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ABSTRACT

Although the theory of deep neural networks has been studied for years, the mech-
anism of pooling layers is still elusive. In this paper, we report the angle contrac-
tion behavior of pooling strategies (the average pooling and max pooling) at ini-
tialization. Compared to the relu-activated fully connected layer or convolutional
layer, the pooling layer stands as the main source of contraction of the angle be-
tween hidden features. Moreover, we show that the cosine similarity between
average pooling features in convolutional neural network is more data-dependent
than fully connected network, while the max pooling is not sensitive to the data
distribution in both architectures. Our results may complement the understanding
of the representation learning.

1 INTRODUCTION

The idea of stacking many layers to make truly deep neural networks (DNNs) is what arguably
led to the neural net revolution in the 2010s. Indeed, from a function-space point of view, it is
known that depth exponentially improves expressivity Poole et al. (2016); Eldan & Shamir (2016).
However, a noteworthy fact is that under standard initialization deep neural networks become in-
creasingly degenerate as depth gets larger. One type of degeneracy is known as vanishing/exploding
gradients He et al. (2015b); Hanin (2018). Another type of degeneracy is that a neural network
contracts all features to restricted directions, and we call it angle contraction in this paper. Cho et
al. were the first to compute the relu-activated fully-connected neural network, showing that it acts

as an arccosine kernel Cho & Saul (2009): r̂(ρ) =

√
1−ρ2+(π−cos−1(ρ))ρ

π for the cosine similar-
ity ρ(x, y) = ⟨x,y⟩

∥x∥∥y∥ ∈ [−1, 1] between tensors x and y (the notations and terms are presented in
section 1.3). The kernel will contract the angle of the features. This phenomenon later has been
reported and inspected by several researchers Avelin & Karlsson (2022); Schoenholz et al. (2017);
Yang & Schoenholz (2017); Hayou et al. (2019); Nachum et al. (2022). which is also termed dual
activation of relu network Daniely et al. (2016). Hayou et al. studied the arccosine kernel of the
NNGP of ResNet Hayou et al. (2021). Martens et al. dealt with the degeneracy phenomenon in the
approach of activation function shaping Martens et al. (2021). Nachum et al. Nachum et al. (2022)
reported that for convolutional neural networks, the extent of degeneracy was dependent on the type
of input. A detailed analysis of the angle contraction between features for deep ReLU network is
performed by C. Jakub and M. Nica Jakub & Nica (2024).

1.1 CONTRIBUTION

The relu activation is not the only source of angle contraction. In practice, the well-known CV
models such as VGG, Resnet, and DenseNet can ue batch normalization to avoid the contraction.
However, we still notice the angle contraction phenomenon at the penultimate layer, i.e., the layer
before the final classifier layer, the main reason of which is that all the models use global average
pooling before the feature is fed to the classifier. The average pooling contracts points heavier
than a fully-connected layer or a convolutional layer and stands as the main source of the the angle
contraction at initialization. Other than average pooling, the other popular pooling strategy, the max
pooling, also contracts points severely. In contrast to Nachum et al. (2022), we find CNN without
average pooling fits the usual arccosine kernel for several types of data (Gaussian, Cifar10, Cifar100,
and MNIST) which is data-independent, while CNN with average pooling induces data-dependent
contraction.
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The contribution of this paper is as follows:

1. we report the angle contraction phenomenon caused by pooling strategy; 2. we show theoretically
why the angle contraction of average pooling is not data-dependent when pooling strategies are
applied to fully connected network. 3. We show theoretically that angle contraction is not data-
dependent for max pooling in both FCN and CNN 4. we find empirically that average pooling in
CNN results in a data-dependent angle contraction. 5. we explain why average pooling features of
the Gaussian images experience severe contraction.

Figure 1: Angle contraction of random pairs in mean-shifted cifar10 dataset through DLA,
ResNet32, and DenseNet150. The horizontal axis is the cosine similarity of relu-activated features,
and the vertical axis is the cosine similarity of average pooling features.

1.2 RELATED WORK

There are several mainstream pooling strategies and they have a lot of applications in deep neural
networks. The most relevant are average pooling and max pooling.

The average pooling was initially introduced in LeCun et al. (1989) and used in the first convolu-
tional neural network LeCun et al. (1998). An average pooling layer partitions the input into square
(or rectangular) regions and computes the average value of each region. lin et al. proposed Global
Average Pooling (GAP) to aggregate the feature maps in the classifier Lin et al. (2014). Popular deep
learning models such as GoogLeNet Szegedy et al. (2014), DenseNet Huang et al. (2017), ResNet
He et al. (2015a), and DLA Yu et al. (2018) use GAP by default.

Max pooling was introduced in Ranzato et al. (2007) to learn sparse representations for deep be-
lief network. It partitions the input into square (or rectangular) regions and computes the maximum
value of each region. it has been applied to myriads of models for classification and segmentation in-
cluding AlexNet Krizhevsky et al. (2012), VGG Simonyan & Zisserman (2015), U-NetRonneberger
et al. (2015), and YoloRedmon et al. (2016).

Angle contraction phenomenon is mostly studied for MLP and CNN from the perspective of Neural
Tangent Kernel Jacot et al. (2018). Arora et al. (2019), and Bietti and Mairal (2019) give expresv-
sions for the NTK and the convolutional NTK (CNTK). Arora et al. (2019) provide concentration
bounds for the NTK of fully connected networks with finite width. Bietti and Mairal (2019) derive
smoothness properties for NTKs, e.g., upper bounds on the deformation induced by the NTK in
terms of the initial Euclidean distance between the inputs. A related approach to NTK is taken in
(Bietti, 2021) where convolutional kernel networks (CKN) are used.

at the time of the submission, we are not aware of literature that studies the contraction phenomenon
from the perspective of pooling layer.

1.3 NOTATION

R The set of real numbers.
d the size of image

2
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D The set of double index {(1, 1), (1, 2), . . . , (d, d)}
[n], [m,n] The set {1, 2, . . . , n} and the set{m,m+ 1, . . . , n} for m ≤ n, resp.
ai Aij , The i’th entry of vector a, and the (i, j) entry of the matrix A, resp.
αi, βj The patch i of 2D tensor x and the patch j of 2D tensor y, where i, j ∈ D, the ordered

set of coordinates of the pixels in images x and y of size d× d.
Ik The identity matrix of dimensions k × k.

vec(·) The vectorization operation of a matrix or a tensor in some systemic order.
⟨x, y⟩ The standard inner product between vectors x and y. For matrix or tensor x and y (of

the same dimensions) the inner product is defined as ⟨x, y⟩ = ⟨vec(x), vec(y)⟩.
∥x∥ The standard Euclidean norm, induced by the standard inner product: ∥x∥=

√
⟨x, x⟩.

ρ(x, y) The (cosine) similarity. The similarity between x and y is defined as ρ = ⟨x,y⟩
∥x∥∥y∥ .

ρ̄(X,Y ) The mean similarity. ρ̄ between random X and Y is defined as ρ̄ = E⟨X,Y ⟩√
E[∥X∥2]E[∥Y ∥2]

.

r(x) The ReLU applied to x by r(x) := max{0, x}; for a tensor x the r is applied entrywise.

r̂(ρ) The dual activation of the ReLU at ρ ∈ [−1, 1]: r̂(ρ) :=
√

1−ρ2+(π−cos−1(ρ))ρ
π .

N (µ,C) A Gaussian vector with mean vector µ and covariance matrix C.
ind(α) index of the entries of patch α of a 2D tensor (the 2D image).
A, M average pooling operator, max pooling operator, average over discrete multiset S or all

entries in a 2D tensor, resp.
max(·) the maximum value of a set or the maximum pixel value of a 2D tensor.
Ave(·) average over discrete multiset S or all entries in a 2D tensor, resp.

2 THE PROBLEM SETTING

The networks we study are 1-hidden layer relu fully connected network (abbr. FCN) and 1-hidden
layer relu convolutional neural network (abbr. CNN).

Let din and dout be two positive integers, FCN is defined as

F (x) = r(Wx) (1)

where x ∈ Rdin and W is a dout × din matrix. we call F (x) the relu-activated feature. Let
dout = mn and the index of hidden neurons be partitioned into m components, say the partition
P = {P1, P2, . . . , Pm} with Pi = {in + 1, . . . , (i + 1)n} for i ∈ [m]. Then the pooling operator
A : Rmn → Rm for FCN is defined as:

A(F (x)) := (A(F (x))1,A(F (x))2,A(F (x))m) with (2)
A(F (x))i = Ave({xi}i∈Pi

) ∀ i ∈ [m]. (3)

we call A(F (x)) the average pooling feature. Similarly, we can define M : Rmn → Rm over the
same space as

M(x) = (M(x)1,M(x)2,M(x)m) with (4)
M(x)i = max({xi}i∈Pi) ∀ i ∈ [m]. (5)

M(F (x)) is termed max pooling feature.

The output z ∈ Rd×d of a single convolutional kernel is given by

z = r(W ∗ x) (6)

where x ∈ Rd×d is the input, W ∈ Rk×k is the kernel, and k is kernel size of W . The two
dimensions (both are d in our setting) of x and z are the image dimensions (height and width), and
in this paper, we only consider 1-channel images theoretically. For convenience, we assumes k is
odd. the ∗ operation is the convolution

(W ∗ x)uv =
∑

i,j∈[− k−1
2 , k−1

2 ]

Wijxu−i,v−j .
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Then the CNN is defined as F : Rd×d → Rd×d×m by:
F (x) = (r(W 1 ∗ x), r(W 2 ∗ x), . . . , r(Wm ∗ x)) (7)

where m is the number of channels. We abuse the symbols W , F , and m Since the two cases since
there is no ambiguity. Now we can define the global average pooling feature of the relu-activated
CNN feature F (x):

A(F (x)) := (Ave(r(W 1 ∗ x)), Ave(r(W 2 ∗ x)), Ave(r(Wm ∗ x)) (8)

Similarly the (global) max pooling feature of the relu-activated CNN feature F (x) is defined as
M(F (x)) := (max(r(W 1 ∗ x)),max(r(W 2 ∗ x)),max(r(Wm ∗ x))) (9)

For simplicity, denote Ax := A(F (x)) and Mx := M(F (x)) in the following content.

3 EMPIRICAL EVIDENCE

This section presents the empirical verification of the angle contraction of pooling layers. The
architectures we use in the experiments are 1-hidden layer relu FCN and 1-hidden layer relu CNN.
For FCN, the width of the hidden layer is 1000; For CNN, the output channel is 640. Both models
use standard He initialization He et al. (2015b). The pooling layer for CNN is a global pooling, and
that for FCN is a 1D average pooling with kernel size = 50.

3.1 ARE THE POOLINGS DATA-DEPENDENT?

The answer is: It depends. We show that for fully connected layer, Figure 3.1 shows that both
pooling strategies result in a heavy contraction for a fully connected layer, where all the cosine sim-
ilarity values are nearly 1; Figure 3.1 shows for convolutional layer, average pooling has a slighter
contraction than the max pooling. These observations conform to the theoretical analysis.

It is noticeable that max pooling contracts points heavily for both FCN and CNN whatever the data
distribution is; On the other hand, the average pooling induces a mild contraction on natural datasets
cifar10 and cifar100, but a severe contraction on gaussian noise images and artificial images from
MNIST.

To explore the variability of the average pooling we construct a toy data pair x =(
1κ×κ −1κ×(d−κ)

−1(d−κ)×κ −1κ×κ

)
, and y =

(
−1κ×κ 1κ×(d−κ)
1(d−κ)×κ 1κ×κ

)
, which have zero sample mean

and unit sample variance. Then Table 2 shows how the the cosine similarity of two average pool-
ing features (the penultimate column of Table 2) changes with the parameter κ, making it difficult
to make a general conclusion about the angle contraction of global average pooling in CNN. On
the contrary, the cosine similarity of the max pooling features (the rightmost column of Table 2)
or relu-activated features (the middle column of table 2) is not affected easily by κ, indicating the
insensitivity of the max pooling (or relu activation) to the data.

κ ρ(x, y) ρ(F (x), r(F ∗ y)) ρ(A(F (x)),A(F (x))) ρ(M(F (x)),M(F (x))

5 -0.9922 0.0002 0.0187 0.7247
10 -0.9684 0.0006 0.1030 0.6787
15 -0.9177 0.0012 0.3587 0.7176
20 -0.8696 0.0017 0.6619 0.7256
25 -0.7952 0.0022 0.9771 0.7174

Table 2: Variability of the cosine similarity of pooling features

4 THEORETICAL ANALYSIS OF THE CONTRACTION

In this section, we theoretically analyze the contraction behavior of the average pooling features.
The contraction in FCN is data-independent in theory, and the contraction for CNN only works for
Gaussian data due to the complex correlation between the entries of the pooling features.
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Figure 2: Cosine similarity of pooling features (vertical axis) vs cosine similarity of relu-activated
features (horizontal axis) in fully-connected network for centered cifar10, centered cifar100, and
gaussian data.

Theorem 4.1. For FCN, let the entries of W be initiated as i.i.d standard normal random variables.
Then for any pair of vectors x and y, 1− ρ(Ax,Ay) = O(n−1)

The theorem is easy to understand; it indicates that as long as n (kernel size) is large, the angle
between average pooling features is close to 0.

The same technique is applicable to the max pooling strategy:
Theorem 4.2. For FCN, let the entries of W be initiated as i.i.d standard normal random variables.
Then for any pair of vectors x and y, 1− ρ(Mx,My) = O(log−1n)

It is surprising that max pooling in CNN has almost identical contraction behavior to that in FCN.
This is explained in the following corollary.
Corollary 4.3. For CNN, let the entries of W be initiated as i.i.d standard normal random variables.
Then for any pair of vectors x and y, 1− ρ(Mx,My) = O(log−1n)

The corollary holds true since the variance is very small after rescaling (see the proof in the ap-
pendix), but this argument does not hold for average pooling since the standard deviation is the

5
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Figure 3: Angle contraction of poolings after convolutional layer for cifar10, cifar100, and gaussian
data.

same order of magnitude as the mean (see the discussion in the appendix D). We realize that for
average pooling features, the contraction behavior may be more complicated. In the following the-
orem, we prove that the contraction behavior is chaotic for Gaussian data, i.e., only depends on the
size of the image. Let C := E[Ar(x)Ar(y)]

(E[(Ar(x))2]E[(Ar(y))2])1/2 , where the expectation is taken over all the
randomness, then we have the following theorem:

Theorem 4.4. For x and y whose entries are i.i.d from N(0, 1), and whose joint distribution is
(x, y) ∼ N(0, Id2) then ρ(x, y) ≈ 0, ρ(r(x), r(y)) ≈ 1

π , and C = 1−O(d).

5 DISCUSSION AND LIMITATION

Nachum et al. (Nachum et al. 2022) show that 1-hidden layer CNN is a nearly isometrical map
on the natural image data such as cifar10, cifar100, and ImageNet. We show empirically that this
phenomenon is the consequence of the non-centering of the data rather than the naturality of the
data. We normalize cifar10 dataset by its sample mean and standard deviation and shift them by
a constant. We randomly pick 300 pairs of images, feed them into the CNN, and then calculate
the cosine similarity values of all the pairs. Figure 5 shows the angle contraction is not affected

6
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by a small mean shift (Figure5(a)-(c)); as the shift increases, the degree of contraction becomes
slower than the arccosine kernel (Figure5 (d)-(e)). we observe that at mean = 2.0 (Figure5(e)), the
contraction behavior mimics the original non-centered cifar10 data (Figure5 (f)). On the other hand,
the average pooling in CNN is data-dependent.

Figure 4: Angle contraction of random pairs in mean-shifted cifar10 dataset through the 1-hidden
layer CNN. The horizontal axis is the cosine similarity of the relu-activated features and the vertical
axis is the arccosine kernel r̂(ρ) of the cosine similarity of the input data. The label shows the extent
of the mean shift.

We are not able to give a general answer to the concentration behavior of the average pooling in
CNN. We have constructed examples to show that cosine similarity between average pooling features
has a high variability compared to that in FCN, we hope to obtain a more thorough theoretical
justification in future work.

According to the experiments, the theoretical bound for max pooling seems not optimal since the
maxpooling has heavier concentration than average pooling in both architectures. The reason behind
the observation may deserve inspection.

It remains unclear how the contraction behavior of average pooling at initialization connects to the
performance of the specific architectures. Combining Figure 1.1 and Figure 5, we can see that DLA,
DenseNet150 and ResNet50 have increasing contraction behavior, that is, similar relu-activated fea-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

tures have similar average pooling features in the sense of expectation of all the random pairs, and
vise versa; ResNet32, however, does not follow this behavior and induces chaotic cosine similarity.
DLA, DenseNet150, ResNet50, and ResNet32 achieves 96.4%, 95.8%, 95.2%, 93.5% test accu-
racy on cifar10, resp. Can we measure the generalization of the learning model by checking its
contraction behavior at initialization? This will be left as an open problem for the future.

Figure 5: Angle contraction of random pairs in centered cifar10 dataset for ResNet32 and ResNet50

6 CONCLUSION

We find that the main source of the angle contraction happens at the global pooling layer in most deep
learning models. We show that pooling strategies are data-insensitive in FCN because the pooling
will reduce the variance drastically while keeping the expectation unchanged. This phenomenon
still holds for max pooling in CNN but fails for average pooling in CNN, since the variance is not
reduced due to the complex correlation between patches. We hope our work will shed light on the
understanding of the deep learning black box and improving the performance of the learning models.

8
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A PROOF OF THEOREM 4.1

Proof. Since average pooling and max pooling are positive homogeneous, without loss of generality,
we assume that Var(xi) = Var(yi) = 1 for all i ∈ [m]. If we can show that ∥g(x)− g(y)∥≤ ϵ with
high probability for some small positive ϵ (g is any function), the correlation between g(x) and g(y)
is then lower bounded by

ρ(g(x), g(y)) =
⟨g(x), g(y)⟩
∥g(x)∥∥g(y)∥

=
1

2

∥g(x)∥2+∥g(y)∥2−∥g(x)− g(y)∥2

∥g(x)∥∥g(y)∥

=
1

2
(
∥g(x)∥
∥g(y)∥

+
∥g(y)∥
∥g(x)∥

)− 1

2

∥g(x)− g(y)∥2

∥g(x)∥∥g(y)∥

≥1− 1

2

∥g(x)− g(y)∥2

∥g(x)∥∥g(y)∥

≥1− 1

2
(
∥g(x)∥

ϵ
− 1)

−2
,

which is close to 1. We want to show that g = A yields collapsed features. Indeed, for average
pooling A : Rmn → Rm,

∥A(F (x))−A(F (y))∥2=
m∑
i=1

(A(F (x))i −A(F (y))i)
2 (10)

is a sum of i.i.d. random variables. In particular, for each i ∈ [m], since A(F (x))i and
A(F (y))i are identical distribution (not necessarily independent), E[A(F (x))i] = E[A(F (y))i],
and Var(A(F (x))i) = Var(A(F (y))i) = (12 − 1

2π )
1
n ≤ 1

4n

E[(A(F (x))i −A(F (y))i)
2]

=E[(A(F (x))i − E[A(F (x))i]−A(F (x))i + E[A(F (y))i])]
2

≤Var(A(F (x))i) + Var(A(F (y))i)

=2Var(A(F (x))i)

=
1

2n
and moreover,

∥A(F (x))i −A(F (y))i∥ψ2

≤∥A(F (x))i − E[A(F (x))i]∥ψ2
+∥A(F (y))i − E[A(F (y))i]∥ψ2

≤2∥A(F (y)(x))i − E[A(F (x))i]∥ψ2

≤2

√
C

n
∥xi∥ψ2

≤3

√
C

n
,

where the first inequality holds as the triangle inequality of normed space and the third inequality
holds since ∥

∑n
j=1 Xi∥2ψ2

≤ C
∑n
j=1∥Xi∥2ψ2

for independent mean-zero sub-gaussian Xi’s. The
above calculation yields

∥(A(F (x))i −A(F (y))i)
2∥ψ1

= ∥A(F (x))i −A(F (y))i∥2ψ2
≤ 9C

n
.

By Bernstein’s inequality for sub-exponential random variables [vershynin 2018],

P{∥A(F (x))−A(F (y))∥2> 10Cm

n
}

≤P{∥A(F (x))−A(F (y))∥2−E[(A(F (x))i −A(F (y))i)
2] > 9CE[(A(F (x))i −A(F (y))i)

2]}

≤ exp(−cmin(
m2

4n
,
m

2
)).
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Now it is left to estimate the value of ∥A(F (x))∥:

∥A(F (x))∥2

=

m∑
i=1

A(F (x))2i

=

m∑
i=1

(A(F (x))i − E[A(F (x))i] + E[A(F (x))i])
2

=

m∑
i=1

(A(F (x))i − E[A(F (x))i])
2 +m(E[A(F (x))i])

2 − 2E[A(F (x))i](

m∑
i=1

A(F (x))i − E[A(F (x))i])

≥m

2
(E[A(F (x))i])

2

≥m

15

which is due to the Bernstein inequality and Hoeffding inequality with ∥(A(F (x))i −
E[A(F (x))i])

2∥ψ1
≤ 9C

n and ∥A(F (x))i−E[A(F (x))i]∥ψ2
≤ 3

√
C
n respectively Vershynin (2018).

Applying the union bound, we conclude that the correlation is around 1−O(n−1) with high proba-
bility.

B PROOF OF THEOREM4.2

Proof. For max pooling operator M : Rmn → Rn, note that max(r(x1), . . . , r(xn)) =
max(0, x1, . . . , xn), and Borell-TIS Inequality Adler (2007) for the maximum of independent stan-
dard normal random variables is sub-gaussian such that

P{|M(x)i − E[M(x)i]|> t} < 2 exp(− t2

2
) (11)

for all i ∈ [m] and t > 0. Equivalently, there exists a universal constant K > 0 such that
∥M(F (x))i−E[M(F (x))i]∥ψ2≤ K. Then the argument w.r.t A is applicable to M and we obtain
with high probability

∥M(F (x))i −M(F (y))i∥ψ2
≤ K ; (12)

∥∥M(F (x))−M(F (y))∥2∥ψ1≤ nK2 ; (13)

E[(M(F (x))i −M(F (y))i)
2] ≤ 2/log(n) ; (14)

∥∥M(F (x))∥2∥ψ1≥ Cn log n (15)

The third inequality is from Talagrand’s L1 − L2 Inequality Chatterjee (2014); the desired result of
the theorem follows from Bernstein’s Inequality again.

The similarity of the two proofs is that the variance can be controlled very small while the expecta-
tion is relatively large.

C PROOF OF COROLLARY 4.3

Proof. we use the fact that ρ(x, y) = ρ(ax, by) where a and b are positive constants. let γ =
EMy

EMx

then ρ(γMx,My) = ρ(Mx,My). Right now the EγMx = EMy , and the technique of proving
theorem 4.2 is applicable to the scene, thus the bound still holds.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

D UPPER BOUND OF THE VARIANCE OF AVERAGE POOLING FEATURE

Proof. Note that Ar(W s ∗ x)’s are i.i.d random variables, for any w, v ∈ Rk×k,

|Ar(w ∗ x)−Ar(v ∗ x)|

=
1

d2
|
d2∑
i,j

r(w ∗ x)ij − r(v ∗ x)ij |

(i)

≤ 1

d2

d∑
i,j=1

|((w − v) ∗ x)ij |

=
1

d2

∑
i∈D

⟨αi, w − v⟩

(ii)

≤
∑
i∈D∥αi∥
d2

∥w − v∥

The inequality (i) holds since r(·) is 1-lipschitz; (ii) is Cauchy-Schwarz inequality.

By Gaussian Poincare’s Inequality, Var(Ar(w ∗ x)) ≤ (
∑

i∈D∥αi∥
d2

2
), which has the same order of

magnitude of E[(Ar(w ∗x))2]. The experiment shows that average pooling has a large variability of
angle contraction, which implies that the estimation of variance is tight without extra assumptions
on the distribution of data. This indicates that average pooling has more intricate properties than
max pooling.

E PROOF OF THE MEAN COSINE SIMILARITY OF AVERAGE POOLING IS
CLOSE TO 1

Proof.

C :=
E[Ar(x)Ar(y)]

(E[(Ar(x))2]E[(Ar(y))2])1/2
(16)

=

Ex,y
∑
i,j∈D

Er(⟨αi,W ⟩)r(⟨βi,W ⟩)/d4√
Ex,y

∑
i,j∈D

Er(⟨αi,W ⟩)r(⟨αj ,W ⟩)
√

Ex,y
∑

m,l∈D
Er(⟨βk,W ⟩)r(⟨βl,W ⟩)/d4

(17)

=

Ex,y
∑
i,j∈D

r̂(⟨ αi

∥αi∥ ,
βj

∥βj∥ ⟩)∥αi∥∥βj∥√
Ex,y

∑
i,j∈D

r̂(⟨ αi

∥αi∥ ,
αj

∥αj∥ ⟩)∥αi∥∥αj∥
√
Ex,y

∑
i,j∈D

r̂(⟨ βm

∥βm∥ ,
βl

∥βl∥ ⟩)∥βm∥∥βl∥
(18)

=

Ex,y
∑
i,j∈D

r̂(⟨ αi

∥αi∥ ,
βj

∥βj∥ ⟩)∥αi∥∥βj∥√
Ex

∑
i,j∈D

r̂(⟨ αi

∥αi∥ ,
αj

∥αj∥ ⟩)∥αi∥∥αj∥
√
Ey

∑
i,j∈D

r̂(⟨ βm

∥βm∥ ,
βl

∥βl∥ ⟩)∥βm∥∥βl∥
. (19)

Since x and y are mutually independent, let Λ = Eu,v r̂(⟨u, v⟩), the nominator can be written as∑
i,j∈D

Eu,v r̂(⟨u, v⟩)E[s]E[t] =
∑
i,j∈D

Eu,v r̂(⟨u, v⟩)E[s]2 = d4ΛE[s]2, (20)

where u, v
i.i.d∼ Unif(Sr2), s, t i.i.d∼ χk2 are mutually independent due to the polar decomposition

of standard normal random vector.

13
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Two terms in the denominator are the same, thus√
Ex

∑
i,j∈D

r̂(⟨ αi
∥αi∥

,
αj
∥αj∥

⟩)∥αi∥∥αj∥
√

Ey
∑
i,j∈D

r̂(⟨ βm
∥βm∥

,
βl
∥βl∥

⟩)∥βm∥∥βl∥ (21)

=Ex
∑
i,j∈D

r̂(⟨ αi
∥αi∥

,
αj
∥αj∥

⟩)∥αi∥∥αj∥. (22)

Since αi and αj are not independent for some pairs of i, j, we decompose the sum over j into two
parts, the dependent part and the independent part:

Ex
∑
i∈D

( ∑
{j∈D:ind(αj)

⋂
ind(αi) ̸=∅}

r̂(⟨ αi
∥αi∥

,
αj
∥αj∥

⟩)∥αi∥∥αj∥ (23)

+
∑

{j∈D:ind(αj)
⋂
ind(αi)=∅}

r̂(⟨ αi
∥αi∥

,
αj
∥αj∥

⟩)∥αi∥∥αj∥
)

(24)

= d2Ex
( ∑

{j∈D:ind(αj)
⋂
ind(αi) ̸=∅}

r̂(⟨ αi
∥αi∥

,
αj
∥αj∥

⟩)∥αi∥∥αj∥︸ ︷︷ ︸
1

(25)

+
∑

{j∈D:ind(αj)
⋂
ind(αi)=∅}

r̂(⟨ αi
∥αi∥

,
αj
∥αj∥

⟩)∥αi∥∥αj∥︸ ︷︷ ︸
2

)
. (26)

where we can show that

1
(i)

≤d2Ex9k2r̂(⟨
αi

∥αi∥
,

αj
∥αj∥

⟩)∥αi∥∥αj∥ (27)

(ii)

≤ (2k − 1)2d2Ex
1

2
(∥αi∥2+∥αj∥2) (28)

(iii)

≤ 2k4d2, (29)

with s′ ∼ χk2 . Inequality (i) holds since for any patch αi with size k, there are less or equal to
(2k − 1)2’s patches that are dependent (i.e., not disjoint) with α (see the illustration in Figure F in
the appendix); (ii) follows from the fact that inequality a2 + b2 ≥ 2ab. Moreover,

2 = (d2 − 9k2)d2ΛE[s]2 (30)

Thus we have

C ≥ d4ΛE[s]2

2k4d2 + (d2 − 9k2)d2ΛE[s]2
(31)

Assume k = d
1
2 . Note Λ ≥ r̂(E⟨u, v⟩) = r̂(0) = 1

π , and E[s] ≥ C for some universal constant
C Vershynin (2018), then C ≥ (1− 4k2

d2 + 4πk4

d2E[s]2 )
−1 ≥ 1− 9

C2d . The analysis can be extended to
give a result of tail bound of the cosine similarity using standard technique similar to Theorem 4.1
due to the i.i.d nature of the kernels at initialization.

F THE ILLUSTRATION OF THE NON-DISJOINT PATCHES
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Figure 6: The patches that are disjoint or disjoint with the patch αi. In the picture αj is not disjoint
with αi, and other gray patches is disjoint with αi.
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