
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SENSITIVITY AS A SHIELD: SAFEGUARDING LLMS
AGAINST UNAUTHORIZED MODEL MERGING

Anonymous authors
Paper under double-blind review

ABSTRACT

Training large language models (LLMs) from scratch is costly, driving interest in
leveraging open-source LLMs for domain-specific tasks without additional training.
Model merging has emerged as a solution to integrate knowledge from fine-tuned
models efficiently, but it raises security concerns on unauthorized model merging.
Existing approaches primarily focus on post-hoc mechanisms to detect malicious
exploitation of released models. In contrast, we propose a novel paradigm: safe-
guarding models against unauthorized merging before misuse occurs. Specif-
ically, after training a model with strong capabilities in a specific domain, we
propose an unmergeable method that preserves a model’s domain-specific perfor-
mance while preventing malicious users from acquiring its capabilities through
model merging. We identify the critical role of neuron-sensitive weight regions
in enabling unmerging and propose two complementary operations, global and
local sensitivity processing, to enforce protection. Both theoretical analysis and
empirical evaluations demonstrate the effectiveness of our approach in maintaining
task performance while making models resistant to unauthorized merging.

1 INTRODUCTION

Rising resource requirements for training large language models have made training a model from
scratch increasingly prohibitive, which has driven research toward methods that enable models to
acquire domain specific capabilities without additional training (Liu et al., 2024; Shi et al., 2024;
Shen et al., 2024). Model merging (Matena & Raffel, 2022) has emerged as an effective solution
to address this issue. Model merging offers several key benefits, including reducing computational
and storage costs by integrating multiple fine-tuned models. It enhances robustness to domain shifts,
improves adaptability, and simplifies ensembling by combining models into a single high-performing
one. Unlike traditional transfer learning (Pan & Yang, 2009; Pruksachatkun et al., 2020; Raffel
et al., 2020), model merging avoids restarting training from an improved model, preserving previous
work. Additionally, it facilitates efficient cross-task knowledge transfer without extensive retraining,
increasing the flexibility and effectiveness of transfer learning.

As model merging (Matena & Raffel, 2022; Ilharco et al., 2023; Yadav et al., 2024; Yu et al., 2024)
becomes increasingly widespread, concerns around security, compliance, and unauthorized use have
intensified. Major model providers are unwilling to allow their models to be merged or fine-tuned
without explicit permission, especially for commercial purposes. For instance, the Llama 3.3 license
prohibits “using the Llama Materials or any output or results of the Llama Materials to improve any
other large language model,” and Meta’s commercial terms require platforms with over 700 million
monthly active users to obtain written consent before exercising license rights.

Beyond legal restrictions, model merging poses serious technical risks. It can import unvetted
parameters that compromise confidentiality, override safety guardrails, or leak proprietary behaviors.
Malicious source models may embed hidden triggers or privacy probes that, once merged, induce
data leakage, alignment failures, or harmful outputs. Hammoud et al. (2024) show that even a single
misaligned expert can corrupt all downstream merged models. Yuan et al. (2025) further demonstrate
that adversaries can inject undetectable backdoors via seemingly benign models, posing a significant
supply-chain threat. These risks collectively underscore the urgent need for robust safeguards against
unauthorized or careless model merging.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Potential risks of unauthorized model merging (blue), including capability leakage, harmful
responses, and IP infringement; and our proposed Unmergeable defense (orange), which embeds
safeguards to resist such threats.

Although numerous fingerprint (Yamabe et al., 2024; Zhang et al., 2024) methods (in Figure 1 upper
part) have been proposed to trace the unauthorized merging, these methods cannot prevent IP violation
or other threats from taking place. To address these risks, we proposed a new type of protection for
large lanague models, termed Unmergeable Models:

After training a domain-specific model, the owner can apply a post-processing step
before release, ensuring the model retains its domain capabilities while preventing
unauthorized users from accessing the capabilities via model merging.

To achieve the above goal, we start from a simple intuition that if the model is sensitive on its domain
performance against weight perturbation, it may also perform bad after merging as such an operation
can also be viewed as perturbations. Firstly, we validate this assumptions via a mathematical modeling
on merging and sensitive perturbation. After studying the difference between the target LLMs and
other similar LLMs with poor performance, we propose the global sensitivity processing (or global
operation) to find a global perturbation for LLMs’ protection. However, perturbing all neruons with a
large scale may greatly influence the models’ behavior. Inspired by former works Li et al. (2025);
Wei et al. (2024), we also process some highly domain-correlated specific neurons for our sensitivity
perturbation, we called the local sensitivity processing (or local operation).

With the above two methods, the processed models can well protect LLMs from unauthorized
merging, as the following experiment shows. Furthermore, the additional model choices and datasets
used for the model processing are secret to users. It is also hard to reverse the original models for
merging. The contributions of this paper are summarized as follows:

• We emphasize the importance of neuron-sensitive regions in the model and propose an
irreversible, training-free method to safeguard against unauthorized model merging. This
approach preserves the model’s capabilities in specific domains while effectively achieving
the unmergeable property.

• We theoretically establish the method’s effectiveness and empirically validate its unmerge-
able property across diverse large language models.

• Our experiments further demonstrate that our proposal does not degrade the model’s utility,
and that even subsequent supervised fine-tuning fails to reverse the unmergeable state.

2 METHOD: PUSH TO SENSITIVITY FOR PROTECTION

2.1 NOTATIONS

To better elaborate on the following content, we define the model trained by the owner through
fine-tuning as the specific model and the model used for training specific model as the base model.
Inspired by Peng et al. (2024) who reach the sensitive but well-performed regions of LLMs, we

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

need to identify a direction that reduces the model’s specific domain capabilities and use it as the
perturbation direction to push the neuron weights into the sensitive region. A straightforward idea is
to gradually push the neuron weights of the specific model towards its base model, along this direction
where the model’s performance deteriorates, in order to reach the sensitive region for protection.
However, the hidden risk of such a perturbation direction is that unauthorized users are likely to
reverse-engineer and restore our specific model.

2.2 SENSITIVITY IS A SHIELD FOR UNAUTHORIZED MODEL MERGING

Model merging (details are introduced in Section A.1) can be seen as perturbing model parameters
along a certain direction, and strong capabilities after merging can be interpreted as the stability of
the model’s weights. On the other hand, more sensitive weights imply that LLMs are less likely to
maintain their high performance after merging. Therefore, we aim to achieve the goal of creating
unmergeable models by pushing the model’s weights w into a relatively sensitive region with a proper
perturbation δ. For every weight modifications µ induced by merging, our unmergeable goal can be
formulated as follows,

L(w + δ + µ)− L(w + δ) > L(w + µ)− L(w), (1)
where the left-hand side is the performance change after merging our processed model and the right-
hand side is the change after merging the original model. The detailed proof is given in Appendix A.2.
And we have the following proposition as follows,
Proposition 2.1. Assuming the loss is locally convex around its original weight w and w is a local
minimal, the above goal Equation 1 can always hold if δ pushes w to a more sensitive region, where
∇L(w) < ∇L(w + δ).

From the above proposition, one can see model merging degrades the specific-domain capability
more for the processed model, thus establishing the unmergeable effect. Then in the following paper,
we are trying to propose proper ways to make model more sensitive.

2.3 GLOBAL SENSITIVE PROCESSING

As noted in Ilharco et al. (2023), the task vector captures the direction of capability changes from
the base model to the domain-specific model. Moving the model parameters along this direction can
effectively shift them out of flat local minima associated with certain capabilities into more sensitive
regions, where the pushing strength determines the balance between performance and sensitivity.
However, if unauthorized users can access the base model, they may recover the domain-specific
model by recomputing and scaling the task vector between the processed and base model.

Universal Perturbation & Global operation. To avoid the aforementioned drawbacks, we leverage
the open-source models that perform poorly in the specific domain to define a universal perturbation
direction, as shown in Figure 2. This approach has two advantages: it pushes the model weights into
a more sensitive region by leveraging models that underperform in the domain and allows the model
owner to select models and define the perturbation direction that is inaccessible to unauthorized users.

Figure 2: Schematic
illustration of the
universal perturba-
tion (UP).

Inspired by the setting in Ilharco et al. (2023), after selecting t open-source
models that perform poorly in the specific domain (with subsequent experi-
ments showing that t = 2 already yields strong results) we obtain the global
processed model Θglobal using the following equation,

Θglobal = Θspecific + λt ·
T∑

t=1

τt, (2)

where λt is an hyperparameter, Θspecific denotes the specific model, and τt
are defined as follows,

τt = Θt −Θspecific, (3)

where Θt here denotes the t-th open-sourced LLMs for universal perturbation
direction’s calculation. And we denote UP = λt ·

∑T
t=1 τt as the universal perturbation for global

operation in the following.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Global Operation Enhances Model Sensitive. To demonstrate the benefits of the global operation,
we conduct an experiment using MetaMath-Mistral-7B as the specific model to be protected. We
select models with weaker mathematical capabilities to serve as directions for synthesizing the
universal perturbation, which will be detailed in the experimental section. After applying the same
perturbation to both the specific and global models, Figure 3 shows a significantly greater performance
decrease in the global model, indicating that our method effectively pushes the model weights into a
more sensitive region.

Figure 3: The comparison of sensitivity be-
tween the specific model and the global
model under the same perturbations. The x-
axis represents the variance of the Gaussian
noise.

Figure 4: Specific domain capability perfor-
mance comparison of the Specific Model,
Global Model, and Base Model before and
after TIES merging.

Global Operations Can Prevent Merging. To further illustrate the impact of this sensitivity on
model merging, we use BioMistral-7B, a model with weaker mathematical capabilities, as the one to
acquire mathematical abilities through model merging. As shown in Figure 4, the model processed by
the global operation exhibits mathematical capabilities similar to the specific model, and still shows a
performance gap in specific domain capabilities compared to the base model Mistral-7B-v0.1.

However, after merging with the global-processed model (e.g., using ties merging), its performance
diverges significantly from that of merging with the specific model. Merging the global-processed
model with BioMistral-7B brings the performance closer to merging BioMistral-7B to the base model
Mistral-7B-v0.1, highlighting the effectiveness of the global operation.

2.4 LOCAL SENSITIVE PROCESSING

2.4.1 ALTERNATING SUB-ADD ON WEIGHTS

From the results, it is clear that the global operation has effectively made the model unmergeable. To
further improve the unmergable performance, we introduce a more fine-grained editing approach that
selectively focuses on neurons highly related to the domain-specific capabilities we aim to protect,
called local sensitive processing (or local operation in short). Except for improving the unmergeable
behavior, the proposed local operation can also make it more difficult for unauthorized users to
reverse our processed model.

Fine-grained Analysis on τG. To achieve this goal, we first recalculate the task vector τG between
the global model and the base model and then further modify the global model with τG. Then, we find
that subtracting the task vector from all neurons based on Θglobal causes the model’s performance to
degrade significantly to that of the base model as the row "All Neuron - " shows in Table 1. After that,
we do a fine-grained operation by subtracting the corresponding τG to the neurons with magnitudes
of τG in the top-5%, as we believe top neurons are more important as suggested in former works (Wei
et al., 2024). Besides purely subtracting the important task vectors, we also conduct experiments for
subtracting top-5% and adding the subsequent 5 ∼ 10% as a compensation for performance. Finally,
we also subtract τG in 5% random neurons as a baseline method listed in Table1.

From the results, one can see that using random selection had little effect on both the original and
merged models, while subtracting the τG with the top-5% magnitude significantly can influence

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Relative drop ratio ∆rel for each processing method at two stages, s∈{Before TA,After TA}.
We compute ∆

(s)
rel =

(
Acc

(s)
Global − Acc

(s)
Method

)
/
(
Acc

(s)
Global − Acc

(s)
Base

)
, where Acc denotes accuracy.

Reference accuracies: Global-Operation: 67.32 → 47.16, Base Model: 38.00 → 39.75 (Before →
After TA). Here, ∆rel=0 means no degradation from Global-Operation; ∆rel=1 means same as Base
Model; ∆rel>1 implies worse. All results are averaged over three runs.

Processing Method ∆rel Before TA (↓) ∆rel After TA (↑)

Random 5% - 0.00 0.01
All Neuron - 1.00 1.00
Top 5% - 0.23 0.49
Top 5% - & Top 5–10% + 0.18 0.40

both the processed model and the merged model. Neither of these two approaches aligns with the
expectation of maintaining the performance of the original model while degrading the performance of
the model after merging. Furthermore, if we add the corresponding τG to the neurons with magnitudes
of τG in the top 5% ∼ 10%, the processed models’ accuracy increases. Inspired by such findings, we
proposed the alternative update methods as follows.

Alternative Update Methods We first rank all neurons in descending order of the absolute value
of τG and divide them into units, where each unit corresponds to n% of the total neurons. In our
experiments, we set n = 2, resulting in 50 units. The first unit thus contains the top 2% of neurons,
the second unit the next 2%, and so on. For editing, we subtract τG from neurons in odd-numbered
units and add τG to neurons in even-numbered units. Formally, subtraction is applied to neurons in
the ((k − 1)n, kn)% range when k is odd, and addition is applied when k is even.

Θglobal+local =

{
Θglobal + τG, within addition range
Θglobal − τG, within subtraction range (4)

The benefit of this approach is that the model’s weights are updated in a direction that makes the
overall model more susceptible to performance degradation after model merging (since we subtract
τG from the neurons with relatively larger absolute values τG, the absolute value of the subtracted
part is larger, resulting in a greater impact on model merging.). At the same time, we also strive to
ensure that the processed model’s capability remains close to the original model, because the part
where the task vector is added is updated in the direction of improving model performance as shown
in the fourth row of Table 1.

2.4.2 EXCLUDING CRITICAL WEIGHTS FOR PERFORMANCE

However, the performance of the processed model is still unsatisfactory when applying the alternating
sub-add methods to all neurons, as shown in Table 2. We imply that some weights may be commonly
essential across models and therefore do not need protection as they are shared components. Therefore,
perturbing these weights will greatly degrades performance, since these neurons are universally
important. In the following, we attempt to identify these weights and exclude them from the
alternating sub-add methods.

Table 2: Relative drop ratio ∆rel (definition identical to Table 1). The absolute accuracies of the
Global-Operation model and the Base Model before and after TA merging are the same as those
reported in Table 1. All results are averaged over three runs.

Neuron-processing method ∆rel Before TA (↓) ∆rel After TA (↑)

Alternating (−+), all neurons 0.14 0.29
Alternating (−+), excluding set S 0.08 0.30

To locate these weights, we use the Wanda score to label neurons that are particularly important
for specific tasks and ensure the weights of these neurons remain unchanged during the process.
Specifically, we refer to the globally processed model as Model G, and we apply some slight

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

perturbation (e.g., model merging) to Model G to obtain Model G1. We then calculate the Wanda
scores for both Model G and Model G1, and we obtain the set SspeG and SspeG1

, which contain
indices of top-20% neurons. And S = SspeG ∩ SspeG1

could represent a more accurate identification
of the relevant neuron indices.

After obtaining this subset S, we ensure that the neuron weights in this part are not modified during
the local operation. Then, we sort the remaining neurons based on the absolute value of τG and apply
the previously proposed criteria for processing:

Θglobal+local =


Θglobal + τG,

neurons in S and
within addition range

Θglobal, neurons in S

Θglobal − τG,
neurons in S and
within subtraction range

(5)

Finally, as observed from the results in Table 2, after excluding the parts most critical to the specific
domain capabilities, the model performs better in the specific domain with smaller performance
changes after merging. In short, we further add local operations to the global operation model (the
combination of the two is also called the combined model in the following text) to ensure that the
specific domain capabilities of the operated model do not drop significantly; furthermore, in local
operation, different perturbation methods are selected for different neurons. This perturbation method
further improves the overall sensitivity of the model (see the comparison between the green line and
the blue line in Figure 6), thereby achieving a better unmergeable effect.

3 VERIFICATION EXPERIMENT

We evaluate our approach on a range of mainstream model-merging methods. Section 3.1 describes
the experimental setup. Section 3.2 reports the main results, showing that our technique preserves
domain performance while rendering the model unmergeable. Section 3.3 presents ablation studies
on key merging hyperparameters, and Section 3.4 examines the method’s efficiency and robustness.

3.1 SETUP

We use Mistral-7B-v0.1 as our ba se and MetaMath-Mistral-7B as our specific model. Compared to
the base model, the specific model has made significant breakthroughs in mathematical capabilities,
which we consider as the specific domain capability we aim to protect. For model merging methods,
we have selected representative approaches such as TA (Ilharco et al., 2023), TIES (Yadav et al.,
2024), and DT (Dare TIES) (Yu et al., 2024). These methods encompass key ideas in model merging,
including sampling, renormalization, and the use of task vectors. All experiments were conducted on
NVIDIA A100 GPUs with 40GB of memory.

Details of the global operation. In the global operation, we utilize the models BioMistral-7B and
Trendyol-LLM-7b-base-v1.0, which have weaker mathematical capabilities, as the sources of our
universal perturbation. Specifically, we select BioMistral-7B as θ1 and Trendyol-LLM-7b-base-v1.0
as θ2. After obtaining their respective task vectors for the specific model, we combine them using
λ1 = 0.3 and λ2 = 0.05 to determine the direction of the universal perturbation. Through this
operation and applying Eq 2, we obtain the global model.

Details of the local operation. Based on the global model, we first obtain the task vector τG by
comparing the global model with the base model. Then, we add a small perturbation to the global
model to obtain G1. This perturbation is simply achieved by performing a basic TA model merging
between the global model and BioMistral-7B. Next, we identify the top 20% of neurons with the
highest relevance scores for the GSM8K task using WANDA scoring Sun et al. (2024) from both
models to obtain SspeG and SspeG1

. Then we take the intersection of the neuron indices from both
models, which we denote as the set S. After that, we sort the neurons not included in S based on the
absolute values of τG in descending order. Based on the sorted order, we treat 2% of the neurons in
the sorted list as a unit, and sequentially add and subtract τG to the θglobal for these neurons to create
our combined model.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We note that the combined operated model refers to the model obtained by further applying
the local operation to the global model. The local operation can also be directly applied to the
specific model. For clarity, we refer to the model where the local operation is directly applied to
the specific model as the local processing model.

3.2 MAIN RESULTS

In this subsection we aim to empirically demonstrate four key properties of our approach: (i) its
effectiveness against multiple model-merging techniques and multiple models that attempt to acquire
domain-specific capabilities through merging; (ii) its robustness under adaptive attacks; and (iii) its
consistent efficacy across diverse LLM families and a variety of downstream tasks.

Our method remains effective across diverse model-merging techniques and models seeking
to acquire domain-specific capabilities. To demonstrate the strong generalization capability of
our method, we first select the GSM8K dataset as our benchmark for mathematical ability. GSM8K
consists of 8,000 crowd-sourced math problems designed for training large language models (LLMs).
It includes problems like addition, subtraction, multiplication, division, and basic algebra, with each
problem paired with a solution and reasoning. Below, we present the experimental results of the
model on GSM8K with five-shot learning.

Before presenting the detailed results, we first introduce a more intuitive metric to assess the effective-
ness of our unmergeable method. Specifically, we measure the drop ratio, which quantifies how much
of the performance gain achieved by the specific model (compared to the base model) is eliminated
by our processing:

DropRatio =
Accspec −Accproc

Accspec −Accbase
. (6)

where Accspec, Accproc Accbase are the accuracies with the specific model, our processed model, and
the base model, respectively. Notably, the drop ratio larger than one shows that our unmergeable
method pushes performance below that merged with the base model.

A key characteristic of an unmergeable model is its ability to maintain comparable specific domain
capabilities to a specific model before model merging. As indicated in the "Before Merging" column
of Table 3, the specific model attains 71.87 accuracy on GSM8K. Both local and global operations
only slightly reduce accuracy and their combination leads to only a 6.8 percent drop, yielding 65.07
accuracy on GSM8K—still well above the baseline accuracy of 38. This highlights that our method
can effectively preserve the specific domain capability of the original model, crucial for the concept
of unmergeable.

Table 3: Results of different processed models after various model merging methods. Values in
parentheses indicate the Drop Ratio, with higher values denoting stronger unmergeability; a value
greater than 1 indicates performance even lower than the base model, fully achieving unmerging. All
results are averaged over three runs.

Model Before Merging BioMistral-7B Mistral-instruct-v0.2
TA TIES DT TA TIES DT

Base model 38.00 34.67 19.18 32.75 43.44 43.75 40.26
Specific model 71.87 54.06 40.79 50.34 59.00 57.47 56.48

Local operation 68.69 51.08 (0.15↓) 37.76 (0.14↓) 46.85 (0.20↓) 56.79 (0.14↓) 53.42 (0.30↓) 52.28 (0.26↓)
Global operation 67.32 34.12 (1.03↓) 20.02 (0.96↓) 33.89 (0.94↓) 53.15 (0.38↓) 52.08 (0.39↓) 51.63 (0.30↓)
Combined method 65.07 32.74 (1.10↓) 18.95 (1.01↓) 31.92 (1.05↓) 50.46 (0.55↓) 50.02 (0.54↓) 48.18 (0.51↓)

We follow the recommendations of Ilharco et al. (2023) and Yadav et al. (2024), setting both the weight
and density to 0.4. To assess the generalizability, we choose Mistral-instruct-v0.2 and BioMistral-7B
to acquire mathematical capabilities through merging our processed models. As shown in Table 3,
we observe that regardless of the merging method and different models, after applying our proposed
combined method, the specific domain capability of the models exhibits a substantial drop than the
model merged with the specific model (in the row of "combined", every case shows the drop ratio
greater than 50%, with some reductions approaching 100%).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Taking BioMistral-7B as the model that seeks to acquire math capability, we conduct the following
analysis: For the TA method, applying only the global operation reduces performance to the baseline
level, and adding the local operation leads to further degradation. In the TIES setting, the global
operation alone causes a 96.1% loss in specific capability, and the addition of the local operation
drops performance below the baseline. Similarly, for DT, global operation leads to a 93.5% loss, and
combining both operations further worsens performance beyond the baseline.

Notably, for the original model’s specific domain capabilities, even with the combined method, we
lead to only a 6.8 percent drop on the GSM8K accuracy. However, after model merging, the rate
of decline in mathematical performance is several times higher than that before merging, and in
some cases the capability is almost completely lost, which demonstrates the unmergeable effect we
emphasize.

Our method remains robust after merging and can not be easily reversed by adaptive attacks.
To demonstrate the robustness of our approach, we conduct an experiment in which, after model
merging, both the specific model and our combined model undergo a single-epoch LoRA-based
supervised fine-tuning (SFT) on 100 GSM8K samples, employing a learning rate of 1e-5 and a LoRA
rank of 16.

As shown in Table 4, SFT brings no gain to the model merged with the specific model due to the
already strong baseline. Furthermore, SFT on the model merged with our processed model further
degrades performance, indicating that our method pushes the model into a highly sensitive region
that resists recovery through fine-tuning. In other words, our method can not be easily reversed by
adaptive attacks such as fine-tuning.

Table 4: GSM8K performance before and
after SFT following model merging. All re-
sults are averaged over three runs.
GSM8K Specific Combined
Before SFT 54.06 32.74
After SFT 52.70 1.90

Table 5: Drop Ratio changes on MEDQA
under different operations. All results are
averaged over three runs.
Drop Ratio Global Local Combined
Before Merging 18.6 5.2 21.6
After Merging 41.6 11.3 51.2

Our method demonstrates robust generalization across diverse families of LLMs and different
tasks. To further assess generality, we extend our method to the Llama family. Using Meta-Llama-
3-8B-Instruct as the baseline and Bio-Medical-Llama-3-8B as the specific medical model. We
then apply our unmergeability transformation to ensure that no other model can inherit its medical
expertise via model merging. Specifically, we leverage the dad1909/CyberSentinel model, which
exhibits comparatively weak performance in the medical domain, to acquire medical capabilities. For
the UP selection, we choose lightblue/suzume-llama-3-8B-japanese and meta-llama/Meta-Llama-3-
8B-Instruct, while the local operation configuration remains identical to our previous setup.

Using the MEDQA dataset, which assesses domain-specific medical question-answering proficiency,
in Table 5 we show that our combined method yields a drop ratio of 21.6, with the accuracy decreasing
by merely 3.9 percent on MEDQA. In contrast, after TA merging, the drop ratio increases to 51.2,
which is 2.4 times higher than the ratio before merging. These results demonstrate that our method
remains effective beyond mathematical tasks, highlighting its robustness and generalizability across
both model families and task domains.

3.3 ABLATION STUDY

Influence on Different Merging Parameters To thoroughly validate our method, we also test
multiple weights for each merging method. Here, the weight refers to the λ parameter in different
model merging methods. Specifically, we experiment with three parameter sets: 0.3, 0.5, and 0.7.
Each point in the plot represents the proportion of domain-specific capabilities lost by the processed
model compared to the specific model.

Figures 5 demonstrate that under different weights, both local operation and global operation can
achieve a certain degree of the unmergeable effect. More importantly, when these two operations
are combined, the processed combined model, after merging with the TA, TIES, and DT methods,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

further outperforms the individual operations. Additionally, when the weight is less than or equal to
0.4 (for TA) or 0.5 (for TIES and DT), the performance of the combined model falls below the base
model, thus achieving the maximum unmergeable effect. These results highlight its robustness and
efficiency.

(a) TA (b) TIES (c) DT

Figure 5: The domain-specific capabilities lost by the processed model in different scenarios compared
to the specific model after model merging.

Figure 6: Sensitivity among different op-
erations.

Sensitivity Visualization We then discuss the sensitiv-
ity analysis for the models after various operations. The
x-axis in Figure 6 represents the Gaussian noise variance.
The visualization results indicate that as the Gaussian noise
variance increases, the performance of processed models
declines more noticeably. Notably, the sensitivity of lo-
cal and global models exceeds that of the specific model,
with the combined model exhibiting the highest sensitivity.
This indicates that our methods achieve the unmergeable
effect by pushing the model weights into a more sensitive
region and the sensitivity analysis align the unmergeable
performance across a wide range of settings.

3.4 FURTHER DISCUSSION

To further substantiate the robustness of our proposal, we verify that models processed by our method
maintain the specific model’s performance on other tasks, and we demonstrate that the unmergeable
method is not achieved by slightly weakening the model’s original domain-specific capabilities.
Detailed results are presented in Section A.3 due to space limitations.

Specifically, as shown in Table 6, we evaluate the specific model, local processed model, global
processed model, and their combination on the MMLU benchmark. Across diverse tasks such as
Humanities and STEM, all processed models achieve performance comparable to that of the specific
model. These findings confirm the robustness of our approach and demonstrate that our operations do
not impair performance on tasks outside the target domain.

Furthermore, Table 7 shows that our combined processed model retains substantially greater domain-
specific capability than the two comparison models. Crucially, regardless of the merging technique,
BioMistral-7B is unable to extract more mathematical ability from our processed model than it
can from the two comparison models. This indicates that our approach does not rely on the slight
degradation of the model’s original domain-specific capabilities to achieve the unmergeable effect.

4 CONCLUSION

Our paper introduces a new perspective for safeguarding against unauthorized model merging.
The proposed unmergeable strategy can be applied before a model is misused thereby addressing
limitations such as undetected unauthorized usage or fingerprint failures. From the perspective of
neuron-sensitive weight regions, our method prevents unauthorized users from acquiring domain-
specific capabilities through model merging. We provide a formal theoretical proof of this protective
property, along with extensive experimental evidence demonstrating the effectiveness, robustness,
and strong generalization of our approach.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work makes use of publicly available datasets and models. No private or sensitive data are
involved, and no harmful content is included. Therefore, we believe this paper does not raise any
ethical concerns.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the training and evaluation procedures used in our experiments.
The code will be released upon the publication of this paper.

REFERENCES

MohammadReza Davari and Eugene Belilovsky. Model breadcrumbs: Scaling multi-task model
merging with sparse masks. In ECCV, 2025.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Hasan Abed Al Kader Hammoud, Umberto Michieli, Fabio Pizzati, Philip H. S. Torr, Adel Bibi,
Bernard Ghanem, and Mete Ozay. Model merging and safety alignment: One bad model spoils the
bunch. In EMNLP, 2024.

Xuanli He, Qiongkai Xu, Lingjuan Lyu, Fangzhao Wu, and Chenguang Wang. Protecting intellectual
property of language generation apis with lexical watermark. In AAAI, 2022a.

Xuanli He, Qiongkai Xu, Yi Zeng, Lingjuan Lyu, Fangzhao Wu, Jiwei Li, and Ruoxi Jia. Cater:
Intellectual property protection on text generation apis via conditional watermarks. In NeurIPS,
2022b.

Gabriel Ilharco, Marco Túlio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi,
and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by
merging weights of language models. arXiv preprint arXiv:2212.09849, 2022.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In ICML, 2023.

Mingjie Li, Wai Man Si, Michael Backes, Yang Zhang, and Yisen Wang. Salora: Safety-alignment
preserved low-rank adaptation. arXiv preprint arXiv:2501.01765, 2025.

Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du, Haodong Zhao, and Gongshen Liu. Plmmark: A
secure and robust black-box watermarking framework for pre-trained language models. In AAAI,
2023.

James Liu, Pragaash Ponnusamy, Tianle Cai, Han Guo, Yoon Kim, and Ben Athiwaratkun. Training-
free activation sparsity in large language models. arXiv preprint arXiv:2408.14690, 2024.

Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging:
Dynamic integration of modular expertise in model merging. arXiv preprint arXiv:2406.15479,
2024.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. In NeurIPS,
2022.

Hope McGovern, Rickard Stureborg, Yoshi Suhara, and Dimitris Alikaniotis. Your large language
models are leaving fingerprints. arXiv preprint arXiv:2405.14057, 2024.

Ding Sheng Ong, Chee Seng Chan, Kam Woh Ng, Lixin Fan, and Qiang Yang. Protecting intellectual
property of generative adversarial networks from ambiguity attacks. In CVPR, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359, 2009.

ShengYun Peng, Pin-Yu Chen, Matthew Hull, and Duen Horng Chau. Navigating the safety landscape:
Measuring risks in finetuning large language models. arXiv preprint arXiv:2405.17374, 2024.

Wenjun Peng, Jingwei Yi, Fangzhao Wu, Shangxi Wu, Bin Zhu, Lingjuan Lyu, Binxing Jiao, Tong
Xu, Guangzhong Sun, and Xing Xie. Are you copying my model? protecting the copyright of
large language models for eaas via backdoor watermark. arXiv preprint arXiv:2305.10036, 2023.

Yada Pruksachatkun, Jason Phang, Haokun Liu, Phu Mon Htut, Xiaoyi Zhang, Richard Yuanzhe
Pang, Clara Vania, Katharina Kann, and Samuel R Bowman. Intermediate-task transfer learning
with pretrained models for natural language understanding: When and why does it work? arXiv
preprint arXiv:2005.00628, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Yehonathan Refael, Adam Hakim, Lev Greenberg, Tal Aviv, Satya Lokam, Ben Fishman, and Shachar
Seidman. Slip: Securing llms ip using weights decomposition. arXiv preprint arXiv:2407.10886,
2024.

Shuo Shao, Yiming Li, Hongwei Yao, Yiling He, Zhan Qin, and Kui Ren. Explanation as a watermark:
Towards harmless and multi-bit model ownership verification via watermarking feature attribution.
arXiv preprint arXiv:2405.04825, 2024.

Xuan Shen, Pu Zhao, Yifan Gong, Zhenglun Kong, Zheng Zhan, Yushu Wu, Ming Lin, Chao
Wu, Xue Lin, and Yanzhi Wang. Search for efficient large language models. arXiv preprint
arXiv:2409.17372, 2024.

Haizhou Shi, Yibin Wang, Ligong Han, Huan Zhang, and Hao Wang. Training-free bayesianization
for low-rank adapters of large language models. arXiv preprint arXiv:2412.05723, 2024.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. In ICLR, 2024.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao Xie, Xiangyu Qi, Mengzhou Xia, Prateek
Mittal, Mengdi Wang, and Peter Henderson. Assessing the brittleness of safety alignment via
pruning and low-rank modifications. arXiv preprint arXiv:2402.05162, 2024.

Jiashu Xu, Fei Wang, Mingyu Derek Ma, Pang Wei Koh, Chaowei Xiao, and Muhao Chen. Instruc-
tional fingerprinting of large language models. arXiv preprint arXiv:2401.12255, 2024.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models. In NeurIPS, 2024.

Shojiro Yamabe, Tsubasa Takahashi, Futa Waseda, and Koki Wataoka. Mergeprint: Robust finger-
printing against merging large language models. arXiv preprint arXiv:2410.08604, 2024.

Peng Yang, Yingjie Lao, and Ping Li. Robust watermarking for deep neural networks via bi-level
optimization. In ICCV, 2021.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. In ICML, 2024.

Zenghui Yuan, Yangming Xu, Jiawen Shi, Pan Zhou, and Lichao Sun. Merge hijacking: Backdoor
attacks to model merging of large language models. In ACL, 2025.

Jialong Zhang, Zhongshu Gu, Jiyong Jang, Hui Wu, Marc Ph. Stoecklin, Heqing Huang, and Ian M.
Molloy. Protecting intellectual property of deep neural networks with watermarking. In AsiaCCS,
2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jie Zhang, Dongdong Chen, Jing Liao, Weiming Zhang, Huamin Feng, Gang Hua, and Nenghai Yu.
Deep model intellectual property protection via deep watermarking. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(8):4005–4020, 2021.

Jie Zhang, Dongrui Liu, Chen Qian, Linfeng Zhang, Yong Liu, Yu Qiao, and Jing Shao. Reef:
Representation encoding fingerprints for large language models. arXiv preprint arXiv:2410.14273,
2024.

Jie Zhou, Wei Liu, Hao Wang, et al. Disrupting model merging: A parameter-level defense without
sacrificing accuracy. arXiv preprint arXiv:2503.07661, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 RELATED WORK

Model Merging offers the advantage of combining multiple task-specific models into a single model
without requiring additional training, addressing the limitations of individual models that can only
perform a single task and do not benefit from each other (Goddard et al., 2024; Jin et al., 2022; Lu
et al., 2024; Davari & Belilovsky, 2025; Ilharco et al., 2023; Yadav et al., 2024; Yu et al., 2024).
Linear Mode Connectivity has become a mainstream approach for model merging, using linear
interpolation to combine neural network checkpoints while requiring identical architectures and
initializations across the models. The simplest merging method is weight averaging, which relies
on linear mode connectivity and serves as the foundation for other methods. Ilharco et al. (2023)
introduces task vectors, demonstrating the effectiveness of arithmetic operations on the differences
between fine-tuned models and a baseline model. Methods such as TIES merging (Yadav et al., 2024)
and DARE (Yu et al., 2024) introduce sparsification and combination techniques for task vectors,
allowing the merging of more models without performance degradation. These methods do not
require training data or fine-tuning after merging, thus making them more practically valuable. This
paper aims to propose a method that prevents unauthorized users from exploiting the model owner’s
model through the aforementioned model merging technique. A detailed explanation will be provided
in the following sections.

Model intellectual property (IP) protection has received increasing attention in recent years (Zhang
et al., 2021; He et al., 2022b;a; Yang et al., 2021; Ong et al., 2021; Shao et al., 2024). As machine
learning models are widely applied , they face risks of unauthorized use or replication as valuable
assets. Watermarking and fingerprinting are two commonly used, closely related but slightly different
methods for model IP protection. The fingerprints of large language models can be mainly classified
into two types. One type involves adding fingerprints during the model’s training or fine-tuning
process, which includes embedding a backdoor trigger into the model. With these triggers, it
becomes possible to verify whether a suspicious model is derived from the victim model (Zhang
et al., 2018; Li et al., 2023; Peng et al., 2023; Kirchenbauer et al., 2023). In fact, the watermarking
approach we refer to is essentially a method where researchers inject fingerprints. Therefore, it can
be seen that watermarking, in a certain sense, is a part of the fingerprinting method. The other type
utilizes the inherent characteristics of the model as fingerprints. These fingerprints are based on
the model’s intrinsic properties and cannot be removed (McGovern et al., 2024; Xu et al., 2024;
Refael et al., 2024). The difference between this paper and the aforementioned fingerprint methods is
that fingerprints serve as a post-protection mechanism for models, protecting intellectual property
after the model may have already been exploited by unauthorized users or malicious actors. In
contrast, the concept of unmergeable introduced in this paper, along with the proposed solution,
represents a form of preemptive protection—where the model is processed before being released by
the model owner. Although PaRaMS (Zhou et al., 2024) also aims to block parameter merging, it
depends on reversible permutations and scaling matrices that serve as a secret key; if this key is lost
or leaked, the protection vanishes. Our scheme is irreversible and thus avoids this single point of
failure. PaRaMS was developed for medium scale vision and text models, and applying it to LLMs
with thousands of attention heads would require managing thousands of matrix pairs, which greatly
increases engineering cost and attack surface. We design our method specifically for LLMs so it
remains scalable and free of key-management issues.

A.2 THEORETICAL PROOF

Proof. The proof for the unmergeable goal (see Eq. 1) in the main text, Section 2.2, proceeds as
follows:

According to Taylor expansion (ignoring higher-order infinitesimals), we have
L(w + δ + µ)− L(w + δ) = ∇L(w + δ)µ (7)

L(w + µ)− L(w) = ∇L(w)µ (8)
Since the model is pushed to the more sensitive region, we have ∇L(w) < ∇L(w+ δ), which proves
that model merging causes a larger performance drop for our processed model, i.e., our processing
achieves the unmergeable effect.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 ADDITIONAL RESULTS

Our unmergeable model matches the performance of the specific model on various tasks across
different domains except specific domain. To validate this, we conduct a comprehensive evaluation
of the performance differences between our proposed unmergeable model and the specific model
across a variety of tasks on the MMLU benchmark.

Table 6: Performance on MMLU tasks under different model. All results are averaged over three
runs.

Task Specific Global Local Combined
Humanities 53.11 52.99 52.94 52.43
Sciences 68.48 70.82 68.38 69.94
STEM 47.76 49.48 48.14 49.48
Other 66.91 67.43 66.62 67.52
Average 58.33 59.30 58.28 58.94

As illustrated in Table 6, our unmergeable model even surpasses the specific model in average
MMLU performance, indicating that our processing not only prevents the transfer of domain-specific
capabilities via model merging but also imposes no detrimental effects on performance across tasks
in other domains.

Our model does not achieve the unmergeable effect by reducing the specific domain capabilities
of the model. In Table 7, we show that the models SciMistral-V1 and Mistral-instruct-v0.2 both
possess certain mathematical abilities. Accordingly, we merge BioMistral-7B with (i) our protected
combined model, (ii) SciMistral-V1, and (iii) Mistral-Instruct-v0.2 to acquire their mathematical
capabilities. As shown in Table 7, we can see that the specific domain capability of our combined
model processed is significantly higher than the other two models. However, it is important to note
that, regardless of the model merging method used, BioMistral-7B cannot acquire more mathematical
ability from our processed model than from the other two models. From this perspective, our method
has indeed protected our model, achieving the unmergeable effect.

Table 7: Results under different models which BioMistral-7B try to acquire mathematical capability.
All results are averaged over three runs.

Model Original TA DT TIES
Combined Model 65.07 32.74 31.92 18.95
SciMistral-V1 56.71 44.05 42.76 27.29
Mistral-instruct-v0.2 42.10 43.82 38.44 34.95

Furthermore, Table 7 demonstrates that our method does not achieve the unmergeable effect by
reducing the specific domain capabilities of the model (the subtle difference in specific domain
capabilities between the specific model and the combined model). Instead, it achieves this effect by
pushing the model parameters into a more sensitive region as we analyzed before.

A.4 USAGE OF LLM

We commit to using LLMs for text polishing based on prompts. All polished text are double-checked
by authors to ensure accuracy, avoid over-claims, and prevent confusion.

14


	Introduction
	Method: Push to Sensitivity for Protection
	Notations
	Sensitivity Is a Shield for Unauthorized Model Merging 
	Global Sensitive Processing
	Local Sensitive Processing
	Alternating Sub-Add on Weights
	Excluding Critical Weights for Performance


	Verification Experiment
	Setup
	Main Results
	Ablation Study
	Further Discussion

	Conclusion
	Appendix
	Related work
	Theoretical Proof
	Additional results
	Usage of LLM


