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Abstract

Owing to the tremendous improvements made
in Deep Learning over the past few years,
emotion recognition has become a topic of
growing interest. In this respect, we have wit-
nessed a huge development of dialogue gener-
ation and conversational systems, with Chat-
GPT as leading figure. Indeed, owing to its
wide spectrum of potential applications, such
as dialogue generation and conversational
systems, emotion recognition is key to generate
an appropriate answer and avoid the ”generic
response problem”, with a view to providing
the best possible user experience. By virtue
of the widespread access to plug-and-play
pre-trained NLP models (e.g., BERT, GPT-
4, etc.), implementing conversational systems
has never seemed so easy and straightforward.
However, under closer scrutiny, deploying an
efficient end-to-end conversational system en-
compasses a fair amount of challenges (e.g.,
fillers, code-switching, communicative intent
identification, etc.) that researchers still en-
deavor to mitigate. As a matter of fact, spo-
ken language and oral interactions are usu-
ally scrappy as well as less formal, notably
from both grammatical and syntactical per-
spectives.

Throughout this paper, we precisely aim at as-
sessing whether current state-of-the-art pre-
trained NLP models, that have recently been
hitting the headlines due to their unprece-
dented capabilities, can efficiently cope with
spoken language. More specifically, we deploy
BERT on a dataset of transcribed oral conver-
sations, to evaluate its performances.'
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1 Problem Framing

1.1 Related Work

Owing to its potential applications in many chal-
lenging tasks, such as dialogue generation or user
behavior understanding, emotion and sentiment
recognition (“E/S”, henceforth) is a key feature
when it comes to implementing a conversational
system, as it enables to generate appropriate re-
sponses to users. However, it is no easy task due
to the myriad of challenges it encompasses, es-
pecially when it comes to spoken dialogue. The
main challenges are related to the less formal fea-
ture of spoken interactions, particularly from both
a grammatical and syntactical perspective. More-
over, spoken language usually employs words that
can either be rare, slang or have limited represen-
tation in written language.

While these elements are the most prominent chal-
lenges that come to mind when dealing with spo-
ken interactions, E/S recognition from spoken di-
alogue also yields more complex tasks. First, the
recognition of users’ emotions is key to accurately
capture their communicative intent. Such a task
requires to comprehend utterances at both self-
and discourse-levels, with a view to grasping the
user’s nuances and capturing patterns over longer
ranges of the conversation (Colombo* et al., 2020;
Garcia* et al., 2019). This is a key undertak-
ing to better seize emotions and guard against
the “generic response problem”, which accounts
for generating an unspecific response that can be
an answer to a wide range of user utterances
(Colombo* et al., 2019; Colombo, 2021). To ex-
haustively capture the complex and hierarchical
nature of spoken dialogues, implementing a hier-
archical pre-training at multiple levels of granular-
ity has proven to outperform the baselines (Cha-
puis™* et al., 2020; Colombo et al., 2021).

Besides, traditional approaches usually model se-
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quential dependencies between utterances (i.e.,
between two adjacent utterances), therefore solely
apprehending local dependencies. To mitigate
this pitfall, (Colombo* et al., 2020) proposed to
enhance the seg2seq model, which rests upon
the encoder-decoder framework, with a hierarchi-
cal attention mechanism that enabled to capture
global dependencies in a dialogue as well. This
approach achieved outperforming results com-
pared to previous modelling approaches.

More often than not, spoken dialogue systems also
struggle with code-switching, which accounts for
the fact of combining more than one language
within a single utterance or conversation. As it
is a common feature of many multilingual com-
munities around the world, an efficient conver-
sational Al cannot fend off learning multilingual
spoken dialogue representations. Working with
both language-specific and multilingual tokeniz-
ers, (Chapuis* et al., 2020) developed a new set of
loss functions that are inspired by code-switching
patterns and designed to better capture the nuances
of mixed-language speeches. It established a mile-
stone towards making spoken dialogue systems
more effective for multilingual communities.

In addition, fillers, that can be considered as ono-
matopoeia placed within a spoken dialogue in a
episodic fashion, are also a hot topic in NLP mod-
elling. Indeed, fillers have usually been considered
as an ugly duckling, as they are deemed to convey
poor — or even zero — information and are conse-
quently discarded during the data pre-processing
phase. Furthermore, as most NLP models are
pre-trained on written corpora, they usually yield
poor representations of spontaneous speech words
(Dinkar* et al., 2020). A large body of literature
has nonetheless emphasized that fillers play a piv-
otal role in spoken language (Dinkar* et al., 2020),
and convey key information on the speaker’s utter-
ance structure, stance (Grezause, 2017) and com-
mitment to a statement (Smith and Clark, 1993).
By dint of deep contextualized embeddings, it
was demonstrated that modelling fillers can im-
prove the accuracy of spoken languages, both
when modelling language and on a downstream
task. Most-advanced conversational Al should
therefore leverage on modelling fillers to capture
important context features and valuable informa-
tion to improve their performances. These mod-
elling approaches are the current SOTA ones to
be implemented when it comes to improving spo-

ken dialogue systems. Within the framework of
this paper, we endeavor to evaluate whether SOTA
BERT (Devlin et al., 2018) is suitable for E/S
recognition on spoken language, which notably
encompasses fillers, slang and colloquial utterance
structures.

1.2 Data Presentation

Trough this paper, we aim at assessing how well
current SOTA NLP frameworks — BERT in this
specific instance — can perform on spoken lan-
guage. As previously emphasized, spoken lan-
guage is indeed emancipated from many coer-
cive rules that written languages are usually sub-
jected to. Furthermore, emotions are intrinsic to
humans and are associated with an individual’s
mental state, thoughts and feelings (Poria et al.,
2019). As a consequence, even the best perform-
ing NLP models find it hard to decipher speak-
ers’ emotions, as they are mostly trained on writ-
ten corpora. With a view to evaluating BERT
performance on oral conversations, we relied on
the Multimodal EmotionLines Dataset* (hence-
forth referred to as "MELD”). Several alterna-
tives exist to MELD (Li et al., 2017; Colombo,
2021; Shriberg et al., 2004; Mckeown et al., 2013;
Busso et al., 2008), but MELD is the largest one.
It contains about 13,000 utterances from 1,433
dialogue transcripts from the Friends TV-series.
The MELD dataset encompasses multiple speak-
ers within each dialogue, and each dialogue utter-
ance has been labeled with an emotion’ as well as
a sentiment (i.e., Positive, Negative, Neutral).

Our dataset can be represented as follows: D =
{C1,Ca, ..., C\p|}, where C; accounts for conver-
sation 4. Each conversation C; comprises a cer-
tain number of utterances u, defined as follows:
u = {ul, U, ..., U|Ci‘}, with Y = {H,YQ, ey Y7}
the corresponding set of emotion labels and Y =
{Y],Y,, Y3}, the corresponding set of sentiment
labels. Thus, each utterance u; is associated with
both a unique emotion label y; and sentiment la-
bel yl’ Finally, each utterance u; is composed of
a sequence of words or tokens, such as: u; =

J
,w‘ujl}.

{w], wi, ...

This dataset is available on the following GitHub repos-
itory: https://github.com/declare-lab/MELD.

3As per Paul Ekman (1984), there exists six cardinal emo-
tions: Anger, Disgust, Sadness, Joy, Surprise and Fear. In
conjunction with these six emotions, a seventh one — Neu-
tral — is also used to label each utterance within the MELD
dataset.
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Throughout this paper, our approach therefore
consists in accomplishing a classification task,
which aims to affiliate each utterance with its as-
sociated emotion and sentiment.

1.3 Overview of the Dataset and its Main
Features

As we were limited by our computational power
(i.e., limited access to GPU), we relied on a subset
of the MELD dataset, which encompasses 9,989
utterances.

We first conducted a data-processing phase, which
consisted in cleaning and reorganizing our dataset
for efficiency purpose. To this end, we undertook
a certain number of pre-processing steps. First
and foremost, we considered that removing stop-
words* was a key pre-processing step, as their
removal does not jeopardize the overall mean-
ing of the utterance. However, we did not con-
sider removing punctuation marks, as we assume
they convey much information about the underly-
ing emotion of the speaker, especially in a tran-
scribed version of an oral conversation. In addi-
tion, we also removed dashes and some types of
single quotes, and eventually retained only utter-
ances that comprised at least three words. Indeed,
we assumed that utterances with fewer words con-
vey poor information when it comes to detecting a
speaker’s emotion and also add noise to the data,
thus downgrading the model’s ability to accurately
disentangle the underlying pattern of the data. Fi-
nally, we ended up with a dataset that encompasses
a total of 6,843 utterances, thus removing 3,146
utterances in total. The main features of our sani-
tized dataset are presented hereinbelow.

neutral surprise  fear sadness  joy disgust anger

Max 30 17 17 40 23 19 22
75th 8 7 9 8 8 9 9
Median 6 6 6 6
Avg 6 5 6 6 6 7 6
25th 4 3 4 4 4 4 4
Min 3 3 3 3 3 3 3
StDev 3 2 3 3 3 3 3
Word count 19725 3743 1476 3813 7845 1477 5530
# Utt. 3149 660 217 560 1217 206 834

Table 1: Descriptive Statistics of MELD Dataset

We also provide the distribution of the data based
on emotion labels (cf. Figure 1), as well as the fre-
quency of the ten most recurrent words (cf. Figure
2). We notice that our data are highly skewed to-
wards the Neutral and Surprise classes.

*A set of commonly used words in any language, usually
considered as weak information providers.
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Figure 1: Emotions Frequency in MELD Dataset
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Figure 2: Ten Most Frequent Words in the Corpus

We also considered that scrutinizing the sentiment
distribution, by means of the Polarity Score, could
be useful to better grasp the underlying pattern of
our data. We can observe that the Polarity Score
is consistent with the overall distribution of emo-
tions and sentiments within our dataset. Indeed,
the distribution of the Polarity Score is highly lep-
tokurtic, with most of its mass centered around
zero, which is precisely consonant with the over-
represented Neutral emotion/sentiment.

We also computed the correlation matrix be-
tween all numerical variables: Emotion, Senti-
ment, Word Count and Polarity Score (cf. Fig-
ure 8 in Appendix section). It is worth emphasiz-
ing that the Polarity Score is positively correlated
with sentiments, which appears congruent as it is
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Figure 3: Polarity Score over the MELD Dataset



precisely what such a score endeavors to capture.
Moreover, emotions and sentiments are positively
correlated as well, which also appears consistent
as these concepts are relatively entangled. On the
contrary, the word count is sightly negatively cor-
related with both emotions and sentiments. In Ap-
pendix, we also provide a word cloud depicting
the most frequent 1-grams (i.e., words) in our cor-
pus, where the size of the word is relative to its
frequency (cf. Figure 9 in Appendix section).

2 Experiment Protocol

2.1 Data Encoding

Our work aims at evaluating whether the state-
of-the-art BERT framework performs well on
oral speech. To achieve this goal, we first
converted all utterances into word embeddings
(i.e., numerical vectors), relying on the uncased
BertTokenizer (i.e, insensitive to case)
available in Python, which generates a vector
of size 256. For classification purpose, we also
converted both emotion and sentiment labels
to numerical representations. Thus, emotions
can now be represented by the following set
Y = {0,..,6} and sentiment by the follow-
ing one: Y = {0,1,3}. Our dataset can
henceforth be represented as follows: D =
{(le Yi, Yll)v (XZ? Ya, Y2,)a SR (XNa Yn, Y]&f)}’
where [NV accounts for the total number of samples
and X; € R?56. We then converted our features
and labels into tensors by using the PyTorch
library, which is a data structure commonly used
by Deep Learning algorithms.

2.2 Model

We relied on the
BertForSequenceClassification
model, a bidirectional transformer pre-trained
using a combination of masked language model-
ing objective and next sentence prediction on a
large corpus comprising the Toronto BookCorpus
and Wikipedia. BERT comprises one embedding
layer, twelve transformers and one output layer.
As our problem encompasses seven classes for
emotion recognition and three classes for senti-
ment analysis, we consequently fine-tuned BERT
to match our classification problem.

Learning Rate  Optimizer Epsilon Epochs Batch Size
2e-5 le-8 10 16

Table 2: Hyperparameters setting

We also considered the AdamW optimizer (cf.
subsection 2.3), widely used in Deep Learning im-
plementations, which combines computational ef-
ficiency, momentum and weight decay regulariza-
tion.

2.3 AdamW Optimizer

AdamW is a stochastic optimization method
(Loshchilov and Hutter, 2017) that modifies the
typical implementation of weight decay in Adam,
by decoupling weight decay from the gradient up-
date.

To see this, Lo regularization in Adam is usually
implemented with the below modification, where
f 1is the objective function, 6, the parameters at
time ¢ and w; the rate of the weight decay at ¢:

gt = Vf(0;) + wby,

while AdamW adjusts the weight decay term to
appear in the gradient update:

1

O = O — n(——

+1,2 ) n \/m

where 77 accounts for the learning rate, and 77

and o, represent the first and second moments es-
timated at time ¢, respectively.

Sy + wtﬁt,z‘) , Vt,

3 Results

In this section, we present and compare the re-
sults obtained by applying the model previously
exposed to MELD dataset, on both emotions and
sentiments.

As regards emotions, the training loss behaves
in a satisfying way, decreasing as the number of
epochs increases (Figure 4). After the testing
phase, we obtained an accuracy of 0.52, i.e., the
model predicts the right label ca. half of the time
only, outperforming a random classifier on very
meager scale. A confusion matrix is displayed in
Figure 5, as well as a classification report in Figure
10 in Appendix — quite intuitively, the accuracy is
better the neutral emotion as it is over-represented
within the dataset.

Comparatively, when applying the model to sen-
timents, the training loss after ten epochs reaches
0.04 (Figure 6), with an accuracy of 0.61 (see Fig-
ure 7 for confusion matrix, and Figure 11 in Ap-
pendix for classification report). As for emotions,
the model better predicts the neutral sentiment.

A comparative table is displayed in Table 3, which
evidences that the model applied to sentiments is
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Figure 5: Confusion Matrix on Emotions
Anger: 0 — Disgust: 1 — Fear: 2 — Joy: 3 — Neutral: 4 —
Sadness: 5 — Surprise: 6

relatively more efficient in view of both the accu-
racy and the loss, yet in a marginal fashion. It is
a result that one could have easily inferred, as the
dataset contains only three sentiments but seven
emotions, making the classification task harder
with emotions. In absolute terms, the model pro-
duces contrasting results whatever the classifica-
tion output, which is partly attributable to the fact
that BERT was pre-trained on written corpora,
which strongly contrasts with oral utterances used
within the framework of this paper. A few im-
provement areas are discussed in the next section.
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Figure 6: Training Loss on Sentiments
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Figure 7: Confusion Matrix on Sentiments
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Training Loss after ten Epochs Model Accuracy

0.053
0.039

0.524
0.613

Emotions
Sentiments

Table 3: Emotions and Sentiments Training Loss and
Model Accuracy comparison

4 Discussion

4.1 Results Discussion

In spite of BERT tremendous capabilities in NLP,
our approach yielded mixed results in terms of ac-
curacy. As regards emotion recognition, we man-
aged to outperform a random classifier in a very
marginal fashion. This is not much of a surprise,
as BERT was trained on written corpora, which
significantly differ from spoken language. How-
ever, such a low accuracy score raises certain ques-
tions. Utterances are obviously associated with
their own emotions, but when considering a dia-
logue, context is key. Indeed, a dialogue or a con-
versation has an overall pattern, which entails that
only a restricted sample of emotions can material-
ize. As a matter of fact, it is very unlikely that an
interlocutor experiences all types of emotions in a
single conversation, except in some specific cases,
where many (or even all) different emotions could
cohabit. As a result, we assume that a given con-
versation possesses an overall pattern that, when
taken into account, could precisely help a model
to better decipher emotions at utterance-level. In
this respect, modelling approaches that take global
dependencies have precisely achieved the best re-
sults so far (Colombo* et al., 2020; Bothe et al.,
2018). In further work, it would consequently be a
very interesting topic to scrutinize and implement.

4.2 Extension: Broadening the Perspective

First, it is worth emphasizing that data quantity
is of paramount importance when training models



on complex patterns, especially when relying on
neural network architectures. However, we were
highly constrained by our computational power,
with limited access to GPU. Thus, the first devel-
opment that we would naturally consider would be
to increase the size of the dataset to assess whether
it would yield better performances. Fine-tuning
BERT (e.g., changing the loss function, etc.) also
appears as a key procedure for performance en-
hancement.

Secondly, although our losses demonstrated a sat-
isfying overall behavior during training, rapidly
converging towards zero, it would be insightful to
augment the number of epochs and subsequently
evaluate the generalization capacity of a better
trained model on unseen data. However, this
would also require higher computational capaci-
ties.

Third, implementing our approach on other
datasets could also help understand whether the
results are specific to our data, or if the model can
better perform on other datasets, all the more so as
our dataset is highly skewed towards one specific
emotion (i.e., Neutral). It would also be interesting
to deploy the same methodology on Dialogue Act
("D/A” henceforth) classification, or even inves-
tigate predicting both simultaneously, to appraise
whether D/A can provide information on E/S, as
well as the other way round.

Furthermore, implementing approaches that take
global dependencies into account appear key for
this type of classification tasks, as both the under-
lying content and the overall context of a conver-
sation convey, without a shadow of a doubt, key
information on the emotions it encompasses.

5 Conclusion

In a nutshell, our approach aimed at assessing how
well could SOTA BERT perform on oral utter-
ances, while having been trained on written cor-
pora. Indeed, the main challenge lies in the fact
that oral interactions, precisely owing to their oral
and informal dimensions, can strongly differ from
written language. As a matter of fact, spoken lan-
guage usually pays no heed to formalism, employ-
ing words that can either be rare, slang or have
limited representation in written language. More-
over, spoken language can also heavily rely on re-
dundant words, such as “like” in English or ’du
coup” in French, and that more formal sentence
structures dot not manipulate that much. Besides,

written language abides by a stranglehold of —
usually — coercive rules (i.e., grammatical, syn-
tactic, etc.), from which oral exchanges are usu-
ally emancipated. In addition, code-switching and
fillers make it all the more difficult to properly de-
cipher a speaker’s intent, even for the best NLP
models. At utterance level, relying on the MELD
dataset, we managed to achieve a 52% accuracy
on emotion during the validation phase, making it
more efficient than a random classifier on a very
marginal basis. When it comes to sentiment clas-
sification, we however achieved a 61% accuracy
on validation data, which is rather encouraging.
From a sentiment standpoint, better accuracy re-
sults appear congruent with the fact that this is an
easier pattern to identify, as it only encompasses
three classes.

Consequently, managing to incorporate code-
switching, fillers by way of deep neural contex-
tualized embeddings, as well as taking global de-
pendencies into account would arguably yield im-
proved performances, and be consistent with cur-
rent SOTA approaches in this respect.
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Figure 9: World Cloud on sanitized MELD Dataset
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Figure 10: Classification Report on Emotions
Anger: 0 — Disgust: 1 — Fear: 2 — Joy: 3 — Neutral: 4 —
Sadness: 5 — Surprise: 6
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Figure 11: Classification Report on Sentiments
Negative: 0 — Neutral: 1 — Positive: 2



