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ABSTRACT

The quadratic computational complexity to the number of tokens limits the practical
applications of Vision Transformers (ViTs). Several works propose to prune
redundant tokens to achieve efficient ViTs. However, these methods generally
suffer from (i) dramatic accuracy drops, (ii) application difficulty in the local vision
transformer, and (iii) non-general-purpose networks for downstream tasks. In
this work, we propose a novel Semantic Token ViT (STViT), for efficient global
and local vision transformers, which can also be revised to serve as backbone for
downstream tasks. The semantic tokens represent cluster centers, and they are
initialized by pooling image tokens in space and recovered by attention, which
can adaptively represent global or local semantic information. Due to the cluster
properties, a few semantic tokens can attain the same effect as vast image tokens,
for both global and local vision transformers. For instance, only 16 semantic
tokens on DeiT-(Tiny,Small,Base) can achieve the same accuracy with more than
100% inference speed improvement and nearly 60% FLOPs reduction; on Swin-
(Tiny,Small,Base), we can employ 16 semantic tokens in each window to further
speed it up by around 20% with slight accuracy increase. Besides great success in
image classification, we also extend our method to video recognition. In addition,
we design a STViT-R(ecover) network to restore the detailed spatial information
based on the STViT, making it work for downstream tasks, which is powerless
for previous token sparsification methods. Experiments demonstrate that our
method can achieve competitive results compared to the original networks in object
detection and instance segmentation, with over 30% FLOPs reduction for backbone.

1 INTRODUCTION

In contrast to standard Convolutional Neural Networks (CNNs) approaches which process images
pixel-by-pixel, Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Touvron et al., 2021a;b; Liu
et al., 2021; Wu et al., 2021) treat an image as a sequence of patch/image tokens, and have shown
promising performance in prevalent visual recognition scenarios. However, these superior perfor-
mances do not come for free: the quadratic computational complexity to the number of image
tokens limits their application in practice. Previous works (Song et al., 2021; Zong et al., 2021)
have illustrated the large amount of redundancy in the image tokens and also shown the effect of
filtering out unimportant tokens normally according to predefined scoring mechanism. However,
these methods face the following challenges. Firstly, the predefined scoring mechanisms for filtering
are generally imprecise. In Figure 1, on the left we visualize the class token values in different layers
which are commonly used to score the token importance (Xu et al., 2022; Fayyaz et al., 2021; Liang
et al., 2022). Different layers have different value distributions, thus using these imprecise scores
for filtering would lead to unsatisfactory performance. For example, EViT (Liang et al., 2022) has
an accuracy drop of 1.3% when saving 50% FLOPs on DeiT-S (Touvron et al., 2021a). Secondly,
the remaining tokens do not distribute evenly in space any more, making them hard to work in local
vision transformers1. Finally, large-scale token pruning tremendously damages the spatial structure
and positional information, and causes difficulties when applied to downstream tasks, which they do
not propose a solution to deal with.

1In this paper, we define the vision transformer with global self-attention (like DeiT) as global vision
transformer and the vision transformer with local self-attention (like Swin) as local vision transformer.
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Figure 1: Left: the attention values of class tokens (normalized and reshaped in image shape) in
different self-attention layers. Right: the attention maps in different self-attention layers. Zoom-in
for better visibility.

To solve these problems, we propose Semantic Token ViT (STViT), for efficient global and local
vision transformers, which also can be revised to serve as backbone for downstream tasks. The
proposed approach is based on the following observations: (i) unlike local CNNs which learn spatial
structure of images, vision transformer discretizes feature map as tokens for global feature exploration,
relieving the requirements for maintaining the whole image structure and information; (ii) discrete
tokens are more beneficial for optimization (Wang et al., 2022); (iii) in Figure 1, on the right shows
the attention maps in different transformer layers, and there are only several vertical lines in the deep
layers, which means that only a few tokens with global semantic information matter. Thus, we argue
that it is not necessary to maintain massive structured tokens for ViTs, especially in the deep layers.
Employing a few discrete tokens with high-level semantic information can potentially achieve both
high performance and efficiency.

In STViT, the semantic tokens represent the cluster centers, and the number of them is far less than
the original image tokens, significantly reducing the computational cost. Inspired by the fact that
multi-head attention can conduct the cluster center recovery (Appendix A.8), we only employ the
off-the-shelf self-attention to generate the semantic tokens. Specifically, the first few transformer
layers are kept unchanged to obtain the image tokens with low-level features. The image tokens are
then fed into our semantic token generation module (STGM) consisting of at least two transformer
layers to generate semantic tokens. In each self-attention layer, the semantic tokens are input as
queries, and the image tokens are fed as keys and values. The semantic tokens dynamically aggregate
image tokens through the attention layers to recover cluster centers. In the first attention layer, the
semantic tokens are initialized by an intra and inter-window spatial pooling which takes into account
incorporating semantic information in each window and maximizing distance between adjacent
windows. Thanks to this spatial initialization, the semantic tokens mainly incorporate local semantic
information and achieve discrete and uniform distribution in space. In the following attention layer,
besides further clustering, the semantic tokens are equipped with global cluster centers, and the
network can adaptively select partial semantic tokens to focus on global semantic information. After
the STGM, the original image tokens are discarded, and only semantic tokens are kept for the
subsequent transformer layers. Because the generation of semantic tokens is flexible and space-aware,
our method can be plugged into both global and local vision transformers. The semantic tokens can
be produced in each window for the local vision transformer.

Another property of STViT is its capability to serve as a backbone for downstream tasks, such as object
detection and instance segmentation. Discussions have been missing in all previous methods (Xu et al.,
2022; Fayyaz et al., 2021; Liang et al., 2022; Ryoo et al., 2021; Zong et al., 2021) about how to use
them in downstream task under the massive loss of spatial information during the token sparsification
process, which actually seriously impedes the application of their method. Instead, we design a
novel STViT-R network based on STViT where a recovery module and dumbbell unit are adopted to
periodically restore the full resolution feature map while the intermediate transformer layers continue
to use semantic tokens to save computation cost, making our method work in downstream task.

The effectiveness of the proposed method is validated via a comprehensive empirical study on
image and video ViT models. Only 16 semantic tokens on DeiT-(Tiny, Small, Base) achieve nearly
50% inference time reduction without any accuracy degradation; on Swin-(Tiny, Small, Base), we
also improve the inference throughput by nearly 20% with slight accuracy increase. Moreover,
the proposed STViT-R achieves promising results on object detection and instance segmentation.
To the best of our knowledge, this is the first work to apply the token sparsification algorithm in
local vision transformers, and the first work to use the ViTs as backbones in downstream tasks after
large-scale token pruning. Our findings in ViTs uncover that maintaining the full-size feature map
is unnecessary, and a few tokens with high-level semantic representations can achieve both high
performance and efficiency. Thanks to its simplicity and general-purpose ability, our method can also
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serve as a new efficient ViT baseline architecture and a starting point for further research from the
token sparsification perspective.

2 RELATED WORK

Vanilla transformers have high computational and memory costs because the multi-head self-attention
has quadratic computational complexity to the number of image tokens. Recently, various efficient
ViTs have been proposed to alleviate this issue. The existing methods mainly focus on reducing the
complexity of self-attention or reducing the number of tokens. Swin Transformer (Liu et al., 2021)
adopts local self-attention, i.e., attending neighboring tokens within a constant window size, achieving
a linear computational complexity in the self-attention with high performance. Many subsequent
works (Dong et al., 2021; Yu et al., 2022; Wang et al., 2021; Yang et al., 2021; Huang et al., 2021;
Zhou et al., 2021; Chu et al., 2021a) follow the local self-attention design to develop variants.

Token sparsification methods can be mainly categorized into hard pruning (Rao et al., 2021; Pan
et al., 2021; Chen et al., 2021; Song et al., 2021; Yin et al., 2022; Meng et al., 2021; Fayyaz et al.,
2021; Xu et al., 2022; Kong et al., 2021; Liang et al., 2022; Tang et al., 2021) and soft pruning (Ryoo
et al., 2021; Zong et al., 2021). Hard pruning methods filter out some unimportant tokens according
to a predefined scoring mechanism. DynamicViT (Rao et al., 2021), SPViT (Kong et al., 2021), and
AdaViT (Meng et al., 2021) introduce additional prediction networks to score the tokens. Evo-ViT(Xu
et al., 2022), ATS (Fayyaz et al., 2021), and EViT (Liang et al., 2022) utilize the values of class tokens
to evaluate the importance of tokens. However, it is difficult to achieve precise scoring as shown in
the left of Figure 1. Therefore, they usually suffer from a significant accuracy drop. For instance,
EViT (Liang et al., 2022) has an accuracy drop of 1.3% when saving 50% FLOPs on DeiT-S. Soft
pruning methods generate new tokens from image tokens by importing additional attention networks.
TokenLearner (Ryoo et al., 2021) also argue for a few tokens to replace image tokens. However, its
price is a 1.8% accuracy drop when reducing 44% FLOPs, which is far inferior to concurrent works.
Besides performance degradation, previous methods also have the following disadvantages. First,
whether or how to extend the methods to local vision transformers remains unexplored. Second, it
has not been discussed about how to serve the downstream tasks like object detection and instance
segmentation after the tokens are pruned.

In our method, we apply the off-the-shelf transformer layers to reduce token number. (Ma et al.,
2021; Jaegle et al., 2021; Bai et al., 2021; Zhang et al., 2019; Li et al., 2019; Chen et al., 2019) adopt
similar approaches to achieve efficient non-local relationships. Our method is different from them as
below: (i) our method extracts local semantic information instead of non-local relationships; (ii) the
semantic tokens are a few cluster centers, which can replace the massive image tokens to achieve
image classification; (iii) our method specializes in pruning tokens.

3 METHOD

The proposed STViT is presented in this section, which aims to construct an efficient and high-
performance ViT. STViT is first introduced in Section 3.1, followed by how to apply STViT in the
local vision transformer in Section 3.2. Based on STViT, STViT-R is developed to restore the spatial
resolution for downstream tasks in Section 3.3.

3.1 STVIT

Overall architecture. An overview of STViT architecture is presented in Figure 2a. The patch
embedding layer and shallow transformer layers are kept unchanged as a base module in our method.
The base module copes with all the image tokens X ∈ RNi×C to extract low-level features, where
Ni is the number of image tokens and C is the number of channels. The image tokens are fed
into the semantic token generation module (STGM) to generate Ns semantic tokens S ∈ RNs×C .
After the STGM, the image tokens X can be discarded, and only semantic tokens S with high-level
semantic information are used in all the subsequent transformers. Due to Ns ≪ Ni, our method can
significantly reduce the computational cost.

Semantic token generation module (STGM). The whole image is represented by a few tokens
with high-level semantic information through clustering. Inspired by the fact that self-attention can

3



Under review as a conference paper at ICLR 2023

(a) STViT (b) STViT-R

Figure 2: The architectures of our STViT and STViT-R.

conduct cluster center recovery(Appendix A.8), we adopt the off-the-shelf self-attention layers to
produce the semantic tokens. The STGM consists of at least two transformer layers.

The initial cluster centers P ∈ RNs×C are generated by an spatial pooling which pools the image
tokens into fixed ws × ws tokens, with Ns = ws × ws. ws is generally set as 4. The spatial pooling
can be achieved by a non-parameterized adaptive spatial pooling or a super lightweight network
with higher performance, intra and inter-window spatial pooling. The intentions of spatial pooling
initialization are three folds. First, the initial cluster centers can distribute uniformly in space, making
the generated semantic tokens more discrete and preventing the semantic tokens from collapsing
to one point in the following layers. Second, the semantic tokens can be forced to represent more
local and distinguished features. Finally, the representation of semantic tokens is associated with the
specific spatial locations, which is the basis to allow our method to be applied in local self-attention
and downstream tasks. The initial cluster centers P then dynamically integrate the image tokens
X according to semantic information by attention mechanism. In the first transformer layer, the
processing of the generation of semantic tokens can be written as

Ŝ1 = MHA(P,X,X) + P, S1 = FFN(Ŝ1) + Ŝ1, (1)

where MHA and FFN are short for multi-head attention layer and feed-forward network, respec-
tively, and the triplet input of MHA are queries, keys, and values in turn. All the norm layers are
omitted in all the equations for brevity. The initial cluster centers are produced in a window by an
adaptive spatial pooling layer or an intra and inter-window spatial pooling, while the semantic tokens
are generated from a global receptive field by a dynamic attention layer to ensure that they can extract
high-level semantic representation. In order to further strengthen the clustering effect, we use the
second transformer layer to repeat the clustering operation and guide the semantic tokens to extract
global information. In this transformer layer, the semantic tokens are updated as:

Ŝ2 = MHA(S1 +G,Concat(S1, X), Concat(S1, X)) + S1, S2 = FFN(Ŝ2) + Ŝ2, (2)

where G ∈ RNs×C is the global cluster centers initialized by Gaussian noise and Concat(·) is a
concatenation operation. The global cluster centers G are responsible for global semantic information
extraction like the class token. Although S1 and G are summed together as the queries, they can be
decoupled in the attention computation as:

As = (S1 ·Wq) · ((S1 +X) ·Wk), Ag = (G ·Wq) · ((S1 +X) ·Wk),

A = Softmax(As +Ag),
(3)

where Wq and Wk are the linear projection weights of queries and keys. We can see that S1 and G
integrate the keys to generate As and Ag independently and just share a Softmax operation to produce
the final attention map A. Therefore, besides spatial semantic information, the semantic tokens also
incorporate global semantic information with a negligible additional overhead. Though very similar,
the global cluster centers are actually different from the learned positional encoding. We do not add
the global cluster centers to keys. Moreover, it will be shown in the experiments that inserting the
actual learned positional encoding will cause an accuracy drop. The number of transformer layers
in STGM is flexible. More transformer layers can be associated for clustering. Two transformer
layers are employed by default, i.e., S2 is the output of the STGM. Note that the image tokens are not
updated in the STGM.
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Intra and inter-window spatial pooling. Give H ×W feature map X , we generate Ns(ws × ws)
initial cluster centers. We uniformly split the X into ws × ws windows [Xi

w]
Ns
i=1 with size H

ws
× W

ws

and each window generates one initial cluster center. To represent abundant semantic information, we
take into account intra and inter-window relations, i.e., integrating important tokens in the window
and maximizing the distance among initial cluster centers in different windows. Specifically, we
formulate an intra-window function fintra to produce a mask, Mi = fintra(X

i
w), which projects the

input window from R
H
ws

× W
ws

×C → R
H
ws

× W
ws . The idea is to let the intra-window function fintra

adaptively select a combination of informative tokens in Xi
w, which is implemented by

Mi = Conv(GeLU(LayerNorm(DepthwiseConv(Xi
w)))). (4)

Then, we compute each integrated token P̂i = Softmax(Mi) ·Xi
w from each window, and arrange

[P̂i]
Ns
i=1 by spatial structure to form the 2D tensor P̂ ∈ Rws×ws×C . We adopt an inter-window

function finter to compute the inter-window relations and generate the offset, O = finter(P̂ ),to
revise the mask M . The implementation of finter is similar to Eq. 4, except the mapping input from

Rws×ws×C → Rws×ws×HW
w2

s , where HW
w2

s
is the number of tokens in each window. For each window,

the corresponding Oi ∈ R
HW
w2

s is sliced from O and reshaped to R
H
ws

× W
ws . The Oi is used to revise

Mi. The final initial cluster center Pi is computed by
Pi = Softmax(Mi +Oi) ·Xw. (5)

Our fintra and fintra are super lightweight and the introducing parameters can be negligible. For
example, on DeiT-T, the parameters only increase by 0.05%.

3.2 STVIT IN LOCAL VISION TRANSFORMERS.

Local self-attention has been widely used in current ViT models to balance efficiency and accuracy.
As the generation of semantic tokens in STViT is flexible in space, it can be naturally applied in local
self-attention. Suppose each local self-attention layer contains Nw windows with size w × w, we
initialize ws × ws cluster centers in each window by our intra and inter-window spatial pooling. The
total number of semantic tokens Ns would be ws ×ws ×Nw. w and ws are set as 7 and 3 by default
separately. As a result, our method compresses more than 80% image tokens in local self-attention.
In the STGM, although initial cluster centers are from w × w windows, we use larger windows with
size wk × wk to obtain keys and values in Eq. 1 and Eq. 2 to mitigate the effect of limited window
size. Other operations in STGM are kept the same as Section 3.1.

In the local ViT models, each local transformer layer is normally followed by a cross-window
connection layer, such as a shift window transformer layer following a local transformer layer on
Swin Transformer (Liu et al., 2021). In our method, the attention is computed within ws×ws window
in the local self-attention layer, and the cross-window connection can be achieved by computing
self-attention in a larger-size (e.g., 4× ws) sliding window because of the rare number of tokens in
each window. For the low-resolution input, our cross-window connection layer is equal to a global
self-attention layer.

3.3 STVIT FOR DOWNSTREAM TASKS

Our method significantly reduces the computation cost by using a small number of semantic tokens,
while its side effect is losing nearly all the detailed position information. High-level vision tasks,
such as object detection and instance segmentation, are difficult to be executed on this extremely
incomplete feature map. This issue also exists in previous works, which hinders the application of
token sparsification methods. To solve this issue, we design a STViT-R network based on STViT to
restore the original spatial resolution from the semantic tokens.

Our STViT-R shown in Figure 2b has two modifications compared with STViT. First, we adopt
a recovery module to restore the spatial resolution from semantic tokens; second, we regroup the
transformer layers and construct dumbbell units composed of our STViT-R.

Recovery module. In the recovery module, only the self-attention layer is employed to restore the
spatial resolution without any additional networks. The image tokens X and semantic tokens S are
partitioned as Nr

w windows of size wr × wr and wr
s × wr

s , respectively. The image tokens in each
window aggregate the semantic tokens in the corresponding window, which is represented as:

X̂ = MHA(X,S, S) +X, X = FFN(X̂) + X̂. (6)
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This is a reverse operation of the generation of semantic tokens, using high-level semantic information
to boost the image tokens.

Dumbbell unit. The transformer layers are regrouped into multiple dumbbell units in our STViT-R.
Each dumbbell unit consists of four parts. The transformers in the first part are responsible for
coping with image tokens; the second part is the semantic token generation module; the transformer
layers in the third part deal with semantic tokens; the last part is the recovery module. Take the
application on Swin-S (STViT-R-Swin-S) as an example. One, two, two and one transformer layers
are allocated for these four parts, respectively. In total, each dumbbell unit is composed of 6
transformer layers. We concatenate three dumbbell units in Stage 3 of Swin-S. In each dumbbell unit,
the intermediate transformer layers process semantic tokens with high-level semantic information to
save computational cost, and the complete spatial resolution is recovered at the end. By repeating
multiple dumbbell units, the detailed spatial information will be preserved by the network, which can
not only enhance the classification but also serve downstream tasks.

4 EXPERIMENTS

STViT will first be applied in two representative ViT models, DeiT (Touvron et al., 2021a) and
Swin (Liu et al., 2021) for image classification and video recognition. To validate that our method
is effective in downstream tasks, STViT-R is then performed on object detection and instance
segmentation tasks.

4.1 IMAGE CLASSIFICATION

Settings. For image classification, all the models are trained on the ImageNet (Deng et al., 2009).
By default, the semantic token generation module (STGM) employs the 5th and 6th transformer
layers of DeiT (with 12 layers in total), employs the 3rd and 4th transformer layers of Stage 3 of
Swin-T (with 12 layers in total), and employs the 11th and 12th transformer layers of Stage 3 of
Swin-S and Swin-B (with 24 layers in total). The image resolution in training and inference is
224 × 224. The batch size is 1,024. All the models are trained from scratch for 300 epochs, and
the augmentation and regularization strategies follow the original papers of DeiT and Swin. No
knowledge distillation algorithms are used in our experiments. The classification is performed by
applying a global average pooling layer on the output tokens of the last transformer layer, followed
by a linear classifier. In evaluation, the top-1 accuracy using a single crop is reported. The FLOPs
computations of this paper are measured by fvcore2. Throughput is measured with the batch size of
128 on a V100 GPU.

On DeiT (Touvron et al., 2021a), we replace the original patch embedding layer containing a 16× 16
convolutional layer with four lightweight 3 × 3 convolutional layers. We set the group of the last
convolutional layer as 2 to make the number of parameters not exceeding the original patch embedding
layer for fair comparison. The reason for reconstructing the patch embedding layer is to obtain better
low-level features to serve the generation of semantic tokens. Otherwise, we need to apply more
transformer layers in the base module, causing a huge overhead on FLOPs.

On Swin (Liu et al., 2021), the semantic tokens are generated in Stage 3, and they are not downsampled
in Stage 4. The patch merging layer between Stage 3 and Stage 4 is replaced with a simple linear
layer to double the number of channels. wk is set as 10 and 14 for two transformer layers of STGM.

Results. One of the advantages of our method is that it can be applied to both global and local
vision transformers to reduce computational complexity. Our main results on DeiT and Swin are
summarized in Table 1 and Table 2, respectively. The results of LV-ViT (Jiang et al., 2021) are
illustrated in Appendix A.3 due to limited space. We report the top-1 accuracy, FLOPs, and the
throughput under different numbers of semantic tokens. On DeiT, the models with 16 semantic tokens
achieve the same accuracy as the DeiT models with 196 tokens and save nearly 60% FLOPs on
DeiT-S and DeiT-B. With more semantic tokens, the accuracy can consistently outperform the base
models. For instance, STViT-DeiT-B with 36 semantic tokens surpasses DeiT-B by 0.4% accuracy
with 52% FLOPs reduction.

The local vision transformer like Swin is already an efficient architecture compared to the global
vision transformer, so the reduction of FLOPs on Swin models are smaller than on DeiT models.

2https://github.com/facebookresearch/fvcore
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Table 1: Applying STViT to DeiT-T, DeiT-S, and DeiT-B. The top-1 accuracy, complexity in FLOPs,
and throughput are reported for different numbers of semantic tokens. Base indicates the counterpart
DeiT model with our modification of patch embedding layer.

Model Metrics Base No. of semantic tokens
16 36 64 100

STViT-DeiT-T
Top-1 Acc(%) 75.0 75.4(+0.4%) 75.6(+0.6) 76.0(+1.1) 76.1(+1.2)

FLOPs(G) 1.32 0.59(-55%) 0.67(-50%) 0.78(-41%) 0.92(-30%)
Throughput(img/s) 2752 5511(+101%) 4769(+74%) 4214(+53%) 3551(+29%)

STViT-DeiT-S
Top-1 Acc(%) 80.5 80.6(+0.1) 80.9(+0.4) 81.3(+0.8) 81.4(+0.9)

FLOPs(G) 4.66 1.97(-58%) 2.256(-52%) 2.67(-43%) 3.21(-31%)
Throughput(img/s) 1408 2891(+105%) 2542(+80%) 2229(+58%) 1837(+30%)

STViT-DeiT-B
Top-1 Acc(%) 81.8 81.8(-0.0) 82.2(+0.4) 82.6(+0.8) 82.7(+0.9)

FLOPs(G) 17.61 7.31(-59%) 8.44(-52%) 10.04(-43%) 12.13(-31%)
Throughput(img/s) 626 1308(+110%) 1150(+85%) 1087(+61%) 826(+33%)

Table 2: Applying STViT to Swin-T, Swin-S, and Swin-B. The top-1 accuracy, complexity in FLOPs,
and throughput are reported for different numbers of semantic tokens in each window. Base indicates
the corresponding original Swin model. Move STGM indicates changing the default position of
STGM.

Model Metrics Base Move No. of semantic tokens
STGM 4 9 16

STViT-Swin-T
Top-1 Acc(%) 81.3 81.0(-0.3%) 80.8(-0.5) 81.5(+0.2) 81.8(+0.5%)

FLOPs(G) 4.5 3.14(-30%) 2.99(-34%) 3.43(-24%) 4.06(-10%)
Throughput(img/s) 878 1124(+29%) 1128(+29%) 1061(+22%) 1008(+15%)

STViT-Swin-S
Top-1 Acc(%) 83.0 82.8(-0.2%) 82.4(-0.6%) 83.0(-0.0) 83.1(+0.1%)

FLOPs(G) 8.7 5.95(-32%) 5.95(-32%) 6.53(-25%) 7.36(-15%)
Throughput(img/s) 551 739(+35%) 732(+34%) 691(+26%) 657(+20%)

STViT-Swin-B
Top-1 Acc(%) 83.5 83.2(-0.3%) 83.0(-0.5) 83.4(-0.1) 83.7(+0.2%)

FLOPs(G) 15.4 10.48(-32%) 10.48(-32%) 11.51(-25%) 12.97(-16%)
Throughput(img/s) 415 558(+35%) 551(+33%) 521(+26%) 489(+19%)

When 9 semantic tokens are used in each window, STViT-Swin models can reduce 25% FLOPs
with negligible accuracy loss on all the model sizes. If the number of tokens is reduced to 4 in
each window (16 in total), a significant accuracy drop will occur, which indicates that local vision
transformers need more semantic tokens than global vision transformers. We can move the STGM
towards shallow layers to attain a better complexity/accuracy trade-off. In Table 2, STGM is moved
by one transformer layer on STViT-Swin-T and by two layers on STViT-Swin-S and STViT-Swin-B
to save over 30% FLOPs with only about 0.3% accuracy drops (column of “Move STGM”).

These results demonstrate that our method achieves both effectiveness and efficiency by employing a
few semantic tokens to replace original image tokens. Our method reveals that constructing the tokens
with high-level semantic representation is more important than maintaining structured tokens in
ViTs. As reflected by the throughput, our method does not have overhead of memory or deployment.
Compared to the total parameters, the additional parameters introduced by intra and inter-window
spatial pooling is negligible(less than 0.05%), so we do not show them.

Comparisons with existing token sparsification methods. In Table 3, we compare STViT with the
state-of-the-art token sparsification methods on DeiT. Due to different base models used by different
methods, we adopt accuracy difference between each model and its base model ∆ to evaluate them
for fair. Results indicate that our method achieves the lowest accuracy drop ∆ with the highest FLOPs
reduction, outperforming all the state-of-the-art methods in both accuracy and efficiency significantly.

4.2 VIDEO RECOGNITION

Setting. For video recognition, we apply our STViT to Video Swin (Liu et al., 2022). All the
models are pretrained on ImageNet-1K and trained on Kinetics-400 (Carreira & Zisserman, 2017).
We generate semantic tokens from each frame as illustrated in Section 3.2. The initialization from
pretrained model and other implementation details are as same as Video Swin (Liu et al., 2022).

Results. The results are presented in Table 5. On Swin-T and Swin-S, STViT-Swin can save about
27% FLOPs with 0.3% accuracy drop, which shows that our method works on video recognition.
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Table 3: Comparisons with the state-of-the-art token sparsification methods on DeiT-S and DeiT-B.
△ shows the accuracy difference between each model and its base model.

(a) DeiT-S

Model Top-1 Acc FLOPs(G) △
DynamicViT (Rao et al., 2021) 79.3 2.9(-37%) -0.5

IA-RED2 (Pan et al., 2021) 79.1 3.2(-30%) -0.7
TokenLearner (Ryoo et al., 2021) 76.1 1.9(-44%) -1.8

DGE (Song et al., 2021) 79.7 3.1 (-49%) -0.6
Evo-ViT (Xu et al., 2022) 79.4 3.0(-35%) -0.4
EViT (Liang et al., 2022) 78.5 2.3(-50%) -1.3

STViT(Ours) 80.6 1.97(-58%) +0.1

(b) DeiT-B

Model Top-1 Acc FLOPs(G) △
IA-RED2 (Pan et al., 2021) 80.3 11.8(-33%) -1.5

DynamicViT (Rao et al., 2021) 81.3 11.2(-36%) -0.5
PS-ViT (Tang et al., 2021) 81.5 9.8(-44%) -0.3

TokenLearner (Ryoo et al., 2021) 83.7 28.7(-48%) -1.1
Evo-ViT (Xu et al., 2022) 81.3 10.2(-33%) -0.5
EViT (Liang et al., 2022) 80.0 8.7(-51%) -1.8

STViT(Ours) 81.8 7.31(-59%) -0.0

Table 4: Results on COCO object detection and instance segmentation under Cascade Mask R-CNN
with 3× schedule. The FLOPs are measured for backbones.

APb APb
50 APb

75 APb
s APm APm

50 APm
75 APm

s FLOPs(G)

Swin-S 51.8 70.4 56.3 35.2 44.7 67.9 48.5 28.8 194
STViT-R-Swin-S 51.8 70.6 56.1 36.7 44.7 67.8 48.6 29.0 134(-31%)

Swin-B 51.9 70.9 56.5 35.4 45.0 68.4 48.7 28.9 343
STViT-R-Swin-B 52.2 70.8 56.8 36.5 45.2 68.3 49.1 29.5 233(-32%)

4.3 APPLICATIONS IN OBJECT DETECTION AND INSTANCE SEGMENTATION

Settings. Experiments of object detection and instance segmentation are conducted on COCO
2017 (Lin et al., 2014). We evaluate STViT-R with Swin in Cascade Mask R-CNN (Cai & Vasconcelos,
2018; He et al., 2017) detection frameworks. The ws is set to 3. All the other settings follow Swin (Liu
et al., 2021).

Comparison to Swin Transformer. The performance of STViT-R-Swin using the Cascade Mask
R-CNN framework with 3× schedule is shown in Table 4. Our method achieves better performance
with more than 30% FLOPs reduction for backbone. This validates that the recovery module and
dumbbell unit can restore detailed spatial information, and the global context information integrated
from the semantic tokens significantly benefits object detection. Ignoring spatial structure in the
intermediate layers does not affect the object detection task, which is a meaningful fact to help design
efficient object detection frameworks. Another interesting finding is that our method has a remarkable
improvement for small object detection which is a challenging problem in the detection community.
For instance, our STViT-R-Swin-S outperforms Swin-S by 1.5% on AP b

s .

4.4 ABLATION STUDY

All the following ablation experiments of STViT and STViT-R are conducted on the DeiT-S and
Swin-S, respectively.

Initialization analysis. The semantic tokens are the cluster centers recovered by attention layers.
The initialization of cluster centers induces the representation of semantic tokens. Spatial and global
initialization are adopted in Section 3.1 to guide the semantic tokens to integrate local and global
semantic information separately. We compare different initialization components in Table 6. When
performing single global initialization(3rd row), we replace the spatial initial cluster centers with
global initial cluster centers in the first transformer layer. The accuracy of using a single initialization
method is far lower than using both, which shows the effectiveness of our initialization strategy.

Table 5: Applying STViT to Video Swin (Swin-T and
Swin-S) on Kinetics-400. All the models are pre-trained
on ImageNet-1K. The views are 4× 3. The top-1 accuracy
and complexity in FLOPs are reported. Speed is evaluated
by FPS.

Model Top-1 Acc(%) FLOPs(G) Speed

Swin-T 78.8 88 779
STViT-Swin-T 78.5(-0.3) 64.4(-27%) 975(+25%)

Swin-S 80.6 166 456
STViT-Swin-S 80.3(-0.3) 120.5(-27%) 572(+25%)

Table 6: Accuracy with different initial-
ization of STViT. Spatial, Global, and
Learned indicate spatial initialization,
global initialization, and learned PE, re-
spectively.

Spatial Global Learned Top-1 Acc(%)

✓ 80.1

✓ 79.5

✓ ✓ 80.6

✓ ✓ 80.5

8
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Figure 3: Visualization example of attention maps in the first attention layer of STGM.

Table 7: Performance evaluation on different
numbers of transformer layers in STGM. Keep-
ing the base module unchanged.

No. of transformers 2 3 4

Top-1 Acc(%) 80.6 80.3 80.4
FLOPs(G) 1.97 2.03 2.09

Table 8: Ablation study on STViT-R w/o dumb-
bell units (w/o DU) and reusing semantic tokens
(Reusing ST).

STViT-R w/o DU Reusing ST

APb 51.8 51.4 51.6
APm 44.7 44.4 44.5

Our global initial cluster centers look similar to learned positional encoding since both use random
initialization. To verify their distinction, we experiment with a real learned positional encoding by
additionally adding the global initial cluster centers to keys, which causes 0.1% accuracy drop (the
last row of Table 6). Therefore, our global initialization is different from learned positional encoding.

We visualize the attention maps of the first attention layer in the STGM in Figure 3. Because the
queries of this layer are spatial initial cluster centers, these attention maps visualize the local semantic
information integration by attention. The attention layer groups the semantic information according
to the position of initial cluster centers, which ensures to extract fine-grained semantic information
and keep the difference among semantic tokens. The attention map in the second attention layer is
visualized in Appendix A.6, which reveals that the network fixedly selects particle semantic tokens to
represent global semantic information. We also show the semantic representation of image tokens
in the same transformer layer on DeiT in Appendix A.6. Compared to original image tokens, our
semantic tokens in Figure 3 show more high-level semantic information.

Number of transformer layers in STGM. Two transformer layers are adopted in the STGM by
default. The effects of employing different numbers of transformer layers are shown in Table 7. The
additional layers are from the ones behind STGM to keep the total number of layers unchanged. More
transformer layers do not bring improvement.

The effectiveness of the dumbbell unit. To verify the effectiveness of our dumbbell unit, we
experiment STViT-R without dumbbell units, i.e., STViT equipped with only the recovery module.
We employ 6th and 7th transformer layers to construct STGM and the last transformer layers to
construct the recovery module in Stage 3. The FLOPs is as same as the full-model STViT-R for fair
comparison. The results on the COCO dataset are reported in Table 8. Inferior results demonstrate
the effectiveness of the dumbbell unit.

Reusing semantic tokens in dumbbell units. Semantic tokens are generated in each dumbbell
unit. If they are produced only once in the first dumbbell unit and reused as initial cluster centers in
the subsequent dumbbell units, the result is shown in Table 8 with a slight performance drop.

5 CONCLUSION

In this paper, we propose a simple and effective token sparsification method, semantic token vision
transformer (STViT). Our method utilizes the clustering property of self-attention to generate a few
semantic tokens with high-level information representation to replace the redundant image/video
tokens, which can be applied in both global and local vision transformers. By simply configuring the
recovery module, our method can be successfully applied to downstream tasks. Extensive experiments
demonstrate that our method achieves better accuracy along with less inference time in most cases.
The success in downstream tasks significantly boosts the development of token sparsification methods.
We hope that this work can inspire more future research to pay much attention to high-level semantic
representation in ViTs.
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A APPENDIX

A.1 DETAILED ARCHITECTURES

Detailed architecture specification on STViT-DeiT and STViT-Swin. The detailed architectures
of our STViT-DeiT and STViT-Swin are shown in Table 9 and Table 10, where an input image size
224× 224 is assumed for all the networks and the default numbers of semantic tokens are 16 and 36
separately. “Tr(ST)” denotes the transformers processing semantic tokens.

The details of patch embedding layer on DeiT. On DeiT, we use a multiple convolutional layers
with small kernel size to substitute original patch embedding layer. The architecture detail of our
new patch embedding layer is shown in Table 11. The parameter numbers of our patch embedding
layer and original patch embedding layer are 52488 + 432C and 768C, respectively. Because the
value of C is 192 at least, the parameter number of ours is smaller than the original. Thus, our patch
embedding layer is a lightweight module and does not introduce additional parameter overhead. Our
patch embedding layer has stronger representation ability, which allows that less transformer layers
are applied in the base module.
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Table 9: Detailed architecture of STViT-DeiT.

Output size STViT-DeiT-T STViT-DeiT-S STViT-DeiT-B

Base 14×14
Patch Embedding Patch Embedding Patch Embedding[

dim 192, head 3
]
×4

[
dim 384, head 6

]
×4

[
dim 768, head 12

]
×4

STGM 4×4
[
dim 192, head 3

]
×2

[
dim 384, head 6

]
×2

[
dim 768, head 12

]
×2

Tr(ST) 4×4
[
dim 192, head 3

]
×6

[
dim 384, head 6

]
×6

[
dim 768, head 12

]
×6

Table 10: Detailed architecture of STViT-Swin.

Output size STViT-Swin-T STViT-Swin-S STViT-Swin-B

Base

Stage 1 56×56
Patch Embedding Patch Embedding Patch Embedding[
win. sz. 7× 7,
dim 96, head 3

]
×2

[
win. sz. 7× 7,
dim 96, head 3

]
×2

[
win. sz. 7× 7,
dim 192, head 6

]
×2

Stage 2 28×28
Patch Merging Patch Merging Patch Merging[

win. sz. 7× 7,
dim 192, head 6

]
×2

[
win. sz. 7× 7,
dim 192, head 6

]
×2

[
win. sz. 7× 7,
dim 256, head 8

]
×2

Stage 3 14×14
Patch Merging Patch Merging Patch Merging[

win. sz. 7× 7,
dim 384, head 12

]
×2

[
win. sz. 7× 7,

dim 384, head 12

]
×10

[
win. sz. 7× 7,

dim 512, head 16

]
×10

STGM Stage 3 6×6

[
win. sz. 3× 3,

dim 384, head 12

]
×2

[
win. sz. 3× 3,

dim 384, head 12

]
×2

[
win. sz. 3× 3,

dim 512, head 16

]
×2

Tr(ST)
Stage 3 6×6

[
win. sz. 3× 3,

dim 384, head 12

]
×2

[
win. sz. 3× 3,

dim 384, head 12

]
×6

[
win. sz. 3× 3,

dim 512, head 16

]
×6

Stage 4 6×6
Linear Layer Linear Layer Linear Layer[

win. sz. 3× 3,
dim 768, head 24

]
×2

[
win. sz. 3× 3,

dim 768, head 24

]
×2

[
win. sz. 3× 3,

dim 1025, head 32

]
×2

Table 11: The architecture detail of our patch embedding layer on DeiT. C indicates the channel
number of the subsequent transformer layers.

Kernel size Input channel Output channel Stride Group

Conv1 3 3 24 2 1
Conv2 3 24 48 2 1
Conv3 3 48 96 2 1
Conv4 3 96 C 2 2

A.2 COMPUTATIONAL COMPLEXITY ANALYSIS

Global vision transformer (DeiT). We define that the number of image tokens is N, the number
of semantic tokens is M, and their dimension is C. The patch embedding layer is neglected. The
computational complexity of a global transformer processing image tokens (IT) is:

Ω(MHA(IT )) = 4NC2 + 2N2C,

Ω(FFN(IT )) = 8NC2.
(7)

The computational complexity of a global transformer processing semantic tokens (ST) is:

Ω(MHA(ST )) = 4MC2 + 2M2C,

Ω(FFN(ST )) = 8MC2.
(8)

The relationships between computational complexity and token number in attention and FFN are
quadratic and linear, respectively. Due to the N ≪ M , our method significantly reduces the cost of
transformers, especially the attention. The computational complexity of STGM is:

Ω(STGM) = 2MC2 + 2NC2 + 2MNC. (9)
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In global vision transformers, our STGM is also an efficient module. The computational complexity
of whole DeiT and our STViT-DeiT are:

Ω(DeiT ) = 144NC2 + 24N2C,

Ω(STV iT ) = 52NC2 + 12M2C + 76MC2 + 8N2C + 4MNC.
(10)

Local vision transformer (Swin). We define that the number of image tokens (IT) is N, the number
of image tokens in each window is W, the number of semantic tokens (ST) in each window is M,
and their dimension is C. We only compute the computational complexity in each transformer. The
computational complexity of a local transformer processing image tokens (IT) is:

Ω(MHA(IT )) = 4NC2 + 2W 2NC,

Ω(FFN(IT )) = 8NC2.
(11)

The computational complexity of a local transformer processing image tokens (ST) is:

Ω(MHA(ST )) = 4(N/W )MC2 + 2M2(N/W )C,

Ω(FFN(ST )) = 8MC2.
(12)

Swin makes the computational complexity linear to token number, while our method further reduces
the computational complexity. The computational complexity of STGM is:

Ω(STGM) = 2(N/W )MC2 + 2NC2 + 2(N/W )M2C. (13)

A.3 THE RESULTS ON LV-VIT

Setting. In LV-ViT (Jiang et al., 2021), by default, the STGM employs the 6th and 7th transformer
layers of LV-ViT-S (with 16 layers in total). We downsample the token labels to match the size of our
semantic tokens.

Results. The main results are shown in Table 12. Token labeling in LV-ViT is not friendly for
our method. Token labeling emphasizes the important of all the output tokens and advocates that
each output token should be associated with an individual location-speific label (Jiang et al., 2021),
while our semantic tokens generated by clustering emphasize high-level semantic information. We
still achieve good performance. In Table 13, we compare our STViT with the state-of-the-art token
sparsification method EViT (Liang et al., 2022) on LV-ViT-S. Results indicate that our method
outperform it.

A.4 STVIT-R FOR IMAGE CLASSIFICATION

STViT-R equipped with recovery modules is designed for downstream tasks, while it also can perform
image classification. The corresponding results are reported in Table 14. On both Swin-S and Swin-B,
STViT-R can save 33% FLOPs with 0.3% accuracy drop. The hyper-parameters we used in STGM
are as same as STViT-Swin.

A.5 APPLICATIONS IN SEMANTIC SEGMENTATION

Settings. ADE20K (Zhou et al., 2019) is a widely-used semantic segmentation dataset, including
a broad range of 150 semantic classes. It has 25K images in total, with 20K for training, 2K for
validation, and 3K for testing. UperNet (Xiao et al., 2018) in mmseg (Contributors, 2020) is utilized
as our base framework. The ws is set to 3. Models are trained for 240K iterations. All the other
settings follow the Swin Transformer (Liu et al., 2021).

Comparison to Swin Transformers. Table 15 presents the results of STViT-R-Swin on semantic
segmentation. With similar FLOPs reduction, the drop on mIoU is larger compared with those in
object detection tasks, which shows that our method still has a gap on dense prediction compared to
the full-token network, and this is the limitation of this work.

We analyze the relatively poor performance from two views. First, the STGM strictly prunes more
than 80% tokens by attention, which remains the high-level semantic information but loses nearly all
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the detailed information. Semantic segmentation is a dense pixel-level classification task, and the
semantic tokens are difficult to enhance the pixel-level representation. Second, our spatial pooling
layer with large kernel size in STGM and self-attention layers can be regarded as low-frequency
filters. STGM filters most high-frequency information, which is necessary for semantic segmentation.

A.6 ADDITIONAL VISUALIZATION

We visualize the attention map of the second attention layer in STGM in Figure 4a. The shape of
attention map is Ns × (Ns + Ni), where Ns = 16, and Ni = 196. The results of the attention
computation between semantic tokens S1 (queries) and semantic tokens S1 (keys) are shown in the
most left 16 columns, and the rest columns show the computation between semantic tokens S1 and
image tokens X . The figure shows that the second semantic token highlights the region of semantic
tokens, while other semantic tokens highlight the image tokens. Figure 4c visualizes the attention
maps in the self-attention layers after STGM. The second semantic token is incorporated by the
majority of semantic tokens. These phenomenons illustrate that the second semantic token focuses
on more global semantic information, which further verifies our global cluster center initialization
can guide the semantic tokens to extract global semantic information. The phenomenons in Figure 4a
and Figure 4c nearly emerge in all the images.

Neglecting the most left 16 columns of Figure 4a, we reshape it into 16 14 × 14 attention maps
like Figure 3 and show them in Figure 4b. Thanks to the clustering of second attention and global
initialization G, we can see that the semantic information is more accurate and meaningful.

We visualize the attention maps of semantic tokens with single global initialization in Figure 4d.
Without spatial initialization, the response regions are more global and similar. In contrast, our
semantics of each semantic token are associated with the specific spatial location, which is the basis
to allow our method to be applied in local self-attention and downstream tasks. Additionally, our
attention maps contain more recognized and diverse semantic information, reflecting the effectiveness
of our spatial initialization.

To compare the semantic representation between our semantic tokens and original image tokens on
DeiT, we uniformly sample 49 image tokens (7 × 7) from 196 image tokens (14 × 14) in the 5th

transformer layer of DeiT-S and show their attention response in Figure 5. In the same depth, our
semantic tokens in Figure 3 capture high-level semantic information with completed foreground and
background, while the semantic information of image tokens in Figure 5 is redundant and unclear.
High-level semantic information captured by STGM helps our models achieve similar performance
with a few tokens.

A.7 ADDITIONAL ABLATION STUDY

All the following experiments of STViT and STViT-R are conducted on DeiT-S and Swin-S unless
otherwise specified, respectively.

Table 12: Results of STViT on LV-ViT-S.

Model Metrics Base No. of semantic tokens
36 49 100

STViT-LV-ViT-S
Top-1 Acc(%) 83.3 82.7(-0.6) 82.8(-0.5) 83.1(-0.2%)

FLOPs(G) 6.6 3.69(-44%) 3.91(-41%) 4.62(-30%)
Throughput(img/s) 1159 2073(+78%) 1933(+72%) 1592(+37%)

Table 13: Comparisons with the state-of-the-art token sparsification method EViT on LV-ViT-S.

Method Top-1 Acc FLOPs(G)

EViT (Liang et al., 2022) 82.5(-0.8) 3.9(-41%)
EViT (Liang et al., 2022) 83.0(-0.3) 4.7(-29%)

STViT(Ours) 82.7(-0.6) 3.7(-44%)
STViT(Ours) 83.1(-0.2) 4.6(-30%)
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(a) The attention map (16× 216) of the second attention layer in STGM.

(b) The attention maps (14× 14) of 16 semantic tokens in the second attention layer of STGM.

(c) Some examples of attention maps (16× 16) of the self-attention layers after STGM.

(d) The attention maps (14× 14) of 16 semantic tokens generated by single global initialization.

Figure 4: Additional visualization of attention maps.

Table 14: STViT-R is evaluated on Swin-S and Swin-B on ImageNet. The top-1 accuracy, complexity
in FLOPs, and throughput are reported.

STViT-R-Swin-S STViT-R-Swin-B
Top-1 Acc(%) FLOPs(G) Throughput(img/s) Top-1 Acc(%) FLOPs(G) Throughput(img/s)

82.7(-0.3) 5.83(-33%) 717(+30%) 83.2(-0.3) 10.26(-33%) 539(+30%)

Table 15: Results of semantic segmentation on the ADE20K val set. A multi-scale inference with
resolution [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]× is applied. FLOPs and latency are measured in backbones
with resolution 512× 512.

Method Backbone mIoU FLOPs(G) Latency(ms)

UperNet Swin-S 49.3 49 28
UperNet STViT-R-Swin-S 48.3 34(-31%) 21(-27%)

UperNet Swin-B 49.7 87 44
UperNet STViT-R-Swin-B 48.9 60(-31%) 32(-28%)
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Figure 5: Attention response of 49 image tokens (7× 7) uniformly sampled from 196 image tokens
(14× 14) in the 5th transformer layer of DeiT-S.

Table 16: Performance evaluation on the different positions of our STGM.

Pos. 3-5 4-6 5-7 7-9 8-10 10-12

Top-1 Acc(%) 80.1 80.6 80.6 81.1 81.1 80.6
FLOPs(G) 1.62 1.97 2.31 3.01 3.36 4.06

Table 17: Performance evaluation on different positional encoding methods. Learned, Conditional,
and Relative indicate learned positional encoding, conditional positional encoding, and relative
positional encoding, respectively.

STViT-DeiT-S Acc STViT-Swin-T Acc

Learned 80.4 81.5
Conditional 80.4 81.4

Relative 80.6 81.3
No pos. 80.6 81.5

The position of STGM. The effects of different position of STGM are shown in Table 16. Two
transformer layers are employed in STGM in all the experiments. We can see that the performance
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achieves improvement with appropriately moving the STGM towards deep layers due to better
features of image tokens.

Positional encoding. We try to apply positional encoding to our semantic tokens. Table 17
shows comparisons of different positional encoding methods, including learned positional encoding,
conditional positional encoding (Chu et al., 2021b), and relative positional encoding (Liu et al.,
2021). All the positional encoding methods do not work on DeiT-S and Swin-T, even though relative
positional encoding improves Swin-T by 1.2%. These experiments demonstrate that the interaction
between our semantic tokens depends on high-level semantic information and nearly does not use
position relationships.

Alternative schemes of spatial pooling. We use an intra and inter-window spatial pooling in
STGM to generate initial cluster centers, which adaptively save meaningful semantic information and
avoids overlap between adjacent windows as much as possible. Furthermore, we explore more spatial
pooling schemes, including: (i) spatial pooling with large-size kernel and overlap, (ii) multi-scale
spatial pooling, and (iii) adaptive spatial pooling. We adopt 25 semantic tokens in these experiments.
In (i), the kernel size and overlap are set to 6 and 4, respectively. In (ii), we use two adaptive pooling
layers which produce 9 and 16 tokens separately. The results are presented in Table 18 on DeiT-T.
We can see that overlap and multiple scales cannot boost the performance, which also demonstrates
that discrete semantic tokens with high-level semantic information benefit our method.

Table 18: Alternative schemes of spatial pooling.

Scheme i Scheme ii Adaptive spatial pooling Intra and inter-window spatial pooling

Top-1 Acc(%) 74.9 75.0 75.2 75.5

A.8 CLUSTER CENTER RECOVERY BY SELF ATTENTION

We present an analysis showing how cluster centers are recovered through the attention mechanism.
Let K be the number of clusters. Let N (µi, σ

2I/d), i = 1, . . . ,K be the K Gaussian distributions,
with center µi ∈ Rd and covariance matrix σ2I/d. Let xi,j ∈ Rd, j = 1, . . . , n, be the n data
points independently sampled from N (µi, σ

2I/d). Given data points D = {xi,j , i ∈ [K], j ∈ [n]},
of course without knowing the association of each data point to its underlying Gaussian distribution,
our goal is to recover the underlying cluster centers µi, i ∈ [K]. We assume that all the center vectors
of Gaussian distributions are well separated, i.e. ⟨µj , µk⟩ ≤ γ if j ̸= k. For the convenience of study,
we assume |µi| = 1, i ∈ [K].

Let µ̂i ∈ Rd, i ∈ [K] the initialized cluster centers, with all the cluster centers being well normalized.
Define ∆ as the gap for any initialized µ̂i to the target cluster centers µi than to other clusters µj , i.e.

∆ = min
i∈[K]

min
j ̸=i

⟨µ̂i, µi − µj⟩

The new cluster centers are estimated through the self-attention mechanism, i.e.

µ̂′
k =

1

Zk

K∑
i=1

n∑
j=1

exp (λ⟨µ̂k, xi,j⟩)xi,j

where λ > 0 is a scaling factor and Zi is defined as

Zk =

K∑
i=1

n∑
j=1

exp (λ⟨µ̂k, xi,j⟩)

Theorem 1. With sufficiently large d and n ≫ d, with a probability 1−O(K/n2), we have

⟨µk, µ̂
′
k⟩

|µ̂′
k|

≥ 1−O

(
logK + log d

d∆

)
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Proof. Define ui,j = xi,j − µi. We have

µ̂′
k =

1

Zk

K∑
i=1

exp (λ⟨µi, µ̂k⟩)


 n∑

j=1

exp (λ⟨µ̂k, ui,j⟩)

µi +

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)ui,j


We first bound

∑n
j=1 exp (λ⟨µ̂k, ui,j⟩). Since ui,j ∼ N (0, σ2I/d) and |µ̂k| = 1, we know that

⟨µ̂k, ui,j⟩ ∼ N (0, σ2/d). Hence, with a probability 1− 2δ, we have∣∣∣∣∣∣
n∑

j=1

exp (λ⟨µ̂k, ui,j⟩)− nEx∼N (0,σ2/d) [exp(λx)]

∣∣∣∣∣∣ ≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
+2

√
nEx∼N (0,σ2/d) [exp(2λx)] log

2

δ

Since

Ex∼N (0,σ2/d) [exp(λx)] =

√
d

2πσ

∫ +∞

−∞
exp

(
λx− x2d

2σ2

)
dx = exp

(
λ2σ2

2d

)
we have, with a probability 1− 2δ,∣∣∣∣∣∣

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)− n exp

(
λ2σ2

2d

)∣∣∣∣∣∣ ≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
+ 2

√
n exp

(
2λ2σ2

d

)
log

2

δ

With large enough n, we have

3 exp

(
λσ

√
2

d
log

n

δ

)
+ 2

√
n exp

(
2λ2σ2

d

)
log

2

δ
≤ C

√
n exp

(
λ2σ2

2d

)
and therefore

(1− τ)n exp

(
λ2σ2

2d

)
≤

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ≤ (1 + τ)n exp

(
λ2σ2

2d

)
where

τ ≤ C√
n

Here C > 0 is a universal constant.

We second bound
∑n

j=1 exp (λ⟨µ̂k, ui,j⟩)ui,j . We write each ui,j = u⊥
i,j + u

∥
i,j , where u

∥
i,j =

⟨ui,j , µ̂k⟩µ̂k and u⊥
i,j is a d− 1 dimensional Gaussian vector. We have

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩)ui,j =

 n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩

 µ̂k +

n∑
j=1

u⊥
i,j

Since u⊥
i,j ∼ N

(
0, σ2Id−1/d

)
, we have

∑n
j=1 u

⊥
i,j ∼ N

(
0, nσ2Id−1/d

)
. Using the concentration

of χ2
d−1 distribution, we have, with a probability 1− δ∣∣∣∣∣∣

n∑
j=1

u⊥
i,j

∣∣∣∣∣∣
2

≤ nσ2

d

(
d− 1 + 2

√
(d− 1) log

1

δ
+ 2 log

1

δ

)
≤ nσ2

(
1 + 3

√
log(1/δ)

d

)

To bound
∑n

j=1 exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩, following the same procedure, we have, with a proba-
bility 1− 2δ∣∣∣∣∣∣

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩ − nEx∼N (0,σ2/d) [exp(λx)x]

∣∣∣∣∣∣
≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
σ

√
2

d
log

n

δ
+

√
nEx∼N (0,σ2/d) [exp(2λx)x2]

2

δ
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Since

Ex∼N (0,σ2/d) [exp(λx)x] =

√
d

2πσ2

∫
exp

(
λx− x2d

2σ2

)
xdx =

λσ2

d
exp

(
λ2σ2

2d

)
and

Ex∼N (0,σ2/d)

[
exp(2λx)x2

]
=

√
d

2πσ2

∫
exp

(
2λx− x2d

2σ2

)
x2dx

=

√
d

2πσ2
exp

(
2λ2σ2

d

)∫
exp

(
d

2σ2

[
x− λσ2

d

]2)([
x− λσ2

d

]2
+ 2

λσ2

d

[
x− λσ2

d

]
+

λ2σ4

d2

)
dx

= exp

(
2λ2σ2

d

)(
λ2σ4

d2
+

(
2σ2

d

)3/2

Ex∼N (0,1)

[
x2
])

= exp

(
2λ2σ2

d

)(
λ2σ4

d2
+ 2

(
2σ2

d

)3/2
)

≤ 2λ2σ4

d2
exp

(
2λ2σ2

d

)
We thus have, with a probability 1− 2δ,∣∣∣∣∣∣

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩ −
nλσ2

d
exp

(
λ2σ2

2d

)∣∣∣∣∣∣
≤ 3 exp

(
λσ

√
2

d
log

n

δ

)
σ

√
2

d
log

n

δ
+

√
4nλ2σ4

d2
exp

(
2λ2σ2

d

)
log

2

δ

When n is sufficiently large, we have, with a probability 1− 2δ

(1− τ)
nλσ2

d
exp

(
λ2σ2

2d

)
≤

n∑
j=1

exp (λ⟨µ̂k, ui,j⟩) ⟨µ̂k, ui,j⟩ ≤ (1 + τ)
nλσ2

d
exp

(
λ2σ2

2d

)
where τ ≤ C/

√
n. By putting them together, with a probability 1− 4δ, we have
n∑

j=1

exp (λ⟨µ̂k, ui,j⟩)ui,j = n(1 + β)
nλσ2

d
exp

(
λ2σ2

2d

)
µ̂k + nνi

with β ∈ [1− τ, 1 + τ ] and

|νi| ≤
2σ√
n

Finally, we have, with a probability 1− 4Kδ

µ′
k =

n

Zk

K∑
i=1

exp (λ⟨µi, µ̂k⟩)
(
(1 + αi) exp

(
λ2σ2

2d2

)
µi + (1 + βi)

λσ2

d
exp

(
λ2σ2

2d

)
µ̂k + ν

)
Using the same analysis, we have, with a probability 1− 4Kδ,

Zk

n
= exp

(
λ2σ2

2d2

) K∑
i=1

exp (λ⟨µi, µ̂k⟩) (1 + αi)

Now, we can bound |µ̂′
k − µk|. We have

|µk − µ̂′
k|

≤
∣∣∣∣ nZk

exp

(
λ⟨µk, µ̂k⟩+

λ2σ2

2d2

)
(1 + αk)− 1

∣∣∣∣+ n

Zk

∑
i ̸=k

exp

(
λ⟨µi, µ̂k⟩+

λ2σ2

2d2

)
(1 + αi)

+
nλσ2|µk − µ̂k|

Zkd

K∑
i=1

exp

(
λ⟨µi, µ̂k⟩+

λ2σ2

2d2

)
(1 + βi) +

n

Zk

K∑
i=1

exp (λ⟨µi, µ̂k⟩) νi
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To further develop the bound for |µk − µ̂′
k|, we have

Zk ≥ n exp

(
λ2σ2

2d2
+ λ⟨µk, µ̂k⟩

)(
1− C√

n

)
and

Zk ≤ n exp

(
λ2σ2

2d2
+ λ⟨µk, µ̂k⟩

)(
1 +

C√
n

)
(1 + (K − 1) exp (−λ∆))

We thus have

|µk − µ̂′
k|

≤

∣∣∣∣∣ exp (λ∆)

exp (λ∆) +K − 1

(
1− 2C√

n

)2

− 1

∣∣∣∣∣+
(
1 +

2C√
n

)2
K − 1

exp(λ∆)

(
1 +

λσ2

d
|µk − µ̂k|

)
+
λσ2

d
|µk − µ̂k|+

(
1 +

2C√
n

)
σ√
n

By choosing λ = (log d+ logK)/∆, and by assuming n is significantly larger than d, we have

|µk − µ̂′
k| ≤ O

(
log d+ logK

d∆

)
implying that

⟨µk, µ̂
′
k⟩

|µ̂′
k|

≥ 1−O

(
log d+ logK

d∆

)
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