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Abstract

Machine unlearning is concerned with the task of removing knowledge
learned from particular data points from a trained model. In the context of
large language models (LLMs), unlearning has recently received increased
attention, particularly for removing knowledge about named entities from
models for privacy purposes. While various approaches have been pro-
posed to address the unlearning problem, most existing approaches treat all
data points to be unlearned equally, i.e., unlearning that Montreal is a city
in Canada is treated exactly the same as unlearning the phone number of
the first author of this paper. In this work, we show that this all data is equal
assumption does not hold for LLM unlearning. We study how the success of
unlearning depends on the frequency of the knowledge we want to unlearn
in the pre-training data of a model and find that frequency strongly affects
unlearning, i.e., more frequent knowledge is harder to unlearn. Addition-
ally, we uncover a misalignment between probability- and generation-based
evaluations of unlearning and show that this problem worsens as models
become larger. Overall, our experiments highlight the need for better evalu-
ation practices and novel methods for LLM unlearning that take the training
data of models into account. We publish the code and datasets for our ex-
periments at: � https://github.com/McGill-NLP/unequal-unlearning

1 Introduction

Machine unlearning deals with the problem of removing specific information or knowledge
which was acquired during training from a model (Cao & Yang, 2015; Bourtoule et al., 2021).
The motivation for unlearning can be two fold: One one hand there is increasing evidence
that LLMs memorize a considerable amount of their training data and are also able to
reiterate that data verbatim (Tirumala et al., 2022; Carlini et al., 2023; Huang et al., 2024).
This is particularly troubling when LLMs memorize and generate personally identifiable
information (PII) or sensitive data (Carlini et al., 2021), creating a demand for technical
solutions for removing such data from trained models. On the other hand, the increasing
capabilities of LLMs have lead to a growing interest in improving the safety of these models
(Ouyang et al.; Bengio et al., 2025). While the standard approach for making models safe
right now is post-training via preference optimization (Christiano et al., 2017; Rafailov et al.,
2023), unlearning offers an alternative approach to remove, e.g., unwanted and potentially
harmful information from LLMs (Jang et al., 2023; Barez et al., 2025).

Existing approaches to unlearning can be broadly categorized into two primary methodolo-
gies (we provide a longer discussion in Section 5). While some researchers approach the
problem from an optimization perspective, others focus on model editing, which identifies
and modifies model components that store or encode the targeted data. In this paper, we focus
on optimization-based approaches for LLM unlearning and identify a crucial gap in current
approaches: Existing work in LLM unlearning typically treats all data points designated
for unlearning equally. This “all data is unlearned equally” assumption disregards potential
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Figure 1: Illustration of the main hypothesis we explore in this work. Some knowledge is
more frequent in the pre-training data of a model than other knowledge (A). We hypothesize
that how well we can unlearn any given knowledge (C) should be strongly influenced by
how frequent it is in the pre-training data (B).

variations in data, such as how frequent they are in the training data of a model, and the
effect of these variations on unlearning. Hence, we explore the following hypothesis:

The success of optimization-based unlearning is influenced by the frequency
of the targeted information within the training data of a model.

We hypothesize that frequently seen data are harder to unlearn because the model’s “belief”
(Hase et al., 2024) about these instances is stronger (cf. Figure 1). To test this hypothesis, we
design a comprehensive experimental framework consisting of two distinct settings. First,
we conduct a controlled experiment where we train models of increasing size from scratch
on fictitious biographies and associated questions. We then unlearn information about
frequently and infrequently encountered biographies and compare unlearning performances
between these setups. Second, we extended our investigation to a real-world scenario —
unlearning factual information from OLMo-7B (Groeneveld et al., 2024) — while controlling
for the frequency of the targeted real-world facts.

Our experiments consistently reveal a strong relationship between frequency in pre-
training data and the efficacy of unlearning processes. We find that methods are more
successful in unlearning data instances that are infrequent during pre-training. Highly
frequent data on the other hand is either not unlearned at all or only appears to have been
unlearned, i.e., it can still be extracted from a model depending on the evaluation method.
We also demonstrate that this effect is consistent across different unlearning methods.

In addition to our findings about frequency effects in unlearning, we highlight potential
evaluation issues with unlearning. Our results show that the efficacy of LLM unlearning
varies considerably when evaluated using different methods and that this effect worsens
with scale, i.e., larger models are better at retaining seemingly unlearned data in their
parameters. We find such disparities also in utility evaluation. Unlearning seems to damage
the task-knowledge of a model, e.g., it becomes worse at question answering, while leaving
its probabilistic capabilities intact, e.g., it still assigns high probability to seemingly un-
learned sequences. Overall, our experiments demonstrate the need for more comprehensive
evaluation and the development of data-dependent LLM unlearning approaches.

2 Optimization-based unlearning in LLMs

Unlearning can be viewed as a regularized optimization problem that balances two losses:
The first loss drives the forget operation and is computed over the target set we wish to
forget (forget set). The second loss is a regularization term computed over a retain set,
and aims to preserve model utility as measured on an independent utility set. This can be
formally expressed as:

L = Ei∼ f orget

[
L f orget(targeti)

]
+ αEj∼retain

[
Lregularization(retainj)

]
(1)
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When was Wayne Natalie
Schneider born? June 3 , 2003

What is the birth city of Wayne
Natalie Schneider? Greeley, IA

(Name ; Birthday ; Birth City ; 
University ;  Major ;  Employer ;

Employer City ;  Pronoun)

When was Name born? 
Answer

What is the birth city of Name?
Answer

Step 1: Attribute Generation

?

?

 Name’s first day in the
world was Birthday. He
grew up in Birth City. He
developed expertise in his
field at University. ...

Wayne Natalie Schneider’s first
day in the world was June 3,
2003. He grew up in Greeley,
IA. He developed expertise in
his field at Patten University...

Step 2: Biography Template

(Wayne Natalie Schneider ; June 3,
2003 ; Greeley, IA ; Patten University

; Criminal Justice  ; Visa ; San
Francisco, CA, he)

Step 3: QA Template

?

?

Figure 2: Data generation process for the pre-training experiments. (1) we generate
attribute tuples randomly. (2) a biography template is chosen to verbalize the biography. (3)
QA pairs are constructed using a question template.

Where α is a hyperparameter used to control the strength of the regularization. In previous
work, L f orget and Lretain are implemented in different ways (Maini et al., 2024; Yuan et al.,
2025; Fan et al., 2024; Yao et al., 2023; Eldan & Russinovich, 2023).

We experiment with three choices of L f orget: 1) Gradient Ascent, 2) preference optimiza-
tion, and 3) refusal training. Gradient Ascent1 is the negated version of cross entropy loss
computed over the target set, i.e., given a (x, y) question-answer pair, loss is computed
as Lgradient ascent(θ, x, y) = −LCE (πθ(y | x)) where πθ(y | x) is the probability that model
θ generates response y when prompted with x. For preference optimization, we use the
SIMNPO loss (Fan et al., 2024), which is a variant of DPO (Rafailov et al., 2023) but without a
positive sample. The loss is defined as: LSIMNPO = − 2

β log σ −
(

β
|y| log πθ(y|x)− γ

)
where

β and γ are hyperparameters and |y| is the length of the response. The refusal training
loss is the cross entropy loss on the sequence “I don’t know” across all target samples, i.e.,
Lidk(θ, x, y) = LCE (πθ(“I don’t know” | x)).

In all cases, we use cross entropy as the regularization loss. Crucially, while the forget loss
is computed only on the response πθ(y | x), the regularization loss is computed over all
tokens in the retain sample to aid unlearning stability (see Appendix A for more details).

3 Analyzing frequency effects in a controlled setting

We first construct a synthetic setup which allows us to test our frequency-unlearning
hypothesis in a controlled setting. Our setup consists of training language models of various
sizes form scratch on a dataset of biographies and questions about these biographies. Once
trained, we evaluate the model by asking questions about some of the biographies. We then
unlearn information from various biographies that differ according to their frequency in the
pre-training data and re-evaluate the models’ ability to answer questions about them.

3.1 Dataset creation

Here we describe the dataset on which we pre-train our models. We follow the bioS-single
setup proposed by Allen-Zhu & Li (2024) to create fake biographies. The dataset generation
pipeline is shown in Figure 2. Our dataset contains two types of instances — synthetic
biographies (BIO ) and question-answer pairs (QA ) about the biographies. We start by
sampling a tuple of eight attributes: {name, birthday, birth city, university, major,
employer, employer city, pronoun}. Next, the attribute tuple is converted into a biography
using a randomly sampled biography template. We then convert the attribute tuple into

1We note even when using Gradient Ascent as an unlearning method, the overall objective is still
optimized using gradient descent.
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Figure 3: BIO and QA evaluations as training progresses on the GPT models. The evaluation
metric is Rouge-L. QA accuracies are averaged across all 6 attributes. Over 100 epochs, the
models learn to answer questions from the utility, high and low-count sets which are not shown
during training. High-count biographies are up sampled and so high-count QA is learned
faster than the other evaluation sets.

QA instances that query each person-attribute relation (e.g., “When was Natalie Schneider
born?”, “Where was Natalie Schneider born?”). This is also done using QA templates.
We generate 10,000 such biographies and 60,000 associated QA pairs. The attribute lists,
biography- and question templates are provided in Appendix B.1.

Constructing training and evaluation splits Before training, we divide the entire dataset
(BIO + QA ) into four groups by person: retain (50%), high-count (16.7%), low-count (16.7%)
and utility (16.6%). To simulate variations in exposure, we up-sample the biographies
corresponding to one of the subsets (high-count) by a factor of 10x. We do this by resampling
biography templates for this subset, keeping the attribute tuples unchanged. Training is
done jointly on BIO and QA instances.2 For training, we use biographies from all splits but
the QA instances from only the retain split. All other QA splits: {high-count, low-count, utility}
are used for evaluation and unlearning. Note that the QA splits for unlearning are not used
for pre-training.

Overall, this setting is intended to mimic the acquisition of factual knowledge in LLM
pre-training: The BIO instances imitate pre-training data in LLMs and the QA instances mimic
instruction finetuning. The goal is to train a model on all biographies but only a subset of
the questions, using the other questions to evaluate knowledge extraction abilities.

3.2 Training and evaluation

We pre-train four GPT-2 models (Radford et al., 2019) of varying sizes — 20M, 50M, 124M
and 210M — on the synthetic data described in the previous section. We follow Allen-Zhu
& Li (2024) and randomly sample BIO and QA instances during training.2 We pre-train
all models for 100 epochs using a learning rate of 0.001. Additional hyperparameters are
provided in Appendix B.2.

We evaluate models in two different ways: One tests how well the model retains information
about the biographies it saw during training and the other tests the model’s ability to answer
questions about the biographies. (1) BIO accuracy: Here, we test the model’s biography
completion ability by prompting it with tokens up to a required attribute and then evaluating
the completion (eg., “Wayne Natalie Schneider was born on...”). To ensure robustness, we
resample biography templates during BIO evaluation. (2) QA accuracy: To test a model’s
general ability to retrieve knowledge stated in the pre-training data, we query the model for
person-attribute relations. Since the model also saw QA instances during training, we design
this evaluation as a QA task using the {low, high}-count QA , and utility QA subsets, which
were held-out during training.

2 Allen-Zhu & Li note that joint training leads to better task generalization than pre-training
sequentially on BIO instances followed by the QA instances
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3.2.1 Models are good at answering questions about biographies

Figure 3 shows the evaluation results of the 20M, 124M, and 210M models throughout
training. For all models, the BIO accuracy and the QA retain accuracy reaches close to 99%
early on. This is not surprising, as the models are explicitly trained on these sets. As training
progresses, we see a steady increase in the QA performance for the evaluation splits. For
the up-sampled biographies (high-count) we observe a higher performance than for other
subsets. However, at the end of training, the accuracies for all evaluation splits are close
to each other, plateauing at around 80% accuracy. These results indicates that the trained
models are able to perform knowledge extraction for the unseen person-attribute questions
from the evaluation set, i.e., they learned do extract knowledge from their pre-training data.

3.3 Unlearning biography information

Next, we aim to unlearning specific biographical information from our trained models.

Setup Our unlearning setup closely follows Maini et al. (2024). We unlearn only on the QA
instances from the targets splits, using the QA instances from the retain set for regularization.
Both sets are filtered by the attribute being unlearned. Note that BIO instances are not
involved in the unlearning process. We compare Gradient Ascent, SIMNPO and IDK losses
for unlearning. We unlearn for 20 epochs using a batch size of 16 and run all experiments
with 3 different seeds. Further hyperparameters can be found in Appendix B.3.

Evaluation We evaluate both the QA and BIO accuracies for the target, retain and utility
sets. Since the BIO accuracy measures how good a model is at completing information it
saw during training via language modeling, we expect this metric to be an upper bound for
the QA accuracy. Stated differently, we do not expect a model to be able to correctly answer
a question if it cannot correctly complete a biography via language modeling. The metric
used both evaluations is Rouge-L (Lin, 2004).

3.3.1 Results for individual models

Figure 4 shows the results for unlearning the employer attribute from the 20M model using
high-count and low-count groups as unlearning targets. We obtain highly similar results
across attributes, model sizes, and unlearning methods, which we discuss in Appendix B.3.

Unlearning harms knowledge extraction disproportionately As unlearning progresses,
QA accuracy (top left) drops well below 20% for both high and low count unlearning,
showing that the model successfully learns to produce wrong or irrelevant answers for
target set questions. This also degrades QA utility (25% drop), suggesting that unlearning
adversely affects the model’s general knowledge extraction. In contrast, BIO performance
for utility sets drops only 10%, indicating that unlearning damages task-specific (QA)
knowledge more so than general (biography) knowledge.

Frequency affects unlearning success In Figure 4, the QA accuracies (top left) for both high
and low-count unlearning follow similar trends. However, BIO evaluations (top middle)
show a stark contrast. Even when QA accuracy drops below 20% by the end of unlearning,
the model that unlearns the high-count split retains considerably more BIO accuracy (+20%)
than the one unlearning the low-count split. This discrepancy arises from the upsampling of
high-count biographies, making it harder to fully erase information from this subset. We see
similar trends for SIMNPO as well (Figure 7). Our results for refusal training (Figure 8) are
the only exception in this trend, where the BIO accuracy never falls below 98% for either split.
We attribute this to the fact that in this setup, the sequence “I dont know” was never seen
during pre-training and the model very likely memorizes this response during unlearning.
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Figure 4: Target and utility evaluations when unlearning high-count and low count QA
splits. Retain performance never drops below 0.99 during unlearning. All evaluations are
Rouge-L scores. Model is GPT-20M, the attribute unlearned is employer. For a comparable
drop in target QA performance across both groups (top left), the corresponding biography completion
accuracy for the low-count group drops 20% more (top middle).

3.3.2 Scaling trends for unlearning

Next, we investigate how unlearning changes with model size. Figure 5 shows the scaling
results for gradient descent. Results for other methods are provided in Appendix B.3. We
note that all results discussed are averaged over four attributes and three random seeds.

Frequency effects persist across scale Our results show that across different model sizes,
the high-count split is consistently unlearned less effectively than the low-count split. This
pattern persists also with SIMNPO (see Figure 7), highlighting that pre-training exposure
influences unlearning outcomes across both model sizes and unlearning strategies.

Biography retention increases with scale When using gradient ascent3 (Figure 5), we
observe a widening divergence between the target QA and BIO accuracies as scale increases. In
other words, larger models are more effective at suppressing the QA ability on the unlearning
data while preserving the corresponding BIO information at the same time. This suggests
that as models grow in size, completely erasing information from its parameters becomes
increasingly difficult, reinforcing the challenge of true unlearning in high-capacity models.

4 Analyzing frequency effects in the wild

Finally, we explore if our observations from the previous section extend to even larger
models. This helps understand if the implications of our findings extend to real-world
scenarios where data sourced from various distributions will need to be unlearned. We
choose OLMo-7B4 (Groeneveld et al., 2024) as the target model, since we have access to
its pre-training data. This is crucial for constructing unlearning datasets that differ by
frequency. We directly unlearn from the pre-trained OLMo checkpoint.

4.1 Experimental setup

Dataset construction We curate three real-world QA datasets of the form (source, target,
relation), controlling for the relation between source and target: (1) Country-Capital QA:
These are questions of the form (country, capital, is capital). For verbalization, we use the

3Similar trends hold for SIMNPO, see Figure 7
4Specifically allenai/OLMo-7B-0724-SFT-hf.
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Figure 5: Unlearning results across GPT sizes using Gradient Ascent for unlearning. Top
row shows results for the high-count split. Bottom row for the low-count split. Results are
averaged across four attributes. Rougel-L scores are also normalized with initial values.
Larger models unlearn target QA pairs (left) while achieving higher BIO accuracy (middle).

template “What is the capital of {country}? {capital}”. (2) Book-Author QA: Questions
of the form (book, author, is author). Questions are paraphrased in a few different ways
using manually created templates. (3) ZSRE QA: The ZSRE benchmark contains Wikipedia
questions from a variety of (source, target, relation) tuples. This setup represents a loosely
controlled albeit realistic dataset for which mimics a potential real-world unlearning request.
Samples from each dataset can be seen in Table 4, Table 5 and Table 6.

Frequency annotation Once we collect large samples of (source, target, relation) pairs
for each dataset, we compute the co-occurrence frequency for each (source, target) in Dolma
v1.7 (Soldaini et al., 2024), which was used to pre-train OLMo.5 Co-occurrence frequency is
computed as the number of joint appearances of a source and target pair in Dolma. Let us
assume a (source, target) pair (China, Beijing). We wish to estimate the number of times
China and Beijing are present in the Dolma corpus, separated by a distance of at most 200
BPE tokens (200 is a conservative upper bound of the word-count in a paragraph). This is
formalized as:

co-occur(China, Beijing) = ∑
(i,j)

1[wi = “China” ∧ wj = “Beijing” ∧ |i − j| < 200] ,

where i and j range over all token positions in the Dolma corpus. We use the infinigram
framework (Liu et al., 2024) to obtain these counts and divide the (source, target, relation,
Dolma count) data points into three equally sized buckets grouped by Dolma count. Table 3
provides an overview of the count statistics. We note that the data at this stage has similari-
ties to our previous setup: We have QA pairs of a fixed relation, where the model is exposed
to one group much more so than the other.

Unlearning setup We use the most frequent 100 data points from the high/low-count
buckets for all unlearning experiments. While the count composition of each bucket varies
among the datasets, we ensure that the high-count bucket is exposed at-least 100 times more
than the low count set for all three datasets.6 The unearning setup closely follows the syn-
thetic experiments: For each dataset ∈ {capitals, books, zsre}, we unlearn high-countdataset

5The SFT model we use was additionally fine-tuned on Tulu (Ivison et al., 2023) but we choose to
ignore these counts as they are dominated by the counts in Dolma.

6As measured by the median of each bucket.
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or low-countdataset, using medium-countdataset for regularization. Hyperparameters used
across datasets and unlearning methods can be found in Appendix C.2.

The unlearned models are evaluated for unlearning efficacy and utility. Rouge-L is the
default metric for evaluation unless stated otherwise. Unlearning efficacy is measured
using two approaches: 1) A generative evaluation, where we prompt the model with
paraphrased questions from the target set, and 2) a probabilistic evaluation, where the
model is prompted to generate a True/False response for a few-shot prompt (Figure 9) that
verifies the question-answer pair. We compare the probability of the True/False tokens
during probabilistic evaluation. These evaluations are intended to measure unlearning
efficacy across task-demands (Hu & Frank, 2024; Deeb & Roger, 2025; Chen et al., 2024).

Utility is also evaluated along two axes: 1) In-domain evaluation: Since the last step in the
OLMo-SFT pipeline is instruction-tuning on Tulu V2 (Ivison et al., 2023), we consider the
evaluations on Tulu as in-domain. We test in-domain generation utility using a zero-shot
subset of FLAN (Longpre et al., 2023), which is included in Tulu. We also evaluate on few-
shot QA samples from FLAN to assess a related-but-different task. To measure probabilistic
performance, we compute the perplexity on a subset of Tulu sampled from all composite
tasks. 2) OOD evaluation: The world-facts questions from Maini et al. (2024) are used for
out-of-domain QA evaluation. We also evaluate on tiny-MMLU and tiny-Hellaswag (Polo
et al., 2024), which offer probabilistic measures for utility. To prevent data leakage, we make
sure that there is no overlap between the answer tokens of the target and utility splits.

4.2 Results

We present results from unlearning the capitals dataset with SIMNPO in Figure 6. Other
dataset-method combinations are illustrated in Appendix C.3.

Unlearning overexposed instances is more difficult Mirroring observations from the
synthetic setup in Section 3, we see that unlearning efficacy strongly depends on frequency.
Across the board, our results show that there is a considerable difference between unlearning
data from different count buckets. Given an equivalent drop in utility, we see that the (1)
paraphrased target performance for the high-count split does not drop as much as the
low-count split (2) in the case that it does, it’s probabilistic performance does not drop below
99%. In all our experiments, the generative and probabilistic performance of the low-count
split falls consistently lower than the high-count split.

Probabilistic and generative utility evaluation do not tell the same story Across experi-
ments, we consistently observe that all the generation based evaluations drop as unlearning
progresses. Notably, zero-shot QA drops more than few-shot QA across the board. On
the other hand, neither of our probabilistic evaluations, e.g., tinyMMLU or tinyHellaswag
deteriorate with unlearning. This is true even in cases where zero-shot QA deteriorates
considerably (see Figures 16 and 17). These results highlight that that there seems to be a
task-specific element to utility degradation, which aligns with our findings in the synthetic
case (Section 3.3.1). Such task-dependent discrepancies have also shown up in previous
work on model evaluation (Hu & Frank, 2024; Hu & Levy, 2023) and preference optimiza-
tion (Chen et al., 2024). Future work should consider these differences based on evaluation
to avoid misconceptions about (decreases in) model utility after gradient-based unlearning.

5 Related work

LLM Unlearning — Methods Existing literature on LLM unlearning can be broadly
categorized by using either black-box or white-box methods. These categories differ based
on whether data-specific modifications are directly applied to the model’s parameters or not.
Black-box methods rely on gradient-based approaches, i.e., they update model parameters
through gradient descent (Ishibashi & Shimodaira, 2023; Jang et al., 2023; Zhang et al., 2024;
Fan et al., 2024). White-box methods offer a more surgical approach to unlearning. The
general idea is to locate and directly neutralize model components that correspond to the
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Figure 6: Unlearning high-count and low-count capitals with SIMNPO on OLMo-7B.
Rouge-L is the evaluation metric. Top row shows performances for the forget and retain sets.
Middle row is in-domain utility evaluation and bottom row is out-of-domain utility evaluation.
Target evaluations are normalized across their initial values. Infrequent instances are forgotten
faster and more efficiently across generative (top left) and probabilistic (top middle) evaluations.

target data, without updating the entire model (Guo et al., 2025; Ilharco et al., 2023; Li et al.).
There is an additional class of grey-box methods which combine the strengths of the black
and white-box methods. These work by limiting gradient descent to a data-specific subset
of the model’s weights found using attribution (Hong et al., 2025; Zhang et al., 2025) or
insights from interpretability research (Tutek et al., 2025).

LLM Unlearning — Data Unlearning datasets are different across tasks and domains. A
common task in previous work is to unlearn question-answer pairs and/or multiple-choice
questions. Several works attempt to unlearn entire domains, where the data removal is
more general. Forgetting the Harry Potter universe (Eldan & Russinovich, 2023) or news
articles (Shi et al., 2025) are examples for this. Across both tasks, the factuality of the data
to be unlearned also varies considerably. Several works look at unlearning fictitious data
(Maini et al., 2024; Deeb & Roger, 2025; Guo et al., 2025) from models that are fine tuned on
these datasets. Other works also look at removing real-world knowledge like bio-chemical
weaponry (Li et al.), Wikipedia knowledge (Patil et al., 2024), or celebrity trivia (Jin et al.)
from pre-trained models. Our work spans both setups: we pre-train models from scratch
using synthetically generated data, and also unlearn real-world data from a pre-trained LLM.

Memorization and Unlearning The effects of memorization on unlearning have been
studied in computer vision (Zhao et al., 2024), where the authors show that verbatim
memorization negatively impacts the feasibility of unlearning. Bărbulescu & Triantafillou
(2024) study the effects of memorization in LLM unlearning. They unlearn memorized
instances of PILE (Gao et al., 2020) from the GPT-Neo models (Black et al., 2021), establishing
that verbatim memorization is adversary to LLM unlearning as well. Our work asks a
similar question in an intermediate setting: what if instances are not necessarily memorized,
but frequently encountered? Does this also correlate with the ability to unlearn data?
In concurrent work, Baluta et al. (2024) explore similar questions in a synthetic setup,
using machine translation as the target task and gradient ascent as the unlearning method.
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Their conclusions agree with ours — that differently exposed/memorized data points are
unlearned differently. Our work adds evidence to this narrative, establishing the exposure-
unlearning correlation in a widely used open-source language model, i.e., OLMo, and
explores variations across model scale, unlearning methods, and evaluation setups.

Effect of data frequency on LLM behavior Variations in data exposure during pre-training
has been shown to impact multiple aspects of model behavior: In computer vision, previous
work (Parashar et al., 2024; Udandarao et al., 2024) has shown that the zero-shot capabilities
of VLMs are linked to the frequency of a concept in the pre-training corpus. Consequently,
Verma et al. (2024) show that image generation models are better at imitating images fre-
quently seen during pre-training. In the LLM domain, previous work has shown that the
duplication of training samples in the pre-training corpus considerably degrades model
performance (Lee et al., 2022) and increases privacy issues (Kandpal et al., 2022). Merullo
et al. (2025) show that factual knowledge which is more frequent in pre-training data is
linearly encoded in LLM representations. Recent work (Carlini et al., 2023) has also drawn
strong connections between memorization and the frequency of training examples: Shi et al.
(2024) show that repeated exposure to certain data points during pre-training increases
the strength of memorization, making these data points more detectable via membership
inference attacks (Mattern et al., 2023). Similarly, Nasr et al. (2025) demonstrate that models
trained for more epochs are more likely to regurgitate verbatim training examples, reinforc-
ing the idea that exposure frequency amplifies memorization and affects model behavior
at inference time. Our work contributes to this narrative, and studies the role of frequency
in unlearning. We examine how repeated co-occurrence of entities in pre-training data can
influence unlearning, and show that frequently seen information (here entities and their
relationship) is considerably harder to unlearn than infrequent information.

6 Conclusions and Future Work

In this work, we test the hypothesis that it should be more difficult to unlearn data that
was seen more frequently during pre-training. We provide evidence for this hypothesis
across synthetic and real-world setups: 1) We train GPT-2 models from scratch on fake
biographies and find that unlearning questions about more frequent biographies is more
difficult than other biographies. 2) Extending our results to a real-world scenario, we observe
similar trends when unlearning QA pairs from OLMo-7B. Unlearning knowledge that is
not frequent in the OLMo pre-training corpus is more easy than frequently encountered
data. Additionally, our experiments reveal discrepancies between evaluations of unlearning:
While probabilistic evaluations of forget quality and utility display only a minor impact of
unlearning on model performance, the impact on performance seems much more negative
when using generative evaluations.

We make the following suggestions to guide future research in LLM unlearning: 1) Unlearn-
ing Methodology: As a first step, future work on optimization based unlearning should
group data points in the forget set according to their estimated frequency to make sure that a
proposed algorithm works well across different samples. To foster research on data-specific
unlearning, we need better benchmarks that offer a range of models where training data
is known and unlearning splits can be designed carefully. 2) Utility Evaluation: We call
for a more comprehensive evaluation of utility following unlearning, given the variation
we observed when reporting utility with different benchmarks. We also advocate placing
greater emphasis on generative evaluations over likelihood evaluations, since our findings
suggest that generative tasks are more sensitive to model degradation.
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A Modified Loss Function for Unlearning

Since our unlearning targets are always QA pairs, and the setup closely resembles Maini
et al. (2024) and Fan et al. (2024), we adopt their loss formulation for unlearning. Given
a target question-answer pair (xtarget, ytarget) and a retain pair(xretain, yretain), these papers
compute the unlearning loss as:

L = Lforget(θ, ytarget|xtarget) + αLregularization(θ, yretain|xretain) (2)

That is, the forget and regularization losses are computed only over the target and retain
responses, conditioned on the respective inputs. We propose the use of a modified training
loss:

L = Lforget(θ, ytarget|xtarget) + αLCE(θ, yretain|xretain) + δLCE(θ, xtarget) + αLCE(θ, xretain)
(3)

The modified function presented in Equation (3) adds additional regularization terms over
the question tokens for both forget and retain sets. Keeping the forget loss computation the
same, the regularization loss is computed over the target question xtarget, the retain question
and the retain answer conditioned on the question. Note that this does not conflict with
the forget signal. i.e., we would like the model to forget the answer to a question, but the
question itself is a grammatical sentence we can regularize on. We find that the addition of
regularization from the question tokens improve the stability of the unlearning process and
decrease the drop in QA performance during unlearning, especially for the larger models.

B GPT-2 Experiments

B.1 Dataset Creation

Attributes Each value in the tuple {name, birthday, birth city, university, major,
employer, employer city, pronoun } is randomly sampled from the folowing lists:

1. Each name is sampled from a list of first, middle and last names. First names are
taken from JTRNS (2025) and last names from CraigH411 (2025). The first name list
is reused for middle names, making sure that they are not duplicates.

2. Birthdays are randomly sampled from {[1–28], [Jan–Dec], [1900–2099]}.
3. Birth city is sampled from Grammakov (2025). They are cities in the United States

of America.
4. Universities are taken from the list of US universities published by dotJoel (2025).
5. Employer list and locations are sourced from the fortune-500 list compiled by

EatMoreOranges (2023)
6. Pronouns are sampled from {he, she, they}. We then use the appropriate personal

and possessive pronouns.

Biography templates and samples Biography templates are created by first collecting
individual templates for each attribute. We use ChatGPT to generate 50 templates per
attribute. Some example attribute templates are provided in Appendix B.1. Attribute
templates are drawn at random and concatenated (in the same order) to make biography
templates. This gives us a total number of 506 unique biography templates. This process
results in biographies which are six sentence descriptions of each attribute of a person,
composed in the same order. Some examples of biographies are shown below:

1. Sandra Denise Wise’s arrival happened on February 21, 2053. Her life was
first influenced by Mount Croghan, SC. She took advantage of internship
opportunities at Hendrix College. She collaborated on research projects
in Biology. She was employed at Westlake. She gained industry recognition
through work in Houston, TX.
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2. Kathleen Laura Gordon’s arrival happened on April 17, 2079. He was
raised in Talbot, IN. He spent countless hours in the library at
California Institute of Integral Studies. He took specialized courses in
Operations Logistics And E-Commerce. He contributed to the mission of
ConocoPhillips. He engaged in consulting work in Houston, TX.

3. Christine Margaret Flowers took their first breath on June 14, 1900. Her
heritage is rooted in Falls Mills, VA. She broadened her academic horizons
at University of Wisconsin--Superior. She developed programming skills
relevant to Physics. She achieved professional growth at Microsoft. She
engaged in consulting work in Redmond, WA.

4. Samantha Megan Deleon was born on January 27, 2098. They entered
the world in Benge, WA. They refined their analytical skills at
Brazosport College. They participated in case competitions related
to Human Services And Community Organization. They developed expertise
through Costco Wholesale. They developed professional skills in
Issaquah, WA.

5. Douglas Scott Kim’s first day in the world was June 25, 1902. He owes his
origins to Wrentham, MA. He was an active member of the academic community
at Hendrix College. He learned industry-standard practices in Music. He
thrived in his career at JPMorgan Chase. He advanced his professional
journey in New York, NY.

Question Templates Question templates are taken from Allen-Zhu & Li (2024). These are:

1. What is the birth date of NAME? BIRTHDAY.

2. What is the birth city of NAME? LOCATION.

3. Which university did NAME study? UNIVERSITY.

4. What major did NAME study? MAJOR.

5. Which company did NAME work for? EMPLOYER.

6. Where did NAME work? EMPLOYER CITY.

B.2 Training

Instance Construction We use the mixed training proposed by Allen-Zhu & Li (2024),
where the model sees both BIO and QA instances . Training samples are constructed by
concatenating additional samples to each instance, separated by the <eos> token. The
samples for concatenation are randomly samples and homogeneous to the type of the
original instance. That is, QA instances are concatenated together and biographies are
likewise concatenated. Samples are concatenated until the tokenized instance has a length
of 512. For an dataset of 100 BIO and 100 QA instances, this produces a dataset of 100x512
BIO instances and 100x512 QA instances. We use a BIO :QA token ratio of 1:3 since Allen-Zhu
& Li (2024) report that this aids task-learning. This is done by picking more QA instances
at random and repeating the instance construction process. For the toy example, the total
dataset would contain (100x512 + 300x512) samples for training.

Training Hyperparameters A learning rate of 0.001 is used to train all models. We use a
batch size of 32 during training. The models are constructed from scratch; the architectures
used can be found in Table 2. The learning rate is warmed up for 10% of total steps. The
models are trained with fp16 precision, with a weight decay of 0.01. We use the fused
variant of the AdamW optimizer for faster converging. Other training hyperparameters are
default values and follow Allen-Zhu & Li (2024). Similar to the original paper, we find that
the performances for employer city are comparatively weaker for the trained models, so we
do not consider it for unlearning.

18



Published as a conference paper at COLM 2025

Attribute Example Templates

Birthday NAME was born on BIRTHDAY
NAME’s birthdate is BIRTHDAY
NAME came into the world on BIRTHDAY
NAME was welcomed into life on BIRTHDAY
NAME’s journey began on BIRTHDAY

Birth City PERSONAL PRONOUN was born in LOCATION
LOCATION is where PERSONAL PRONOUN was born
POSSESSIVE PRONOUN roots lie in LOCATION
PERSONAL PRONOUN entered the world in LOCATION
POSSESSIVE PRONOUN birthplace is LOCATION

University PERSONAL PRONOUN studied at UNIVERSITY
PERSONAL PRONOUN enrolled in UNIVERSITY
PERSONAL PRONOUN was accepted into UNIVERSITY
PERSONAL PRONOUN completed studies at UNIVERSITY
PERSONAL PRONOUN honed skills at UNIVERSITY

Major PERSONAL PRONOUN specialized in MAJOR
PERSONAL PRONOUN pursued a degree in MAJOR
PERSONAL PRONOUN studied MAJOR at university
PERSONAL PRONOUN conducted research in MAJOR
PERSONAL PRONOUN explored MAJOR coursework

Employer PERSONAL PRONOUN worked at EMPLOYER
PERSONAL PRONOUN built a career at EMPLOYER
PERSONAL PRONOUN gained experience at EMPLOYER
PERSONAL PRONOUN served in a role at EMPLOYER
PERSONAL PRONOUN took on responsibilities at EMPLOYER

Employer City PERSONAL PRONOUN worked in EMPLOYER CITY
PERSONAL PRONOUN built a career in EMPLOYER CITY
PERSONAL PRONOUN took on responsibilities in EMPLOYER CITY
PERSONAL PRONOUN developed skills in EMPLOYER CITY
PERSONAL PRONOUN contributed to projects in EMPLOYER CITY

Table 1: Example Templates for Biography generation

Model Size Number of Hidden Layers Number of Attention Heads Hidden Size

20M 8 8 256
50M 8 8 512

124M 12 12 768
210M 12 16 1024

Table 2: Model configuration details for the GPT models we train

B.3 Unlearning

Hyperparameters Unlearning uses the loss illustrated in Equation (3). The δ value is set to
1.0 for all runs. For all unlearning experiments, we search for learning rates among 8e-5,
1e-4, 2e-4, 5e-4 and α values between 1, 5, 10, 15, 20, 25. For the 20M and 50M models, a
learning rate of 2e-4 and an α of 20 is seen to work well. The 124M and 210M models use a
learning rate of 8e-5 and α = 25. For SIMNPO, we use a γ value of 0 and a β value of 0.1,
which is seen to work well.

Unlearning plots Figure 7 and Figure 8 show unlearning plots for GPT-2 models using
SIMNPO and refusal losses respectively. Results are plotted and averaged across four
attributes.
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Figure 7: Unlearning GPT models using SIMNPO loss. Results are averaged across four
attributes. Top row shows results from unlearning the high-count split and the bottom row
from unlearning low-count. The Rougel-L scores are normalized across attributes. Larger
models display an increased ability to seemingly unlearn target QA pairs (left columns), while
actually retaining information as seen in target BIO evaluations (middle columns).
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Figure 8: Unlearning GPT models using refusal training. Results are averaged across four
attributes. Top row shows results from unlearning the high-count split and the bottom row
from unlearning low-count. The Rougel-L scores are normalized across attributes. The
models learns to memorize the ”I don’t know” response that has not been seen during
pre-training. This is not seen to affect target BIO performance.

C OLMo Unlearning

Dataset samples and count statistics In Table 4, table 5 and table 6, we show the 5 most
frequent samples across all three count buckets for Capitals, ZSRE and Books datasets.
The associated co-occurence counts in the Dolma dataset (across 200 token spans) are also
provided. We also show count statistics for all datasets in Table 3.
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Dataset Mean ± Std Median Min Max

Capitals
Low Count 11,566.42 ± 13,597.12 4,897.0 1.0 44,341.0
Medium Count 234,492.09 ± 151,210.70 202,202.0 45,243.0 613,776.0
High Count 3,322,667.0 ± 4,620,916.0 1,749,344.0 640,168.0 27,999,928.0

ZSRE
Low Count 100 225.5 ± 8.78 226.0 210.0 239.0
Medium Count 100 1,950.79 ± 90.37 1,939.5 1,788.0 2,103.0
High Count 100 557,792.77 ± 1,324,276.07 185,913.0 79,823.0 9,009,989.0

Books
Low Count 100 125.99 ± 14.75 124.0 101.0 152.0
Medium Count 100 7,526.60 ± 1,214.35 7,435.5 5,812.0 9,991.0
High Count 100 32,110.77 ± 29,547.27 21,362.0 13,255.0 209,420.0

Table 3: Frequency statistics for the OLMo datasets. In all cases, the median of the high
count bucket is at-least 100 times more than the low-count group. The median differences
are smallest for books, and largest for capitals.

Low-count [co-occurrence count] Medium-count [co-occurrence
count]

High-count [co-occurrence
count]

What is the capital of Aruba?
Oranjestad [44341.0]

What is the capital of Slovakia?
Bratislava [613776.0]

What is the capital of China? Bei-
jing [27999929.0]

What is the capital of Marshall
Islands? Majuro [41431.0]

What is the capital of Venezuela?
Caracas [563742.0]

What is the capital of Ireland?
Dublin [20868122.0]

What is the capital of Kiribati?
Tarawa [41139.0]

What is the capital of Morocco?
Rabat [508836.0]

What is the capital of France?
Paris [18399078.0]

What is the capital of Equatorial
Guinea? Malabo [41018.0]

What is the capital of Colombia?
Bogotá [488553.0]

What is the capital of Israel?
Jerusalem [17605351.0]

What is the capital of Cayman Is-
lands? George Town [40836.0]

What is the capital of Fiji? Suva
[488433.0]

What is the capital of Ukraine?
Kyiv [10397531.0]

Table 4: Capitals dataset samples: Samples are shown across count buckets and co-
occurrence counts for (country, capital) pairs in the Dolma corpus for the capitals dataset.
Paraphrased versions are used for testing

C.1 Instance construction for unlearning and evlauation

Since the OLMo model is SFT tuned, we provide target and retain instances us-
ing the expected chat template. Specifically, the QA instances are constructed as:
<|endoftext|><|user|>\nQUESTION\n<|assistant|>\nANSWER where the QUESTION and
ANSWER terms are replaced with entries from the target and retain sets. The forget loss is only
computed across the answer tokens for the target set. The regularization loss is computed
as in Equation (3). The evaluation samples are also provided using the chat template.

C.2 Hyperparameters

We note that finding appropriate hyperparameters for OLMo was more difficult than
the GPT-2 models. Gradient ascent and SIMNPO were both sensitive to hyperparameter
configurations. We used the performance of World-facts and the zero-shot subset of flan
to monitor model performance, since MMLU and other probabilistic measures did not
correlate to zero shot performance. During hyperparameter tuning, we found that model
collapse was more frequent than effective forgetting (this has been previously highlighted as
a drawback of gradient based unlearning), so good hyperparameter configurations worked
well for both target groups. Overall our learning rates were chosen from 2e-6, 3e-6, 5e-6,

21



Published as a conference paper at COLM 2025

Low-count [co-occurrence count] Medium-count [co-occurrence
count]

High-count [co-occurrence
count]

What company published Pac-
Man Pinball Advance? Namco
[239]

What voice type does Measha
Brueggergosman have? soprano
[2103]

Who was Jesus’s mother? Mary
[9009989]

What is the original channel that
Football This Week played on?
ESPN [239]

Which show is T-1000 in? Termi-
nator 2: Judgment Day [2102]

The product of Brewing is what?
beer [7161248]

What material was used for Tian
Tan Buddha? bronze [239]

When was Einsteinium discov-
ered? 1952 [2099]

In what continent is Canada in?
North America [6669104]

What is the operating system
used with Kqueue? FreeBSD
[238]

What programming language
was used to write DokuWiki?
PHP [2095]

Which industry is MSNBC asso-
ciated with? news [3059641]

What series is the episode My
Sister, My Sitter part of? The
Simpsons [238]

What studio produced Easy A?
Will Gluck [2092]

What is the continent that
Mozambique is located? Africa
[1521267]

What business published Pro
Evolution Soccer 4? Konami
[238]

Which state is Camp Ipperwash
located? Ontario [2090]

On what continent can Libya be
found? Africa [1480854]

Table 5: ZSRE dataset samples : Samples are shown across count buckets and co-occurrence
counts for (subject, answer) pairs in the Dolma corpus for the ZSRE dataset. Paraphrased
versions are used for testing

Low-count [co-occurrence count] Medium-count [co-occurrence
count]

High-count [co-occurrence
count]

Who is the author of ’Dead to
the World’? Charlaine Harris
[114.0]

Can you name the author of
’Ella Enchanted’? Gail Carson
Levine [6812.0]

Who is the author behind
’Twilight’? Stephenie Meyer
[209420.0]

Who is the author of ’Deliver
Us From Evil’? David Baldacci
[125.0]

Who is the author of
’Goldfinger’? Ian Fleming
[9991.0]

Who is the author of the book
’Outlander’? Diana Gabaldon
[24536.0]

Can you tell me the author of
’The Tragedy of Othello, The
Moor of Venice’? William
Shakespeare [128.0]

Who is the author of ’Shiver’?
Maggie Stiefvater [8032.0]

Who is the author of ’Divergent’?
Veronica Roth [33856.0]

Who is the author of ’The Ruby
in the Smoke’? Philip Pullman
[138.0]

Who is the author of ’The
Bone Clocks’? David Mitchell
[7030.0]

Who is the author of ’The Lorax’?
Dr. Seuss [17507.0]

Who is the author of ’Girl of
Nightmares’? Kendare Blake
[112.0]

Who is the author of ’The Reluc-
tant Fundamentalist’? Mohsin
Hamid [6353.0]

Who is the author of ’The Secret
Garden’? Frances Hodgson Bur-
nett [14891.0]

Can you tell me who the author
of ’Zen and the Art of Motorcy-
cle Maintenance’ is? Robert M.
Pirsig [117.0]

Who is the author of ’The
Waves’? Virginia Woolf
[8272.0]

Who is the author of ’Crash’? J.G.
Ballard [16081.0]

Table 6: Books dataset Samples: Samples are shown across count buckets and co-occurrence
counts for (book, author) pairs in the Dolma corpus for the Books dataset. Paraphrased
versions are used for testing

1e-5, δ and α values of 5,10 worked well. For SIMNPO, γ values of 0.1,0 and β values
between 0.1,1 were searched. Given below are the hyperparameters used for the plots in the
paper. Each experimente is run across three seeds.

Gradient Ascent For the capitals dataset, we use a learning rate of 3e-6. the δ and α values
are set to 5. For the ZSRE dataset, a learning rate of 2e-6 and δ = α = 10 worked well. For
books, we use a learning rate of 2e-6, δ = 10 and α = 5.
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SIMNPO For unlearning capitals, we use a learning rate of 5e-6, γ = 0, β = 0.1 and
δ = α = 5. For ZSRE, learning rate=5e-6, γ = 0, β = 0.1 and δ = α = 5. For books, learning
rate=3e-6, γ = 0, β = 1, δ = 5 and α = 10.

Refusal training For capitals, we use learning rate=2e-6 and δ = α = 5. For books and
ZSRE, the learning rates are 5e-6, and δ = α = 5.

The following are Questions and Answers. State if the answer to
each question is true or false.

Question: How many planets are in the solar system?
Answer: Eight
True or False: True

Question: What is the tallest mountain in the world?
Answer: Mount Everest
True or False: True

Question: Where was pizza invented?
Answer: France
True or False: False

Question: Who painted the Mona Lisa?
Answer: Leonardo da Vinci
True or False: True

Question: What color is the gemstone ruby?
Answer: Blue
True or False: False

Question: Are sharks mammals?
Answer: No
True or False: False

Question: Can humans breathe underwater without equipment?
Answer: Yes
True or False: False

Question: Who wrote the novel 1984?
Answer: George Orwell
True or False: True

Question: What is the chemical symbol ’Au’ for?
Answer: Aluminum
True or False: False

Question: What is the primary ingredient in traditional hummus?
Answer: Chickpeas
True or False: True

Question: What is the capital of China?
Answer: Beijing
True or False:

Figure 9: The true or False prompt used to measure forget quality for OLMo. For each
evaluation, we append the paraphrased question-answer pair from the target set and then
measure the compare the model’s completion probability for True and False. An example is
shown.

C.3 OLMo unlearning Plots

The following plots (Figure 10, Figure 11, Figure 12, Figure 13, , Figure 14, Figure 15,
Figure 16 and Figure 17) show the unlearning trends when learning high and low-count
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splits from Capitals, ZSRE and Books dataset using Gradient Descent, SIMNPO and refusal
training.

D Behind the Scenes

In this section, the authors would like to document the evolution of the paper, all the way
from the ”plan of a concept” that AK and MM wrote up to the camera-ready version that the
reader sees. Our motivation is to disillusion the linear-progress story that the camera-ready
version portrays. The authors thank Benno Krojer for the inspiration.

D.1 Ideation and Experimental Order

The main idea hatched during a Mont-Royal walk: we’d been thinking about the evaluation
of unlearning in general, and found two unconvincing arguments in literature: 1) MMLU
results were reported before and after unlearning along with the claim that model utility
suffered minimal damage: “What are the boundaries of MMLU utility?” 2) Forget set
metrics were averaged: “What does 50% unlearning efficacy on a dataset mean?” . Inspired
by Peter Hase’s position paper on model beliefs (Hase et al., 2024), we deemed it unlikely
that differently strong beliefs can be equally unlearned with one method. When MM was
away for EMNLP 2024, AK and MM had a call where OLMo was discussed and the idea of
unlearning different buckets of differently exposed data originated. The OLMo part was
done first, with a focus on constructing a setup that avoided fine-tuning the model and
working on realistic data.

D.2 Stabilizing OLMo unlearning

Initial unlearning experiments using the loss function from Maini et al. (2024) were very
unstable: The standard deviation of the plots was so high that one could not derive con-
clusions when unlearning different target groups. Initially we thought that the instability
arose from the choice in retain set, so we invested a lot of effort in ablating it with not much
success. Sometime in January 2025, we tried additional regularization with the question
part of the retain set, which stabilized the unlearning trends considerably. The idea to add
the forget-question to the regularization came up during a discussion with Fabian David
Schmidt two weeks before the submission deadline (which meant that all experiments had
to be re-run). While the additional term did not change the OLMo results very much, large
GPT-2 models showed considerably less utility hits (comparable to the small models) when
it was used.

D.3 GPT Unlearning

After we observed differences in unlearning and utility estimation for OLMo, we became
interested in studying the effect of scale on our trends. MM was looking at Allen-Zhu & Li
(2025) and AK started experimenting with Allen-Zhu & Li (2024). Initially we mimicked
the TOFU setup. training models on all BIO and QA instances, then unlearned a subset of
the QA samples. This setup was fragile: trends were quite unstable and we hypothesized
that verbatim memorization was working against unlearning. After the QA instances were
removed from training (and allowed to be learned through generalization), unlearning
started to work well and similar trends to OLMo were observed. Scaling and up-sampling
also required some attention: we noticed that if we increased the model size beyond 250M,
the model had tendencies to memorize the QA training data and all our bigger models
did not generalize well. Scaling biographies to create high-count buckets also faced an
overfitting problem: Our experiments with 50x, 100x scaling resulted in overfitting to the
high-count bucket and poor generalization.
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Figure 10: Unlearning high-count and low-count capitals with Gradient Ascent on OLMo-
7B. Top row shows performances for the forget and retain sets. Middle row is in-domain
utility evaluation and bottom row is out-of-domain utility evaluation. Target evaluations are
normalized across their initial values.Low frequent instances are forgotten faster and more
efficiently across generative (top left) and probabilistic (top middle) evaluations.
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Figure 11: Unlearning high-count and low-count ZSRE splits with Gradient Ascent on
OLMo-7B. Top row shows performances for the forget and retain sets. Middle row is
in-domain utility evaluation and bottom row is out-of-domain utility evaluation. Target evalu-
ations are normalized across their initial values.Low frequent instances are forgotten faster
and more efficiently across generative (top left) and probabilistic (top middle) evaluations.
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Figure 12: Unlearning high-count and low-count Books with Gradient Ascent on OLMo-
7B. Top row shows performances for the forget and retain sets. Middle row is in-domain
utility evaluation and bottom row is out-of-domain utility evaluation. Target evaluations are
normalized across their initial values.Low frequent instances are forgotten faster and more
efficiently across generative (top left) evaluations.
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Figure 13: Unlearning high-count and low-count ZSRE splits with SIMNPO on OLMo-
7B. Top row shows performances for the forget and retain sets. Middle row is in-domain
utility evaluation and bottom row is out-of-domain utility evaluation. Target evaluations are
normalized across their initial values.Low frequent instances are forgotten faster and more
efficiently across generative (top left) and probabilistic (top middle) evaluations.
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Figure 14: Unlearning high-count and low-count Books with SIMNPO on OLMo-7B.
Top row shows performances for the forget and retain sets. Middle row is in-domain
utility evaluation and bottom row is out-of-domain utility evaluation. Target evaluations are
normalized across their initial values.
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Figure 15: Unlearning high-count and low-count capitals with refusal training on OLMo-
7B. Top row shows performances for the forget and retain sets. Middle row is in-domain
utility evaluation and bottom row is out-of-domain utility evaluation. Target evaluations are
normalized across their initial values. Low frequent instances are forgotten faster and more
efficiently across generative (top left) and probabilistic (top middle) evaluations.
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Figure 16: Unlearning high-count and low-count ZSRE splits with refusal training on
OLMo-7B. Top row shows performances for the forget and retain sets. Middle row is
in-domain utility evaluation and bottom row is out-of-domain utility evaluation. Target evalu-
ations are normalized across their initial values. Low frequent instances are forgotten faster
and more efficiently across generative (top left) and probabilistic (top middle) evaluations.
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Figure 17: Unlearning high-count and low-count Books with refusal training on OLMo-
7B. Top row shows performances for the forget and retain sets. Middle row is in-domain
utility evaluation and bottom row is out-of-domain utility evaluation. Target evaluations are
normalized across their initial values. Low frequent instances are forgotten more efficiently
across probabilistic (top middle) evaluations.
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