊤

(
∇2Ψ(s(ξ))

)
s′(ξ). (1)

Applying the fundamental theorem of calculus, followed by (1) yields

∥∇Ψ(s(ξ2))∥2 − ∥∇Ψ(s(ξ1))∥2 =

∫ ξ2

ξ1

d

dξ
∥∇Ψ(s(ξ))∥2 dξ

=

∫ ξ2

ξ1

2 · ∇Ψ(s(ξ))⊤
(
∇2Ψ(s(ξ))

)
s′(ξ)dξ =

∫ ξ2

ξ1

2 · ∇Ψ(s(ξ))⊤
(
∇2Ψ(s(ξ))

)
∇Ψ(s(ξ))dξ

where the final equality used the fact that s(ξ) satisfies s′(ξ) = ∇Ψ(s(ξ)). Next, the strict convexity
of Ψ implies that ∇2Ψ is positive definite. Hence, 2·∇Ψ(s(ξ))⊤

(
∇2Ψ(s(ξ))

)
∇Ψ(s(ξ)) > 0. Thus

we conclude that

∥∇Ψ(s(ξ2))∥2 − ∥∇Ψ(s(ξ1))∥2 =

∫ ξ2

ξ1

2 · ∇Ψ(s(ξ))⊤
(
∇2Ψ(s(ξ))

)
∇Ψ(s(ξ))dξ > 0

which implies that ∥∇Ψ(s(ξ1))∥ < ∥∇Ψ(s(ξ2))∥ as desired.

Deep reinforcement learning learns approximately-convex polices in high-dimensional MDPs.

Theorem 3.5 shows that the observed intrinsic correlation is a direct consequence of the convex-
ity of Ω(s, ŝ). At first this result might seem quite surprising and counterintuitive; however, a
closer examination of the training dynamics and the underlying design paradigms of deep reinforce-
ment learning algorithms and its optimization reveals a clear underlying rationale: starting from
utilization of ReLU’s (Glorot et al., 2011) to network preferences (Goodfellow et al., 2012) all are
specifically tuned to operate predominantly within their non-saturating regimes. Theorem 3.5 shows
that along every curve of steepest ascent for Ω(s, s), the norm of the gradient of Ω(s, s) will in-
crease. To gain further intuition on the approximate convexity of the average advantage with respect
to s, consider two states s, s′ ∈ S with the same optimal action a∗ = argmaxa∈A Q(s, a) =
argmaxa∈A Q(s′, a). For Z ∈ [0, 1], let sZ = (1−Z)s+ Zs′ be the linear interpolation between
s and s′. While s, s′ are valid state observations of the MDP, the intermediate interpolated states
sZ are instead an unnatural, physically unrealizable convex combination of two valid states. The
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Q-function has been trained to have a gap between the value of a∗ and the other actions in states
both s and s′, while the interpolated unnatural states sZ have uncertainty on the advantage of a∗.
Therefore, the average gap Ω(sZ , s) between the Q-value of a∗ and the average Q-value decreases
from Ω(s, s) as Z moves away from 0, before later increasing until it reaches the value Ω(s′, s) when
Z = 1. That is, along the interpolation between s and s′, the value of Ω(sZ , s) is below the straight
line connecting Ω(s, s) and Ω(s′, s) i.e. Ω((1−Z)s+Zs′, s) ≤ (1−Z)Ω(s, s)+ZΩ(s′, s). That
is, Ω is convex on the line between s and s′. More generally, given any set of k states s1, s2, . . . sk
in n > k dimensions, the convexity of Ω holds over the simplex defined by the k states, because
any convex combination of the si will on average cause the Q-function to be more uncertain and
hence have a lower value for the average gap Ω. Regarding this, Section 4.3 and Section 4.4 report
results on how the intrinsic correlation of average advantage and directions of instability decreases
in unnatural states from adversarial to distributional shift, and now we will prove a stronger result
on convexity of Ω in high-dimensional state spaces. To do so we first need the following theorem
regarding extensions of convex functions.

Theorem 3.6 (Convex Extensions (Yan, 2014)). Let X be a compact convex subset of Rn, and
F : Rn → R a twice continuously differentiable function with positive definite Hessian on X . Then
F can be extended to a twice continuously differentiable function with positive definite Hessian on
all of Rn.
Leveraging this result, we show that convexity of Ω on a simplex of states, which as described above
is a result of training, implies that Ω can be extended to a convex function on the entire state space.

Theorem 3.7 (Strict Convexity of Negative Average Advantage). Let Sπ be a finite sequence of states
by the greedy policy π with respect to state-action value function Q in an MDP M . Assume that
the state space S has dimension n ≥ |Sπ|, and that Ω(s, ŝ) is a twice continuously differentiable
function of s and strictly convex on the simplex conv(Sπ). Then Ω can be extended to a strictly
convex function on the entire state space.
The proof of Theorem 3.7 is provided in the supplementary material. Intuitively, Theorem 3.7 states
that if we take a trajectory of states in a high-dimensional state-space MDP, then assuming that
Ω is strictly convex on the convex hull of the trajectory of states implies that Ω can be extended
to a convex function on the whole state space. The approximate convexity of Ω likely arises as a
byproduct of training, where actual valid state observations show a clear gap in the advantage of a∗
over the average action, while intermediate interpolated states are likely to lack this property.

Therefore, by Theorem 3.7 the values of Ω
at the observed states in the trajectory are
equal to the values of a strictly convex func-
tion which extends Ω to the entire state-
space. Theorem 3.5 predict Ω(s, s) and
∥∇sΩ(s, ŝ)|s=ŝ∥ to be positively correlated.
These predictions further are confirmed in
Section 4 in the experimental analysis. We
further propose an algorithm described in
Algorithm 1 to identify and diagnose the en-
vironment by leveraging this intrinsic cor-
relation. We further investigate how we
can identify adversarial disturbances, dis-
tributional shifts and even algorithmic dif-
ferences via intrinsic correlations in Section
4.3 and Section 4.4.

Algorithm 1 DIAL-AC: Diagnosing Deep Neural Pol-
icy Manifold via Intrinsic Correlations by Leveraging
Approximate Convexity

Input: State action value function Q(s, a), expected
value µ and standard deviation σ of Spearman corre-
lation from unperturbed trajectory, and tolerance k.
for t = 1 to T do

Set Gt = ∥∇sJ (s, st)|s=st∥ and Ωt = Ω(st, st)
Compute next action at = argmaxa∈A Q(st, a).
Observe next state st+1 ∼ P(st, at, ·)

end for
Compute ρspearman of {(Ωt,Gt)}Tt=1.
Return: “Perturbation present” if |ρspearman − µ| >
k · σ.

4 EXPERIMENTAL ANALYSIS

The empirical analysis in this section verifies the theoretical analysis provided in Section 3. First,
there is positive correlation between Ω(s, ŝ) and ∇sJ (s, ŝ), lending support to the claim that Ω(s, ŝ)
is approximately convex as a function of s. Second, for trajectories of states that have been per-
turbed, either adversarially or by semantically meaningful perturbations to observations, the posi-
tive correlation is lower. This further confirms the theoretical arguments in Section 3, where it is
predicted that the approximate convexity of Ω should be stronger at valid states that are similar to
those seen in the training distribution than at perturbed states. The deep reinforcement learning
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TimePilot BankHeist JamesBond

Riverraid RoadRunner Seaquest

Figure 1: ∥∇sJ (s, ŝ)∥2 and Ω(s, ŝ) values with base state observations. Results are reported with
double y-axis bar graph with colors of the axis represent the same color matching the bars.

policies are trained via double Q-learning proposed in van Hasselt (2010) and later implemented in
van Hasselt et al. (2016) with dueling architecture (Wang et al., 2016) in high-dimensional MDPs.
For the results reported in Section 4.1 several policies additionally are trained with the prioritized
algorithm (Schaul et al., 2016). Adversarial directions are computed via the C&W formulation,
ENR and Nesterov momentum. The hyperparameters for C&W are learning rate 0.01, maximum
iteration 1000, initial constant 10 and for Nesterov momentum iteration is 100. Note that we used
the exact hyperparameter settings for the adversarial directions to be able to provide consistent and
transparent results. The policy-independent non-robust directions are computed via DCT, B&C and
blur and hyperparameters were set to the exact same values as in the prior work (Korkmaz, 2024) to
provide transparent and consistent comparisons.

Our empirical results will use two
standard metrics to measure non-
linear correlations between vari-
ables: Spearman and Kendall’s tau.
Spearman correlation for a sample
of n pairs {(Xi, Yi)}ni=1 is com-
puted by first calculating the ranks
R(Xi) and R(Yi), where R assign
the numerical rank {1, 2, . . . n} of
the ranking of the Xi variables from
smallest to largest (and similarly for
the Yi variables).

Table 1: Spearman, Kendall’s τ and Pearson correlations be-
tween Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2 with base state observations
for JamesBond, Riverraid, TimePilot, Seaquest, BankHeist
and RoadRunner.

MDPs Base Spearman Base Kendall’s τ Base Pearson

JamesBond 0.80887±0.01370 0.61751±0.01242 0.73822±0.01812
Riverraid 0.75758±0.00544 0.55706±0.00348 0.19795±0.01407
RoadRunner 0.66325±0.01640 0.46928±0.01421 0.40010±0.00854
BankHeist 0.81963±0.01104 0.62919±0.00990 0.53146±0.00047
Seaquest 0.63826±0.00540 0.45793±0.00505 0.56361±0.02136
TimePilot 0.94431±0.00357 0.81207±0.00830 0.86280±0.00973

Then the Spearman correlation is given by calculating the standard Pearson correlation of the rank
variables ρR(X),R(Y ) =

Cov(R(X),R(Y ))
σR(X)σR(Y )

. Hence a perfectly montone function Y = f(X) will have
Spearman correlation equal to 1.0. To define Kendall’s tau let C denote the number of pairs of
samples (Xi, Yi), (Xj , Yj) where either Xi > Xj and Yi > Yj or Xi < Xj and Yi < Yj . Let D
denote the number of remaining pairs, that do not satisfy the above property. Kendall’s tau is given
by τ(X,Y ) = C−D

n(n−1)/2 . In particular, the numerator is the number of pairs where both coordinates
are consistently ordered, minus the number of pairs inconsistently ordered, and the denominator is
the total number of pairs. As with Spearman correlation, a perfectly monotone function f(X,Y )
will have τ(X,Y ) = 1. Table 1 reports the Spearman, Pearson and Kendall’s τ results of the
intrinsic correlation. These results verify the theoretical analysis provided in Section 3. Beyond
the analytical probing of the deep neural policy landscape, a more intuitive understanding of neural
processing can be gained by examining responses to visual illusions. This approach serves as a
canonical approach in neuroscientific research (Hubel & Wiesel, 1962; Grunewald & Lankheet,
1996; Westheimer, 2008), enabling the anatomical diagnosis of processing irregularities to specific
brain regions, i.e. neuro-anatomical loci, from parahippocampal cortex to cortical areas (Axelrod
et al., 2017; Seymour et al., 2018). Our approach, predicated on analyzing directions of instability,
draws a conceptual parallel to the neurobiological processing of visual illusionary stimuli and our
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Figure 2: Heatmap results of the ∥∇sJ (s, ŝ)∥2 and Ω(s, ŝ) values with base state observations in
TimePilot, JamesBond and BankHeist.

Figure 3: Positive Correlation: ∆(s) reported with base state observations in high-dimensional state
representation MDPs including BankHeist, TimePilot and JamesBond.
Table 2: Architectural differences and the Spearman, Pearson and Kendall’s τ correlations between
Ω(s, ŝ) and E[∥∇sJ (s, ŝ)∥2] with base state observations.

Environment RoadRunner BankHeist

Architecture Prior Duel Prior Duel

Spearman 0.57537±0.048449 0.66325±0.016404 0.61924±0.011326 0.81963±0.0110428
Kendall’s τ 0.40126±0.037366 0.46928±0.014211 0.42684±0.008932 0.62919±0.0099065
Pearson 0.25306±0.036695 0.40010±0.008546 0.42745±0.022079 0.53146±0.0004740

results reveal the capabilities of our method on not only the identification of the adversarial changes
but further diagnosis of algorithmic and architectural differences.

4.1 ARCHITECTURAL AND ALGORITHMIC DIFFERENCES AND CORRELATIONS

In this section we investigate how the intrinsic correlation between directions of instability and the
average advantage changes under architectural and algorithmic differences. In particular, Table 2
reports the correlation results with architectural differences between dueling and prior architecture,
and the results demonstrate that the dueling architecture has higher correlation. This outcome is quite
crucial because human normalized median score achieved by the dueling architecture is 172.1%
and human normalized median score obtained by prior architecture is 123.7% (Wang et al., 2016).
Thus, these results further solidify that the algorithms that perform better have higher correlation
between Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2. The results reported in Table 2 demonstrate that our proposed
algorithm DIAL-AC can in fact identify how algorithmic and architectural changes affect these
intrinsic correlations on the deep neural policy manifold. Hence, the results in this section reveal
that the approximate convexity of the advantage function is in fact higher for the algorithms that
perform better, and consequently, DIAL-AC results show that the degree of approximate convexity
in a function approximator represents a key property that can be targeted through architectural or
algorithmic modifications to enhance the performance of reinforcement learning algorithms.

4.2 THE INTRINSIC CORRELATION OF ADVANTAGE AND DIRECTIONS OF INSTABILITY

Our objective is to leverage the intrinsic geometry of the deep neural policy manifold to diagnose
and understand the reinforcement learning policy. Figure 1 reports Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2 val-
ues for Riverraid, RoadRunner, Seaquest, TimePilot, JamesBond and BankHeist with base state
observations. While with these results it is possible to recognize the qualitative correlation between
Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2, we further report in Table 1 the Spearman, Pearson and Kendall’s τ
correlations between these values. Figure 2 visualizes the kernel density estimation of points with
xy-coordinates given by ∥∇sJ (s, ŝ)∥2, Ω(s, ŝ) providing an alternative visualization of the corre-
lation between these two quantities. To give an alternative view on the correlation, we sort the states
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Table 3: Spearman and Kendall’s τ correlations of Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2 with base observations
and in the existence of adversarial directions computed via C&W, ENR and Nesterov Momentum.

Correlations JamesBond Riverraid RoadRunner

Base Spearman 0.8088733±0.013700 0.7575881±0.005440 0.663257±0.016404
ElasticNet (ENR) Spearman 0.7404537±0.007845 0.7312598±0.007944 0.360172±0.0161319
Nesterov Momentum Spearman 0.737131±0.005016 0.618266±0.0332335 0.507291±0.0103992
Carlini and Wagner Spearman 0.7774369±0.0034135 0.5979524±0.019333 0.359959±0.0443513

Base Kendall’s τ 0.61751±0.012425 0.557067±0.003489 0.469280±0.014211
ElasticNet (ENR) Kendall’s τ 0.5518718±0.007701 0.5276511±0.006757 0.246347±0.010676
Nesterov Momentum Kendall’s τ 0.548718±0.0055495 0.509211±0.028019 0.325897±0.020279
Carlini and Wagner Kendall’s τ 0.5897872±0.005087 0.4256483±0.014264 0.244640±0.030973

Correlations BankHeist Seaquest TimePilot

Base Spearman 0.8196393±0.0110428 0.6382674±0.0054034 0.9443157±0.003573
ElasticNet (ENR) Spearman 0.6285715±0.02395142 0.5775322±0.0091588 0.9294928±0.008797
Nesterov Momentum Spearman 0.6565451±0.03250028 0.5542451±0.0126013 0.9060342±0.0140901
Carlini and Wagner Spearman 0.373751±0.0038957 0.4573776±0.0092046 0.7290117±0.006987

Base Kendall’s τ 0.629199±0.0099065 0.4579388±0.005053 0.8120791±0.0083035
ElasticNet (ENR) Kendall’s τ 0.4532070±0.01841255 0.4118854±0.0063908 0.7887973±0.0126924
Nesterov Momentum Kendall’s τ 0.4642903±0.03478681 0.382152±0.0087899 0.7507642±0.0185963
Carlini and Wagner Kendall’s τ 0.2994147±0.0393197 0.3155310±0.0054738 0.5567044±0.006622

s in increasing by the magnitude of ∥∇sJ (s, ŝ)∥2. We then use the notation ∆(s) for s = 1, 2, . . .
to indicate the value of Ω(s, s) on the 1st,2nd,... state in this sorted order. Figure 3 shows the values
of ∆(s) as s ranges over a trajectory of states sorted by increasing ∥∇sJ (s, ŝ)∥2, giving additional
clear report of a positive correlation.

4.3 THE INTRINSIC CORRELATIONS UNDER ADVERSARIAL PERTURBATIONS

In this section, we investigate how the intrinsic correlation between directions of instability and
the average advantage function changes under adversarial attacks. In particular, Table 3 gives the
Spearman correlation and Kendall’s tau results for adversarially perturbed states alongside base, i.e.
unperturbed, states. These results once more verify the theoretical predictions in Section 3, where
the average advantage function exhibits stronger approximate convexity at the base state observa-
tions compared to perturbed state observations. As a result, the correlation between Ω(s, ŝ) and
∥∇sJ (s, ŝ)∥ is expected to be lower for perturbed states than for base states. The clear differences
in the correlation between trajectories of base states and trajectories containing perturbations allow
for the detection of changes in the environment. In particular, Algorithm 1 can be used to detect
when a change in the environment has occurred, and the results in Table 3 demonstrate that not
only we can identify that there is an adversarial perturbation present, we can further even confirm
the type of the adversarial attack by our proposed algorithm DIAL-AC. In particular, DIAL-AC
precisely identifies the impact of C&W on the intrinsic correlation in contrast to the EAD attack.

4.4 APPROXIMATE CONVEXITY UNDER DISTRIBUTIONAL SHIFT: IMPERCEPTIBLE
NATURAL NON-ROBUST PERTURBATIONS

In this section, we further investigate how correlations change under imperceptible distributional
shift, i.e. natural non-robust directions. In particular, Table 4 reports Spearman and Kendall’s
τ correlation results under policy-independent non-robust directions computed via DCT, B&C
and blur. The policy-independent non-robust directions are computed within perceptual similar-
ity bound to ensure that these non-robust directions are as invisible as adversarial directions to the
human perception. These imperceptible distributional shifts recently have been shown to break the
certified robust defences in deep reinforcement learning. In particular, the perceptual similarity
Φsimilarity(s, ŝ) is computed via Φsimilarity(s, ŝ) =

∑
l

1
HlWl

∑
h,w∥wl ⊙ (ŷlshw − ŷlξ(s)hw)∥

2
2 where

Wl, Hl, and Cl is the width, height and number of channels in the convolutional layers respec-
tively and ŷls, ŷ

l
Ψ(s) ∈ RWl×Hl×Cl is the vector of the unit normalized activations. Figure 4 reports

the values of Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2 under different policy-independent non-robust directions.
These results once more demonstrate that from adversarial attacks to distributional shift our pro-
posed algorithm DIAL-AC can identify and diagnose the environment the reinforcement learning

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

BankHeist JamesBond RoadRunner

RoadRunner BankHeist Riverraid

Figure 4: Scatter plots of Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2 with base states and in the existence of imper-
ceptible natural, i.e. policy-independent non-robust, directions computed via B&C, Blur and DCT.
Table 4: Spearman and Kendall’s τ correlations between Ω(s, ŝ) and ∥∇sJ (s, ŝ)∥2 with base state
observations and in the existence of policy-independent (i.e. semantically meaningful) non-robust
directions computed via DCT, B&C, Blur.

Correlations JamesBond Riverraid RoadRunner

Base Spearman 0.808873±0.013700 0.757588±0.005440 0.66325±0.016404
Blur Spearman 0.739044±0.006811 0.677357±0.017423 0.498806±0.039418
B&C Spearman 0.711883±0.007793 0.670667±0.023612 0.384988±0.024496
DCT Spearman 0.595459±0.066479 0.639586±0.012965 0.322124±0.104422

Base Kendall’s τ 0.6175157±0.012425 0.557067±0.003489 0.469280±0.014211
Blur Kendall’s τ 0.545957±0.007139 0.507149±0.027933 0.340502±0.024998
B&C Kendall’s τ 0.522245±0.0071492 0.493685±0.024185 0.261689±0.018721
DCT Kendall’s τ 0.477147±0.0433372 0.454356±0.010088 0.218891±0.066816

Correlations BankHeist Seaquest TimePilot

Base Spearman 0.819639±0.0110428 0.6382674±0.0054034 0.9443157±0.003573
Blur Spearman 0.2226758±0.1330715 0.5311349±0.0145224 0.9086324±0.015733
B&C Spearman 0.5663207±0.0506708 0.2993260±0.0580819 0.5897620±0.018235
DCT Spearman 0.0365417±0.1172801 0.4326550±0.0230028 0.9000135±0.008147

Base Kendall’s τ 0.629199±0.0099065 0.4579388±0.005053 0.8120791±0.0083035
Blur Kendall’s τ 0.1620834±0.0896341 0.3702977±0.0108535 0.7153446±0.032583
B&C Kendall’s τ 0.4062786±0.0468716 0.2009678±0.0394226 0.4020167±0.004175
DCT Kendall’s τ 0.0216564±0.0869163 0.2993766±0.0168171 0.7524561±0.012622

policy experiences, thereby allowing the policy to act according to the risks and instabilities cur-
rently present in the environment.

5 CONCLUSION

In this paper we focus on the underlying structure of the deep neural policy manifold and inherent
functional properties of deep reinforcement learning. Our paper discovers that there is an intrinsic
correlation between negative average advantage and the directions of instabilities. We provide a
foundational analysis that theoretically explains the intrinsic correlation of deep neural policy and
the approximate convexity by providing a mathematically rigorous investigation. We conduct ex-
tensive experiments in the Arcade Learning Environment with high-dimensional state observations.
Our empirical results lay out how this intrinsic correlation changes across a wide range of adversar-
ial attacks and natural non-robust directions, i.e. distributional shift, and further with even different
training algorithms and architectural changes. Our paper further introduces an algorithm that lever-
ages this intrinsic correlation to diagnose and understand the environment the deep neural policy is
experiencing and its effects on the policy decision making. The theoretical and empirical analysis
provided in our work lays out the intrinsic properties of the deep neural policy landscape that can be
immediately leveraged to obtain stable and resilient policies that can make robust decisions.
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Millikin, Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert
Tung, Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane,
Thomas Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin A. Riedmiller,
Oriol Vinyals, and David Silver. Faster sorting algorithms discovered using deep reinforcement
learning. Nature, 618(7964):257–263, 2023.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, arc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,
and Demis Hassabis. Human-level control through deep reinforcement learning. Nature, 518:
529–533, 2015.

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial reinforce-
ment learning. International Conference on Learning Representations ICLR, 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representa-
tions, ICLR 2016, 2016.

Juergen Schmidhuber. Adaptive confidence and adaptive curiosity. In Technical Report FKI, 1991.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy P. Lillicrap,
and David Silver. Mastering atari, go, chess and shogi by planning with a learned model. Nature,
588, 2020.

Kiley J. Seymour, Timo Stein, Colin WG Clifford, and Philipp Sterzer. Cortical suppression in
human primary visual cortex predicts individual differences in illusory tilt perception. Journal of
Vision, 2018.

Satinder Singh and Peter Dayan. Analytical mean squared error curves for temporal difference
learning. Advances in Neural Information Processing Systems (NeurIPS), 1996.

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng. Dualformer:
Controllable fast and slow thinking by learning with randomized reasoning traces. In The Thir-
teenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-
28, 2025, 2025.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dimutru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the International
Conference on Learning Representations (ICLR), 2014.

Gerald Tesauro. Practical issues in temporal difference learning. In AAAI, 1992.
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