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ABSTRACT

Modern edge deployments require collaborative training schemes that avoid both
the single-server bottleneck of federated learning and the high communication
burden of peer-to-peer (P2P) systems. We propose Tiered Gossip Learning (TGL),
a two-layer push—gossip—pull protocol that combines the fault tolerance of P2P
training with the efficiency of hierarchical aggregation. In each round, device-
level leaves push their models to a randomly selected set of relays; relays gossip
among themselves; and each leaf then pulls and averages models from another ran-
dom subset of relays. Unlike other hierarchical schemes, TGL is fully coordinator-
free, with communication and aggregation decentralized across nodes. It matches
baseline accuracy with up to two-thirds fewer model exchanges, and surpasses
it when exchanges are equal, across diverse datasets including CIFAR-10, FEM-
NIST, and AG-News. We provide convergence guarantees for TGL under standard
smoothness, bounded variance and heterogeneity assumptions, and show how its
layered structure enables explicit control of consensus-distance bounds. Thus,
TGL brings together the strengths of FL and P2P design, enabling robust, low-
cost mixing enabling large scale collaborative learning.

1 INTRODUCTION

Collaborative training is increasingly vital for machine learning applications spanning edge devices,
sensor networks, and distributed organizations. These settings demand decentralized solutions due
to limited resources, privacy constraints, and heterogeneity in local (non-iid) data. As data owner-
ship becomes increasingly localized, retaining data at the source has become essential. Federated
Learning (FL) (McMabhan et al.,2017;|Yang et al.,[2019; Kairouz et al.,[2021)) emerged as a practical
response to these constraints, enabling clients to share a global model but train locally and periodi-
cally send model updates to a central server for aggregation. While FL is attractive for its simplicity
and ease of client participation, it struggles to scale. Congestion at the server increases with more
clients, slowing down training (Lian et al.,|2017) and introducing a single point of failure. A central
challenge, therefore, is to support large-scale participation without overwhelming any single node.

Hierarchical Federated Learning (HFL) (Liu et al., 2020; |Abad et al., 2020) extends this idea by
introducing intermediate edge servers beneath a single root server to distribute the aggregation load.
However, HFL inherits, and often amplifies the limitations of FL: each added server introduces an
additional point of failure, where any server failure disconnects its associated clients. Moreover, as
the number of edge servers increases, the root server becomes a communication bottleneck, similar
to the original FL setting. Centralized coordination offers simpler orchestration at the cost of fault
tolerance and long-term scalability, motivating the need for decentralized alternatives. Although pri-
vacy and security concerns in centralized systems are beyond this paper’s scope, such considerations
have also contributed to the growing interest in fully decentralized paradigms.

Peer-to-Peer Learning (P2PL) (Lian et al. [2017; |[Koloskova et all [2020; [Kong et al. [2021)
eliminates central servers entirely, distributing communication uniformly across all partici-
pating nodes. This enhances fault-tolerance and removes single points of failure, but in-
troduces a new trade-off: maintaining strong model mixing requires higher node degrees.
The quality of this mixing is governed by the spectral gap of the gossip matrix, which
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Figure 2: A snapshot of the Tiered Gossip Learning (TGL) network with 9 leaves and 4 relays using
25 directed edges, where connections dynamically change in each round, illustrating the three-stage
communication process. In Stage 1 (Leaf-to-Relay Push), relays aggregate models from randomly
sampled leaves (shown as blue dashed lines). In Stage 2 (Relay Gossip), each relay exchanges
models with other relay (red dashed lines) and averages received models. In Stage 3 (Relay-to-Leaf
Pull), each leaf retrieves a model from randomly selected relay (green dotted lines). TGL'’s two-tier
hierarchical design—featuring a decentralized relay layer atop a leaf layer with random dynamic
connections enables scalable and fault-tolerant training while significantly reducing communication
cost, a key reason behind its superior empirical performance.

reflects how effectively information flows through the network and controls the speed at
which models reach consensus. A larger spectral gap implies faster convergence under
bounded heterogenelty, but preserving it becomes 1ncreasmgly expensive as the network scales.
As shown in Figure [T, when the number of nodes n is
small, even a modest node degree k yields a sufficiently

large spectral gap. However, as n increases, flat P2P sys-

tems must raise k to preserve mixing quality, leading to 0
higher per-node and total communication. Prior work on
exponential graphs (Ying et al.,|2021) partially addresses
this by scaling degree as O(logn), but the communica-
tion burden still grows system-wide, limiting scalability.
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Each prior approach concentrates the burden of scalabil-
ity differently: FL on a central server, HFL on edge and 00

root servers, and P2PL uniformly across all nodes. How- ° 0 Number of nodes () 1
ever, this uniform burden in P2PL is often impractical,
as nodes are forced to scale their communication as the
network grows. A key insight is that hierarchical designs
with asymmetric load sharing are essential for practical
scalability. While HFL attempts this, its centralized struc-
ture introduces more points of failure. This motivates a
decentralized top layer with a small set of high-capacity
nodes forming a robust communication backbone.

Figure 1: Spectral gap vs. number of
nodes n for k-random regular and ex-
ponential graphs. Maintaining adequate
mixing quality as n increases requires
scaling up the node degree k.

We address this challenge with Tiered Gossip Learning (TGL), a hybrid design illustrated in Figure[2]
that incorporates the key principles of hierarchy, asymmetric load sharing, and a decentralized top
layer with random, dynamic connections. Leaves interact only with a small, randomly chosen subset
of relays; relays gossip among themselves; and leaves then pull updates from another random relay
subset. This distributes aggregation across decentralized relays, avoiding single-server bottlenecks
while enabling more leaves to participate under fixed per-leaf degree. Spectrally, the two-layer
process multiplies the push, gossip, and pull mixing matrices; although each matrix can be sparse,
their product yields a denser effective mixing matrix that improves consensus without necessarily
increasing leaf degrees. TGL thus operationalizes these core principles to enable scalable, fault-
tolerant, and communication-efficient collaborative learning.

We summarize our key contributions as follows:

1. We introduce Tiered Gossip Learning (TGL), a two-layer push—gossip—pull protocol that
synthesizes structural decentralization with hierarchical efficiency. TGL leverages a tiered
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architecture with asymmetric load sharing to achieve strong model mixing at low commu-
nication volume, while ensuring that no central coordination is required and all aggregation
and communication remain decentralized. This design enhances fault tolerance and enables
scalable participation without overloading any single node, addressing key limitations of
prior hierarchical and decentralized approaches.

2. We prove convergence of TGL under standard assumptions of smoothness, bounded vari-
ance, and bounded heterogeneity. We also derive stage-wise and overall bounds on the
expected consensus distance, expressed in terms of network parameters including node
count and degree, and highlight how the tiered mixing structure improves global consensus
with low node degrees and enables independent control of consensus at each layer.

3. We evaluate TGL on vision tasks: FEMNIST with a CNN and CIFAR-10 with a ResNet,
and on a language task, AG News with a TinyTransformer, under non-iid data. We com-
pare performance across varying per-round model exchange budgets. TGL consistently
achieves better or comparable accuracy while using only one-third the communication
volume than prior decentralized baselines, including EL-Local, Exponential, Base-(k+1),
and Erdés—Rényi topologies. For instance, on CIFAR-10 with 100 nodes, TGL attains the
same accuracy with only 400 edges that the best baseline requires 1200 edges to reach.

2 BACKGROUND AND RELATED WORK

Related Work. The idea of fully decentralized collaborative learning was popularized by |Lian
et al.| (2017, who showed that Peer-to-Peer Learning (P2PL) using Decentralized SGD (DSGD)
can surpass Federated Learning (FL) in wall-clock time by eliminating the central server that easily
gets congested. This sparked extensive research on decentralized optimization (Assran et al., 2019;
Koloskova et al., 2020), with subsequent work focusing on accelerating convergence via algorithmic
refinements (Yu et al.| 2019} |'Yuan et al.l [2021;|Chen et al.l [2021).

A key challenge in collaborative learning is the presence of non-iid data across clients. Under
bounded heterogeneity, prior work has focused on strengthening consensus: either by reducing sen-
sitivity to the communication graph (Tang et al., [2018; [Li et al.,2019; Kong et al.| 2021])), or by de-
signing sparse yet well-mixing topologies such as expanders and logarithmic-degree graphs (Nedi¢
et al., 2018 |Chow et al. 2016; |Ying et al., 2021; Takezawa et al.| [2023; Wang et al., 2019; |[Song
et al., [2022). More recently, Epidemic Learning (EL) (De Vos et al.l [2023) showed that dynamic
random graphs can improve mixing more efficiently than fixed topologies. EL also highlighted the
importance of relaxing the requirement for doubly stochastic mixing: while its Oracle variant (ELO)
relies on a coordinator to construct such matrices, the Local variant (ELL) achieves full decentral-
ization by operating with only row-stochastic weights. Our work continues in this direction, aiming
to improve mixing efficiency under constrained communication without any centralized component.

When heterogeneity is large or unbounded, an alternative line of work has explored clustering strate-
gies, where nodes preferentially interact with peers holding similar data or model updates (Ghosh
et al., [2020; [Sattler et al.l 2020). Such methods mitigate the degradation in local performance that
arises from enforcing a single global consensus, but generally require orchestration by a central
scheduler, and thus remain structurally closer to FL. Some P2PL approaches (Onoszko et al.| 2021}
Li et al.|2022)) have also incorporated clustering mechanisms for adaptive peer discovery.

A complementary orthogonal direction reduces communication cost by limiting client participation
per round. Methods such as Teleportation (Takezawa & Stichl [2025) and Plexus (de Vos et al.,
2023)) lower communication cost by activating only a subset of nodes per iteration, but at the cost of
discarding many updates. Other methods reduce the per-message size through compressed commu-
nication (Koloskova et al.l [2019) or quantization (Chen et al., |2024). In contrast, our work targets
scaling to larger node participation under bounded heterogeneity by improving mixing efficiency at
limited communication volume, without relying on sampling or compression, and by relaxing the
requirement for doubly stochastic matrices to eliminate central orchestration.

Background Consider a distributed learning setup with n; nodes, each holding a private dataset
D;. The nodes collaboratively train a global model by periodically exchanging updates. Each node
initializes the same model x and follows a shared training routine. The local objective for node
iis: fO(x) := Eeop,[f(x,€)], € being a mini-batch sampled from D;. The global objective F'
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minimizes the average local objectives across all n; nodes:

1
in F(x) = min — @) (x). 1
min F(x) = min " ; (%) (1)

X X

Let X, € R™*? denote the global model matrix, whose rows are the node models at round ¢: X; =
[xgl)7 N XE”Z)]T. This matrix is not available to any individual node but serves as a convenient

global representation for analysis. Each node locally updates xii) — xif) fort <t' <t+ 1. The
global matrix then updates via mixing, expressed as:

X1 = Wi Xy, 2

where W; € R™*™ jg the mixing matrix. Every row of W, represents the aggregation weights
assigned by a node to all other nodes.

Mixing Matrix. Each row i of W; specifies the aggregation weights assigned by node ¢ to all
others. Equivalently, column ¢ represents the weights assigned to node ¢, i.e., its contribution to
mixing. Some works assume W; is doubly stochastic, where both rows and columns sum to one.
This assumption simplifies analysis by ensuring equal contribution from all nodes, but enforcing it
typically requires centralized coordination, as highlighted by the Oracle variant of Epidemic Learn-
ing (EL) (De Vos et al.,[2023)). Denser matrices typically yield larger spectral gaps and faster mixing,
but at the cost of high node degrees and communication cost. In our design, detailed in Section 3
we instead compose multiple sparse matrices across mixing stages to attain strong effective mixing
even under sparse connectivity through their product.

Consensus Distance. In decentralized settings, where only partial averaging occurs, local models
may remain different after each round. To quantify this divergence, we use the consensus distance
(CD), defined in prior works |[Kong et al|(2021) as the average squared Euclidean distance of each
node’s model from the global mean:

L& @) o
CDt:nlElHXE)—Xt’
1 (4)

where X; = .- >t x;”. To measure mixing efficiency, we define the consensus distance ratio
(CDR) as:

2

; 3)

CDy 41
_— 4

D, “4)
fort < ' < t+ 1, where ¢ denotes the pre-gossip stage and ¢ + 1 the post-gossip stage. A lower

CDR indicates stronger mixing. When CD approaches zero, nodes approach exact averaging; how
close CDR gets to zero depends on the spectral properties of W;.

CDR =

Spectral Gap. The spectral gap of a mixing matrix W is defined as 1 — Ay, where A5 is the second-
largest eigenvalue in magnitude (A\; = 1 for a row stochastic matrix). This gap measures how
quickly models converge to their average. A larger spectral gap implies faster information diffusion
and better mixing (Ying et al. 2021} |Lovasz, 1993} |(Chung| |1997) under bounded heterogeneity.

Number of Edges as a Proxy for Communication Cost. In our setting, model updates are fixed-
size messages, so each directed edge corresponds to exactly one exchange. We define one directed
edge as one unit of communication cost. A node’s degree reflects its individual budget, while the
total number of directed edges captures system-wide bandwidth and aggregation effort. Since com-
putation per node also scales with its in-degree, the edge count serves as a unified measure of both
communication and aggregation cost. This abstraction provides a simple metric using which we
design and evaluate scalable collaborative learning protocols to reduce the communication cost.

3 DESIGN OF TIERED GOSSIP LEARNING (TGL)

TGL, as illustrated in Figure [2|is composed of two kinds of nodes: relays, which act as server-like
intermediaries, and leaves, which hold private data and perform local training. A small number of
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relays (n,.) support a larger population of leaves (n;), mixing and redistributing their models without
any direct leaf-to-leaf communication. Leaves may be constrained, with limited connections to
relays, while relays are assumed more capable and can sustain larger fan-out to many leaves. This
intentional asymmetry offloads heavier communication to the relay layer.

Figure |1| shows that strong mixing can be achieved with lower communication burden when fewer
nodes are involved, motivating a modest choice of n, based on the relay fanout budget. With un-
bounded relay budget, a single relay suffices and TGL reduces to FL, while tighter budgets can be
accommodated by using multiple relays to share the load.

The relays themselves form a fully decentralized gossip layer with no central coordinator. Moreover,
all connections in TGL are random and dynamic across rounds. This improves fault tolerance: if a
relay fails, the system continues to collaborate through the remaining n,. — 1 relays and resampled
connections, unlike FL or HFL. In this way, TGL synthesizes the design principles of hierarchy,
asymmetric load sharing, decentralized relay layer, and random dynamic connectivity to enable
effective mixing, fault-tolerance, and practical scalability without necessarily burdening constrained
nodes as the system grows. We parameterize the protocol below.

Between consecutive rounds ¢ and ¢+1, we define three synchronization steps: t—&—i,t—i—Q t+3
which correspond to the three mixing stages described below. This synchronous formulation, also
used in prior work such as EL, simplifies analysis. Extensions to asynchronous operation are also
possible and are discussed in Appendix

Each leaf i performs local training from x( 2
(@)

t+g
dataset, where each step uses one mini-batch.
The updated models are then mixed in three

fixed hops described below.

Algorithm 1 Tiered Gossip Learning (TGL)

Input: n; (leaves), n, (relays), T (global
rounds), Tjoc (local SGD steps), n (learning
rate), by, b, by push, gossip, pull budgets
Init: x\) < xo, Vi € [n/]
fort =1to T do

Step 0: Local Trammg

to x via Tjoc steps of SGD on its private

Stage 1: Leaf-to-Relay Push. Each relay
k independently selects a random subset of

by leaves (also its in-degree or budget), de-
noted by L, which respond by pushing their
current models to relay k, which aggregates
them as:

x )
= E X
X2 b l’
4 lr 1€Ly 1

t+% =W, XtJr%v

where W, € R"™ %™ ig the leaf-to-relay
mixing matrix formed from the sampled leaf

(k)

sets and x, L2 is the aggregated model at re-
4

lay k. Sampling is independent across relays

Xt:-1 <_SGD(Xt Dy, Tioc, )

Step 1: Push
Each relay k samples Ly, | L] = by

(k) (1)
X, 2 € bzr Zzeﬁk X1

Step 2: Gossip
Each relay k sends to b,.,.. relays and receives

from a set of Ry, relays.
(k) 1 (k) « (™)

Xipz < IRk\+1( t+3 +Ymer, t+2)

Step 3: Pull

Each leafi samples S;, |S;| = by

«(F)
Xt+1 — b Ekes t+32

end for

and across rounds, ensuring fair selection of ()yn
Output: {x;’}!",

leaves over time, with each leaf having an ex-
pected out-degree of n,.b;,- /n;. Only sampled
leaves perform local training in that round.

Stage 2: Relay-to-Relay Gossip. Relays then engage in decentralized gossip, each sending its
aggregated model to b,.,- (its out-degree) randomly selected relays. While the out-degree is fixed, we
allow the in-degree to vary across rounds, with each relay receiving models from a set R, of peers.
Over time, the expected in-degree also equals b,.., but this relaxation avoids the need for central
coordination. Each relay then updates its state by averaging its own model with those it receives:

MO <)
Xevg = \Rk\+1( w3 T ;@A t+3 )

t+% - WT’I‘ Xt+%7

(k)

W, € R™"X" is the relay-relay mixing matrix and x, e is the updated model at the relay k.
4
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Stage 3: Relay-to-Leaf Pull. Each leaf ¢ then pulls updates from a randomly selected subset S;
of b,; > 1 relays and averages the received models:

; 1
Xit1 = bt > Xii)%’ KXipr =Wn Xy g,
kEeS;
where W,; € R™*"r is the relay-to-leaf mixing matrix and xEQl is the updated model at leaf ¢ for
the next round. Since models have already been mixed in the relay layer, even a small pull budget b,;
(as low as 1) can suffice, making it easy for leaves to join and for collaboration to scale. However,
when b,; = 1, each leaf relies on a single relay, similar to receiving from a single server in FL,
which may raise privacy concerns. Larger b,; values mitigate this risk.

Combining all three stages yields the end-to-end transformation:
X1 =W Wep Wi Xy1 = Wrar X1,

where Wrgp € R™*™ is the overall mixing matrix for TGL as formed by the connections in a
given round. Although the individual matrices may be sparse due to constrained budgets, Wrar,
being the product of three matrices is typically dense, enabling effective mixing across leaves. This
dense composition, enabled by the hierarchical structure, is key to TGL’s improved performance
over all flat P2PL baselines.

Each mixing stage in TGL has its own budget parameter (b;,, b, b,-;), enabling independent con-
trol. For example, if leaves are constrained but relays underutilized, increasing b,., densifies W,.,.,
improving mixing without raising the leaf budget. This decoupled control is a key advantage of TGL
over P2PL systems, where unified roles prevent such separation. Together, the tuple (n.., by, by-r-, byp)
defines the core design parameters of TGL. In the next section, we analyze how these parameters
shape stage-wise consensus and overall convergence.

TGL further benefits from several structural properties. Bounding the in-degrees in Stage 1 (relay
receive) and Stage 3 (leaf receive) ensures that no receiver is overwhelmed, either due to too many
senders (as in relays receiving from many leaves) or limited capacity (as in leaves pulling from
relays). Stage 2, which involves only the small relay set, is less sensitive to such constraints.

The use of dynamic, random sampling provides two practical advantages. First, it naturally tolerates
node failures by aggregating only over messages that arrive. Second, it enables seamless scaling:
when a new node is added, others simply acknowledge it in their sampling pool. A new leaf, for
instance, can begin by pulling a recent model in Stage 3 and then participate normally from the
following round. Finally, the total number of directed edges per round, n,.b;,- +n,-b,.. + 10,1, serves
as a direct proxy for communication and computation cost, which we use to normalize comparisons
across baselines in our evaluation.

4 THEORETICAL ANALYSIS

In this section, we analyze the convergence behavior of TGL under standard assumptions used in
stochastic first-order methods. Specifically, we assume for local functions f and global function F":
Assumption 4.1 (Smoothness). For each i € [n;], the local function f(*) : R? — R is differentiable,
and there exists a constant I < oo such that for all z,y € R ||V £ (y) — V@) (z)|| < L|jy — z||.
Assumption 4.2 (Bounded Stochastic Noise). There exists a constant 0 < oo such that for all
i € [n]andx € R B po[||[Vf(2,€)—V f)(2)]|?] < 02, where o captures variance introduced
by stochastic gradients due to batch sampling.

Assumption 4.3 (Bounded Heterogeneity). There exists a constant 7 < oo such that for all z € R%:
% > ieln] V@) (x) — VF(z)||> < H?, where H quantifies the heterogeneity arising from the
non-iid data distribution.

Theorem 4.4. Consider Algorithm[I|under the above assumptions. Let the initial optimization gap
be: Ag := F(xg) — mingege F(x). Then, for any T > 1, with n; > 2 leaves with pull budget
by > 1, and n,. > 2 relays with push and gossip budgets by > 1,b,.. > 1, selecting the step size
as:

€ 0 | mi mAo . Ao 1 b
Y min TL((1+5’)02+5’H2)’ TLQﬁTGL(02+H2)’ 7 , we obtain:
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These -terms appear in Lemma as stage-wise contraction factors, bounding the expected con-
sensus distance after each stage of mixing:

E[CD,, 2] E[CD,, s] E[CDy41]
= ] = lr o] = rTH T2t s I
E[CD, ] E[CD,, ;] E[CD,, 5]

(6)

E[CDy41]

< it
_Brl = E[CDH_%]

< BraL-

As shown in Equation [6] each budget parameter b, by, by; directly controls its corresponding 3-
value: increasing the budget reduces the contraction factor, yielding faster consensus. Since SrgL is
multiplicative, improving any single stage strengthens the overall contraction rate.

We structure the proof through three key lemmas: average preservation in Lemma [A.T] bounding
stage-wise consensus contraction in Lemma@ and bounding the deviation of the average model in
Lemma- [A.3] These results are combined in Lemmas[A.4]and[A.5]to yield the full convergence proof
in Appendix [D] and additional analysis in Appendix [E] with a complete overview in Appendix [A]

5 EVALUATION

Setup We evaluate TGL on three machine learning tasks with non-iid splits: CIFAR-10 (image),
FEMNIST (image), and AGNews (text). Models, node counts, and training settings are in Table

Table 1: Summary of datasets, model architectures (with total parameters and num-
ber of output classes), and training configurations.  Each configuration is denoted as
(learning rate, local steps, batch size, total rounds).

Dataset Model (Params, Classes) Data Distribution Training Config
CIFAR-10 Krizhevsky & Hinton (2009)  ResNet-20 (0.27M, 10) Dirichlet « = 0.1 (0.05, 3,128, 500)
FEMNIST |Caldas et al.[(2018) CNN (6.6M, 62) Writer-level non-iid ~ (0.02, 3, 32, 500)
AG News [Zhang et al.|(2015) Tiny Transformer (12.9M, 4)  Dirichlet « = 0.1 (0.04, 4, 64, 500)

We use a 4:1 train—test split for FEMNIST and AG News, and 50k:10k split for CIFAR-10, parti-
tioning the training sets in a non-iid manner across 175/350 nodes for FEMNIST, 100/200 nodes for
AG News and CIFAR-10 in our experiments.

Baselines We compare TGL against several representative schemes that aim to improve mixing
efficiency in decentralized learning. ELL (De Vos et al.,2023)) uses fixed out-degree k with random,
dynamic connections. Erdos-Renyi (Erdos & Rényi, |1984) network provides a classic randomized
baseline where edges are sampled based on fixed probability. Exponential graphs (Ying et al., 2021)
assign node degrees that grow logarithmically with network size. Base-(k + 1) graphs (Takezawa
et al.| 2023)) extend ring topologies by adding structured shortcuts. FedAvg (McMahan et al., [2017)
serves as an FL-based reference. Since ELL performs best among the baselines, we highlight TGL
vs. ELL in the main results and defer others to the appendix.

Metrics We report test accuracy distributions across all nodes after 500 rounds using candlestick
plots (25-75 percentile as body; rest as whiskers). We also track the consensus distance before and
after mixing in each round. To capture mixing efficiency, we compute the ratio (CDR) of these two
values (after/before) and plot its negative base-10 logarithm. In this metric, larger values correspond
to stronger consensus.
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Figure 3: TGL (green) vs. ELL (red) and BaseGraph (blue) on FEMNIST (n; = 175, 350). Top:

n; = 175. Left: Final accuracy vs. edge ¢

ount: TGL reaches the same accuracy with 400 edges that

ELL requires 1200 to match. Right: Mixing efficiency across 500 rounds, with TGL consistently
above the baselines at matching edge counts. Bottom: n; = 350. Left: Even at its lowest setting
(700 edges), TGL surpasses ELL’s best performance at 7000 edges. Right: Mixing efficiency again
highlights TGL’s stronger consensus and scalability.
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Figure 4: Acc-time plot for CIFAR-10
with 100 nodes. TGL matches FL and
outperforms Exponential, Erdos-Renyi,
and ELL.

Results  Figure[3|presents representative results. On the
left, the x-axis shows the total communication cost (num-
ber of model exchanges per round), and the y-axis shows
final test accuracy as candlesticks. TGL consistently out-
performs ELL and BaseGraph, achieving comparable or
better accuracy at much lower cost. For instance, TGL
reaches 74% accuracy with under 400 edges—something
ELL needs over 1200 edges for, while Erd6s—Rényi
tracks ELL closely and BaseGraph lags behind. Each
candle is annotated with its configuration tuple. Note that
BaseGraph only permits specific edge counts, leading to
sparse evaluation points and shows weak performance.
For clarity in the plots, we defer full Erd6s—Rényi results

to Appendix [B]in Figures 9] [I0] [T1]
On the right, the plots show the corresponding CDR

curves (—log; of the consensus distance ratio). Except
for the lowest-budget configuration (1,1, 1), which we in-

clude only for exposition, all practical TGL configurations yield distinctly higher mixing than the
baselines. This strong mixing directly explains the accuracy improvements seen on the left. Even
at low leaf degrees (1-3), TGL matches or exceeds the mixing quality of P2P methods that require
degree 10 or more, highlighting the efficiency gained from the relay layer. Similar trends are ob-
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Figure 5: TGL (green) vs. ELL (red) on CIFAR-10 (n; = 100). Final accuracy (represented as
candles) vs. total edges (budget) on the left and mixing efficiency (— log(CDR)) on the right. TGL
preserves the high accuracy and better CDR at low budget trend.

served on CIFAR-10 and AG News (Figures|[5] [7} [8). For CIFAR-10, BaseGraph is omitted because
its weak accuracy compresses the axis scale and obscures differences between TGL and ELL.

TGL not only achieves higher final accuracy, it also maintains this advantage throughout training.
Figure [] shows the accuracy trajectory for CIFAR-10 with 100 nodes at a communication cost of
700 edges. This configuration was chosen for fair comparison with the Exponential Graph baseline,
which, for a given number of nodes, deterministically fixes the number of edges. Under this setting,
ELL (with k£ = 7) outperforms Exponential Graph, consistent with prior work, while Erd6s—Rényi
(simulated at 700 edges) again closely follows ELL. TGL, configured as (100, 20, 15, 10, 2) to match
700 edges, tracks closely with Federated Learning (FL), which is included as a performance upper
bound. Unlike other methods, FL operates at the lowest cost (100 edges, equal to the number of
nodes), and serves to show the maximum accuracy achievable.

Finally, the high mixing observed in the CDR plots explains TGL’s accuracy gains. To complete the
picture, we complement this with a mathematical simulation: 1000 rounds of randomly generated
graphs for TGL, ELL, and other baselines at varying edge counts, measuring the average spectral
gap. As shown in Figure[6] (Appendix [B), TGL's effective matrices quickly become dense, yielding
spectral gaps that approach 1 much faster than the baselines. This links the observed mixing advan-
tage to the spectral properties of TGL, tying the empirical gains back to those same foundations.

6 DISCUSSION

TGL demonstrates that a carefully designed tiered topology can combine the fault tolerance of P2P
training with the efficiency of hierarchical aggregation. By distributing aggregation across relays,
TGL achieves strong consensus with far fewer model exchanges than flat P2P, while remaining
coordinator-free. The design is not without trade-offs. Relays introduce a modest management
overhead, and each round involves three mixing stages, which may add latency. However, this cost
is often offset in practice: the relay layer is small, and its fast gossip allows TGL to reach consensus
more quickly than multi-round P2P protocols. A further consideration is privacy: when leaves pull
from a single relay, their updates may be easier to infer, though higher pull degrees can mitigate this.

Two properties make TGL especially promising for future extensions. First, it performs well even
under sparse connectivity and low exchange counts, suggesting compatibility with adaptive partic-
ipation schemes. Second, its receiver-driven sampling, with fixed in-degrees in Stages 1 and 3,
prevents malicious nodes from targeting specific relays or leaves, improving robustness under fail-
ures or attacks.

In summary, TGL shows that tiered gossip can synthesize the strengths of FL and P2P systems,
avoiding server bottlenecks, reducing total communication cost, and scaling gracefully, while open-
ing avenues for more adaptive, privacy-aware, and robust collaborative learning.
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We are committed to ensuring reproducibility of our results. All algorithmic details are provided in
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processing. Table [2|lists all experimental configurations along with the corresponding edge counts,
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A APPENDIX - PROOF SKETCH

In this proof, we aim to show convergence properties of the Tiered Gossip Learning (TGL) algorithm
as described in Algorithm([I] Specifically, we establish an upper bound on the average gradient norm
across nodes and time, characterizing convergence in terms of key parameters: step size -y, number
of iterations 7', budgets b;;., b, b,-;, number of leaves and relays n;, n,., and the mixing coefficients

ﬁTG[nB/'

The central claim (Theorem[4.4) asserts that, given smoothness (Assumption[4.T)), bounded stochas-
tic noise (Assumption {.2), and bounded heterogeneity (Assumption [4.3), we can choose an appro-
priate step size «y to ensure the average squared gradient norm diminishes at the rate:

o <\/LA°((1 +B)o? + fH?) +

3 L2ﬁTGLA(2J(02+H2) LA0>
+ .
Tnl

T2 T

To achieve this, we decompose the analysis into several intermediate steps encapsulated by individ-
ual lemmas:

Lemma|[A.d] This lemma establishes that the average model across all nodes remains invariant in
expectation throughout the different stages of a single round of mixing in TGL. Specifically,

E[Zi41] = E[EH%] = E@w%] = E[fwi]'

This property ensures unbiasedness of the aggregation mechanism at each step.
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Lemma This lemma quantifies how the expected consensus distance among the leaf nodes
evolves across one full round of TGL mixing. Specifically, it shows that the pairwise distance
between leaf models after all three stages (pull, gossip, push) is contractive in expectation, relative
to the distance immediately after local updates (before stage 1 mixing). The result is obtained by
bounding the contraction at each stage and combining them:

2
7.2 Bllth-el[] < v 3 B[l -]
zyEnl l1’,
i#] #J

where Srqr = Bir - Brr - Bri- This result captures the compounded effect of communication budgets
bir, brr, by at each mixing stage on consensus formation among leaf models.

Lemma [A.3] This lemma establishes how the expected deviation in the average model changes
during each of the three communication stages in a TGL round: (1) leaf-to-relay push, (2) relay
gossip, and (3) relay-to-leaf pull. For each communication stage indexed by v € {1,2,3}, the
deviation between successive stage-wise averages is bounded in expectation by the consensus error
at the current stage, scaled by the corresponding 3 constant:

sl el 5]

xt+v1»1 — .rtJr%

i€[ny)
where
 For v = 1 (leaf-to-relay push): n, = n;, 8, = n‘f -
» For v = 2 (relay gossip): n, = n,, By, = %
* For v = 3 (relay-to-leaf pull): n, = n,, 8, = n’(i T,r‘”

This result captures how local deviations propagate during mixing and is essential in bounding the
shift in average models during each stage of the TGL protocol.

LemmalA.4] This lemma builds upon Lemma[A.2]to bound both the expected consensus distance
among leaf models and the variance in their gradients:

(a) Consensus Distance Bound:

2 2 Bl -l ] <20 IR g o 0

1,5€[ni]
(b) Gradient Variance Bound:

> [l

i,5€[n]

gﬁj)’ﬂ < 15(0” + H?).

Lemma Using the invariance result from Lemma this lemma provides an upper bound
on the squared gradient norm of the global objective evaluated at the mean model Z;:

N2 2 _ _ L HIZ]  4Lvyo?
E[IVF@I] < SEF@) - FEal+ 55 Y E U o —aP||'| + 222
’L,]E[nl]
4L 2
+ 2R U } .
Y

By applying these lemmas, we systematically derive in Appendix [D] the final convergence
bound on the average squared gradient norm across all leaf nodes and training rounds:

an Et 0 ZZZJE [HVF(SC,gz))HQ}

2 2
Tiy1 — Tyys +‘xt+%—xt+% +‘xt+%—xt+%
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A.1 ALL LEMMAS AND REMARKS

This section presents the key lemmas and remarks that are instrumental in establishing the conver-
gence guarantees and characterizing the behavior of the TGL algorithm.

Lemma A.1 (Average Preservation in Expectation). The expected average model across all nodes
remains unchanged throughout the entire mixing process. That is,

E[Z;44] :E[$t+ ] = E[xw ] = E[xw ].

Here, T denotes the average model across all leaf nodes, and the time indices ¢ + }1, t+ i, t + 2 and
t 4+ 1 correspond to the moments after local updates, stage 1 (leaf-to-relay) mixing, stage 2 (relay
gossip), and stage 3 (relay-to-leaf) mixing, respectively.

Lemma A.2. For each stage of mixing in TGL, the consensus distance is recursively bounded as
follows:

(a) Leaf-to-Relay Push:

() (@)
Z E [H T Tz

n? i,5€[n.] i,5€[n)
i#£j i#£j
where ) ) .
Ir
r= 7 1-
61 blr ( n; — 1 )
(b) Relay Gossip:
1 () G 2] = Brr (&) M 17
n%‘ZEM%i%z Sng,ZE‘x 2 el |
7fa]ve[77’r] Zv]E[ﬂ'r]
i#] i#]
where

1 b\ 1
r=—1—(1-— — .
p by ( ( ny — 1) > n, —1
(c) Relay-to-Leaf Pull:

3 % sfltanf] <% 5 ol -,

% Je nl 7]6 nr
i#] i#]

1 by —1
= — (11— .
Bru brl< nr—l)

(d) Final Consensus Bound: Combining the above stages, the consensus distance at time t + 1 is
bounded in terms of the distance after local updates:
2
)

1
5 % et <oy 5 [l -t

i,j€[ni] i,j€[ni]
i#£] i#£j

1

where

where
ﬂTGL = 5l7‘ ' ﬂrr ' 57‘l~

Lemma A.3. For each stage of aggregation in TGL, the expected deviation of the average model is
bounded as follows:
]

(a) Leaf-to-Relay Push:
E U (0)

Ti42 = Tetd Tops 7 Terg

|

i€[ng]
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(b) Relay Gossip:

1

2 B 2
| |

Lemma A.4. The expected consensus distance and gradient variance across leaf nodes are bounded
as follows:

E |

(c) Relay-to-Leaf Pull:

2 Brr (2) _
] <57 2 E“wwi s
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(a) Consensus Distance Bound:
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(b) Gradient Variance Bound:

1 ; L2

[ R
Lijelm)

Lemma A.5. The expected gradient norm of the global objective satisfies the following upper

bound:

B[IVF@I] < ZBIFG) - P + 5 3 E [ERER
i,5€[n]

4L~yo? 4L _ _
+ o -2y

)
Remark A.6 (Variance Decomposition). For any set of vectors {xii)}ie[n], the variance around the
mean equals the average pairwise squared deviation:

+

2
+ HCCH_% — Tyl
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]
Remark A.7. Note that (.., computed in is decreasing in b,.. and increasing in n,., therefore,
for any b, > 1, and n,. > 2 we have

< lim f;

N, <00 Ty —> 00

. 1 " 1
= lim (1—-(1- —
N =500 n.—1/, n.—1

1
:1—7’
e

n
where (3, is the 5 at b, = 1. e is Euler’s Number and we used the fact that lim,, (1 — i) =
1

g-
We also have 3 < 1 and 3,; < 1. Multiplying these, we get frgr <1 — 1
B ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

B.1 SPECTRAL GAP ANALYSIS
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To compare the mixing properties of
TGL, ELL, and Erdos—Renyi graphs, e
we simulate their respective mixing
matrices across a range of commu- 08
nication budgets. For each config-
uration, we generate random graphs
according to the protocol of the cor-
responding method and compute the
spectral gap. This process is repeated
over 1000 independent trials, and the
average spectral gap is reported.
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Figure [6]shows the results. Across all
comparable budgets (up to approx-
imately 2200 edges), TGL consis- 00
tently achieves a substantially higher 0 500 1000 1500 2000

spectral gap than ELL. As the bud- Total Directed Edges

get increases, the spectral gaps of all

methods begin to converge, however,

TGL converges to a higher asymp- Figure 6: Variation in average spectral gap for TGL, ELL,
totic value than both ELL and Erdos- and Erdos—Renyi as a function of total directed edges.
Renyi. These findings directly ex-

plain TGL’s superior performance in

practice, as faster mixing leads to more efficient consensus and optimization. This result strongly
supports the theoretical and empirical advantages of TGL. BaseGraph generates near-zero spectral
gap for all £ when n; = 100 and is therefore omitted from the plot.
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Figure 7: TGL (green) vs. ELL (red) on CIFAR-10 (n; = 200). These results complement
Figure[5] which reports performance for n; = 100.

B.2 OTHER RESULTS

Due to space constraints, only representative results were included in the main paper. Here, we
provide the complete set of experimental results for a thorough evaluation of TGL.

Figure 3] presents results on FEMNIST for n; = 175 and 350, where TGL is compared against ELL
and BaseGraph. TGL consistently achieves the highest test accuracy and lowest consensus distance
ratio (CDR). Figure [5] shows results on CIFAR-10 with n; = 100. BaseGraph is excluded from this
plot due to its significantly lower accuracy, which compresses the vertical scale and obscures the
improvements of TGL over ELL. We also omit results for n; = 200 and AG News from the main
paper for brevity, and exclude Erdos—Renyi in some figures due to its near-overlap with ELL.

For completeness, we now present the full results across all datasets. Figure[7]shows the CIFAR-10
results with n; = 200. Figure [§] reports performance on AG News for both n; = 100 and 200.

16



Under review as a conference paper at ICLR 2026

(100,7) (108 10) ,
a0k 4 100, - (100,8) o
1! 100, 20010, frdd ko 4009, hp T30, 3 (100, 20Mo, 10, 4) (100, 0, 20, 10, 4)
(100, 10(200, 52, 2. 2 9,
: (100, 9

(100,[10, 30, 3, 3)
(100;[10; 30, 3, 2)

100,20, 10, 5, 1)
(100,5,2,2,2)

80
0,2) ‘|' .
1
78
000 | dona 1004
s f hgaZaves y ! 2200 (100 110
‘ RER 7 M e e ey Snmnun i}gg«gg
76 2580ge ¥
\ (100, 5)
(104, 1) y/ + 4 4 (100, 4)
sea.
{ ‘9

Final Spoke Accuracy
—l0g10(CDR)

mmmm EL Local (ny, k) iy
= TGL (ny, ny, byr, by, by) -
mmmm BaseGraph (ny, k)

= EL Local (n), k)
= TGL (ny, nr, bir, byr, b)
mmmm BaseGraph (ny, k)

o 200 s a0 T000 ) 100 200 300 400 500
#edges in the graph Time

0 PP I NP IR, - ST T L
(209, 2) B8:38:2,3)
78 L[5, 20, 3, 3)
T (200, 7) . [15, 10, 3, 2)
- IF (+ (200, 5, 10, 4, 1)
9
®
3 3
gn 00,2 T ) eeres: Doy’ E%E ;;;
[ < o5 M. M .......... 1365/
T : w:ﬁtg;gmm;gmmg;gs‘g;m‘g;g
2 + \ ? b (2608, p)
En o ihid Millliilliill Al
= 0.25 " ." I I 1200,2)
N iy | m | g8
mmm EL Local (ny, k) ‘ "‘ u ‘ W EL Local (ny, k)
o6 s TGL (1, by, by, by) o8 o IO Joogagyely: Oty
= BaseGraph (n), k) s BaseGraph (ny, k)
0 500 1000 1500 2000 2500 o 10 300 400 500
#edges in the graph Time

Figure 8: TGL (green) vs. ELL (red) and BaseGraph (blue) on AG News (n; = 100 (top), 200
(bottom)). TGL achieves comparable or superior accuracy relative to ELL even at the low-
est communication budgets. Improved accuracy is attributed to enhanced model mixing effi-
ciency. These results align consistently with findings from FEMNIST and CIFAR-10 datasets.

Erdos—Renyi results on FEMNIST, CIFAR-10, and AG News are shown in Figures and [TT]
respectively.

Across all datasets and settings, the performance trends remain consistent. TGL configurations using
budgets comparable to the lowest ELL setting (e.g., k = 2) still achieve strong test accuracy and
effective mixing. As a result, TGL shows minimal sensitivity to budget size, in contrast to ELL,
BaseGraph, and Erdos—Renyi, which degrade notably under tighter budget constraints. BaseGraph
results are only shown at the fixed edge counts allowed by its design and consistently perform the
worst across all comparisons.

B.3 MODEL ARCHITECTURES AND TRAINING SETUP.

We use dataset-specific models optimized for each task. For CIFAR-10, we adopt a ResNet-20 with
three stages of residual blocks (16, 32, 64 channels), each with 3 basic blocks using 3x3 convolu-
tions, batch normalization, and ReLU. Downsampling is done via strided convolutions, followed by
global average pooling and a linear classification head.

For FEMNIST, we use a CNN matching the LEAF benchmark: two convolutional layers with 32
and 64 filters (55, padding=2), each followed by 2x2 max-pooling; a 2048-unit fully connected
ReLU layer; and a final linear classifier over 62 classes.

For AG News, we use a lightweight Transformer: two encoder layers with 4 attention heads, 512-
dimensional feedforward sublayers, and 128-dimensional token embeddings with learnable posi-
tional encodings. Encoded sequences are averaged across tokens and passed through a linear classi-
fier.
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Figure 9: TGL (green) vs. Erdos-Renyi (blue) on FEMNIST (n; = 175 (top), 350 (bottom)).
While Erdos-Renyi performs comparably to ELL, TGL consistently outperforms it across all bud-
gets, maintaining the same advantage observed in earlier comparisons.

All models are trained using cross-entropy loss and vanilla SGD, without momentum or adaptive
updates.

B.4 DATA PREPROCESSING.

For FEMNIST, input images are normalized using a mean of 0.1307 and standard deviation of
0.3081. For CIFAR-10, we apply standard data augmentation: random cropping (32x32 with
padding=4), random horizontal flips, followed by normalization using channel-wise means (0.4914,
0.4822, 0.4465) and standard deviations (0.2023, 0.1994, 0.2010).

For AG News, we tokenize text using a basic English tokenizer and construct a vocabulary by
scanning the training set. Each token is mapped to a unique ID, with padding (ID 0) and unknown
(ID 1) tokens reserved. Inputs are then converted into fixed-length padded sequences based on the
longest training sample. Labels are remapped from {1,2,3,4} to {0,1,2,3}. The test set is processed
similarly, using the same maximum sequence length as the training set.

All experiments were conducted on a single NVIDIA A100 GPU with 80GB memory. We used
PyTorch v2.3.1+cul21, along with torchvision v0.18.1 and torchtext v0.18.0. Node-level parallelism
is simulated via sequential local training on a single GPU.

B.5 DIRECTED EDGE COUNTS ACROSS CONFIGURATIONS.

Table |2| shows the number of directed edges for the different configurations of TGL, ELL, and
BaseGraph used. The tuple in TGL represents (-, by, by, brep)-
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Figure 10: TGL (green) vs. Erdos-Renyi (blue) on CIFAR-10 (n; = 100 (top), 200 (bottom)).

C ADDITIONAL NOTES

C.1 EXTENSION TO ASYNCHRONY

While our implementation is synchronous for clarity of analysis, TGL naturally extends to asyn-
chronous operation using standard techniques. The push and pull stages can employ local buffers
with non-blocking requests and staleness-weighted aggregation, similar to asynchronous FL meth-
ods such as FedBuff (Nguyen et al} 2022)). The relay gossip stage can adopt event-driven, pairwise
communication with staleness-aware weighting, as in asynchronous P2P learning
[2019). These adaptations allow TGL to tolerate stragglers gracefully without requiring centralized
coordination, preserving its decentralization and scalability.

C.2 FAULT TOLERANCE

We evaluate TGL under random node failures by dropping a fixed fraction of relays at each round and
measuring the resulting test accuracy distributions. Figure [12] summarizes the results. As the drop
rate increases, the mean accuracy shows a gradual, graceful decline rather than a sharp collapse. At
the same time, the variance across nodes widens, reflecting greater heterogeneity in model quality
under high churn. This behavior is consistent with prior observations in decentralized training:
random failures primarily increase variance while the system maintains a stable average. These
results highlight TGL’s robustness to node unavailability, owing to its decentralized relay layer and
randomized sampling.

C.3 PARAMETER SENSITIVITY.
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Figure 11: TGL (green) vs. Erdos-Renyi (blue) on AG News (1; = 100 (top), 200 (bottom)).
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gap is already large. Figure 12: Fault tolerance of TGL under random node

drops. Increasing drop rates lead to a graceful decline in
mean accuracy with rising variance across nodes, demon-
D COMPLETE PROOF strating robustness to failures.

Our analysis builds upon the frame-

work introduced in the Epidemic

Learning paper De Vos et al/ (2023).

Specifically, their convergence analy-

sis directly applies to our relay gossip stage (Stage 2). We extend this by developing new analyses
for the leaf-to-relay (Stage 1) and relay-to-leaf (Stage 3) communication steps. By combining these
components, we establish a complete convergence result for our proposed TGL system.
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Table 2: Total number of directed edges for each protocol configuration across different values of
ni.

n | TGL | ELL | Base-(k+1)
100 | (10,1,1,1)—120 (k=1)=100 | (k=1)—97
(5.2,2,2)—195 (k=2)—200 | (k=2)—146
(20,10,5,1)—400 | (k=4)—400 | (k= 3)—251
(1030,3.2)—530 | (k=5)=500 | (k=4)—367
(10,30,3,3)630 | (k=7)—700 | (k=9)—900
(20,20,10.4)—700 | (k= 8)—800
(10,40,3.4)—830 | (k = 10)—1000
(20,20,10,4)—1000
75 | (10,1,1,)—195 k=1)=175 | k=1)—=174
(10,15,3,1)—355 (k=2)—350 | (k=2)—328
(15,20,4,3)—885 (k=5)—875 | (k=23)—430
(20.20,6,5—1395 | (k =8)—1400 | (k= 4)—550
(20,20,6,7)—1745 | (k = 10)—1750 | (k = 5)—690
(25,25,10,7)—2100 | (k = 12)—2100 | (k = 6)—817
(30,25,15,8)—2600 | (k = 15)—2625 | (k = 24)—2625
200 | (15.104.0)=410 | (k=2)—400 | (k=1)—194
(15,10,3,2)595 | (k=15)—1000 | (k= 2)—282
(1520,33)—945 | (k=8)—1600 | (k= 3)—459
(20,40.4,3)—1480 | (k = 10)—2000 | (k = 4)—600
(50,20,5,5—2250 | (k = 14)—2600 | (k = 7)—1000
(50,20,5,7)—+2650 (k = 9)—1267
(40,25,5,10)—3200 (k = 19)—2800
350 | (10,30,5.1)=700 | (k=2)—700 | (k= 3)—803
(20.30,53)—1750 | (k=5)—1750 | (k = 4)—975
(30,36,10,4)—2780 | (k =8)—2800 | (k= 6)—1312
(40,40,20,5)—4150 | (k= 9)—3150 | (k =9)—2216
(50.45,25,6)—5600 | (k = 12)—4200 | (k = 13)—2450
(50.45,25,10)—7000 | (k = 16)—5600 | (k = 24)—6475
k = 207000

D.1 PROOF OF THEOREM [4.4]

Proof. Recall that for any vectors a, b € R%, Jensen’s inequality (for the £3-norm) states:

la+Db* < 2 fal* + 2 b,

We apply this inequality with a = VF(#;) and b = VF(z\”) — VF(x;). For any i € [ny], we

obtain
E [HVF(QUS))HQ} —E {HVF(xt) + (VF(:C,E“) - VF(ft)> HT

<2E[||VF( )H n QE{HVF (@) — VF(z,)

]
Using Assumption [4.1] (Smoothness), which implies ||VF(z) — VF(y)|| < L ||z — y||, we further
bound the second term to obtain:

E[HVF H } <2E[||VF( )l } + 2L°E [H o _ g, H ]

Next, we average over all i € [n]:

;E;E[HVF H] < 2E[|VF@)I] + 2L7 ZEU

A1
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Finally, making use of Remark [A-6] which states

G2l el =5
1386l

2

)

o 5 -

i,j€[n)
we get

1 il i 2 B L2 ; )
MZE[HVF@P)H } E[IVE@)] + 5 S IE[H:BE)—ng)H }
=1 Ui geim]

Bounding the first term on the RHS using Lemma|[A.3] we further obtain:

1 ny ; 2 4 2L2 i 12
— ZE [HVF(x§ ))H :| < —E[F(Z) — F(Zt41)] + e Z E |:Hx§ )~ xij)H }
Ui v Ligelm]
8Lyo? 8L _ 2 _ _?
+ » + > E ‘ ey — Typz|| + } Typs = Tyy2
Using Lemma[A-3] with Remark [A.6] we also have:
_ TR Bir (i) @ |17
E U Typz —Typa|| | < S Z E U Tior T xti%
- Lijen]
_ _ 2] ﬁlrﬁrr (1) (4) 2
E U Typs —Typz|| | < 2 Z E U xt:% - xti%
- Pijem]
_ _ 27 ﬁlrﬂrrﬂrl (2) 4) 2
E [ T T T | S T > E ‘xtﬁ -
- ]

i,5€[n

Adding the above inequalites,

+|

)

~ - 2 ~ ~ 2 ~ - 2 g1 @
llcreal] sl sl - olfr-sal] < 24 3 et -
i,5€[n]
®)
where ,
67 _ &+ﬂlrﬁrr+ﬁlrﬁ7'rﬂrl
ny 2n, 2n, 2ny
Remember the partial update step a:g = :cgi) -y gt(i). Thus,
4
) . , ) . 2
E @  _ .0) ) ‘ @ _ 0 _ () (J)H
[xt+}l xt+% Tt Y 9t Ty TG,
) L2 ) 12
<28 || -] + 2| @

where we make use of Young’s inequality.

Substituting [9and []into [7, we get:

1 & L 4 8L~yo?
—> E [HVF(xﬁ”)H } < ZE[F (@) - F(Fi)] + —22
n = g n
16Lﬂ/ 1 n (i 12
92 2 NTR ‘ i) (J)H
+ < + Py > ”12 ; Ty Ty .

22

(10)

$t+% _$t+i

()
t+%

1613 1 ; 3112
t T B o ol
=1

1

]
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From Remark . we have: Srqr <1 -— é Therefore,

L+ 3brar 5

20(1 — Brar)? ~

We substitute this in Lemma[A.4]to get
1 ny
1Sk U
2
From Lemma [A.4} we also have,

1
|

. 2
azgl) — xE]) H } < 500ﬁTGL’y2(02 + 7—[2)

o o|? 2 | 42
9t ¢ §15(‘7 +H)

Substituting this in [I0] we obtain:

Ly Nl < te(p . 1613’

8Lvo? 240
i + nilL’yBTGL(Oz + H2)

) 5008rqry*(0? + H?)

+

n
Taking the average overt € 0, ...,T" — 1, we obtain:

T—1 ny
1 i 2 4 v
T ; Z;]E {HVF(‘TE ))H ] Spyfety, (16L3'50087c1(0® + H?) + 8Lo® + 240LArar(0® + H?))

A

+72 (2L250087cr (0% + H?))

4 8L
< ﬂAO + n—"y (1 +6638")0% + 6635'H?) +~* (1000L*BrgL (0 + H?))
l
(11)
Here, we make use of the fact that since Srqgr <1 — é, 100087r¢r < 663 Now, setting

~ min o 3 2o ot (2)
K 2TL((1 + 6635')02 + 6638 H2)" \| 2507 L2Brcr(0? + H2) 20L

we have
AP 192 2 2 2
[ \/2TL((1+663B )o? + 663H?) i/250TL Bron(o® +H2) 4op
n Ao Ay
N2 12 2 2+ H?
B \/2TL((1+6635X; +6638H?) i/250TL BTZL(U H) L oo 13)
n A 0

Plugging equation [I3]and equation[I2]in equation [IT| we obtain

T—1 ny
1 7 2 QLA ’ L2 AQ D) By SOLA
T > E [HVF(”%E))H ] < 8\/ Tnl°(1+6635/)02+6635/H2+51</ Brard(o® + H?) o
t=0 =1

— T2 T
LA, \/ L2BrarA2(0? + H2) LA
——((1 N2 1942 0
60(\/Tm(( +pB)o? + B'H?) + T2 +
Here, we use the simplification that % <ol
3
This completes the derivation of the stated bound. O
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D.2 PROOF OF LEMMA [AT]

Here, we prove the average preservation in expectation property of TGL.
E[Ti] =BT 3] =BT 2] =E[7,11].
Proof. From the system dynamics, we have:
Xip2 =W X1,
where W, is independent of X, 1. Taking expectations:
E[XtJr%] :E[WZT]E[XH%]-

By construction, W;,. is row-stochastic, so we have:

ny
Z Wl(:’J) =1 for all relays i.

j=1

Taking expectations and using symmetry (equal probability for all elements), let ¢ = E[VV;;J )].
Then:

ny o 1
ZE[VVI(ZJ)] =1 = nc=1 = c=—.
j=1 ™
Thus:

1T

Ny tngs

1
EW;,]=—1

n
where 1,, and 1,,, are column vectors of ones of dimension n,. and n;, respectively.

Substituting, we get:

E[X,,:]

T —
n—llnrlnllmxﬁi
= 1nrft+i
= E[Xtﬁ]

Here we use the fact that 15 1, =n.
Thus, ]E[ft+%] = E[Eﬂ-i]
Now, consider the second stage of aggregation post relay gossip.

X3 =WoX;pe,

Let n,. be the total number of relays, and let A®) = | A.| denote the in-degree of the i-th relay,

where the outdegree of every relay is fixed to bys. For any relay ¢ € [n,], define [ J@ as the indicator
function denoting whether the j-th relay is connected to relay 7. Then we claim:

1 (i) (i) .(3)
A(i)+1<xt+% + z Ij It+%> :
j€m\{i}

]E[xgg] =E

First, we take a conditional expectation on AW

G0 7 _ 1 (i) (i) .(3) @H
Elrf)y] = E[E[ g (aids + [E]:\{‘}Ij rly) | A
JEMF\12

— 1 (4) (4) ) )
B E{W(”CH% ’ je[g]:\{i}E[Ij 4 )]xti%)]
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Since each of the other n,. — 1 relays has the same probability of sending its value to relay i, we have

) _ A
E[1D | A®] = .
[ J | ] Ny — 1
Thus,
. . (i) .
G 7 _ 1 (i) A )
Elz)s] = E[A(i) +1(9”t+% o1 %9}
jelm\{i}

where 7, 2 = - 30" (j)z. Let

Uz

Collecting terms, it follows that

(%) Y L. pny (4)
E[x“r%] one—1 s (1_ nr—l)zt '

Averaging over all ¢ € [n,] gives
E[7, 3] = Blz.:].
Now, we consider the last step of aggregation where the leaves aggregate models received from the
relays.
From the system dynamics, we have:
Xpy1 =W Xy,s,
where W, is independent of X, 3. Taking expectations:

E[Xi1] = E[W,,] E[X,.:].

By the construction of W,.; as row-stochastic, we have:

Z WT(;J) =1 for all leaves 7.
j=1

Taking expectations and using symmetry (equal probability for all elements), let
c= JE[WSJ)]

Then,
Mgy y 1
ZE[WT(IJ)] =1 = n,c=1 = c¢c=—.
° Ny
Jj=1
Thus,
1
E[er] = 1nl 15 3
Ny "

where 1,, and 1,, are column vectors of ones of dimension n; and n,., respectively.

Substituting into the expectation, we get:
1 T _ _
E[Xi41] = - Lo 1y 1o, Typs = 1y, Tyy s,
; T —
since 1, 1, =n,.

Therefore,
E[Z41] = IE[@JF%].
Thus, we conclude that
E[Ti11] =E[T 3] = E[T,, 2] =E[T 1]
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D.3 PROOF OF LEMMA[A.2]

Stage One mixing: Leaf-to-Relay Push The models at the leaves after local training are denoted

by T, 1 Each relay randomly samples b;, leaves, and the model transfer from leaf j to relay ¢
4 )

is represented by the indicator function I?. relay i aggregates the by, collected models to produce

T, 2. This proof bounds the consensus distance after mixing to that before it, that is:
1
2 2
Blr
E E .
T30S l ] <2

(@) (J) Q) (J)

" el Wi e i.j€[m] R
i£] i#]
where
1 b — 1
/Blr - a |: ny — 1:| .
Proof.
2
SO N IEES | E
— E ‘ ‘ o — X%, 1 — E I 1— 2,1
2 t+5 brr t+
" ien.] i 4 nr @ g€[ni] t+4 *
2

- ||y (z;>xy+>4

|=
|
B
+
i
N

Ir 5 j
_ 1 (i) o> _
- Ny bl2r ;E ZI o xt+l
+ ZEZZI”I“< EEEAER RNy
b2 t+Z7 t+l t-‘rz
i J k#j 4
) 2
- E 29 _ 5
Ny blr ny Z t+4 IH%

) 2
x(] i
t+ t+4

1 blr*
+ Ny by ( nl—l ZE Z

where we utilize the fact that E[Z. (l)] = = and E[I](i)Ilgi)] = b bl
Observe that
2

E ORI

t+7 t+7

is independent of ¢, therefore summing over all ¢ € [n,] scales the entire expression by a factor of
n,. Thus,

1 _ 1 bir—1 €) =
EEJ:E t+7 ‘| N ny by ( "l_1>E Z xt-‘,—i _wt-ﬁ-l
2
_ 29—z (14)
ny t+ t+yg
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where

1 b —1
r = 7 1-
B blr( nl—1>

Noting that as § is the minimizer of g(z) := 1 Yiem E {Hy(i) - ZHz] , we have

P[RR Ll [AE]

16 n) 1€[n]

Substituting x to T,1
1

t+% t+

2
Blr
E
| - %5

and y to z, 2, and n to n,., and using (]EP, we obtain
1

5)

t+* t+1
(16)

2

] . (17)

Stage Two mixing: Relay Gossip During the relay-gossip stage, every relay shares its models
with b, other relays, all having a constant outdegree. However, the indegree of the relays is a
variable A(). This is exactly how nodes communicate in ELL. Then the consensus distance among

the relay models after then gossip stage is bound by:

(@)
t+4

2
29| < R
n2z [ t+4 t+4 ]_5rr n%% [

i i#j

where

1 b T 1
e =—(1—(1-— — .
b bm,< ( nr1> ) ny — 1
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Proof.
2
1 @ - Pl .1 1 (i) (i)_(5) _
ar D[yl = 0 S E gy (s X ) e
1€[n,] 1€[n,] JE[n-\{i}
r B 2
_ 1 1 (i) (i) (7 _ (i)
RoR 2 | o R ey Rt
€[N, J
- 9
_ 1 1 6) 0) G - )
o 2 B E| | (e )t B ) | 1A
1€ Ny J
_ 1 1 (4) @ | G - 2@
TTTZ E A(i)JrlE ‘xt+%_xt+% +ZIJ'H(‘TH§_$H%)} |4
i€[n,] L J |
LS E | g B 220 (o, a2 2
np L= | (AD 12 T\ T T AT T T T
ASIEeS JIFT

i) (i j - k - i

+ E g I;Z)I£)<xif%—xt+%,xi+)%—xt+%> AW
J#i kZi
iy

Taking the expectation inside, we obtain

1 @ _ - KBl 1 @ _ - @ a0 _ = P
- > Ellr, s — Ty I= > E AD + 172 ‘xt+%_xt+% +2_EIL7|A ]th+%—”t+%
i€[n,] i€[n, J#i
1 1 O 4D - @ _
t o D E AD 172 2 EILADN @y =Ty aly —Fipy)
i€ [ny] J#i
1 1 @) 4@)1.0) - *) _ -
+ o > E FCESTEAW Z E[Ij LAY e ls = Tz, @0 — Tep2)
i€[n.,] JF#LkFi kA ]

Observe that ]E[Ij(i) | A()] represents the probability of node j selecting node 4, given that a total of
A®@ nodes select i. Thus,

A®

E[ZV|AD] =
[Z;7]A™)] —

Similarly, I](i)l',gi) equals 1 only when both 5 and k choose i, hence

AW (A® 1)

@O 4G) | —
E [Ij = A )}  (ny —1D(n, —2)°

Also, note that

Sy —ugialls —Eag) = @)y —Tg, Y@l — 7 = |
ol i
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and
j - k - (j _ k _

PR CPEL I ELIEEDY <xti)z “Tip Y (@l - $t+i)>
J#i ki k#j J#i ki k#j
= Z< Tl ~ T3 (QCEZZ% —Zpz)+ (l’ii_)% - ft+%)>

J#i

= llzf)s = Zupzl? =D llag)y — 2oz

J#t

Bringing everything together, we obtain

1 (4) - 1 0 ) ) e . ) ,
E Z E[’xt+i_zt+4 :| nir Z E A(z)-i-l) ‘z‘t+%—xt+% +nr—lz’xt+% xt+2
el i€lnr] :
1 1 2A40) NCTRT
+W-E[Z]E{(A(i)+l)2 ( =1 Tipz — Ter )]
2

A(i)(A(i> —1)

o .Z]E {(A<i>1+ 12 (<nr1><”r2) ( )

€[N,

2

1 Z ’ 0 - 2]E 1 - 24 N AD(AG) 1)
" ien,] Ty e (A® +1)2 n.—1 " (n, —1)(n, —2)
A AW (AW — 1) ) 9
GZE[ )2(774«1_( nr2>:|z‘ —LL‘tJrz

Observe that, due to symmetry, the distribution of A() is identical to that of A) for any i, 5 € [n,].
Hence,
]

2 1 241 A(l)(A(l) —1) AM A(l)(A(l) -1)
[(A<1>+1)2< T o1 T o1 ) ﬂ

— E H — Ty 2
n, Z Tiys t+3

1€[n,]

:iz’x

n
r 1€[n,]

@ _
t+2 ~ Tr+d

n,—1 (n,—1)(n,—2) n,—1 (n—2

Now note that

241 A(l)(A(l) —1) A(l)(A(l) —1) AM? 4 A A
1 — A0 =2 AW T 1AMy (1=
n, — 1 (nT—l)(nT—2)+ n, — 2 + n, — 1 (1+ ) n, —1

Thus

. 1 A
- ZE[H Tips — Tesd ] Z ||$t+ —$t+2|‘ [ { 1:|_nr_1'E{A(1)+1:H

i€[n,]

Observe that since each node j # 1 independently and uniformly selects a set of b,.. nodes, A1)
follows a binomial distribution with parameters n,, — 1 and b” . Thus, for b,.. > 0, we have
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ny—1 k ny—1—k
o 1 _ Z 1 ny —1 bry 1 brr
A 11 — k+1\ k ny —1 ny —1

k=

_ Ny — 1 nil Ny br’r i 1— b'r‘r ek
 bepny = k+1 ne.—1 n,.—1

Ny — 1 brr "
= 1—(1-
brrnr ( ( Ny — 1> >

Also noting that

A 1
E[N”+1}:1_E[mn+1y

we obtain

1 (4) = 2 1 byr "
anEU%z‘Mi 2 G G .1 an‘ t+2_xt+4
i€[n,] i€[n,]
(18)
we obtain that
Noting that as g is the minimizer of g(z) := & > ,c(, E [Hy( D — 2| } following the logic in 1|

and using Reamrk[A.6] we convert the equahty in (I8) to the following inequality:

Tl (-0-229) )=

which is the desired result. O

(4)
Z ]EU Tivs ~Tgs
JEm]

L] S s, -

i,j€n]
(19)

Stage Three Mixing: Relay-to-Leaf Pull The models at the relays after relay gossip are repre-

sented as T, 3 Each leaf independently selects b,.; relays at random, with the model transfer from
4 .

relay j to leaf 7 indicated by the function Z?. Leaf i then aggregates the b,.; received models to obtain

x41. This proof establishes an upper bound on the consensus distance among the leaf models after

the final aggregation stage relative to its value before aggregation, that is,

1 ﬁrl P j 2
%> eflan -] < & 3 |, -
™ zje[m] zyi[nr] 4 T4
i#]
where
1 by —1
rl = 7 1-—
IB ! brl |: Ny — 1:|

ZL’

2
t+2
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2
_ 1 1 WG -
i ]ZE EPIL IR

4

2

1 G .G -
= > E|Y(Z) . —
n b12ﬂl i ( ! xt"'% xt+%

1 (i)

= E 7

i 28| 25
(1) () (J) A (k) =

¢ SEE T (4, <5, s -5g)

J k#j

(] -

- nlbrl Uz ZE

1 b — 1
+ nlbrl nr(nr* ZE Z

where we utilize the fact that E[Ij(.i)] = b2 and ]E[IJ(.i)IIEi)] = bo b=l

Ny Np—17°
Just like for stage 1 aggregation, observe that

2

E x(j)3 —T

*1

3
t+1

is independent of i, therefore summing over all 7 € [n;] scales the entire expression by a factor of
n;. Thus,

2
__1 b1 @ _ 5
L5 gl Ja -] - o - 22 2 T -
ze[nz] J 4
_ Bir G -
= n—TIE , xt+3 - x”Z (20)
J
where 3,;:
1 by —1
rl = 7 1-—
ba=p (1-221).
Using the minimizer property described in (T3), and applying Remark [A-6] we finally obtain:
/3 1 i ) |I°
U’xw —foH } : Z E xijé —x% . @1)
. » 1 1
i Je[m] i,j€[ny]
1#]
O

D.4 PROOF OF LEMMA[AJ]|
Stage 1 Leaf-to-Relay Push We have:

2|z

1’t+% —xHi

]

2l B O
.
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Proof. Note that we can expand the norm as follows:
1 .
_ Zy(’t) -7
L
1 N 1 N = () -
s o A R I CAPEREE I
i i#]

For the first stage of communication from leaves to relays, we denote 2 a8y and x, 41 as T,
replacing n with n,.. For the ¢-th relay, we have:

o - 1 @, (k) -
Tyhs ~ By = E};Ik (Tipy ~ Tiry)

2
E|lg-al*] =E

where I,(:) is an indicator function that represents the connectivity between relay ¢ and leaf k. We
can thus write the second term in (22)) as

1 P N 1 i _ j _
2 ZE [(y( ) — may(J) - x)] = Z E [(55;2% - xt+ivxii)% - xt+i>:|
i#j "ign,]

=23 D

T i) k€[n] 1€[n]

i T o -
7 Ty T T Ty~ Ty

(23)
Now note that by symmetry, for any ¢, j € [n,], we have,
E|7'7] =B [ZV7")]
This implies that all three terms in (23] can be written as,
k - ! -
C~IE Z Z<x§+)%_$t+%’xiii_xt+%>
ken] l€[n]
2
_ ) - (k) _ 0 _
=cE Z ’ Topr ~Ted|] T Z <xt+i TVt T T xt+%>
1 k£l
P X 3 G ENY ( wl O Y [
trr T Tl trr T Terd
I I
=0
Therefore, from equation (22)), we obtain
B B 2 1 @ 2
£ U Terd T Terd ] Tz ZE U Tepz T Ty }
B @ - 2
=3k |2, — 7y (24)
K3
where we make use of (T4).
O
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Stage 2 mixing: Relay Gossip Here we prove that

} Brr

— Xy, 2
z t+2

E {Hxﬂ_z _it+4

Proof. For the second stage of aggregation, we have:

2
- 2 1 B
e[ s } e (|15 (o - as)
" ieln.]
_ 2 1 i
L B[l ] SRy~ patly )]
zE[nr] T ity
(25
Now recall that
CPREEAp— ® (D) (k)
l‘t+%*$f,+%*m (It+% Tyy )+ Z 7, (xt+2 If-&-%)
€n-\ {7}
This implies that
n2 ZE K 5 $t+2»$§+)s %%ﬂ (26)
1753
= (@) = (4) _
[ AG) + 1) A(J) +1) <xt+§ Tl Tz T xt+§>]
T ze[n 13
: I’ii) (k) T (4) -
72 Z Z 7 1 <xt+3_$t+g’xt+2_$t+g>
" iClng) i kiR AW +1)(AG) +1) 3 3 %y 2 2
) 2:2:2: > 5z *) ®
72 i - <$t+g—jt+2,$ﬁ't+g—i‘t+g>
" 1€[n,] JAi ki k#g 174,147, 14k (A +1)(AD) +1) 1 i 2 2
27)

Now note that by symmetry, for any 7, j € [n,], we have

8 LA@ VR 1>} —F {<A<l> G 1)]

Similarly

7V
(AW +1)(A®) +1)

7%
(AW +1)(AU) +1)

and

Iél)If)

Q%W
(AD +1)(A®) +1)

(A £ 1)(AG) 1 1)

33



Under review as a conference paper at ICLR 2026

This implies that all three terms in (27)) can be written as

DIPI T ARV Y

i€[n] j#i

where c is a positive constant. We also have

i€[n.] j#i 1€[n,

> 2 ey —migaty —Tug) = X <$£22 ~ Ty (o) —ﬂft+i)>
]

lE[TLr]

Therefore all the terms in (27) are non-positive. Combining this with (23], we obtain that

2 2
E [waﬁ T T4z ] < n2 Z U Typs ~ Tee3 }
1€[n,]
1 ) 2
SBM,*Z’CEE:L*EH%
T T i€[n,] !

where the second inequality uses (I9). Combining this with Lemma [A.6 then concludes the proof.
O

Stage 3 mixing: Relay-to-Leaf Pull Here we have:
2l B O
| | = e S ey e
Proof. Note that we can expand the norm as follows:
) 2
l Z Yy — 7
e
1 o P 1 N = () =
= w8 [0 o |+ G B[O 20 -5)] en
i i#j

For the third stage of communication from relays to leaves, we denote x;y; as y and z, 43 as T,
replacing n with n;. For the i-th leaf, we have:

i = 1 % k
T~ Ty = ZIO( ra Ty

Typ1 — Typs

]

E[llg -3l =

where I,(CZ) is an indicator function that represents the connectivity between leaf ¢ and relay k. We
can thus write the second term in (28)) as

E [<17§21 - it-&-%vxg-)l - jt+%>

B N 1
S E [ 'y —a) =

i£] €[]

b
S

ke[n,] le[n,]

(D) 7(5)
IIJ N . >]

O] 7
n (s = ey Tty ~ Teay

(29)
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Now note that by symmetry, for any 7, j € [n;], we have,

E {Il(ci)l.l(j)} —F {Iél)l'f)}

This implies that all three terms in (29) can be written as,

_ ) _
—$t+%’xt+% —.IH_%

B3 Y (a

ke[n,] len,]

=c-E Z’
3| K.

wlw

2
_ = (k) _ = O _ s
Teps 7 Tt g +Z<xt+% R R

k£l
21
Therefore, from equation (28)), we obtain

g T
2
E D ] [Hth Tpys
ﬁrl O
::;EZE:E oty =2

where we make use of (20). O

=c-E

=0

|

Typ1 — Typs

2
] (30)

D.5 PROOF OF LEMMA

The expected consensus distance and gradient variance across leaves are bounded as follows:

1. Consensus Distance Bound:

NTR: 1+3
[H o] } <90 LEIIGL 5 207 £ 1),
(1-Brar)
,JG nl
2. Gradient Variance Bound:

1

2 X Bl
1

i,j€[ni]

@ O|? 2 42
X 9; < 15(c* + H7).

Proof. For any i € [n;], we have
9" = g7 = 9 =050 (af7) + VO (27) = VD (@) + VSV (&)
— V9 () + VD (z,) — vf(])( )+Vf(])( )_ggj)

where g, is the stochastic version of V f(?) (xi“). Thus, using Jensens’s inequality, we have,

= P <ol 59 () sl () -0 o
solloss () s ol 50 ()

+5|vs0 @) - v @)
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Taking the conditional expectation, we have,

]Et[gt

)< [ -39 )] 0 (6) -]
| 5E, [vau) () = w50 (J-Ut)m L 5E, Mgt(j) v (o) m

+ 5E, [HW(” (&) = VY (m(ﬂ (1)

Now by Assumption[d.2} we have,

E, {Hgt(z) L V0 (zgz))‘ﬂ < o2 32)
By Assumption[d.1} we have,
B |[970 (o) - 91 @ | < 228 [[of? — ] (33)
Thus, by Assumption[4.3] and Remark [A.6] we obtain that,
7312 3 E {va“’(:c )= VIO @) } < 2> (34)

i,j€[n]

Combining (31, (32), (33), and (B4), and taking total expectation from both sides, we obtain that,

2
- th } +1002 41042 (35)

1 ) _ ) 2] _ 10L?
n2 2 {Hg H = n 2" ‘x
L jeny J ]

1€(ny
Now Remark [A-6]yields
1 ; 2] BL2 ; 12
= 3 E {Hgi "= g } <= [Hx§ )= 2| ] +1002 + 1042 (36)
1. ny .
i€ [ni] [n1]

We now analyze ni? >ijemn] B U x

§£1/4 = ICEZ) ygg ") We obtain for all i, j € [r], that

12
xgj ) H } . From Algorithm 1, recall that for all i € [n;], we

have x

() 2
E |:’ 4 t+4

2 . . . . 2
| < |l -2~ 26” - o]

; 12 1 ; 12
E|:HJ)£)—1‘§])H } —|—<1—|—C> ’yQIE {Hgt)—g,gj)H } 37
]

From (17)), we have

1 (i) ()
2 2 ety - oty
T odg

2l _ B @ _ L0
< a2, -4

)
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Combining with (37), we get
1 i 2 Bur 12
MZIE{ o), —all, } §(1+c)n?ZIE“xt 20 }
) 2]
1Y 2B @ _ 0|
+(1+C>7 nlgiZjE[gt — 9t H (38)

From (T9), we also have
7 3«12, -

We substitute (38) here to get:

|

] o ZE [H Tipz = tig

1 i j 2 rPrr i K

L 38 |Jay -] s 0+ 0 25 S | |ul? - (39)

) Loy
1 2/6lrﬁr'r (i) () 2

+<1+C>v TfZJ:E |97 = 92| (40)
Also, from (ZT)), we obtain
ﬁlr (i) W |2
nz2 ZE l:th-H - $t+1H } = ‘ 143 —Ccti%
0j i ;

We combine this with {0) to get

1
72|

. 2 . (12
.Z‘Eﬂl — It+1H :| < (1 —+ C) 5;311 ZE |:H;C§l) _ SCEJ) :|
l 17‘7

1\ »Brar o o|?
() e )

For ¢ = ljﬁiiTGGLL, we obtain that,

i MK 1+3Brgr 1 i ;
zgll _Iz(fi-)lH } < 1 2 Z Hxi)—x?)

2]

. ny -«
i,j€[ni] 1,5€[n]
1+35TGL 5 1 NE
t1-3 i gt(J)H
TGL np ij€n)
Combining this with (36), we obtain that
1 1+35TGL 1 3112
7 2 e[l -] < o
l 4,J€[n]
1+3 L K
4 FopTeL 5TGLﬂ 222 Sk {H — 0| } +100° + 10
1—-Brcr
i,5€[ny]
1+3Brcr 1+ 3Brcr 9.9\ 1 M1
- ) X B -
( 1 +95 1~ Bror, Brary =~ Z x x4
i,5€[ni]
1+ 3Brar

o BTG v2(100? + 10H?).
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Now note that from Remark we have B¢z, < 1 — 1 which implies that

2 [ (1 - Brer)?
(20L)2 — 20B7rar(1 + 3Brar)L?

IN

v

Therefore,

BTG 72 (100% 4 10H?).

=D

1 + 6TGL 1 1 + 35TGL
rih ol | < Bl ]+

Unrolling the recursion, we obtain that,

BTGL’Y (0? +H?).

i NE 1+ 3Brar
[xf:)_xg])H]SQO(l_ﬂ BE

Combining this with (33), we obtain that,

1 i 2
= > B[l o

1,5€[n]

] < 15(0” + H?).

D.5.1 PROOF OF LEMMA [A 3]

The expected gradient norm of the global objective satisfies the following upper bound:

E [HVF(@)HQ} < %E [F(Z:) — F(ZTt41)] 2 2 ZE {H _xt H ] 4LVU

4L
+ TE[ Hi’t.i,_l - jt—i—%

3l

+ Hft+% — Tyq2 + Hft+% — Tyqd

Proof. Consider an arbitrary ¢ € [T]. Then from the smoothness property, we have:

F(Zt11) — F(Zt) < (T4

_ _ L, _ _

( — 2, VE(Zy)) + §||$t+l - xt”z

= (Tpq1 — Typs 243 — T2+ T2 — Tyl 041 — e, VE(2¢))
L

- - - - - - - 2
+t3 |Zes1 = Tiys + s —Tpyp2 + T2 — Ty 1 T30 —Lil[7 (41)

From Lemma[AT] we have
E[Z1] =E[Ty 2] =E[7,2] =E[7,1].
Now, we take conditional expectation on (#I)) and use Lemma[A]to get
By [F(Zr41) — F(Z4)] < (B¢ [Teg1 — Te], VF(24))
L _ _ _ _ _
+ E]Et |:th+1 — Ty s Tl — T2 HTyy2 — Typps H 01 — Y| }
]

2
] (42)

~A(TFy V(@) + 278 [lg] + 208 ouss - 20,

1 2LE, U

2] +2LE, “

xH%—xH% ‘TtJr%_xHi
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where VF; = L3 V[0 )z, g = = Diclml gg), and2 we make use of Jensen’s in-
equality. Then we use the E[g;] = VFy, and Eq[||ge — VF,||] < o

Vo

By [F(5041) = F(50)] < —y(VFy, VF(@)) +2L7E [ VF (@) |*] +2L

+2LE, [thﬂi — Ty

2 2
] +2LE, [thhﬁ — Ty ] (43)
Then we use v < ;7 to get

—YVF, VE@)) + 2L [VF [ < S (=2(VF, VF(T) + |[VEF|*)

N2 2

(=|IVF@) || + [[VF () = VF|[*).  (44)
Combining (@3) and {#4), we obtain

~ 2,2
B [F (f11) = F (2] < 3 [VF @)|* + | VF (@) - VE||" + 2077

2 2
+2LE, [ T } +2LE, U Trey — s } +2LE, U Tyiz
Taking total expectation, we obtain
A 2,2
B4 [F (01) = F (2] < =3B [IVF @)I°] + 3B [|VFG@) - VA|*] +202
2 2
+2LE, “xm ~Zys } +2LE, {Hmﬁ T } +2LE, {th+3
(45)
Now, note that
B 2
== 2
B[I7F - wrwl] =5 || 5 s
|VF: = VE@)||"| =E . }: vl }: T
i€[ny] Ze["l]
B 2
-E||— Z (VIO el - V@)
’LG nl

IN

- E U(Vf@(x?)) - Vf“)(a:t)m

>l =l

L? { @ 0
—__ E ‘ v J
2n? Z

Ly' — Ly
i,5€[ni]

(@ _ =

Ty — Tt

A
EIE
™
=

1
)
where we use Assumption.T|and Remark [A-6]in the above two inequalities. Now, substituting this

back in @3).

B[P (5ean) ~ F (0] < 35 [IVF @] + o 3 E[

zme

112 2 2
=l } 42127
n

+ 218 ovss = 2o ] + 228 s~ 2

39

[

7$t+i

_xt+%

2
:| + 2LE,; |:H$t+i —CfitJr%

]

]

2

]



Under review as a conference paper at ICLR 2026

Rearranging these terms, we get

E[IVF@)I] < ZE[F@) - Pla) ZE &

o o] ALyo?
—xﬁj)H } y 27

n
2]

4L _ _
| LA

+H$t+%—xt+% Tyyz = Tppl

D.6 PROOF OF REMARKI[A.6

For any set {xgl) }icin) of n vectors, we have
1 .
o2 e —wl = o Z [
i€[n] i,j€n

where 7, = * Yien] xg )

Proof
i j 1 o - N
oz 2 el a1 = 3 el =3 - @ - w))?
i,j€[n] i,j€[n]
1 D - h o D -G -
== 2 [lat? =2 + 2l - 22 -2l — 70,2l —70)]
i,j€[n]
1 2 7 _ 1 _
=f§j ol — 2> - = <x§>—xt, Z<xiﬂ>—xt>>.
i€[n] i€[n] j€ln]

Noting that 3 (., (a:gj ) — #;) = 0, yields the desired result.

E ADDITIONAL THEORETICAL ANALYSIS

We analyze how the condition b,yn; < bj;n, leads to a tighter upper bound on gy, thereby
ensuring stronger consensus among the leaf models. This inequality implies that the total indegree
of relays during the leaf-to-relay (Stage 1) mixing exceeds the total indegree of leaves during the
relay-to-leaf (Stage 3) mixing. Intuitively, this allocates a higher communication load to the relays,
which they are structurally designed for. Under this condition, the resulting lower Sr¢ . translates
into faster convergence.

Proof.
1 by — 1
=— 11— 46
61 bl’r < n; — 1 ) ( )
1
ﬂrr <1--
e
1 by —1
< —(1-— 47
fri < by < Ny — ].) 47
By combining and (7),
Buy B < 1 ng— by ng — by

~ bbby ny—1 n.—1
br b,
(=313

Ty

T by (1- 1) (1 1)

Ny
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If we have b,;n; < b;,n,, then we have b < % Leta = %L and b = % Since we have a < b,

n
we have 1T’b < 177“ Thus,
1 (1-a)? 1
@ (- 51— 2)

BirBri <

This is decreasing in a and hence in b,;. Thus we substitute the lowest leaf budget, b,; = 1 to obtain
1 (1-3)° 1
N1y (%)2 (1-— n%)(l — ni)

T

ﬁlrﬁrl S

n.—1 n,

Brar < o (1—1>

O

Hence, when the load-balancing condition n,.b;,- > n;b,; is satisfied, TGL attains a strictly tighter
(smaller) upper bound on 3 than Epidemic Learning, whose /3 is bounded only by the looser estimate

Ber <1-—1.

F LLM USAGE

We used large language models solely to assist with rephrasing and improving the clarity of our
writing. No LLMs were used for ideation, experimental design, algorithm development, or code
creation.
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