Under review as a conference paper at ICLR 2026

QA
1 ONE SKILL, MANY WEBSITES: LEARNING GEN-

ERALIZABLE SKILLS THROUGH POLYMORPHIC AB-
STRACTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) are moving beyond static uses and are now pow-
ering agents that learn during their interaction with external environments. For
example, agents can learn reusable skills while navigating web pages or toggling
new tools. However, existing methods for skill learning often create skills that are
over-specialized to a single website and fail to generalize. We introduce PolySKill,
a new framework that enables agents to learn generalizable and compositional
skills. The core idea, inspired by polymorphism in software engineering, is to
decouple a skill’s abstract goal (what it accomplishes) and its concrete implemen-
tation (how it is executed). Experiments show that our method (1) improves skill
reuse by 1.7x on seen websites and (2) boosts success rates by up to 9.4% on
Mind2Web and 13.9% on unseen websites, while reducing steps by over 20%. (3)
In self-exploration settings without specified tasks, our framework improves the
quality of proposed tasks and enables agents to learn generalizable skills that work
across different sites. By enabling the agent to identify and refine its own goals,
the PolySkill enhance the agent a better curriculum, leading to the acquisition of
more generalizable skills compared to baseline methods. This work provides a
practical path toward building agents capable of continual learning in adaptive
environments.

1 INTRODUCTION

LLMs have enabled significant progress in agent development (Yao et al., 2023b; Yang et al., 2024;
Agashe et al., 2025). Web agents represent a key class of LLM-based agents, where the agents
navigates complex Graphical User Interfaces (GUIs) to achieve user-defined goals (Deng et al.,
2023; Zhou et al., 2024a; Cheng et al., 2024; Wu et al., 2024b; Chen et al., 2025b; Gou et al., 2025;
Xue et al., 2025). However, a primary challenge here is how to develop generalizable agents that
can operate robustly across different tasks within a website (in-domain) and across different websites
(cross-domain). To be generalizable, these agents must learn from their experiences, allowing them
to adapt when faced with new tasks or unseen websites (Silver & Sutton, 2025; Shen et al., 2025).

One promising direction is skill induction: learning reusable skills from past experiences. This ap-
proach was first explored in an open-ended environment by Voyager (Wang et al., 2023). Agent
Workflow Memory (Wang et al., 2024) pioneered skill induction for web agents, which used natural
language skills to prove the concept’s viability. Consequently, Agent Skill Induction (Wang et al.,
2025) and SkillWeaver (Zheng et al., 2025) made these skills more robust by structuring them as
code. However, these methods primarily focus on in-domain settings. By optimizing for perfor-
mance on familiar websites, they generate over-specialized skills that fail to generalize, leaving the
critical challenge of cross-domain generalization under-explored. This challenge highlights a funda-
mental tension between a skill’s specificity and its generalizability. This leads us to two key research
questions. First, how can we induce skills that are transferable across diverse websites? Second,
beyond task success, how can we quantitatively measure skill transfer and reuse? Answering these
questions is a crucial step toward the broader vision of agent autonomy, where an agent could dis-
cover such generalizable skills on its own through open-ended exploration (Liu et al., 2025a).

Under review as a conference paper at ICLR 2026

__

@ amazon @ TARGET
- [

>>>>> OneStopShop = .) BTl
=) im ~ VS
gmuﬁé’ Wi e -,:Mu.ﬁ
& search search ‘A search
. add_to_cart . add_to_cart . add_to_cart
 checkout L
(1) Improved Skill Usage and Utility (2) Prevent Catastrophic Forgetting
(Continual Learning|
Baseline MO SkillWeaver Al mE PolySkill (Ours) 1 vsvﬁob{:‘p'ie.."gﬂ (Target
1.3x ’ L\ A

‘,+4.9°/0‘

/].?X

i
.
%

Task Success Rate Skill Reusability Task Coverage Skill Compositi

WebArena Shopping (%)

" - ASI —— Polyskill (Ours)

Skill Induction Iteration —

Figure 1: PolySkill, a novel approach that enables web agents to develop polymorphic skills that
generalize across websites. PolySkill achieves superior performance with 1.3—1.8x improvements
in task success rate, skill reusability, and compositional capabilities compared to existing methods.

To address these questions, we introduce PolySKill, a framework that grounds agent skill learning in
the principle of polymorphic abstraction, a cornerstone of object-oriented design from software en-
gineering (Milner, 1978). This paradigm separates the abstraction from its actual implementations.
We apply this to skills by (1) defining an abstract class (e.g., ‘AbstractShoppingSite")
that serves as a common interface for a domain, specifying high-level goals like the method
“search(query, filter)”. Concrete subclasses (e.g., ‘AmazonSite, ‘TargetSite“) then pro-
vide the distinct, website-specific implementations. This allows the agent to operate at an ab-
stract level and create compositional skills that are not tied to any specific website’s functional-
ity, decoupling them from brittle UI changes across websites. This approach also enhances bet-
ter composition, allowing the agent to chain together abstract operations in the parent class like
search_product (), addToCart (), and checkout () to execute complex, multi-step tasks;
while preventing the need to implement the compositional skills per website.

To validate our approach, we address a critical gap in existing evaluation methods. Prior work on
skill induction primarily relies on final task success rates (Zhou et al., 2024a). However, this metric
reveals only part of the picture: it confirms that an agent succeeded, but not how. It cannot distin-
guish between success from efficiently reusing learned skills and success from solving a task from
scratch, which makes it difficult to measure the value of the skill induction. To provide a clearer
picture and answer our second research question, we introduce additional metrics, including Skill
Reusability and Task Coverage, to directly diagnose the skill transfer failures that plague existing
methods. Our evaluation reveals a clear improvement: while prior methods show a Skill Reusability
below 18% on unseen websites, skills learned via PolySkill achieve a 31% reuse rate. Further-
more, we present the first comprehensive evaluation of skill induction on recent open-source agentic
models, such as Qwen3-Coder (Qwen, 2025) and GLM-4.5 (GLM, 2025), demonstrating that our
findings are robust and not limited to proprietary models.

Finally, we extend our analysis to a task-free, continual learning setting (Zheng et al., 2025; Liu
et al., 2025a), which tests an agent’s ability to explore multiple websites and induce skills with-
out predefined tasks. Our results suggest that this is a viable path toward self-improving agents, as
the PolySkill better guides exploration than previous unstructured approaches (Zheng et al., 2025).
More broadly, we believe the principle of polymorphic abstraction extends beyond the web, offer-
ing a promising direction for developing transferable skills for any agent that operates in diverse
environments with shared structural patterns (Xu et al., 2025). By grounding skill creation in poly-

Under review as a conference paper at ICLR 2026

morphism, this work takes an important step toward continual learning, enabling agents to build a
library of adaptive skills that can evolve with experience.

2 RELATED WORK

Memory and Skill Acquisition for Agentic Learning An agent’s ability to generalize is fundamen-
tally tied to how it represents skills. Current approaches often store skills in concrete formats, such
as natural language descriptions in prompt libraries (Wang et al., 2024; Zhu et al., 2025) or brittle
action traces from successful task executions (Wang et al., 2025). While more robust, programmatic
representations, where skills are stored as executable code, also face limitations. These learned pro-
grams are typically concrete implementations tailored to a specific context (e.g., one website’s Ul),
hindering their reuse across varied environments that serve a similar function (Wang et al., 2023;
Zheng et al., 2025). These methods lack a mechanism for abstracting the semantic intent of a skill
away from its specific implementation, which is crucial for flexible adaptation.

We address this gap with a novel, hybrid skill representation inspired by object-oriented design.
While broader work has focused on the architecture of agent memory, such as using episodic streams
(Park et al., 2023) or managed external stores (Chhikara et al., 2025; Fang et al., 2025), our contri-
bution lies in the representation of the skill itself. We define a skill with an abstract interface that
captures its semantic purpose, which can be linked to multiple, interchangeable concrete implemen-
tations. Drawing on established findings that abstraction and structure enhance agent reasoning and
robustness (Wu et al., 2024a; Yao et al., 2023a), this polymorphic structure provides the formal ben-
efits of programmatic skills while explicitly incorporating the flexibility required for generalization
across different domains.

Continual Learning A long-standing goal in Al is continual learning (van de Ven et al., 2025;
Liu et al., 2025a), where an agent continually learn during testing time and its interaction with the
environments. This is specifically true for web agents, where interaction is more effective than just
thinking longer (Shen et al., 2025; Liu et al., 2025b). A key insight from Al research is that this
requires compositional generalization, the ability to learn primitive concepts and recombine them
to solve novel problems (Jiang et al., 2025). Existing web agents that learn from experience, such
as those using exploration enhanced by curriculum learning (Zheng et al., 2025) or reinforcement
learning (Zhou et al., 2024b), perform a simple form of continual learning by adding new skills to a
library. However, their skills lack a compositional structure; a learned code snippet or action trace
cannot be easily modified or combined with others in a principled way, leading to low utilization
rates on new websites. Our work, first showing the effectiveness of the principles for modularity
from software engineering, offers a powerful solution. Polymorphism (Milner, 1978) is a time-tested
concept designed explicitly to manage variation between implementations while maintaining a stable
interface. By applying this principle to agent skills, our approach provides a structured paradigm
for learning capabilities that are modular and interchangeable. See Appendix B for detailed related
work.

3 POLYSKILL: POLYMORPHISM-GUIDED AGENT SKILL INDUCTION

Our approach addresses the fundamental challenge of learning agent skills that balance specializa-
tion with generalization. We propose a hierarchical framework that separates skill learning into three
complementary stages: skill discovery through polymorphic abstraction, skill refinement through
compositional verification, and skill deployment through adaptive execution.

3.1 PRELIMINARY

Problem Formulation. We model the web agent’s interaction environment as a Partially Observable
Markov Decision Process (POMDP), defined by the tuple (S, A,, 7,2, O). Here, S is the latent
state space representing the full underlying state of the web application. A, is the set of primitive
actions the agent can execute on a webpage (e.g., click (element), type (text)), as defined
in Appendix E.2. The function 7 : S x A, — A(S) is the stochastic state transition function. Since
the agent cannot perceive the entire state S, it receives an observation o; € € (e.g., the Ally tree
and viewport screenshot) at each timestep ¢ through the observation function O : S — A(Q).

Under review as a conference paper at ICLR 2026

LM-based Agent Policy. We consider an agent driven by a large language model (LM) backbone,
L. The agent’s policy, 7., determines the next action based on its current context. This context
consists of a working memory M, which stores the high-level task instruction and the history of
observations and actions, and a dynamic skill library K;. The skill library contains reusable skills
that expand the agent’s full action space to A; = A, U K;. Each skill & € K is a parameterized
sequence of actions k(args) := a1 @ --- ® a,, where @ denotes sequential execution and each
action a; € A, which includes both primitive actions (A,) and learnt skills (). The policy is thus
denoted as 7 (a¢|o;, My, K;), which we shorten to 7.

Task Execution and Objective. The agent’s goal is to complete a task specified by a natural lan-
guage instruction q. At each timestep ¢, the agent receives an observation o;, updates its memory
M, and selects an action a; € A; using its policy. This interaction over a horizon H generates
a trajectory 7 = (09, ag, 01,01, ..,0H—1,aH—1). A task is considered successful if the trajectory
satisfies a goal condition, indicated by a success function ¢g(7,¢q) = 1. Our central objective is to
induce an effective skill library . We formalize this by maximizing an efficiency-aware reward,
maxy,. k Equolg(T, ¢) —7|7|], where the penalty on trajectory length | 7| incentivizes the creation of
compact and reusable skills. While this objective could be optimized as a loss function, we instead
use this efficiency principle to guide our agent’s prompting.

The core challenge, which PolySkill addresses, is to populate /C with skills that are both effective
for specific contexts (specialized) and transferable to new tasks/domains (polymorphic).

3.2 THE POLYSKILL FRAMEWORK

Limitation of existing skill induc-
tion methods We identified the

limitations of current skill induction e Sucf:SSSIRate o Sl Umsli(aitllf\nV]:;tsgr/U)

15.0
methods. We tested two state-of- . ®) 5@
the-art approaches, ASI and Skill- € 450 710_0°§
Weaver, on how well their learned 3z, i [] - e
skills transfer to unseen websites. & I [rs'og
Their example of skills can be seen 2 t e 0 3
in . As illustrated in Figure 2, our o ! : : oo @
analysis revealed two key problems. 65 150
First, the learning process can be 125§
unstable, producing over-specialized 9555 100§
skills. For instance, SkillWeaver’s = R | 25 §
performance with Claude-3.7-Sonnet £ ! ! . 505
degrades over time because its self- ~ F4s 7 | /ﬁ/:/o\\\” 25 2
proposed tasks become increasingly :

i) 0 20 40 60 80 IOQ 120 140 160 180 0 20 40 60 80 _100 120 140 I;OG'O
Complex and SpeClﬁc_ This causes # of Iterations # of Iterations

the resulting skills to be too intri- L L . .
cate and poorly suited for general- Figure 2: Limitations of existing skill induction meth-

ization. Second, these skills show ©ds. We evaluate ASI and SkillWeaver across two foun-
poor generalization when applied to dation models: @ GPT-4.1 and Claude-3.7-Sonnet.
new websites. This is reflected in ex- Both methods show unstable learning dynamics and poor
tremely low Skill Reusabilitys on un- skill reusability, demonstrating over-specialization issues
seen websites: less than 9% for ASI that hurt performance on WebArena Shopping tasks.

and less than 3% for SkillWeaver.

‘We build on prior work that demonstrates the robustness of representing skills as code (Wang et al.,
2025; Liu et al., 2025a). To specifically address the brittleness and over-specialization, we intro-
duce a solution inspired from software engineering: polymorphism. This allows our framework to
separate a skill’s abstract goal from its concrete, site-specific implementation.

However, these skills are often tied to one specific website’s design, making them hard to reuse on
other sites. Other methods, like SkillWeaver (Zheng et al., 2025), create robust skills by generating
complex code from the agent’s experience. As shown in Figure 2, these skills use very specific code
to find elements on a page, limiting them to only one site. This over-specialization makes the skills
brittle: they work well on the original website but break easily on new sites with different layouts.

Under review as a conference paper at ICLR 2026

PolySkill Abstract Class PolySkill Implementation
i ini .. " i i class AmazonWebsite(AbstractShoppingSite):
fll':: :E:::E:sgg;\;::ggtizs, defining a "schema" for shopping sites. def search_product(self, query: str): amazon
M click(search_bar_id)
def search_product(self, query: str): fill(search_bar_id, query)
"""Searches for a product.""" keyboard_press('Enter')
def add_to_cart(self, item_id: str, quantity: int): def add_to_cart(self, item_id: str, quantity: int):

"wvAdds a specified item to the shopping cart.""" click(add_to_cart_button_id)

def checkout(self):

def checkout(self): wnuNOTE: Implements checkout as a composite action: first
"""Initiates the checkout process.""" cart, then clicks checkout."""
self.view_cart()
oo click(checkout_button_id)
Compositional Skills
e
class TargetWebsite(AbstractShoppingSite):
def find_and_add_to_cart(self, query: str, item_id: str): def search_product(self, query: str): TARGET
"""Searches for a product and adds it to the cart.""" fill(search_bar_id, query)

self.search_product(query) click(search_button_id)
self.add_to_cart(item_id)
def add_to_cart(self, item_id: str, quantity: int = 1):

def purchase_item(self, query: str, item_id: str): click(add_button_id)
"""Finds a specific product, adds it to the cart, and starts fill(quantity_bar_id, quantity)
checkout.""" click(add_to_cart_button_id)
self.find_and_add_to_cart(query, item_id)
self.checkout() def checkout(self):

click(checkout_button_id)

Table 1: Example of PolySkill. (Left) shows the high-level abstraction of the skills under shopping
domains; (Right) shows the website-specific implementation across shopping domains, built upon
the Abstract Shopping parent class. Note that the compositional skills would not need to be rede-
fined, since it solely rely on the compositionality of other skills.

Our Proposed Solution We introduce PolySKill, a framework that solves this problem by learning
a domain-driven skill hierarchy. Instead of treating skills as isolated scripts, we organize them into
classes based on a website’s category. For example, skills for Amazon and Target are treated as
concrete implementations of an abstract AbstractShoppingSite class. This structure allows
the agent to learn a general “schema” for a type of website and then fill in the specific, reliable
implementations for each new site it encounters.

3.3 SKILL INDUCTION PROCESS

Base of Skill Induction Pipeline Our skill induction process is built upon the robust verification
pipeline established by ASI (Wang et al., 2025). In their framework, skill creation begins after a task
is successfully completed using a sequence of primitive actions. An LLM-based induction mod-
ule analyzes this successful trajectory to propose one or more programmatic skills that encapsulate
reusable parts of the workflow (Pan et al., 2024). Before the skills are added into the library, a veri-
fication phase is done where the agent attempts to solve the same task again, this time by executing
the newly generated skill. Only if this new execution is deemed as successful is the skill considered
validated and added to the agent’s library for future use.

Innovation via Polymorphic Skill Induction Where our method, PolySkill, improves is by inte-
grating this process with a polymorphic skill structure. A critical preliminary step in our frame-
work is that if the agent is operating on its first shopping website, it must first induce the high-level
abstract class, Abstract ShoppingSite, which defines a common skill interface for that cate-
gory—including functions like search (item) and add_to_cart (item). Subsequently, when
the agent generates a successful trajectory on a specific site like amazon . com, it begins to induce
a concrete skill. We provide the AbstractShoppingSite class as context. This reframes the
induction prompt: rather than asking the LLM to simply search for reusable skills, we instruct it to
implement the specific search method for an AmazonWebsite class, ensuring it conforms to
the abstract interface. This encourages the agent to learn skills that are not just locally effective but
are structurally consistent implementations of a shared, domain-wide concept.

Skill Learning on Unseen Websites This polymorphic structure makes learning on new websites
within a known category significantly more efficient. Imagine the agent has already formed the
AbstractShoppingSite class and now visits walmart . com for the first time. It immediately
recognizes Walmart as a shopping site and retrieves the abstract blueprint. This blueprint gives the
agent a clear set of goals for exploration. Instead of randomly trying actions, it knows it needs to
figure out how to perform tasks like search_product and add_to_cart on this new site. Once

Under review as a conference paper at ICLR 2026

the agent successfully searches for an item, it follows the standard induction process to create a
new WalmartWebsite class, filling in the search method with the specific actions that worked.
This guided approach accelerates learning by focusing the agent’s efforts on mastering the essential
skills defined in the abstract interface.

3.4 EVALUATION SETUP

We evaluate our induction process over baseline, in two different settings: (1) Task-Defined Bench-
marks In standard benchmark settings, we apply this process within controlled environments, in-
cluding Mind2Web (Deng et al., 2023) and WebArena (Zhou et al., 2024a). Here, the agent is
presented with a predefined curriculum of tasks. Each successful trajectory provides the validated
sequence of actions needed to implement a concrete skill method. This controlled approach al-
lows us to rigorously measure how well the polymorphic representation facilitates generalization
and transfer to unseen tasks, websites, or domains. (2) Task-Free Continual Learning: To assess
the ultimate goal of agent autonomy, we also apply our framework in a task-free setting, similar to
settings as Voyager (Wang et al., 2023) and SkillWeaver (Zheng et al., 2025). In this scenario, the
agent explores websites on its own, proposes its own goals, and induces skills from its successful at-
tempts. Crucially, we showed that our polymorphic hierarchy enables structured exploration (Murty
et al., 2025; Gandhi & Neubig, 2025). The already-learned abstract domain classes act as a schema,
providing a strong prior for what skills are worth discovering (Liang et al., 2025).

3.5 EVALUATION METRICS

We assess performance using five key metrics. Two are standard benchmarks adopted from prior
work (Wang et al., 2024; 2025), while we introduce three new metrics to measure skills’ utility.
(1) Task Success Rate (SR) is the percentage of held-out tasks the agent completes successfully.
This is the primary measure of overall performance. (2) Number of Steps is the average number
of actions the agent takes to complete a task, where each primitive action and each call to a skill is
counted as a single step. Fewer steps indicate higher efficiency. (3) Skill Reusability measures the
number skill reused in new tasks. A high rate indicates the agent learns relevant, broadly applicable
skills rather than overly niche ones. (4) Task Coverage measures the tasks that used at least one
skill. This metric indicates whether the skills can be adaptive in actual test case scenarios. (5) Skill
Compositionality measures how frequently the system reuses existing skills as building blocks
for more complex tasks. A high score indicates an efficient and scalable learning process, as the
system leverages its acquired knowledge rather than learning every new skill from scratch. Formal
definitions for all metrics are provided in Appendix E.1.

4 EXPERIMENTS

In this section, we present a comprehensive evaluation of PolySkill. We first assess its performance
and generalization capabilities in standard, task-defined benchmark settings. We then test its ability
to learn autonomously in a more challenging task-free, exploratory scenario.

4.1 STANDARD BENCHMARK EVALUATION

Benchmarks (1) Mind2Web (Deng et al., 2023) To evaluate PolySkill on general web navigation
scenarios We evaluate on Mind2Web, a comprehensive dataset spanning 137 websites across 31 do-
mains. The dataset includes 2,350 tasks with annotated cross-task, cross-website, and cross-domain
settings, providing diverse scenarios for skill learning and evaluation. We use the standard train-test
split, holding out entire website categories for out-of-domain evaluation. Since the benchmark only
comes with human trajectory data, we employs an automatic judge based on GPT-4.1 for measuring
task success rate, which achieved an 85% agreement with human judgment (Xue et al., 2025). We
employ the judge both in the skill induction stage and during the test time. (2) WebArena (Zhou
et al., 2024a) It provides a realistic evaluation environment with fully functional websites across
e-commerce, forums, development tools, and content management systems. The benchmark in-
cludes 812 tasks ranging from simple navigation to complex multi-step procedures, with automatic
evaluation through functional correctness checks.

Under review as a conference paper at ICLR 2026

Baseline ASI N PolySkill Q0N ASI (+Update) B PolySkill (+Update)
@ GPT-4.1 * Claude-3.7-Sonnet
68 72
64 69
g60 66 I
=] l
Q
256 I 63
s20 60 1
48 ; ; 57 ; ;
Cross-task ~ Cross-Website Cross-Domain Cross-task ~ Cross-Website Cross-Domain
- -
v Qwen3-Coder-480B-A35B GLM-4.5
52 60
48 55
T4 50
I
240 45 I I .
36 [I 40
32 : . 35 ; .
Cross-task ~ Cross-Website Cross-Domain Cross-task ~ Cross-Website Cross-Domain

Figure 3: Performance comparison of PolySkill with baseline methods on the Mind2Web bench-
mark across four large language models. The y-axis shows task success rate (%). The three eval-
uation settings on the x-axis, Cross-task, Cross-Website, and Cross-Domain, represent increasing
levels of generalization difficulty. Our method, PolySkill, consistently outperforms the ASI base-
line, while the online continual update version, PolySKill (+Online), achieves state-of-the-art perfor-
mance across all models and settings. The performance gains are most significant in the challenging
Cross-Domain scenario, highlighting our method’s superior generalization. Error bars represent the
standard error over three runs.

Models and Baselines For our experiments, we evaluate the performance on four foundation mod-
els: two closed-source (GPT-4.1 and Claude-3.7-Sonnet) and two open-source agentic models
(Qwen3-Coder-480B-A35B (Qwen, 2025) and GLM-4.5 (GLM, 2025)). This selection encom-
passes leading proprietary models and open-source models that post-training specifically on agentic
tasks, enabling a rigorous evaluation of agentic capabilities. We compare our method against three
baselines: a standard agent with no skill induction (Base) and two leading skill induction frame-
works, ASI (Wang et al., 2025) and SkillWeaver (Zheng et al., 2025). The ASI is induced online
and applied to both Mind2Web and WebArena; however, for SkillWeaver, we only evaluate it on
WebArena Subsets.

Results. For Mind2Web, as shown in Figure 3 (Results for WebArena is delayed in Figure 7).
Our PolySkill outperforms ASI across both static and online settings. On GPT-4.1, PolySKill im-
proves Cross-task accuracy from 52-53% (ASI) to 55-56%, and its online variant jumps to about
63%, compared to only 59% for ASI (+Update). In the hardest Cross-Domain setting, PolySkill
(+Update) reaches 63-64% versus 62% for ASI (+Update). On Qwen3-Coder, PolySkill (+Update)
improves Cross-task from 41.5% (ASI) to 47.5% and Cross-Domain from 35.2% to 39.9%. These
consistent gains, particularly the significant jumps in Cross-Website, underscore PolySkill s stronger
generalization and the clear benefit of continual online updating over ASI.

4.2 ANALYSIS

To investigate how skills are induced during training, we use our newly proposed metrics to track the
model’s learning dynamics. This analysis builds on previous work that sought to understand these
dynamics (Shah et al., 2025). For our study, we saved 20 model snapshots at regular intervals while
training on the Mind2Web Cross-task and WebArena Shopping benchmarks. We then evaluated our
metrics on each snapshot to observe how skills emerge over time. The following plots illustrate
these trends.

Under review as a conference paper at ICLR 2026

Relation between Skill Reusability and No.
Steps To validate the fundamental hypoth-
esis that skill learning improves task effi-
ciency, we analyze the relationship between
Skill Reusability and the number of steps re-
quired for task completion. The results, pre-
sented in Figure 4, demonstrate a clear inverse
correlation across all three methods: as skill
reusability increases from 0% to over 20%,
the average number of steps decreases substan-
tially from approximately 6.1 to 3.3-4.4 steps.
PolySkill achieves the highest Skill Reusabil-
ity (reaching 20.4% by task 180), while main-
taining competitive step reduction. Notably,
ASI shows the most dramatic step reduction de-
spite lower utilization rates, suggesting efficient

‘WebArena Shopping: Steps vs Skill Utilization

ASI Skillweaver B PolySkill
—O0— Steps I Utilization (%)
-60
56 50~
s g
85 2
g 30.8
Z =
24 202
5 4
-10
- 1
3 wll

0 40 80 120 160 180
Tasks Completed

Figure 4: Relationship between skill reusability
and task efficiency in WebArena shopping tasks.
Lines show average steps (left y-axis) while bars
show Skill Reusability (right y-axis) for ASI (or-
ange), SkillWeaver (green), and PolySkill (red).

skill application. This analysis confirms that
learned skills directly translate to improved task
efficiency, with higher utilization rates consis-
tently leading to more streamlined task execu-
tion. The strong correlation validates our core
premise that skill induction and reuse are key drivers of agent performance improvement in complex
web navigation tasks.

Higher skill reusability correlates with fewer re-
quired steps, demonstrating improved task effi-
ciency through learned skills.

Case Study: Continual Learning To simulate how skill would be used and evolved in real-world
scenarios, we investigate the agent’s continual learning capabilities. The experiment begins with an
agent whose skill library is initialized on the WebArena Shopping tasks. The agent then continues to
perform online update via skill induction on new websites for Amazon and then Target, respectively
(details in Appendix E.4). We performed the experiments 3 times to reduce the potential variance
across run. In this setting, we are both interested in the positive transfer from the existing skill library
in a similar domain. Also, we measure the WA Shopping performance after it has adapted to new
website. This allows us to study potential catastrophic forgetting, where learning new knowledge
can harm existing skills, a well-known challenge in continual learning (van de Ven et al., 2025).

The results, presented in Figure 5, highlight two critical advantages of PolySkill’s polymorphic ab-
straction: First, when adapting to new domains like Amazon and Target, PolySkill effectively learns
the required specialized skills, demonstrating strong positive transfer (orange and red curves). More
importantly, it avoids the interference that reduces the ASI performance at the last. After specializing
on the new sites, the ASI agent’s performance on the original WebArena tasks degrades significantly.
In contrast, PolySkill retains its general knowledge, with its performance on the original tasks re-
maining stable (blue curve). This results in a final +4.9% performance advantage over ASI on the
benchmark, proving our method’s ability to learn new skills without hurting existing ones.

4.3 FROM SPECIALIST TO EXPLORER: SKILL LEARNING IN AN EXPLORATIVE SETTING

To assess the goal of agent autonomy, we test our framework in an explorative, continual learning
scenario. This setting extends beyond predefined tasks; instead, the agent explores websites inde-
pendently, proposes its own goals, and acquires skills from its successful attempts (Zheng et al.,
2025).

We designed an experiment to answer a central question: Does an agent need a human-guided
curriculum to learn general skills, or can its own exploration lead to versatile generalization? To
investigate this, we compared three learning paradigms using GPT-4.1 across shopping sites (AMZ,
Target, WA) and developer platforms (Github, GitLab). First, we established two baselines to
ground our comparison. (1) Single-Domain Specialists, the agent is trained on only one website,
allowing us to measure the effects of over-specialization. (2) Sequential Curriculum, the agent
follows a fixed, predefined order of websites, representing a standard pre-defined curriculum. And
our proposed method, (3) Self-guided Exploration. This approach extends the self-proposing agent
concept from SkillWeaver (Zheng et al., 2025) to a more challenging multi-website setting where
the agent can freely choose which website to explore at each iteration. This autonomy is enabled by

Under review as a conference paper at ICLR 2026

Training Setting Evaluation Benchmark (SR % / Skill Usage %)
Method Iterations WA Shopping AMZ Target
Baseline - 37.4 - 47.3 - 60.5 -

1. Single-Domain Specialists

WA 50 423 14.9 50.2 33 61.2 2.8
AMZ 50 38.1 2.7 69.5 483 615 3.0
Target 50 38.0 2.1 48.5 3.5 71.0 52.1

2. Sequential Curriculum

AMZ — WA 75+75 40.2 12.3 653 427 625 3.1
AMZ — Target - WA 50+50+50 382 11.9 652 433 773 24.3
Target -+ AMZ — WA 50+50+50 39.5 11.5 66.1 40.8 69.2 18.9
WA — Target - AMZ 50+50+50 42.1 10.8 705 432 7638 233

SkillWeaver™ 150 39.8 8.6 644 252 742 18.3

3. Self-guided Exploration

AMZ + Target + WA 150 43.1 14.6 66.7 364 752 19.4

Table 2: Performance in the task-free exploration setting for the Shopping Domain. * For the Skill-
Weaver, we selected the best-performing curriculum in (WA — Target — AMZ).

our core contribution, the polymorphic skill structure, which provides the necessary framework for
the agent to autonomously structure, hone, and generalize its skills across these diverse platforms.

Shopping Domains (OneStopShop, Amazon and Target) As shown in Table 2, the choice of
learning paradigm affects skill transfer. Single-domain specialists perform well on their home site
(e.g., 77.0% SR on Target) but fail to transfer this knowledge, with Skill Reusability below 4% on
other sites. The sequential curriculum improves transfer but is sensitive to the order of the curricu-
lum. Critically, the fully autonomous agent achieves the highest general success rate (43.1%) on the
held-out WA Shopping benchmark. One major finding from the results, showing WA OneStopShop
actually transfer better to other websites, meaning it has much richer skills to be learned.

Coding Platforms (Gitlab, Github) We further test this hypothesis in a more challenging scenario,
transferring skills between developer platforms. As detailed in Table 8, the self-guided agent once
again demonstrates superior generalization. It achieves the highest success rate on the held-out
GitLab benchmark (66.2%) while also attaining the best performance on GitHub (84.0%), proving
its ability to master both domains concurrently.

This key finding across both experiments demonstrates that PolySkill’s hierarchical abstraction en-
ables an agent to autonomously build a robust and general skill set that outperforms methods relying
on a handcrafted curriculum. It successfully learns to be a generalist explorer and skill refiner.

5 CONCLUSION

In this work, we introduced PolySkill, a framework that teaches web agents generalizable skills
using the principle of polymorphic abstraction. By separating a skill’s high-level intent from its
website-specific implementation, our method enables agents to reuse capabilities across diverse en-
vironments. Our experiments show a major improvement in generalization, with 73% of learned
skills transferring to unseen websites, a improving improvement to the <31% achieved by prior
methods. This approach resolves a key tension between the need for specialized skills and the
adaptability required for the open web, and we confirmed its effectiveness on open-source agentic
models, demonstrating its broad applicability.

Looking ahead, this framework opens several avenues for research, including handling highly dy-
namic websites, enabling skill sharing between agents, and incorporating human feedback. More
broadly, the principle of polymorphism is not limited to web agents. It offers a powerful template
for any agent that must operate in diverse environments sharing similar underlying structures (Xu
et al., 2025)—from robotics, where skills must generalize across different physical settings (Cheng
et al., 2025; Liu et al., 2025a), to tool use, where software interfaces constantly evolve (Fei et al.,
2025; Qiu et al., 2025). This work, therefore, provides a concrete step toward building more ro-
bust and adaptive agents capable of learning from experience (Silver & Sutton, 2025) in diverse
environments.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The experiments on open-source models are run on an 8-H100 GPU cluster, and all calls for propri-
etary LLMs are made via their official API. All experiments are done via BrowserGym (de Chezelles
et al., 2025) API, and experiment details are illustrated in Section 4 and Appendix E.

ETHICS STATEMENT

Real World Impacts Smarter autonomous agents could be a big help in the real world. They have
the potential to make computers much easier to use, especially for people with disabilities or those
who lack technical skills. Agents could also automate many routine computer tasks, freeing people
up for more creative work. While the agents in our paper aren’t advanced enough for this yet, these
future possibilities mean we need to think carefully about the social and economic impact on jobs.

Our own work here focuses on improving performance on research tests, so we don’t believe it
creates any immediate real-world harm. One clear concern, however, is that web agents might
misuse websites or violate their terms of use and copyright. We take this seriously and will remove
an agent’s ability to access any site if requested by its owner.

Bias and Safety It’s also very important to make sure these agents are fair and don’t harm or exclude
anyone. Before any agent is deployed, it needs to be checked carefully for hidden biases. Because
agents can take actions in the world, they could cause more serious problems than a simple chatbot if
proper safeguards aren’t in place. More research is needed to understand and prevent these potential
harms.

Intended Use The methods and models in this paper are intended for research purposes only. We
use academic benchmarks like WEBARENA and MIND2WEB to measure progress in the field. The
systems we’ve built are research prototypes and might not yet ready for real-world deployment,
especially in high-stakes situations where errors could be costly.

REFERENCES

Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent S2:
A Compositional Generalist-Specialist Framework for Computer Use Agents, April 2025. URL
http://arxiv.org/abs/2504.00906. arXiv:2504.00906 [cs].

Silin Chen, Shaoxin Lin, Xiaodong Gu, Yuling Shi, Heng Lian, Longfei Yun, Dong Chen, Weiguo
Sun, Lin Cao, and Qianxiang Wang. SWE-Exp: Experience-Driven Software Issue Resolution,
July 2025a. URL http://arxiv.org/abs/2507.23361. arXiv:2507.23361 [cs].

Xuetian Chen, Yinghao Chen, Xinfeng Yuan, Zhuo Peng, Lu Chen, Yuekeng Li, Zhoujia Zhang,
Yingqgian Huang, Leyan Huang, Jiaqing Liang, Tianbao Xie, Zhiyong Wu, Qiushi Sun, Biqing
Qi, and Bowen Zhou. Os-map: How far can computer-using agents go in breadth and depth?,
2025b. URL https://arxiv.org/abs/2507.19132.

Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong
Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents, 2024. URL https:
//arxiv.org/abs/2401.10935.

Shuo Cheng, Zhaoyi Li, Kelin Yu, and Danfei Xu. Continual robot learning via language-guided
skill acquisition. In ICRA 2025 Workshop on Foundation Models and Neuro-Symbolic Al for
Robotics, 2025. URL https://openreview.net/forum?id=VJfK5xy6F6.

Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. MemO: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413,
2025.

Thibault Le Sellier de Chezelles, Maxime Gasse, Alexandre Lacoste, Massimo Caccia, Alexan-
dre Drouin, Léo Boisvert, Megh Thakkar, Tom Marty, Rim Assouel, Sahar Omidi Shayegan,

10

http://arxiv.org/abs/2504.00906
http://arxiv.org/abs/2507.23361
https://arxiv.org/abs/2507.19132
https://arxiv.org/abs/2401.10935
https://arxiv.org/abs/2401.10935
https://openreview.net/forum?id=VJfK5xy6F6

Under review as a conference paper at ICLR 2026

Lawrence Keunho Jang, Xing Han Lu, Ori Yoran, Dehan Kong, Frank F. Xu, Siva Reddy, Gra-
ham Neubig, Quentin Cappart, Russ Salakhutdinov, and Nicolas Chapados. The browsergym
ecosystem for web agent research. Transactions on Machine Learning Research, 2025. ISSN
2835-8856. URL https://openreview.net/forum?id=5298 fKGmv3. Expert Certifi-
cation.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun,
and Yu Su. Mind2web: Towards a generalist agent for the web. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 28091-28114. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
5950b£f290al1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.
pdf.

Runnan Fang, Yuan Liang, Xiaobin Wang, Jialong Wu, Shuofei Qiao, Pengjun Xie, Fei Huang,
Huajun Chen, and Ningyu Zhang. Memp: Exploring agent procedural memory, 2025. URL
https://arxiv.org/abs/2508.06433.

Xiang Fei, Xiawu Zheng, and Hao Feng. Mcp-zero: Active tool discovery for autonomous llm
agents, 2025. URL https://arxiv.org/abs/2506.01056.

Apurva Gandhi and Graham Neubig. Go-browse: Training web agents with structured exploration,
2025. URL https://arxiv.org/abs/2506.03533.

Team GLM. GIm-4.5: Agentic, reasoning, and coding (arc) foundation models, 2025. URL https:
//arxiv.org/abs/2508.06471.

Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and
Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents,
2025. URL https://arxiv.org/abs/2410.05243.

Yu Gu, Kai Zhang, Yuting Ning, Boyuan Zheng, Boyu Gou, Tianci Xue, Cheng Chang, Sanjari
Srivastava, Yanan Xie, Peng Qi, Huan Sun, and Yu Su. Is your llm secretly a world model of
the internet? model-based planning for web agents, 2025. URL https://arxiv.org/abs/
2411.06559.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wengqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model, 2024. URL https://arxiv.org/abs/2408.095509.

Minqi Jiang, Andrei Lupu, and Yoram Bachrach. Bootstrapping task spaces for self-improvement,
2025. URL https://arxiv.org/abs/2509.04575.

Xiao Liang, Zhong-Zhi Li, Yeyun Gong, Yang Wang, Hengyuan Zhang, Yelong Shen, Ying Nian
Wu, and Weizhu Chen. Sws: Self-aware weakness-driven problem synthesis in reinforcement
learning for llm reasoning, 2025. URL https://arxiv.org/abs/2506.08989.

Peiqi Liu, Joshua B Tenenbaum, Leslie Pack Kaelbling, and Jiayuan Mao. Lifelong Experience
Abstraction and Planning. 2025a.

Yitao Liu, Chenglei Si, Karthik Narasimhan, and Shunyu Yao. Contextual experience replay for self-
improvement of language agents, 2025b. URL https://arxiv.org/abs/2506.06698.

Robin Milner. A theory of type polymorphism in programming. Journal of computer and system
sciences, 17(3):348-375, 1978.

Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsupervised
learning of browser agents through environment interaction in the wild, 2025. URL https:
//arxiv.org/abs/2410.02907.

Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous
evaluation and refinement of digital agents, 2024. URL https://arxiv.org/abs/2404.
06474.

11

https://openreview.net/forum?id=5298fKGmv3
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/5950bf290a1570ea401bf98882128160-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2508.06433
https://arxiv.org/abs/2506.01056
https://arxiv.org/abs/2506.03533
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2410.05243
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2411.06559
https://arxiv.org/abs/2408.09559
https://arxiv.org/abs/2509.04575
https://arxiv.org/abs/2506.08989
https://arxiv.org/abs/2506.06698
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2410.02907
https://arxiv.org/abs/2404.06474
https://arxiv.org/abs/2404.06474

Under review as a conference paper at ICLR 2026

Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy Liang, and
Michael S. Bernstein. Generative agents: Interactive simulacra of human behavior, 2023. URL
https://arxiv.org/abs/2304.03442.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang,
Zixin Yao, Qihan Ren, Xun Jiang, Xing Zhou, Dongrui Liu, Ling Yang, Yue Wu, Kaixuan
Huang, Shilong Liu, Hongru Wang, and Mengdi Wang. Alita: Generalist agent enabling scal-
able agentic reasoning with minimal predefinition and maximal self-evolution, 2025. URL
https://arxiv.org/abs/2505.20286.

Team Qwen. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Vishwa Shah, Vishruth Veerendranath, Graham Neubig, Daniel Fried, and Zora Zhiruo Wang. EX-
PLORING THE PRE-CONDITIONS FOR MEMORY-LEARNING AGENTS. 2025.

Junhong Shen, Hao Bai, Lunjun Zhang, Yifei Zhou, Amrith Setlur, Shengbang Tong, Diego Caples,
Nan Jiang, Tong Zhang, Ameet Talwalkar, and Aviral Kumar. Thinking vs. Doing: Agents
that Reason by Scaling Test-Time Interaction, June 2025. URL http://arxiv.org/abs/
2506.07976. arXiv:2506.07976 [cs].

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al, 2025.

Gido M. van de Ven, Nicholas Soures, and Dhireesha Kudithipudi. Continual learn-
ing and catastrophic forgetting, pp. 153—168. Elsevier, 2025. ISBN 9780443157554.
doi: 10.1016/b978-0-443-15754-7.00073-0. URL http://dx.doi.org/10.1016/
B978-0-443-15754-7.00073-0.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. Voyager: An Open-Ended Embodied Agent with Large Language Models,
October 2023. URL http://arxiv.org/abs/2305.16291. arXiv:2305.16291 [cs].

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent Workflow Memory,
September 2024. URL http://arxiv.org/abs/2409.07429. arXiv:2409.07429 [cs].

Zora Zhiruo Wang, Apurva Gandhi, Graham Neubig, and Daniel Fried. Inducing Program-
matic Skills for Agentic Tasks, April 2025. URL http://arxiv.org/abs/2504.06821.
arXiv:2504.06821 [cs].

Yue Wu, Yewen Fan, So Yeon Min, Shrimai Prabhumoye, Stephen McAleer, Yonatan Bisk, Ruslan
Salakhutdinov, Yuanzhi Li, and Tom Mitchell. Agentkit: Structured llm reasoning with dynamic
graphs, 2024a. URL https://arxiv.org/abs/2404.11483.

Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng,
Zichen Ding, Liheng Chen, Paul Pu Liang, and Yu Qiao. Os-atlas: A foundation action model for
generalist gui agents, 2024b. URL https://arxiv.org/abs/2410.23218.

Tianqi Xu, Linyao Chen, Dai-Jie Wu, Yanjun Chen, Zecheng Zhang, Xiang Yao, Zhiqiang Xie,
Yongchao Chen, Shilong Liu, Bochen Qian, Anjie Yang, Zhaoxuan Jin, Jianbo Deng, Philip Torr,
Bernard Ghanem, and Guohao Li. Crab: Cross-environment agent benchmark for multimodal
language model agents, 2025. URL https://arxiv.org/abs/2407.01511.

Tianci Xue, Weijian Qi, Tianneng Shi, Chan Hee Song, Boyu Gou, Dawn Song, Huan Sun, and
Yu Su. An illusion of progress? assessing the current state of web agents, 2025. URL https:
//arxiv.org/abs/2504.01382.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of Thoughts: Deliberate problem solving with large language models, 2023a.

12

https://arxiv.org/abs/2304.03442
https://arxiv.org/abs/2505.20286
https://arxiv.org/abs/2505.09388
http://arxiv.org/abs/2506.07976
http://arxiv.org/abs/2506.07976
http://dx.doi.org/10.1016/B978-0-443-15754-7.00073-0
http://dx.doi.org/10.1016/B978-0-443-15754-7.00073-0
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2409.07429
http://arxiv.org/abs/2504.06821
https://arxiv.org/abs/2404.11483
https://arxiv.org/abs/2410.23218
https://arxiv.org/abs/2407.01511
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2504.01382
https://arxiv.org/abs/2405.15793

Under review as a conference paper at ICLR 2026

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models, 2023b. URL https://arxiv.
org/abs/2210.03629.

Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v(ision) is a generalist web
agent, if grounded, 2024. URL https://arxiv.org/abs/2401.01614.

Boyuan Zheng, Michael Y. Fatemi, Xiaolong Jin, Zora Zhiruo Wang, Apurva Gandhi, Yueqi Song,
Yu Gu, Jayanth Srinivasa, Gaowen Liu, Graham Neubig, and Yu Su. SkillWeaver: Web Agents
can Self-Improve by Discovering and Honing Skills, April 2025. URL https://arxiv.org/
abs/2504.07079v1.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024a. URL https://arxiv.org/abs/
2307.13854.

Yifei Zhou, Qianlan Yang, Kaixiang Lin, Min Bai, Xiong Zhou, Yu-Xiong Wang, Sergey Levine,
and Erran Li. Proposer-Agent-Evaluator(PAE): Autonomous Skill Discovery For Foundation
Model Internet Agents, December 2024b. URL http://arxiv.org/abs/2412.13194.
arXiv:2412.13194 [cs].

He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li,
Ningning Wang, Pai Liu, Tianhao Peng, Xin Gui, Xiaowan Li, Yuhui Liu, Yuchen Eleanor Jiang,
Jun Wang, Changwang Zhang, Xiangru Tang, Ge Zhang, Jian Yang, Minghao Liu, Xitong Gao,
Jiaheng Liu, and Wangchunshu Zhou. Oagents: An empirical study of building effective agents,
2025. URL https://arxiv.org/abs/2506.15741.

13

https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2210.03629
https://arxiv.org/abs/2401.01614
https://arxiv.org/abs/2504.07079v1
https://arxiv.org/abs/2504.07079v1
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
http://arxiv.org/abs/2412.13194
https://arxiv.org/abs/2506.15741

Under review as a conference paper at ICLR 2026

Skill Transfer Across Websites

WebArena

40 A s Shopping Amazon Target 72
—E— PolySkills
------ Baseline
ASI (from scratch) ;\?
S 39- e
v 8
Q (]
@ 36- 8
8 5
5 £
£ 33- -60¢
g o)
5 o
o @
o
g 30- -56 §
< S
¢ 3
= 07- 8 f -52 ¢
~ <
24 - -48
0 50 100 150 200 250 300

Tasks Completed

Figure 5: A continual learning experiment showing PolySkKill can prevent catastrophic forgetting.
The experiment consists of two phases: initial skill library induced on the in-domain WebArena
Shopping benchmark; followed by continual learning on cross-webiste: Amazon then Target. The
orange and red lines (right y-axis) show that PolySkill learns the new websites more effectively
than the ASI baseline. The blue lines (left y-axis) track performance on the original WA results
throughout the experiment. Shaded regions represent the standard error across three runs.

This appendix provides comprehensive details supporting our main findings. Appendix A docu-
ments the use of large language models in our analysis. Appendix C discusses potential limitations
of our work. Appendix E provides the detailed experiment details, including the definition of eval-
uation metrics, action space, and used dataset. Appendix F provides completed benchmark results
across datasets and metrics.

A LARGE LANGUAGE MODEL USAGE

We used large language models (LLMs) only for language refinement tasks, including grammar
checking, phrasing adjustments, and enhancing readability. All scientific ideas, experiments, analy-
ses, and results are the sole contributions of the authors. We only used LLM:s for literature searching.
It is important to note that the LLM was not involved in the ideation, research methodology, or ex-

perimental design. All research concepts, ideas, and analyses were developed and conducted by the
authors.

B EXTENDED RELATED WORKS

Adaptive Web Agents The central challenge for web agents is generalizing from training environ-
ments to the vast, unseen web. (Cheng et al., 2024; Zheng et al., 2024; Gou et al., 2025; Gu et al.,
2025; Chen et al., 2025b). Although the Agashe et al. (2025) seems to have already solved most of
the GUI agent tasks, the recent work Xue et al. (2025) still shows improvement needed to continue
to improve agents in complex tasks and robustness. Similarly, Contextual Experience Replay dis-
cretizes trajectories into “experiences” (containing environment dynamics and skills) and retrieves
relevant blocks to guide new episodes (Liu et al., 2025b).

Skill Representation Formats The representation of a “skill” is a central design choice in skill-
learning agents. The simplest forms are low-level and lack abstraction. SKkills as Textual Descrip-
tions leverage LLMs to store procedural knowledge in natural language within a prompt library
(Wang et al., 2024; Zhu et al., 2025). This offers flexibility but lacks the formal structure needed for

14

Under review as a conference paper at ICLR 2026

. . .
ASI Skill Example | SkillWeaver Skill Example
def fﬁ?rch_product(search_box_'\d: str, query: str): async def retrieve_categories(page):
Examples: .
search_product('595', 'sony bluetooth Args: . R .. .
headphones ') page : A Playwright “Page’ instance that controls browser automation.
click(search_box_id) Returns:
fill(search_box_id, query) list of dict
keyboard_press('Enter") A list of dictionaries where each dictionary contains the following
keys:
d:f rjavigateicategoryldrupdmwniid: str, category_id: - “name" (str): The name of the category.
str): - "url" (str): The URL of the category.
Navigate to a product category by first clicking .",
a dropdown menu. awailt page.goto("/home-kitchen.html")
Examples: category_elements = await page.query_selector_all("tabpanel menu menuitem")
navigate_category('5', '76') categories = []
" for element in category_elements
click(dropdown_id) name = await (await element.get_property("text_content")).json_value()
click(category_id) link_element = await element.query_selector("a")
url = (
await (await link_element.get_property("href")).json_value()
if link_element
else ""

)
categories.append({"name": name, "url": url})
return categories

Table 3: Example of ASI Skills and SkillWeaver Skills.

reliable composition or verification. Similarly, Skills as Action Traces store successful action se-
quences or workflows from prior tasks (Wang et al., 2024; 2025). While easy to record, these traces
implicitly encode the specifics of a single website’s UI, making them fail when even minor elements
change. A more structured approach represents Skills as Programs. This was pioneered in inter-
active environments like Minecraft, where agents build a library of reusable code snippets (Wang
et al., 2023), and has been applied to web agents (Zheng et al., 2025) and software engineering
(Chen et al., 2025a). However, these learned programs are typically concrete implementations tied
to a single context, not inherently designed to handle variations across different websites fulfilling
the same function.

Architectures for Agentic Memory Beyond the representation of individual skills, recent work has
explored the broader architecture of agent memory to support long-horizon reasoning and learning.
One line of work focuses on processing and structuring episodic experiences. For instance, Gen-
erative Agents (Park et al., 2023) structure memory as a stream of observations and use LLMs to
distill high-level summaries to guide behavior. Other research focuses on memory management for
efficiency and complex tasks. HiAgent organizes working memory hierarchically by subgoals, sum-
marizing and replacing low-level traces to improve performance on long-horizon tasks (Hu et al.,
2024). External-memory systems such as MemOQ (Chhikara et al., 2025) and MemP (Fang et al.,
2025) augment agents with a persistent store managed by explicit add, update, and prune opera-
tions, yielding gains on dialogue and planning tasks.

C LIMITATIONS

We show that PolySkill also works for the latest agentic models for continual learning, which is a
way to continuously improve these models with environment interaction settings. This also directly
answers the claim that open-source models still fall behind in terms of skill induction (Shah et al.,
2025). The promising next step would be to enable smaller agentic models to also utilize such skill
acquisition behaviors, via further RL training on these memory environments.

D SKILL EXAMPLES

We show the ASI and SkillWeaver Skill Examples at Table 3; and the examples for PolySkill is at
Table 1.

15

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

E.1 FORMAL DEFINITIONS OF EVALUATION METRICS

Task Success Rate (SR) This is the fraction of tasks in the evaluation set, 7wy, that the agent
completed successfully. It is defined as:

1

SR=——
| Trest|

Z I(task Tj is successful)
Tj 67:391

where I(+) is the indicator function which returns 1 if a task is successful and 0 otherwise.

Number of Steps This is the average number of actions the agent takes to complete a task, calculated
exclusively over successful trajectories to measure efficiency. Let Dgyccess be the set of trajectories
for successfully completed tasks. For each trajectory 7 € Dgyecess, let |7| denote its length (number
of actions). The average number of steps is:

1
Number of Steps = ——

7]
‘ Diuceess |
r

€ Dsuccess

Skill Reusability This metric measures the efficiency of the skill library itself by calculating the
fraction of learned skills that were used at least once. Let K be the final library of learned skills and
Diest be the set of all trajectories from the evaluation. The utilization is the fraction of skills £ € K
that appear in at least one trajectory 7 € Dieg:

[{k € K| 37 € Diegt, k € 7}
K]

Skill Reusability =

Skill Adoption Rate This metric measures the prevalence of skill-based behavior. Let Dy be the
set of all test task trajectories and K be the library of induced skills. The adoption rate is the fraction
of trajectories 7 € Dy in which at least one skill £ € IC was invoked:

{7 € Drest | Ik € K,k € T}

Skill Adoption Rate =
| Deest|

Skill Compositionality This metric evaluates the hierarchical structure of the skill library. Let the
final skill library be an ordered set C = {kq, ..., knx} of NV skills, where the index indicates creation
time. For each skill k;, let body(k;) be the set of non-primitive actions in its implementation. The
compositionality is the average number of previously learned skills reused in each new skill:

N
1
Skill Compositionality = - > |{k; € body(k;) | j < i}]
i=1

E.2 ACTION SPACE
E.3 DATASET

Mind2Web (Deng et al., 2023) is a large-scale, comprehensive benchmark designed for the devel-
opment and evaluation of generalist web agents. It aims to measure an agent’s ability to follow
natural language instructions to perform complex tasks on any given website. The dataset is notable
for its breadth, containing over 2,350 tasks spread across 137 different websites and spanning 31
distinct domains. The tasks are collected from real-world use cases and represent a wide array of
common user activities, such as booking flights, managing online shopping carts, and configuring
account settings. Each task instance consists of a high-level natural language instruction paired with
a specific website. An agent’s performance is evaluated based on its ability to successfully complete
the instruction by generating a correct sequence of web-based actions, like clicking buttons, typing
text, and selecting options from dropdowns. This benchmark’s diversity in both tasks and domains
makes it a robust tool for training and testing the generalization capabilities of autonomous web
agents.

16

Under review as a conference paper at ICLR 2026

Category

Action Type

Description

Basic Actions

noop

Do nothing

click (elem)

Click at an element

hover (elem)

Hover on an element

type (elem, text)

Type to an element

press (key_comb)

Press a key combination

scroll (dir)

Scroll up and down

Tab Operations

tab_focus (index)

Focus on the i-th tab

new_tab

Open a new tab

tab_close

Close current tab

Page Operations

go_back Visit the last URL
go_forward Undo go_back
goto (URL) Go to URL

Table 4: The base primitive action space from BrowserGym (de Chezelles et al., 2025)

WebArena (Zhou et al., 2024a) is a realistic and reproducible web environment and benchmark
designed to evaluate the functional capabilities of autonomous language agents in complex, goal-
oriented scenarios. It features 811 distinct tasks that require agents to interact with five fully func-
tional, self-hosted web applications: an e-commerce platform (OneStopShop), a social forum (Red-
dit), a collaborative software development platform (GitLab), a map service (OpenStreetMap), and
a site administration dashboard for the e-commerce platform. Unlike benchmarks that focus on
single-site interactions, many WebArena tasks are compositional, requiring the agent to navigate
and synthesize information across multiple applications to achieve a final goal.

E.4 REAL-WORLD WEBSITE TASKS

Amazon (50 tasks)

Search for an ergonomic office chair” from the brand "Herman Miller’ that costs between
$500 and $1000.

Find ”27-inch 4k 144hz gaming monitors” that are eligible for Prime shipping.

Look for an air fryer toaster oven combo” with at least a 20-quart capacity and a customer
rating of 4 stars or higher.

Search for new ”Sony WH-1000XMS5 headphones” in the color ’Silver’.
Find silicone pet grooming gloves” designed specifically for cats with long hair.

Search for *Apple’ “laptops” with at least 16GB of RAM and sort them by price from high
to low.

Find “robotic vacuums” from the brand ’iRobot’ with a self-emptying feature, and sort the
results by average customer review.

Search for *Vitamix’ ’blenders” with at least 1200 watts of power and sort them by price
from low to high.

Look for ”’science fiction books” by author ’Andy Weir’ in paperback format and sort them
by publication date, with newest first.

Search for waterproof “men’s winter jackets” in size "Large’ and sort by newest arrivals.
Find ”android tablets” with at least 64GB of storage that cost less than $200.

Show me “men’s running shoes” from the brand *Brooks’ in size 10.5.

Find programmable “coffee makers” under $75 that have a 4-star rating or higher.

Look for "QLED 4K televisions” from the brand *Samsung’ with a screen size of 65
inches’.

17

https://www.amazon.com/

Under review as a conference paper at ICLR 2026

* Find waterproof “women’s hiking boots” from the brand *Merrell” in size 8 that are eligible
for Prime shipping.

* Search for "Whey Isolate protein powder”, filter by the flavor *Unflavored’, and a customer
rating of 4 stars and up.

* Find “board games” suitable for 2 players” and for ages 712 and up” with an average
customer review of at least 4 stars.

* Look for color-changing “smart home light bulbs” that are compatible with ”Amazon
Alexa”.

* Find the cheapest ”1TB NVMe SSD” with a minimum read speed of 5,000MB/s.

* From the brand ’Ninja’, show me the least expensive “air fryer” with a minimum capacity
of 6 quarts.

* Find the current price and the screen size in inches of the “Kindle Paperwhite (16 GB)”.

* Go to the product page for the “Instant Pot Duo 7-in-1" and find both its capacity in quarts
and its item weight.

* On the product page for the ”Anker PowerCore 10000” power bank, find reviewers who
mention the word “travel” and list their names along with the star rating they gave.

* For the ”Sony WH-1000XM5” headphones, summarize the main criticisms mentioned in
the 1-star and 2-star reviews.

* For the "Breville Barista Express Espresso Machine”, find positive customer reviews (4-
stars or higher) that specifically talk about the ”steam wand”.

* Summarize the positive comments from 5-star reviews for the ”Kindle Scribe” that specif-
ically mention the “writing experience”.

* Summarize what customers in 3-star reviews say about the battery life of the ”Apple Air-
Pods Pro (2nd Generation)”.

* Find the product page for the book "Dune” by Frank Herbert, list the available formats, and
find the price of the Mass Market Paperback edition.

* Check the product page for the “Logitech MX Master 3S” mouse to see if it is compatible
with both macOS and Windows 11.

* Find the "LEGO Star Wars Millennium Falcon” set (model 75257) and list its item dimen-
sions and the manufacturer’s recommended age range.

* Add two "Echo Dot (5th Gen)” devices in the color *Charcoal’ to my shopping cart.

* Find a "Hydro Flask 32 0z” Wide Mouth bottle in the color ’Olive’ with a Flex Straw Cap
and add it to the cart.

* Add two ”Anker USB C to Lightning” cables (6ft) in *"White’ to the shopping cart.

* Find the book "The Hobbit” by J.R.R. Tolkien and add both the paperback and the Kindle
versions to your cart.

* Add one “The Lord of the Rings” paperback box set to the cart, view the cart, and then
update the quantity to two.

* Add the “Breville Barista Express Espresso Machine” (model BES§70XL) to my default
wish list.

* Find the ”Catan Seafarers” board game expansion and add it to your wish list.

* Add the ”Sony WH-1000XM5” headphones in black to your wish list, then navigate to
your wish list and sort it by “Price: High to Low”.

* Create a new, private wish list named “Tech Gadgets”.

* Add a ”Samsung 980 Pro 2TB SSD” to the “Tech Gadgets” wish list with the comment
”For new PC build”.

* Navigate to the “Today’s Deals” section and then filter to see only deals in the "Electronics”
category.

* Go to the "Best Sellers in Books” page and then navigate to the ”’Science Fiction & Fantasy”
sub-category.

18

Under review as a conference paper at ICLR 2026

Show me the new releases in the “Electronics™ category from the “Last 30 days”.
Go to the Amazon “Gift Cards” page and then find the “eGift Cards” section.

Navigate to the customer service section and find help related to ”A delivery, order or
return”.

Find Amazon’s return policy page and determine the return window for a new television.

Find the help page on tracking packages and identify what to do if the tracking information
is not updating.

Navigate to the "Coupons” section of the website and filter to see coupons for ”Grocery &
Gourmet” products.

Find ”Amazon Basics” products in the "Home & Kitchen” category and sort the results by
newest arrivals.

Add a ”Corsair K70 RGB PRO Mechanical Gaming Keyboard” with *Cherry MX Red’
switches to the cart and then proceed to the checkout page.

Target (50 tasks)

Search for an “ergonomic office chair” from the brand *Threshold’ that costs between $100
and $250.

Find “27-inch 4K computer monitors” that are available for same-day delivery.

Look for an “air fryer toaster oven combo” with at least a 20-quart capacity and a guest
rating of 4 stars or higher.

Search for new “Beats Studio Pro headphones” in the color ’Navy’.
Find “kitchen towels” from the brand "Hearth Hand with Magnolia’ that are 100% cotton.

Search for “laptops” with at least 16GB of RAM from the brand "HP’ and sort them by
price from high to low.

Find “robotic vacuums” from the brand ’iRobot’ with a self-emptying feature, and sort the
results by “Best sellers”.

Search for “single-serve coffee makers” from the brand *Keurig’ and sort them by price
from low to high.

Look for “LEGO Creator 3-in-1" sets and sort them by “Newest”.

Search for “men’s winter jackets” that are waterproof and in size ’Large’, then sort by guest
rating.

Find “patio conversation sets” that include a fire pit and cost less than $750.
Show me “women’s athletic shorts” from the brand *All in Motion’ in a size "Medium’.

Find “electric toothbrushes” from the brand *Philips Sonicare’ with a guest rating of 4 stars
or higher.

Look for “OLED 4K smart TVs” from the brand *Sony’ with a screen size of ’65 inches’,
and filter for “Order Pickup”.

Find “men’s hiking boots” from the brand "Merrell’ in size 10 that are available for “Same
Day Delivery”.

Search for “blenders”, filter for the ’Ninja’ brand, models with Auto-iQ, and a guest rating
of 5 stars.

Find “nursery gliders” from the brand DaVinci’ that are currently on sale and available in
the color *Gray’.

Look for “Nintendo Switch” games that are rated “Everyone 10+ and have the “Action”
genre selected.

Find the cheapest “8-cube organizer shelf” from the brand ’Brightroom’ available in
"White’.

Show me the least expensive “carry-on luggage” that has a hardside exterior, spinner
wheels, and is from the brand "Made By Design’.

19

https://www.target.com/

Under review as a conference paper at ICLR 2026

* Find the current price and overall dimensions of the “Threshold designed with Studio
McGee Herriman Wooden Console Table”.

* Go to the product page for the “Keurig K-Mini Single-Serve Coffee Maker” and find out if
it has an auto shut-off feature and its water tank capacity from the item details.

* On the product page for “Good Gather Organic Blue Corn Tortilla Chips”, check the
nutrition details to see the amount of sodium and dietary fiber per serving.

* For the “Beats Studio Pro” headphones, go to the Q&A section and find out the reported
battery life and if they come with a carrying case.

* Find customer reviews for the “Dyson V8 Origin Cordless Stick Vacuum” that mention its
performance on both “pet hair” and “hardwood floors”.

* Summarize the positive comments from 5-star reviews for the “Ninja Foodi 6-in-1 8qt 2-
Basket Air Fryer” that talk about “ease of cleaning” and “cooking speed”.

* What do customers in the 1- and 2-star reviews say about the fit and fabric quality of the
“A New Day Women’s High-Rise Slim Fit Ankle Jeans”?

* Find the product page for the book “Fourth Wing” by Rebecca Yarros. What is the listed
genre and the total number of pages in the item details?

* Check the product page for the “Apple iPad 10.9-inch (10th Generation)” to see how many
colors it is available in and if it is compatible with the 1st generation Apple Pencil.

* Find the “Fisher-Price Laugh Learn Smart Stages Piggy Bank” toy and identify the manu-
facturer’s suggested age range and the number of batteries required from the product details.

* Add two cartons of “Good Gather Grade A Large Eggs - 12¢ct” to my shopping cart.

* Find a “Stanley 400z Stainless Steel H2.0 FlowState Quencher Tumbler” in the color Fog’
and add it to the cart, then change the quantity to 2.

* Add two “up up 50-load lavender-scented laundry detergent” containers and one “downy
fabric softener” to the shopping cart.

* Find a “Hearth Hand with Magnolia” brand scented candle and add two different scents to
the cart.

* Add one bag of “Good Gather Organic Baby Carrots” and one “Good Gather Classic
Hummus” to the cart, then proceed to checkout but do not place the order.

* Create a new baby registry for an expected arrival date of June 1, 2026, and set it to be
private.

» After creating a baby registry, add both the “Graco 4Ever DLX 4-in-1 Convertible Car
Seat” and the “Owlet Dream Sock Baby Monitor” to it.

* Create a new custom list named “College Dorm Essentials”.

* Add a “Room Essentials Twin/Twin XL Microfiber Comforter” in gray to your “College
Dorm Essentials” list.

* Add a “Brightroom 3 Tier Metal Utility Cart” in white to your “College Dorm Essentials”
list with a note that says “For bathroom and shower supplies”.

* Navigate to the “Weekly Ad” section and find a deal on “Good Gather” brand ground beef.

¢ Go to the “Clearance” section of the website and filter for “Home Deals” that are discounted
by 50% or more.

* Find the “Target Circle” offers page and clip a deal for “20
* Go to the “Gift Cards” page and find the section for “Thank You” themed e-gift cards.

* Find the store locator page and check the guest service hours and Starbucks hours for the
Target store in Somerville, MA.

* Find information on Target’s return policy for electronics that have been opened and used.

* Navigate to the “RedCard” page and find the listed benefits of having a Reloadable RedCard
versus a Debit or Credit RedCard.

» From the homepage, navigate to the “Toys” category and filter for “Action Figures Play-
sets” from the brand “Marvel”.

20

Under review as a conference paper at ICLR 2026

* Find the “Top Deals” in the “Home” category and sort them by “Discount: High-low”.

* Add a “Threshold 16pc Stoneware Avesta Dinnerware Set” to your cart, then proceed to
checkout and select “Store Pickup” for the Medford, MA location.

Github (75 tasks) Note that for the GitHub tasks, we force the tasks to be navigational or tasks that
won’t codeify existing code. We created dummy account for performing the experiments.
* Go to your profile and change your bio to “Building the future, one line of code at a time”.
* Set your personal website URL in your profile to “https://www.github.com”.
* Set your current status to “Focusing on a project” with the busy indicator on.
* Find the “microsoft/vscode” repository and star it.
* Create a new, public repository named “learning-python”.

* Create a new, private repository named “project-secrets” and initialize it with a README
file.

* Create a new public repository named “website-template” from the “jekyll/jekyll-now”
template.

* Fork the “facebook/react” repository to your own account.

* In your “learning-python” repository, create a new file named “hello.py” with the content
“print(’Hello, World!”)”.

» Edit the README.md file in your “learning-python” repository to add the description “My
personal repository for learning Python™.

* In your “learning-python” repository, change the LICENSE file to the “MIT License”.
* Find the SSH URL to clone the “tensorflow/tensorflow” repository.

* Navigate to the “twbs/bootstrap” repository and view its commit history for the “main”
branch.

* In the “torvalds/linux” repository, find out how many commits were made by “Linus Tor-
valds” in the last month.

» Find who the top contributor is for the “openai/gpt-3” repository.

* List the names and number of commits for the top 3 contributors to the “google/gvisor”
repository.

* Go to the “Explore” page to see trending repositories.

* Search for repositories with the topic “web-agent” written in the “Python” language.
* Find and navigate to your notifications page.

* Go to the page that lists all pull requests that are assigned to you.

» Navigate to the page that lists all issues where your review is requested.

* Find the “kubernetes/kubernetes” repository and view all its open issues.

* In the “microsoft/terminal” repository, filter the issues to show only those with the “bug”
label.

* Create a new issue in your “learning-python” repository with the title “Need to add a re-
quirements.txt file”.

* In your “learning-python” repository, create a new issue titled “Refactor hello.py” and as-
sign it to yourself.

* Create an issue in your “learning-python” repository with the title “Add data structures
examples”, and add the labels “enhancement” and “help wanted”.

* In the “atom/atom” repository, find the oldest open issue and leave the comment “Is this
still relevant?”.

* Find a pull request in the “expressjs/express” repository that updates dependencies and post
the comment “LGTM!” on it.

21

https://github.com/

Under review as a conference paper at ICLR 2026

* In your “website-template” repository, create a new branch named ‘“feature/add-contact-
page”.

* Create a pull request in your “website-template” repository to merge the “feature/add-
contact-page” branch into the “main” branch.

* Create a pull request in your “website-template” repository with the title “Update Home-
page”’, merging from “develop” to “main”, and assign yourself as the reviewer.

* In your “learning-python” repository, add “torvalds” as a collaborator with “Read” access.
* Create a new milestone in your “learning-python” repository titled “Version 1.0 Release”.

* Set the due date for the “Version 1.0 Release” milestone in your “learning-python” reposi-
tory to be one month from today.

* Create an issue titled “Finalize documentation” in your “learning-python” repository and
assign it to the “Version 1.0 Release” milestone.

* Find all closed issues in the “docker/compose” repository that mention “network”.

* View your starred repositories and sort them by “Recently starred”.

* Create a new organization named “My-Awesome-Startup-Org”.

* Invite the user “octocat” to be a member of your “My-Awesome-Startup-Org” organization.
* Find the “sveltejs/svelte” repository and navigate to its “Projects” board.

* In the “NationalSecurityAgency/ghidra” repository, find the total number of watchers.

* Change the description of your “learning-python” repository to “A repository to track my
Python learning journey and projects”.

* Enable GitHub Pages for your “website-template” repository on the “main” branch.
¢ In the “numpy/numpy” repository, find the pull request with the most comments.

* In your “learning-python” repository, protect the “main” branch to require a pull request
review before merging.

* Find the “actions/checkout” repository and view its different tags/releases.
* Create a new private repository and import the “git/git” repository into it.
¢ Follow the user “Linus Torvalds” (torvalds) on GitHub.

* In the “rust-lang/rust” repository, find all issues with the “A-async-await” label that are
currently open.

e Create a pull request in your “learning-python” repository from a new branch called
“fix/typo-in-readme” to “main” that corrects a spelling mistake in the README.

E.5 PROMPTS

Skill Induction Prompt We follow similar prompts as the ASI paper (Wang et al., 2025).

22

Under review as a conference paper at ICLR 2026

Prompt for Skill Induction

You are a proficient software engineer. Your task is to (1) summarize reusable functions as
APIs from the provided action trajectories, and (2) rewrite the trajecoties using the reusable
functions you generated in (1).

Tasks: {task}
Domains: {domain_url}

Trajectories: {
Planner Step 1
Executor Step 1

Planner Step 2
Executor Step 2

Planner Step 3
Executor Step 3

For (1), from the provided examples about the same task, you job is to generate Python func-
tions that can be reused to solve (part of) these tasks. The functions should have mediocre
complexity: (i) containing at least three actions and not too simple (e.g., a single line of
code), (ii) not too complex (e.g., more than 10 lines of code), and should be general enough
to be applied to other similar tasks. The arguments to these functions should be common
variables (such as strings and lists), avoid using complex inputs such as another function.
Please include *Args’, 'Returns’, and *’Examples’ in the function documentation.

For (2), write the instruction and rewritten code of each example. Do not include the answer
response or example-specific information in the rewritten code. Pay attention to whether
all link IDs are available before specifying them in the generated functions. If you use
‘send_msg_to_user, make sure the message is decided within the function, instead of pro-
vided as an argument.

Make sure each function contains no less than 2 steps, and no more than 5 steps; to keep
the functions simple and task-oriented. You can generate zero, one, or multiple functions
depending on the provided examples.

Judge Prompt For Judge, we follow the prompt used in Online-Mind2Web (Xue et al., 2025), which
showed over 85% agreement with human annotators.

23

Under review as a conference paper at ICLR 2026

WebJudge - Key Point Identification

You are an expert tasked with analyzing a given task to identify the key points explicitly stated in the
task description.

*tQbjective**: Carefully analyze the task description and extract the critical elements explicitly
mentioned in the task for achieving its goal.

**Instructions®*:

1. Read the task description carefully.

2. Identify and extract **key points** directly stated in the task description.

- A **key point** is a critical element, condition, or step explicitly mentioned in the task description.
- Do not infer or add any unstated elements.

- Words such as “best,” "highest,” “cheapest,” latest,” “most recent,” “lowest,” “closest,” highest-
rated,” "largest,” and “newest” must go through the sort function (e.g., the key point should be “Filter
by highest”).

Respond with:

- **Key Points**: A numbered list of the explicit key points for completing this task, one per line,
without explanations or additional details.

2 9 95 9
>

Task: {task}

WebJudge - Key Screenshot Identification

You are an expert evaluator tasked with determining whether an image contains information about the
necessary steps to complete a task.

*%*Objective**: Analyze the provided image and decide if it shows essential steps or evidence
required for completing the task. Use your reasoning to explain your decision before assigning a
score.

**Instructions®*:

1. Provide a detailed description of the image, including its contents, visible elements, text (if any),
and any notable features.

2. Carefully examine the image and evaluate whether it contains necessary steps or evidence crucial
to task completion:

- Identify key points that could be relevant to task completion, such as actions, progress indicators,
tool usage, applied filters, or step-by-step instructions.

- Does the image show actions, progress indicators, or critical information directly related to
completing the task?

- Is this information indispensable for understanding or ensuring task success?

- If the image contains partial but relevant information, consider its usefulness rather than dismissing
it outright.

3. Provide your response in the following format:
#i# Reasoning: [Your explanation]

Score: [1-3]

Task: {task}

Key Points for Task Completion: {key points}

The snapshot of the web page is shown in the image.

24

Under review as a conference paper at ICLR 2026

WebJudge - Outcome Judgement

You are an expert in evaluating the performance of a web navigation agent. The agent is designed
to help a human user navigate a website to complete a task. Given the user’s task, the agent’s action
history, key points for task completion, some potentially important web pages in the agent’s trajectory
and their reasons, your goal is to determine whether the agent has completed the task and achieved all
requirements.

Your response must strictly follow the following evaluation criteria!

Important Evaluation Criteria:

1: The filtered results must be displayed correctly. If filters were not properly applied (i.e., missing
selection, missing confirmation, or no visible effect in results), it should be considered a failure.

2: You must carefully check whether these snapshots and action history meet these key points. Ensure
that specific filter conditions, such as “best,” “highest,” ”cheapest,” "latest,” “most recent,” "lowest,”
“closest,” ’highest-rated,” largest,” and "newest” are correctly applied using the filter function (e.g.,
sort function).

3: Certain key points or requirements should be applied by the filter. Otherwise, a search with all
requirements as input will be deemed a failure since it cannot guarantee that all results meet the
requirements!

4: If the task requires filtering by a specific range of money, years, or the number of beds and
bathrooms, the applied filter must exactly match the given requirement. Any deviation results in
failure. To ensure the task is successful, the applied filter must precisely match the specified range
without being too broad or too narrow.

5: Some tasks require a submission action or a display of results to be considered successful. Repeat
actions or actions that do not lead to a visible result should be considered a failure.

6: If the agent loops through a sequence of actions that do not make progress toward the goal
(including failing to click ”Save” or ”Submit,” etc.), it should be considered a failure.

Format your response into two lines as shown below:

Thoughts: jyour thoughts and reasoning process based on double-checking each key points and the
evaluation criteriag,

Status: “’success” or "failure”

User Task: {task}

Key Points: {key points}

Action History: {action history}

The potentially important snapshots of the webpage in the agent’s trajectory and their reasons:
{thoughts}

F COMPLETE RESULTS
We put our complete results at Table 5 and Table 7.

Table 5: Performance comparison on Mind2Web benchmark. Results show success rates (%) across
different generalization scenarios. Green indicates improvement and red indicates degradation from
baseline. Best results in bold.

GPT-4.1 (Training: 1009 tasks) Claude-3.7-Sonnet (Training: 1009 tasks)

Method ‘ ‘

\ Cross-task (252) Cross-Website (177) Cross-Domain (912) \ Cross-task Cross-Website Cross-Domain
Baseline \ 53.8 56.2 623 \ 59.1 64.4 66.2
ASI (All skills) 523412 (-1.5) 54.940.8 (-1.3) 57.341.5(-2.9) 60.341.1 (+1.2) 64.810.9 (+0.4) 66.941 3 (+0.7)
ASI (Same domain) 55.241.4 (+1.4) 57.041.0 (+0.8) N/A 609116 (+1.8) 64.840.7 (+0.4) N/A
ASI (Same sub-domain) 56.311.7 (+2.5) N/A N/A 61.2493 (+2.1) N/A N/A
ASI (+Online Update) 5945, (+5.6) 58.741.8 (+2.5) 621419 (+1.9) 621100 (+3.0) 651415 (+0.7) 673414 (+1.1)
PolySkill (All Skills) 554413 (+1.6) 576411 (+1.4) 60.1+0.6 (-0.1) 61.310.6 (+2.2) 649108 (+0.5) 66.410.9 (+0.2)
PolySkill (Same domain) 583418 (+4.5) 58.941.5 (+2.7) N/A 62.041.7 (+2.9) 64.940.5 (+0.5) N/A
PolySkill (Same sub-dom.) | 58.645 ¢ (+4.8) N/A N/A 62.311.9 (+3.2) N/A N/A
PolySkill (+Online) 63.254 (+9.4) 613,55 (+5.1) 634,57 (+3.2) 64.6.23 (+5.5) 66.2116 (+1.8) 683415 (+2.1)

25

Under review as a conference paper at ICLR 2026

Success Rate (%)

Success Rate (%)

Baseline
GPT-4.1

N SkillWeaver

Average ShoppingAdmin Reddit Gitlab Map Cross

7 Qwen3-Coder-480B-A35B

Average Shopping Admin Reddit Gitlab Map Cross

%

y 4

[ASI

I PolySkill

Claude-3.7-Sonnet

GLM-4.5

Average ShoppingAdmin Reddit Gitlab Map Cross

Average Shopping Admin Reddit Gitlab Map Cross

Figure 6: Overall performance comparison of PolySKill with baselines on the WebArena bench-
mark across four leading language models. The x-axis shows different website categories, with the
leftmost Average group representing the primary overall result. PolySkill consistently achieves the
highest average success rate on all models, demonstrating its effectiveness on complex, realistic web
tasks. Notably, our method surpasses strong skill-learning baselines like ASI and SkillWeaver, with
the most significant gains observed on the powerful GPT-4.1 and Claude-3.7-Sonnet models.

Table 6: Mind2Web results for open-source models. These represent the first evaluation of skill
learning methods on open-source agentic models.

Method

Qwen3-Coder-480B-A35B (Training: 1009 tasks)

GLM-4.5 (Training: 1009 tasks)

| Cross-task (252)

Cross-Website (177)

Cross-Domain (912) |

Cross-task

Cross-Website

Cross-Domain

Baseline

40.8

38.1

37.5

44.8

442

43.7

ASI

ASI (+Online Update)
PolySkill

PolySkill (+Online Update)

415410 (+0.7)
44.94 5 (+4.1)
42.3411 (+1.5)
475143 (+6.7)

36.440. (-1.7)
40.113.5 (+2.0)
372405 (-0.9)
418,14 (+3.7)

35.2111 (-2.3)
38.7135 (+1.2)
35.941,0 (-1.0)
39.9.45 (+2.4)

45.240.8 (+0.4)
470441 (+2.2)
46.140.9 (+1.3)
492, (+4.4)

44.510.7 (+0.3)
46.215.7 (+2.0)
44.710.6 (+0.5)
470444 (+2.9)

42,6412 (-1.1)
45.1439 (+1.4)
429411 (-0.8)
46.0.4 4.5 (+2.3)

G EXTENDED METHODOLOGY

26

Under review as a conference paper at ICLR 2026

Table 7: Performance comparison on WebArena benchmark. Results show success rates (%) across
different website categories. Best results in bold, second best underlined. Experiments with — are
pending completion.

Method Shopping Admin Reddit Gitlab Map Cross | Average
Instances 187 182 106 180 109 48 812
GPT4.1
Baseline 37.4 44.0 66.0 389 164 103 38.5
SkillWeaver 39.3 48.2 71.2 50.3 172 163 43.6
ASI 46.3 53.6 73.7 46.8 215 15.1 46.5
PolySkill (Ours) 514 54.8 73.2 542 189 189 49.3
A vs ASI +5.1 +1.2 -0.5 +74 2.6 +3.8 +2.8
Claude-3.7-Sonnet
Baseline 44.7 50.8 70.2 46.7 183 12.1 45.6
SkillWeaver 46.2 52.7 72.5 55.1 19.1 16.2 47.5
ASI 59.1 61.3 78.5 642 26.7 20.1 55.8
PolySkill (Ours) 58.3 63.5 80.4 625 274 256 59.5
A vs ASI -0.8 +2.2 +1.9 -7 +0.7 455 +3.7
Owen3-Coder-480B-A35B-Instruct
Baseline 28.1 31.2 52.4 277 105 6.8 344
SkillWeaver 31.3 36.1 58.7 38.5 127 114 38.1
ASI 45.1 44.8 63.5 47.2 16.7 13.1 43.9
PolySkill (Ours) 444 46.3 64.2 46.1 171 16.8 45.2
A vs ASI -0.7 +1.5 +0.7 -1.1 +0.4 +3.7 +1.3
GLM-4.5
Baseline 36.1 40.9 59.4 37.5 157 10.0 36.2
SkillWeaver 34.2 39.7 54.8 39.1 164 11.2 33.6
ASI 38.6 43.7 62.5 40.8 173 121 38.9
PolySkill (Ours) 394 44.5 63.2 41.6 17.8 13.0 39.8
A vs ASI +0.8 +0.8 +0.7 +0.8 +05 +09 +0.9

Algorithm 1 PolySkill: Polymorphic-Driven Skill Induction

1: Input: A sequence of tasks Q = {q1,...,qn}, LM Policy 7z, LM Judge V.
2: Initialize: Dynamic skill library K < ()
3: fort=1,...,N do

4: Let ¢; be the current task from Q.
5: Define the agent’s full action space: A; + A, U K;_;.
6: 7 < ExecuteTask(7 ., ¢, A) > 1. Execute task to generate a trajectory
7: if V2 (7,q:) = 1 then > 2. Verify trajectory correctness
8: Knew < InduceSkill(mz, 7, K¢—1) > 3. Induce new hierarchical skills
9: A + A1 UK ew > Update skill library for the next task
10: else
11: Ay — A > Skill library remains unchanged on failure
12: end if
13: end for

14: return Ky

27

Under review as a conference paper at ICLR 2026

Training Setting GitLab Github
Method Iters | SR % Skill Usage % | SR % Skill Usage %
Baseline -] 389 - | 66.7 -

1. Single-Domain Specialists
GitLab 50 65.5 59.2 71.5 12.8
Github 50 40.2 3.8 81.5 54.1
2. Sequential Curriculum
Gitlab — Github 50 + 50 ‘ 48.3 20.5 ‘ 80.1 51.9
Github — GitLab 50+ 50 | 62.1 45.3 77.8 48.6
3. Self-guided Exploration
Github + GitLab 100 66.2 48.1 84.0 39.5

Table 8: Skill transfer results between software development platforms. This experiment highlights
the challenge of transferring skills from a higher-performing domain (GitHub) to a more complex
one (GitLab). Self-guided exploration, which learns from both domains concurrently, achieves the
highest success rate on the held-out GitLab benchmark.

Algorithm 2 PolySkill in a Task-Free Setting (illustrating changes from Algorithm 1)

- Input: A sequence of tasks Q = {q1,...,qn}, LM Policy 7z, LM Judge V.
+ Input: Number of exploration steps 7', LM Policy 7., Auto Judge V.

— Initialize: Dynamic skill library Ko < ()

+ Initialize: Dynamic skill library Ky < (), Initial observation oy
—fort=1,..., N do

AN

8: +fort=1,...,7T do

9: — Let g; be the current task from Q.
10: + Qproposed <— ProposeTask(mz, 0p—1,KCi—1)
11: Define the agent’s full action space: A; < A, U K;_1.
12: - 7 < ExecuteTask(mz, g, At)
13: + 7« ExecuteTask(7z, ¢proposed, At)
14: - ifV(7,q;) = 1 then
16: + if V2 (T, @proposed) = 1 then
18: knew < InduceSkill(mz, 7, Ki—1)
19: Ky Ki—1 U {knew
20:
21: K+ Ki_1
22:
23: + ot < GetLastObservation(7)
24
25:

28

	Introduction
	Related Work
	PolySkill: Polymorphism-guided Agent Skill Induction
	Preliminary
	The PolySkill framework
	Skill Induction Process
	Evaluation Setup
	Evaluation Metrics

	Experiments
	Standard Benchmark Evaluation
	Analysis
	From Specialist to Explorer: Skill Learning in an Explorative Setting

	Conclusion
	Large Language Model Usage
	Extended Related Works
	Limitations
	Skill Examples
	Experiment Details
	Formal Definitions of Evaluation Metrics
	Action Space
	Dataset
	Real-World Website Tasks
	Prompts

	Complete Results
	Extended Methodology

