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cluster-based framework. It is found that the most predict-
able MJO regimes occur before the active-MJO season 
(November–December), when ENSO has a strong influ-
ence on the future statistical behavior of MJO activity. In 
forecasts initialized during the active-MJO period (Feb-
ruary), both ENSO and the current state of MJO are sig-
nificant predictors, but the predictive information provided 
by the large-scale convective regimes in Tb is found to be 
smaller than in the early-season forecasts.
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1 Introduction

Organized tropical convection is a key element of global 
climate dynamics with direct impact on both short-term 
weather forecasting and long-term climate projections. 
Among the dominant modes of tropical variability, intra-
seasonal oscillations (ISOs) play a key role in explaining 
large-scale convective organization at subseasonal time-
scales while also influencing the global climate through 
extratropical interactions (Lau and Waliser 2011). The 
behavior of tropical ISOs is strongly influenced by the 
annual cycle (Wang and Rui 1990; Zhang and Dong 2004), 
resulting in significant differences between the coherent 
propagating patterns that emerge during boreal winter and 
boreal summer. The dominant boreal winter ISO is the 
well-known Madden–Julian oscillation (MJO; Madden 
and Julian 1971, 1972), a 30–90-day eastward-propagating 
pattern with zonal wavenumber 1–4. The dominant boreal 
summer ISO (BSISO) has a more emphasized poleward-
propagating pattern with a weakened eastward propagation 
(Wang and Rui 1990; Kikuchi et al. 2012). Besides being 

Abstract This work studies the spatiotemporal struc-
ture and regime predictability of large-scale intrasea-
sonal oscillations (ISOs) of tropical convection in satel-
lite observations of infrared brightness temperature (Tb).  
Using nonlinear Laplacian spectral analysis (NLSA), a 
data analysis technique designed to extract intrinsic time-
scales of dynamical systems, the Tb field over the tropical 
belt 15◦S− 15

◦
N and the years 1983–2006 (sampled every 

3 h at 0.5◦ resolution) is decomposed into spatiotemporal 
modes spanning interannual to diurnal timescales. A key 
advantage of NLSA is that it requires no preprocessing 
such as bandpass filtering or seasonal partitioning of the 
input data, enabling simultaneous recovery of the dominant 
ISOs and other patterns influenced by or influencing ISOs. 
In particular, the eastward-propagating Madden–Julian 
oscillation (MJO) and the poleward-propagating boreal 
summer intraseasonal oscillation (BSISO) naturally emerge 
as distinct families of modes exhibiting non-Gaussian sta-
tistics and strong intermittency. A bimodal ISO index con-
structed via NLSA is found to have significantly higher dis-
criminating power than what is possible via linear methods. 
Besides MJO and BSISO, the NLSA spectrum contains a 
multiscale hierarchy of modes, including the annual cycle 
and its harmonics, ENSO, and modulated diurnal modes. 
These modes are used as predictors to quantify regime 
predictability of the MJO amplitude in Tb data through a 

Electronic supplementary material The online version of this 
article (doi:10.1007/s00382-015-2658-2) contains supplementary 
material, which is available to authorized users.

 * Eniko Székely 
 eszekely@cims.nyu.edu

1 Courant Institute of Mathematical Sciences, New York 
University, 251 Mercer St., New York, NY, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00382-015-2658-2&domain=pdf
http://dx.doi.org/10.1007/s00382-015-2658-2


1474 E. Székely et al.

1 3

influenced by the annual cycle, ISOs interact with several 
modes of variability of the coupled atmosphere-ocean sys-
tem. These modes include interannual modes, in particular 
the El Niño Southern Oscillation (ENSO) (Lau and Chan 
1985; Kessler 2001; Hendon et al. 2007; Lau 2011), as 
well as the diurnal cycle (Chen and Houze 1997; Tian et al. 
2006; Ichikawa and Yasunari 2008). However, despite that 
tropical ISOs are a major source of predictability on intra-
seasonal timescales (Waliser 2011), accurate simulation of 
the MJO and other ISOs by large-scale dynamical models 
remains elusive (Hung et al. 2013).

A significant challenge in understanding the behavior 
of ISOs and their connections to other modes of variability 
is that the phenomena themselves are defined subjectively 
through some data analysis technique (Straub 2013; Kiladis 
et al. 2014). In the case of MJO and BSISO, the extensive 
range of techniques in the literature include spacetime fil-
tering (Wheeler and Kiladis 1999; Kiladis et al. 2005; 
Kikuchi and Wang 2010), empirical orthogonal functions 
(EOFs) (Lo and Hendon 2000; Maloney and Hartmann 
1998; Kessler 2001; Wheeler and Hendon 2004; Kikuchi 
et al. 2012; Ventrice et al. 2013; Kiladis et al. 2014), as well 
as hybrid filtering–EOF approaches (Roundy and Schreck 
2009). These techniques have been employed to extract ISO 
signals and construct indices from various data sources, 
with outgoing longwave radiation (OLR) and brightness 
temperature (Tb) typically employed as proxies for convec-
tive activity, and zonal winds, streamfunctions, and veloc-
ity potential data commonly used to represent circulation. 
Radiation and circulation data have also been combined to 
create multivariate indices taking into account both convec-
tion and circulation aspects of ISOs (Wheeler and Hendon 
2004; Ventrice et al. 2013). While the coarse-grained prop-
erties of dominant ISOs such as the MJO and BSISO have 
been fairly consistent among these methods, significant dif-
ferences exist in the details, including the identification of 
significant events (Straub 2013). Such differences impede 
the scientific understanding of ISOs as well as advances in 
their simulation and forecasting via numerical models.

Arguably, the discrepancies between ISO analyses in the 
literature are at least partly caused by the various types of 
ad hoc preprocessing steps to which the data is subjected 
prior to the extraction of ISO signals. Spacetime filtering 
methods require the selection of windows in the wavenum-
ber-frequency domain containing the signal of interest, and 
this often requires an estimation of a background spectrum 
(Wheeler and Kiladis 1999; Kiladis et al. 2005). In EOF-
based methods, various preprocessing techniques such 
as bandpass filtering (Kessler 2001; Kikuchi et al. 2012; 
Maloney and Hartmann 1998; Lo and Hendon 2000), sea-
sonal partitioning (Kikuchi et al. 2012), and running aver-
aging (Kiladis et al. 2014) are commonly applied prior to 
analysis to isolate the intraseasonal component of the data 

from other signals such as ENSO and the seasonal and diur-
nal cycles. EOFs and the related extended EOFs (EEOFs) 
are also prone to lack of physical interpretability due to 
imposition of the orthogonality constraint (Horel 1981; 
Kessler 2001; Groth and Ghil 2011). Another preproc-
essing approach common to both spacetime filtering and 
EOF approaches is to reduce the initial two-dimensional 
(2D) spatial data to one-dimensional (1D) representations 
through either symmetric or antisymmetric latitudinal aver-
aging in space (Kikuchi and Wang 2010; Kikuchi et al. 
2012; Tung et al. 2014a) or the Fourrier domain (Wheeler 
and Kiladis 1999; Kiladis et al. 2005). Even though aver-
aging is justified on theoretical grounds (Matsuno 1966), it 
will invariably lead to loss of information compared to the 
full 2D data.

Recently, in an effort to extract the MJO and other sig-
nals of interest for organized tropical convection with mini-
mal preprocessing of the data, Giannakis et al. (2012a) and 
Tung et al. (2014a, b) (hereafter, collectively TGM) have 
carried out an analysis of Tb data from the CLAUS multi-
satellite archive (Hodges et al. 2000) through a data analy-
sis technique called nonlinear Laplacian spectral analysis 
(NLSA; Giannakis and Majda 2012b, 2013, 2014). Blend-
ing ideas from machine learning (Belkin and Niyogi 2003; 
Coifman and Lafon 2006) and delay-coordinate maps of 
dynamical systems (Takens 1981; Broomhead and King 
1986; Sauer et al. 1991), NLSA seeks to extract spatiotem-
poral patterns from high-dimensional time series which are 
intrinsic to the dynamical system generating the data (in the 
present application, the coupled atmosphere-ocean climate 
system). A key ingredient of this technique is to replace 
the covariance operator used in singular spectrum analysis 
(SSA) (Ghil et al. 2002) and the equivalent EEOF analysis 
by a discrete Laplace–Beltrami operator constructed from 
the cloud of data lagged over a Takens embedding window. 
The eigenfunctions of this operator form a natural ortho-
normal basis for functions on the nonlinear data manifold 
sampled by the data, providing superior timescale separa-
tion (Berry et al. 2013) and the ability to capture tempo-
rally intermittent and modulated patterns (Giannakis and 
Majda 2012b; Bushuk et al. 2014). Such patterns may 
carry low variance and may fail to be captured by variance-
greedy algorithms such as SSA, yet may play an important 
dynamical role (Aubry et al. 1993; Crommelin and Majda 
2004). In the standard version of NLSA, the Laplacian 
eigenfunctions are combined with singular value decom-
position (SVD) techniques (Aubry et al. 1991) to construct 
biorthonormal spatial and temporal patterns analogous to 
EEOFs and principal components (PCs), respectively.

Using NLSA, TGM extracted a hierarchy of spati-
otemporal modes of variability from symmetrically and 
antisymmetrically averaged, but otherwise unprocessed, 
Tb data spanning interannual to diurnal timescales. In 
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particular, the NLSA spectra for the symmetric and 
antisymmetric data were both found to contain in-quadra-
ture pairs of MJO modes with intermittent envelopes dif-
fering significantly from the corresponding SSA patterns. 
Besides MJO, the NLSA modes included periodic modes 
representing the annual and semiannual harmonics of the 
yearly climatology, an interannual ENSO mode, as well 
as interannual–intraseasonal modes active in the Indo-
Pacific Ocean describing ENSO-modulated intraseasonal 
patterns. In addition, a variety of diurnal modes were 
extracted featuring clear modulation relationships with 
MJO and ENSO. Tung et al. (2014b) used indices derived 
from the symmetric and antisymmetric MJO modes from 
NLSA to construct phase composites of various kin-
ematic and thermodynamic fields revealing significant 
differences in the energetics and propagation characteris-
tics of predominantly symmetric and antisymmetric MJO 
events. Yet, despite these attractive features, the analysis 
of TGM was restricted to 1D latitudinal averages, obscur-
ing certain aspects of convective variability such as the 
influence of the Maritime Continent on MJO propaga-
tion. Moreover, the temporal and spatiotemporal patterns 
studied by TGM were obtained after postprocessing the 
Laplacian eigenfunctions through an SVD-based rotation 
and thus subject to an orthogonality constraint in physi-
cal space.

In this paper, we extend the analysis of TGM to study 
via NLSA full 2D brightness temperature data over the 
equatorial belt 15◦S− 15◦N. Applying no preprocess-
ing to the data, we construct a hierarchy of spatiotempo-
ral modes yielding additional insights on organized con-
vective variability which were not available via the 1D 
analysis. In particular, a clear separation of the dominant 
ISOs emerges through Laplacian eigenfunctions represent-
ing the eastward-propagating boreal winter MJO and the 
poleward-propagating boreal summer ISO. These eigen-
functions are characterized by intermittent envelopes and 
project onto non-orthogonal patterns in the spatial domain. 
As a result, the MJO and BSISO signals become mixed if 
these eigenfunctions are rotated through SVD to produce 
orthogonal patterns in space. Here, we use the MJO and 
BSISO eigenfunctions from NLSA to construct a bimodal 
ISO index analogous to the index of Kikuchi et al. (2012), 
without having to perform an ad hoc seasonal partitioning 
of the data. We find that the NLSA-based index has signifi-
cantly higher discriminating power than the corresponding 
bimodal index constructed via EEOF- and SSA-type algo-
rithms. Elsewhere (Chen et al. 2014), it is shown that the 
NLSA MJO modes can be accurately described via sto-
chastic nonlinear oscillator models where intermittency is 
an outcome of time-dependent damping and phase. Besides 
the MJO and BSISO, the Laplace–Beltrami eigenfunctions 
from NLSA describe a multiscale hierarchy of patterns of 

interest, including the seasonal cycle and its harmonics, 
interannual modes, and ISO-modulated diurnal modes.

A further objective of this work is to quantify the regime 
predictability of the MJO amplitude as represented by the 
associated NLSA-based index. Below, we address this 
question using the information-theoretic framework of 
Giannakis and Majda (2012c, d) (hereafter, GM) and Gian-
nakis et al. (2012b), adapted to variables with cyclostation-
ary statistics. This framework derives lower bounds for pre-
dictability through coarse-grained partitions of a space of 
predictor variables constructed via clustering algorithms. In 
this work, the space of predictors will be a 17-dimensional 
space spanned by the leading Laplacian eigenfunctions 
from NLSA representing interannual and intraseasonal var-
iability, as well as the annual cycle and its harmonics. The 
partitions therefore correspond to large-scale convective 
regimes (e.g., El Niño events) extracted from the Tb data by 
the eigenfunctions.

Our results show that the interannual convective regimes 
embedded in Tb provide significant predictability of the 
MJO amplitude for forecasts initialized in November–
December, i.e., before the active-MJO season. In particular, 
we find that the statistical predictability of the MJO ampli-
tude as measured by the NLSA index is especially high 
during El Niño years, with a reemergence of predictability 
associated with MJO wavetrains taking place at intrasea-
sonal-scale (60–80 days) leads. During the active-MJO sea-
son (January–February), the large-scale convective regimes 
identified via clustering contribute less to predictability, but 
nevertheless significant La Niña events, as well as the cur-
rent MJO activity at initialization time, both emerge as sig-
nificant predictors. Overall, our study objectively quantifies 
the role of planetary-scale convective regimes in the statis-
tical predictability of the MJO amplitude.

The rest of the paper is organized as follows. Section 2 
describes the two approaches used to first extract salient 
temporal and spatiotemporal features from the Tb data, 
and then assess the predictability of the MJO amplitude by 
coarse-graining predictor variables through data clustering. 
The infrared brightness temperature data used in this study 
is described in Sect. 3. The hierarchy of the spatiotemporal 
patterns extracted from the Tb data via NLSA and the asso-
ciated ISO indices are presented and discussed in Sect. 4. 
Section 5 contains the predictability analysis for MJO con-
ditioned on coarse-grained convective regimes. We con-
clude in Sect. 6 with a review of the main contributions of 
this work and perspectives for future developments. The 
interested reader can jump directly to Sects. 3,  4 and 5 for 
a description of the data and the results. The temporal pat-
terns and spatial snapshots presented here are accompanied 
by their respective spatiotemporal reconstructions as videos 
(Movies 1 and 2). A brief comparison of the modes recov-
ered by NLSA and the corresponding modes recovered by 
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SSA and EEOF analysis is also provided as electronic sup-
plementary material.

2  Methods

2.1  NLSA algorithms

NLSA (Giannakis and Majda 2012a, 2013, 2014) is a 
dimension reduction technique used for the extraction of 
spatiotemporal patterns from high-dimensional data gen-
erated by dynamical systems. Such systems are highly 
nonlinear in nature, yet they can be described at a coarse 
scale by low-dimensional geometric structures embedded 
in the ambient data space. NLSA’s aim is to recover this 
underlying low-dimensional structure, generally modeled 
as a manifold, and describe it in terms of a reduced set of 
basis functions. The core of the analysis consists of three 
steps: (1) time-lagged embedding using Takens method 
of delays; (2) construction of a discrete Laplace–Beltrami 
operator via kernel methods from machine learning and 
harmonic analysis applied to Takens embedding space; (3) 
construction of an empirical set of basis functions for fea-
ture extraction and dimension reduction through the eigen-
functions of the Laplace–Beltrami operator. The Laplace–
Beltrami eigenfunctions are nonlinear analogs to PCs, 
and provide a low-dimensional representation of the high-
dimensional input data. In addition, an SVD-based rotation 
may be performed if one is interested in identifying bior-
thonormal spatiotemporal patterns associated with these 
eigenfunctions that maximally explain the variance of the 
input data. Here, however we do not carry out this proce-
dure as the spatiotemporal patterns associated with the pure 
eigenfunctions are already physically interpretable without 
the basis rotation taking place in the SVD step. Moreover, 
SVD enforces orthogonality of the recovered spatial pat-
terns, and in Sect. 4 ahead we will find that the dominant 
ISO patterns are in fact non-orthogonal in space. Note that 
the clustering results in Sect. 5 are invariant under orthogo-
nal transformations such as SVD.

2.1.1  Time‑lagged embedding

Consider an n-dimensional time series

consisting of s samples taken at times ti = i δt with a uni-
form sampling interval δt. A standard approach in state-
space reconstruction methods for dynamical systems, 
as well as in EEOF analysis and SSA, is to embed the 
n-dimensional samples into a higher-dimensional space of 
lagged sequences of observations (hereafter, called Takens 
embedding space, or delay-coordinate space). Specifically, 

x(ti) = (x1(ti), . . . , x
n(ti))

given an integer parameter q ≥ 1 (the number of lags), x(ti) 
is mapped to the sequence

of dimension N = nq. We use the notation X = (X(tq), . . . ,

X(ts)) to represent the N × S data matrix in the N-dimen-
sional delay-coordinate space, where S = s− q + 1 is the 
number of samples available for analysis after time-lagged 
embedding. The temporal extent of the embedding window 
is ∆t = q δt.

For sufficiently large q and under weak assumptions on 
the underlying dynamical system and the observation func-
tion, this operation recovers the topology of the attractor of 
the dynamical system lost by partial observations (Takens 
1981; Broomhead and King 1986; Sauer et al. 1991). In 
other words, the time-lagged embedded data observations 
X(ti) sample a manifold M  which is in a one-to-one cor-
respondence with the attractor of the underlying dynami-
cal system, even if some of the dimensions of that attractor 
have been projected away in the snapshots x(ti).

Besides the topology of the data, however, time-lagged 
embedding affects its geometry (Giannakis and Majda 
2012b; Berry et al. 2013; Giannakis and Majda 2014). 
That is, Euclidean distances ||X(ti)− X(tj)|| between the 
time-lagged data depend not only on the states at times ti 
and tj, but also on the dynamical trajectory that the system 
followed to arrive at those states. This dynamical depend-
ence carries over to the global covariance matrix C = XXT 
utilized in EEOF analysis and SSA to recover spatial and 
temporal modes of superior timescale separation than what 
is possible through classical PCA. However, global covari-
ances are not intrinsic to the nonlinear manifold geometry 
of the data, as C is invariant only under rigid-body rotations 
of X. Rather, the intrinsic geometry of the data is charac-
terized through a local notion of distance (a Riemannian 
metric) varying smoothly over M , requiring only preser-
vation of neighborhood distances for faithful low-dimen-
sional representation (a significantly weaker requirement 
than global-distance preservation). In effect, time-lagged 
embedding leaves an “imprint” of the dynamics on the 
Riemannian geometry of the data, and NLSA uses opera-
tors compatible with this geometry which are constructed 
empirically from data to perform dynamics-adapted dimen-
sion reduction and feature extraction.

2.1.2  Discrete Laplace–Beltrami operator

Among the major recent advances in machine learning and 
harmonic analysis has been the development of theory and 
algorithms to construct geometrical operators for data anal-
ysis through local kernels, i.e., pairwise measures of simi-
larity decaying exponentially in data space (e.g., Belkin and 
Niyogi 2003; Coifman and Lafon 2006; Hein et al. 2005; 

(1)X(ti) = (x(ti), x(ti − δt), . . . , x(ti − (q − 1) δt))
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Singer 2006; Berry and Sauer 2014). Different kernels will 
induce different geometries on the data, and NLSA is based 
on a kernel formulated in Takens embedding space, viz.

Here, ε is a positive parameter controlling the bandwidth of 
the kernel, and ζ(ti) = X(ti)− X(ti−1) measures the local 
phase space velocity (time tendency) of the data. The quan-
tities ζ(ti) can be interpreted as finite-difference approxima-
tions of the vector field in phase space driving the dynam-
ics (Giannakis 2014).

Evaluating (2) pairwise for all the data sample leads 
to an S × S symmetric kernel matrix K with elements 
Kij = K(X(ti),X(tj)). This matrix operates on temporal pat-
terns in a similar manner as the temporal covariance matrix 
XTX. Specifically, because the data are ordered in time, a 
discretely sampled function of time v(ti) can be represented 
by an S-dimensional column vector v = (v1, . . . , vS)

T with 
v(ti) = vi, and the kernel acts on v via standard matrix 
multiplication, Kv. At the same time, v(ti) can be thought 
of as sampling a function f  on the manifold such that 
v(ti) = f (X(ti)). As the bandwidth parameter ε in (2) and 
the sampling interval δt become small (i.e., in the limit of 
large data), K becomes sensitive to the structure of f  only 
at local neighborhoods on the manifold, approximating the 
action of a differential operator defined on M .

Through a sequence of normalizations of the kernel 
matrix [see (3) ahead], the limit differential operator can 
be arranged to be the Laplace–Beltrami operator associated 
with a Riemannian metric on M  that depends on K. The 
spectral properties of this operator (i.e., its eigenvalues and 
eigenvectors) depend strongly on the Riemannian metric, 
and are known to be useful for nonlinear dimension reduc-
tion and pattern extraction as discussed below. We thus 
think of K as inducing a Riemannian geometry to the data, 
and the results of data analysis through operators based on 
K can be studied and interpreted via the properties of that 
geometry. For kernels formulated in Takens embedding 
space, including (2), the induced Riemannian geometry 
enhances timescale separation capability by favoring stable 
Lyapunov directions of the dynamical system (Berry et al. 
2013), such as quasi-periodic orbits associated with coher-
ent oscillations. In NLSA, the ||ζ(ti)|| scaling factors addi-
tionally improve the skill of the algorithm to capture tem-
porally intermittent patterns (Giannakis and Majda 2012b).

Leaving out further theoretical details to other references 
(Giannakis and Majda 2012b, 2014; Giannakis 2014), the 
discrete Laplace–Beltrami operator is represented by an 
S × S matrix, L, constructed by performing the following 
sequence of normalizations proposed in the diffusion maps 
algorithm of Coifman and Lafon (2006):

(2)K(X(ti),X(tj)) = exp

(

−

||X(ti)− X(tj)||
2

ε||ζ(ti)||||ζ(tj)||

)

.

Note that by virtue of the exponential decay of the kernel, 
L can be made sparse by retaining only the largest knn ≪ S 
entries per row, significantly reducing the computational 
cost to obtain eigenvectors compared to the temporal covar-
iance matrix.

In the limit of large data, the discrete operator repre-
sented by L converges to the continuous Laplace–Bel-
trami operator on the manifold, even if the sampling 
density on M  is non uniform. The latter is a particularly 
attractive feature for our purposes, since the data are 
sampled at a fixed time interval and we have no control 
of the sampling density. Note that no a priori knowledge 
of M  and its geometry is required to carry out the pro-
cedure outlined above. Moreover, even though the con-
vergence results formally apply in the limit of large data, 
in practice we operate far from this regime requiring 
dense sampling of the turbulent attractor for the atmos-
phere. Instead, an assumption which is far more likely 
to hold in practice is that the full attractor exhibits cer-
tain low-dimensional coarse geometric structures associ-
ated with phenomena such as ENSO and the MJO, and 
the sampling of the attractor during the 23-year period of 
the CLAUS archive is sufficiently dense to recover these 
structures.

2.1.3  Empirical basis functions and low‑dimensional 
representations

In the analysis in Sect. 4, L will be employed to perform 
feature extraction and dimension reduction through its 
eigendecomposition

As stated in Sect. 2.1.2, the eigenvectors φi = (φ1i, . . . ,φSi)
T 

can be interchangeably interpreted as discretely sampled 
functions on M , or as time series φi(tj) = φji. These time 
series can be thought of as nonlinear analogs to PC time 
series arising in EOF analysis. It is a standard result (Belkin 
and Niyogi 2003; Coifman and Lafon 2006) that the Lapla-
cian eigenfunctions form an orthonormal basis with respect 
to the weighted inner product

(3)

K̃ij =
Kij

QiQj

, Qi =

S
∑

j=1

Kij,

Pij =
K̃ij

Di

, Di =

S
∑

j=1

K̃ij,

Lij = I − Pij.

(4)Lφi = �iφi, with i ∈ {0, 1, 2, . . .}.

(φi,φj) =

S
∑

k=1

Dkφkiφkj = δij,
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where the weights Dk are given by (3), and can be inter-
preted as the volume (Riemannian measure) occupied by 
the samples X(tk) on M .

The Laplacian eigenfunctions φi form a natural basis to 
describe quantities of interest on the manifold (including 
the data vectors themselves), which is moreover adapted to 
the dynamics by virtue of the kernel in (2). For instance, 
in Sect. 4.1 time-lagged embedding will be essential to the 
ability of the eigenfunctions to separate the interannual, 
annual, intraseasonal, and diurnal timescales present in 
the Tb data. We note that the eigenvalues �i do not measure 
explained variance, but have a geometrical interpretation as 
an average gradient of φi on the manifold, i.e., �1/2i  corre-
sponds to a “wavenumber” on the manifold for φi (Gian-
nakis and Majda 2014). Consequently, using the leading 
few φi is equivalent to selecting those features which vary 
slowly on the nonlinear manifold sampled by the data, thus 
reducing noise and parameter sensitivity, while avoiding 
overfitting.

Here, of particular interest is the use of φi to recover 
spatiotemporal patterns in the ambient data space using the 
eigenfunctions as convolution filters. First, the data in the 
delay-coordinate space is recovered through the operation

and then the columns of X̃i are decomposed into q blocks of 
dimension n similarly to SSA techniques (Ghil et al. 2002). 
The average value over the blocks in the time-lagged 
embedded reconstruction X̃i provides the reconstructed 
spatiotemporal patterns x̃i in the original data space, giv-
ing a decomposition of the form x(tj) ≈

∑

i x̃i(tj). While 
this decomposition does not maximize explained variance, 
it has been shown in various contexts to have high skill 
in recovering dynamically significant patterns, including 
patterns with intermittency (Giannakis and Majda 2012b; 
Bushuk et al. 2014; Tung et al. 2014a).

Another important property of the Laplacian eigenfunc-
tions, which will become relevant in the predictability 
analysis in Sect. 5, is that that they can be used as nonlin-
ear dimension reduction coordinates preserving the local 
neighborhood structure of the data. In particular, a dimen-
sion reduction map Φ taking the data in the N-dimensional 
delay-coordinate space to an l-dimensional Euclidean 
space with l ≪ N can be constructed by choosing an l-ele-
ment set of eigenfunction indices, {j1, . . . , jl} (which are 
typically, but not always, consecutive), and setting

Hereafter, we will use the shorthand notation Φti
= 

Φ(X(ti)). It can be shown that for a sufficiently large l, 
dimension reduction maps of this form preserve the mani-
fold structure of the data (Belkin and Niyogi 2003; Coif-
man and Lafon 2006; Jones et al. 2008; Portegies 2014), 

(5)X̃i = XDφiφ
T
i ,

(6)Φ(X(ti)) = (φij1 , . . . ,φijl ), with Φ(X(ti)) ∈ R
l.

smoothly mapping nearby points in the high-dimensional 
data space to nearby points in the low-dimensional repre-
sentation. Note that the required number of eigenfunctions 
depends only on intrinsic properties of the manifold (such 
as its intrinsic dimension and curvature), and can be signifi-
cantly smaller than the number of PCs required in linear-
projection approaches.

2.2  Cluster‑based measures of regime predictability

We adopt an information-theoretic framework whereby 
predictability of a quantity of interest rt+τ at lead time τ 
given data Φt observed at initialization time t is measured 
by the additional information in the forecast distribution 
p(rt+τ | Φt) beyond the climatology p(rt+τ ) (Kleeman 
2002; Majda et al. 2002). In the predictability analysis in 
Sect. 5, the predictand rt+τ (also referred to as the response 
variable) will be the NLSA-based MJO index from (16a), 
and the predictors Φt will be the eigenfunction-based 
reduced coordinates from (6). An important property of 
both Φt and rt+τ is cyclostationarity due to the seasonal 
cycle. In particular, we consider that all distributions are 
periodic in the initialization time t with period 1 y; e.g.,

whenever t and t′ differ by an integer multiple of 1 y.
The natural information-theoretic functional to measure 

the gain of information in the forecast distribution relative 
to climatology is relative entropy (e.g., Cover and Thomas 
2006), given in this case by

Note that in (8) and hereafter we abuse notation using 
p(·) to represent both a probability measure and its corre-
sponding probability density function (PDF). The quantity 
D(rt+τ | Φt) is non-negative, and can be thought of as a 
(non-symmetric) “distance” between the conditional dis-
tribution p(rt+τ | Φt) and the prior p(rt+τ ). In particular, 
relative entropy has the desirable properties that it is invari-
ant under nonlinear invertible transformations of rt+τ, and 
vanishes if and only if p(rt+τ | Φt) = p(rt+τ ). The latter is 
expected to occur at long lead times when the system has 
lost its predictability. Moreover, evaluation of (8) does not 
require knowledge of the dynamical system generating Φt 
and rt (in the present context, the Earth’s climate system). 
Rather, D(rt+τ | Φt) only depends on the statistics of rt and 
Φt through the corresponding time-shifted PDFs. In what 
follows, we will take advantage of this property to esti-
mate predictability via an empirically computable relative 
entropy [defined in (12) ahead] which is a lower bound of 
D(rt+τ | Φt). Because these estimates are computed from 
observations of nature without invoking an explicit model 

(7)p(rt+τ | Φt) = p(rt′+τ | Φt′)

(8)D(rt+τ | Φt) =

∫

drt+τ p(rt+τ | Φt) log
p(rt+τ | Φt)

p(rt+τ )
.
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for the time-evolution of the data, we refer to the relative 
entropies in (8) and (12) as “measures of predictability.” In 
particular, we do not use the term “measures of prediction 
skill” as this term is more appropriate for methods based 
on explicit parametric models with model error, such as 
regression models (Lo and Hendon 2000; Waliser 2011).

Equation (8) measures predictability of rt+τ for a single 
realization of the initial data. The expected predictability 
over all initial data is given by taking the expectation value 
of (8) with respect to the distribution p(Φt) of the initial 
data, i.e.,

In information theory, I (rt+τ ,Φt) is called mutual infor-
mation between the random variables rt+τ and Φt. As 
one can explicitly verify, mutual information is symmet-
ric in its arguments, and it is equal to the relative entropy 
between the joint distribution p(rτ+t ,Φt) and the prod-
uct p(rτ+t)p(Φt) of the marginals. Thus, I (rt+τ ,Φt) 
inherits the properties of relative entropy outlined 
above, including the fact that it vanishes if and only if 
p(rτ+t ,Φt) = p(rτ+t)p(Φt); this occurs at late times when 
the predictor and response variables are statistically inde-
pendent. Because of these and other desirable properties, 
mutual information has been proposed as a more funda-
mental notion of predictability than variance-based meas-
ures (Leung and North 1990; DelSole 2004).

Despite its attractive properties, mutual information is 
often challenging to estimate in practice. This is because, in 
a typical forecasting scenario, the initial data are multivari-
ate even if the predictand is scalar, rendering the estimation 
of the PDFs and expectation value with respect to Φt prone 
to sampling errors. One way of addressing this issue is to 
assume that the joint and prior distributions are all Gauss-
ian, and evaluate the integrals in (9) invoking the analytical 
expression for the relative entropy of Gaussian random var-
iables (e.g., Kleeman 2002). However, while Gaussianity 
holds in linear dynamical models with Gaussian initial con-
ditions, both the predictor and predictand variables of inter-
est here are highly non-Gaussian (see, e.g., Figs.  8, 11).

GM have developed a method to address these issues 
which involves replacing the multivariate predictors Φt with 
an integer-valued variable kt indicating the affiliation of Φt 
to a discrete partition of the space of initial data. This parti-
tion can be represented by a family Ξ = {ξ1, . . . , ξK } of K 
mutually disjoint subsets such that every Φt lies in one and 
only one element ξkt of Ξ. Setting aside for now the issue of 
how to construct Ξ, we think of the affiliation function

associated with any partition as a projection map from 
the multivariate initial data Φt to a coarse-grained 

(9)I (rt+τ ,Φt) =

∫

dΦt p(Φt)D(rt+τ | Φt).

(10)kt = S(Φt)

representation kt. In this framework, the expected predict-
ability of rt+τ is measured through its mutual information 
with respect to kt, i.e.,

where p(kt) is the occupation probability of subset ξkt, and

is the predictability of rt+τ with respect to the coarse-
grained forecast distribution p(rt+τ | kt). Note that while 
the relationships

hold, in practice one does not have to evaluate neither 
p(rt+τ | Φt) nor p(Φt). Instead, a key feature of the scheme 
is that the coarse-grained PDFs p(rt+τ | kt) and p(kt) [and 
hence (11) and (12)] can be stably estimated using signifi-
cantly fewer samples than (8) and (9), respectively.

Another fundamental property of I(rt+τ , kt), which fol-
lows from the so-called data-processing inequality in infor-
mation theory (Cover and Thomas 2006), is the bound

This relationship shows that I (rt+τ , kt) provides a lower 
bound to the fined-grained predictability score I (rt+τ ,Φt),  
and this bound is practically computable from multivari-
ate non-Gaussian predictors. Of course, the extent to which 
I (rt+τ , kt) approaches I (rt+τ ,Φt) depends significantly 
on the partition Ξ and the lead time τ, but detection of 
significant predictability at the lead time of interest with 
respect to any partition is sufficient to deduce that the full 
system is predictable at that lead time. In particular, if sev-
eral partitions are available, one can evaluate (11) for every 
partition and choose the maximum mutual information at 
each τ. Another advantage of this framework is that the 
organization of the initial data into the partition allows one 
to study how dynamical regimes, i.e., coarse-grained fea-
tures of Φt, affect predictability of the quantity of interest.

2.2.1  Constructing the partition for cyclostationary data

While the predictability measures in (11) and (12) can be 
evaluated for any partition, GM have developed a method 
which builds Ξ empirically by applying the K-means clus-
tering algorithm (MacQueen 1967) to a training dataset 
{Φt1 , . . . ,ΦtS′

}, optionally using running averages to induce 

(11)I (rt+τ , kt) =

K
∑

kt=1

p(kt)D(rt+τ | kt),

(12)D(rt+τ | kt) =

∫

drt+τ p(rt+τ | kt) log
p(rt+τ | kt)

p(rt+τ )

p(kt) =

∫

Φt∈ξkt

dΦt p(Φt)

p(rt+τ | kt) =

∫

Φt∈ξkt

dΦt p(rt+τ | Φt)p(Φt | kt),

(13)I (rt+τ , kt) ≤ I (rt+τ ,Φt).
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temporal persistence in the affiliation function in (10). This 
approach was adequate to reveal long-range regime pre-
dictability in a simple ocean model with time-independent 
equilibrium statistics, and should generally perform well in 
systems where p(Φt) and p(rt) are both independent of t. 
In the present application, however, a single partition Ξ 
is likely to perform poorly in terms of the predictability 
bound in (13) due to the statistical cyclostationarity of the 
predictors and the predictand.

To address this issue, we modify the framework of GM 
replacing the global partition Ξ by a family of partitions Ξt′ 
labeled by a time stamp t′ in the interval [0, 1] y. In the new 
framework, the affiliation function S(Φt) in (10) is com-
puted with the respect to the partition Ξt′ with t′ equal to 
t modulo 1 y. Moreover, to account for non-convex geo-
metrical structures in the predictor variables, we use kernel 
K-means (Schölkopf et al. 1998; Dhillon et al. 2004) 
instead of the traditional K-means algorithm.

Both K-means and kernel K-means minimize an objective 
cost function that is the sum of the distances from each data 
point to their respective centers. However, while K-means 
operates in the coordinate space of the points Φti, kernel 
K-means first transforms the data into a higher-dimensional 
inner-product space (called feature space) through an implicit 
transformation function ψ, and rewrites the cost function in 
the new space in terms of the transformation ψ. Let �·, ·� be 
the inner product of feature space, and ||u||ψ =

√

�u, u� the 
corresponding norm (i.e., the distance in feature space). For-
mally, the partition Ξt = {ξ1, . . . , ξK } in kernel K-means is 
given by the solution of the minimization problem

where µk =
1
mk

∑

j:Φtj
∈ξk

ψ(Φtj ) are the cluster centers, and 
mk the number of points in cluster k. In practice, the trans-
formation ψ has no explicit expression, but because (14) 
depends only on pairwise inner products in feature space, 
it is sufficient to specify these inner products through a ker-
nel function K  such that K (Φti ,Φtj ) = �ψ(Φti),ψ(Φtj )�. 
Here, we use the Gaussian kernel,

where || · || is the canonical Euclidean norm in the space of 
predictors, and σ a positive bandwidth parameter. We use 
this kernel due to its ability to detect non-convex clusters, 
but any kernel leading to a symmetric positive semidefinite 
matrix (i.e., a Gramian matrix) is valid. In particular, the 
K-means algorithm is a special case of kernel K-means 
with the covariance kernel, K (Φti ,Φtj ) = ΦT

ti
Φtj. Note 

that (15) is not related to the NLSA kernel in (2) employed 
to extract spatiotemporal modes.

(14)min
ξk

K
∑

k=1

∑

i:Φti
∈ξk

�ψ(Φti)− µk�
2
ψ ,

(15)K (Φti ,Φtj ) = e
−||Φti

−Φtj
||
2/(2σ 2)

,

3  Dataset

The Cloud Archive User Service (CLAUS) satellite infra-
red brightness temperature (Tb) data (Hodges et al. 2000) 
recorded over 23 years from July 1, 1983 to June 30, 2006 
is used for this study. In the tropics, positive (negative) Tb 
anomalies are associated with reduced (increased) cloudi-
ness, thus providing a surrogate for tropical convection. 
The data is sampled over the tropical belt from 15◦S to 
15◦N with a resolution of 0.5◦ (in both longitude and lati-
tude) generating 2D samples with nlong = 720 longitude 
and nlat = 61 latitude gridpoints. We use the full 2D grid-
point Tb values arranged prior to analysis into vectors x(t) 
of dimension n = nlong × nlat = 43,920. Observations are 
collected at an interval of δt = 3 h, producing a dataset 
with s = 67,208 samples over the 23 years of the CLAUS 
record.

The data contains the intensive observing period (IOP) 
of the Tropical Ocean Global Atmosphere Coupled Ocean 
Atmosphere Response Experiment (TOGA COARE) 
which took place from November 1, 1992 to February 28, 
1993. Two complete MJO events were observed in that 
period, and have subsequently been studied extensively in 
the literature (Lin and Johnson 1996a, b; Tung et al. 1999; 
Yanai et al. 2000). For this reason, in Sect. 4 ahead we 
will employ a two-year period from January 1, 1992 to 
December 31, 1993 encompassing the TOGA COARE 
IOP to discuss the spatiotemporal modes recovered via 
NLSA. Movie 1(a) shows the raw data for this two-year 
reference period, which was also used in the 1D analysis 
of TGM.

4  Spatiotemporal modes of infrared brightness 
temperature

Following TGM, the lag-embedded data X(t) are con-
structed via (1) using an intraseasonal embedding window 
∆t = 64 days. The number of lags corresponding to the 
δt = 3 h sampling interval is q = ∆t/δt = 64× 8 = 512, 
meaning that the embedded data vectors populate a space 
of dimension N = nq ≈ 2.3× 107. Embedded in this high-
dimensional data space are intrinsically low-dimensional 
nonlinear subsets corresponding to the salient modes of 
tropical variability, such as the annual cycle and its har-
monics, and interannual, intraseasonal, and diurnal modes. 
The purpose of NLSA is to extract from the high-dimen-
sional ambient data space a reduced representation of these 
modes through the Laplacian eigenfunctions φi in (4) and 
the corresponding spatiotemporal patterns X̃i obtained via 
the convolution filters in (5). Later in this section, we dis-
cuss how the eastward-propagating MJO and the poleward-
propagating BSISO naturally emerge as in-quadrature pairs 
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of Laplacian eigenfunctions with temporal features such 
as intermittency differing significantly from conventional 
EOF-based indices. Subsequently, in Sect. 5, we will use 
the leading-few eigenfunctions as coordinates for a low-
dimensional space of predictor variables to quantify MJO 
regime predictability. We verified the robustness of our 
results against the choice of embedding window by com-
puting eigenfunctions for ∆t = 30  and ∆t = 90 days. 
The ∆t = 90 days eigenfunctions are in good agreement 
with our ∆t = 64 days nominal choice. The ∆t = 30 days 
eigenfunctions exhibit increased mixing between the differ-
ent timescales, but the qualitative features of the modes are 
generally preserved.

The input parameters required to build the discrete 
Laplace–Beltrami operator in (3) are: (1) the kernel band-
width parameter ε in (2); (2) the number knn of nearest neigh-
bors used to build the discrete Laplacian matrix in (3). Here, 
we work with ε = 2 and knn = 5000 (∼10 % of the dataset), 
which are also the parameter values used by TGM. In sepa-
rate calculations, we verified that qualitatively similar results 
can be obtained for ε and knn in the intervals 1.5–5 and 3000–
10,000, respectively. Note that because of the exponential 
decay of the kernel, the performance of the algorithm is not 
limited by the ambient space dimension N, but rather by the 
intrinsic dimension of the nonlinear data manifold. The latter 
is significantly smaller than N, and likely also smaller than 
the dimension of the linear subspaces constructed via EOF- 
and EEOF-based approaches. Note also that we have applied 
no preprocessing such as intraseasonal bandpass filtering and 
seasonal detrending prior to the analysis, thus reducing the 
risk of introducing subjective features in the recovered tem-
poral and spatiotemporal patterns.

Throughout this study, we restrict attention to the lead-
ing 25 Laplace–Beltrami eigenfunctions obtained with the 
parameter values stated above, as we find that this set is 
sufficient to capture the salient features of large-scale con-
vective organization on interannual to diurnal timescales. 
Representative eigenfunctions from this group are shown 
in Fig. 1 for a two-year portion of the time series covering 
the TOGA COARE IOP, along with their frequency spec-
tra. The dynamic evolution of the corresponding spatiotem-
poral patterns is displayed in Movie 1. Figure 2 shows the 
spectrum of the corresponding eigenvalues. As remarked 
in Sect. 2.1, the eigenvalues can be interpreted as “wave-
numbers” on the nonlinear data manifold M , and do not 
measure explained variance (though in practice the leading 
eigenfunctions tend to coincide with high-variance patterns 
such as the seasonal cycle and ENSO). By restricting atten-
tion to the leading Laplacian eigenfunctions we are select-
ing the features of the data which have large scale in the 
intrinsic nonlinear geometry in lagged embedding space, 
and are therefore qualitatively robust with respect to sam-
pling and parameter selection. 

Note that the fact that the leading φi have large scale 
as functions on M  does not imply that the corresponding 
temporal patterns all have low frequency. This is because 
the temporal features of the φi(X(tj)) time series depend on 
both the geometrical structure of φi on M  as well as the 
sampling trajectory on M  traced out by dynamical evolu-
tion; e.g., the φi(X(tj)) time series may exhibit rapid oscil-
lations if the sampling trajectory frequently traverses level 
sets of φi. Indeed, the time series in Fig. 1 feature a broad 
range of timescales, including annual, interannual, intrasea-
sonal and diurnal timescales. In what follows, we discuss 
the properties of these modes with reference to Fig. 1 and 
the dynamical evolution in Movie 1. Also, see Fig. 2 for 
a summary of the physical identification of the eigenfunc-
tions depicted in Fig. 1 and Movie 1. For completeness, we 
have included a brief description of the modes recovered 
through SSA or EEOF analysis applied to the CLAUS Tb 
data using the same, ∆t = 64 d, embedding window in the 
supplementary material.

4.1  Hierarchy of spatiotemporal modes

4.1.1  Annual and semiannual periodic modes

The leading four eigenfunctions describe two annual and 
two semiannual periodic patterns ({φ1,φ2} and {φ3,φ4},  
respectively) as indicated by the frequency spectra in 
Fig. 1a–d. Mode φ1 is, to a good approximation, a pure 
sinusoidal wave with a frequency of 1 year−1. Its spatiotem-
poral reconstruction in Movie 1(b) shows a characteris-
tic winter to summer pattern in the two hemispheres with 
strongest amplitudes over land (Africa, the Maritime Con-
tinent, and South America). The strongest anomalies in this 
mode appear in winter and summer months (December–
March and June–August), and are considerably weakened 
in spring and autumn (April–May and September–Novem-
ber). Mode φ2 features strong variability over the Pacific 
and Atlantic Oceans associated with the annual movement 
of the Intertropical Convergence Zone (ITCZ) between the 
two hemispheres. This mode is in quadrature with mode φ1,  
and is therefore active mainly in spring and autumn, but 
also bears a discernible semiannual peak in its spectrum.

Modes {φ3,φ4} are characterized by dominant semian-
nual frequency peaks, and exhibit significant variability 
over both land and sea. Together, these modes describe 
semiannual variability in deep convection consistent with 
the twice-a-year equatorial crossing of the ITCZ (which 
is most prominent over Africa, the Maritime Continent, 
and the central Pacific) and cross-equatorial monsoon cir-
culation. Mode φ3 [see Movie 1(c)] features significant Tb 
anomalies over the Amazon, which is likely associated with 
the South American Monsoon (enhanced convection in 
boreal autumn). Mode φ4 (and to a lesser extent φ3) exhibits 
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a poleward-propagating center of convection in the Indian 
Ocean moving towards India. Among the leading four peri-
odic modes, the amplitude of φ1 is almost twice as high as 
the amplitudes of the other three modes.

4.1.2  Interannual modes

The dominant interannual mode in the NLSA spectrum, 
φ5 (see Fig. 1e), describes the signature of ENSO events 
in deep convection. As shown in Movie 1(d), this mode 

is dominated by a strong east–west dipole with anomaly 
centers located at the dateline and at ∼ 120◦E. Physically, 
this dipole represents Tb patterns of anomalous Walker cir-
culation with subsidence (decreased convection) over the 
Indian Ocean and ascent (increased convection) over the 
Western Pacific during El Niño events, and the opposite-
sign pattern occurring during La Niña events (Chelliah and 
Arkin 1992; Chiodi and Harrison 2010). In the frequency 
domain, φ5 exhibits a red-noise spectrum with significant 
power on interannual timescales, but also features discern-
ible semiannual and four-month spectral lines.

In Fig. 3, the ENSO temporal pattern φ5 is plotted 
together with the Multivariate ENSO Index (MEI; Wolter 
and Timlin 1998, 2011). MEI is computed by combining 
the PCs of six different observational sources (sea level 
pressure, zonal and meridional winds, sea surface temper-
ature, surface air temperature and cloudiness) for each of 
the 12 sliding bi-monthly seasons. The strongest El Niño 
events with respect to eigenfunction φ5 (corresponding to 
large positive eigenfunction values) took place during the 
winters of 1986–1988, the winter–spring of 1992, the win-
ter of 1994–1995, year 1998, and the winter of 2002–2003. 
The strongest La Niña events (large negative φ5) occurred 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
10
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Semiannual
Interannual
MJO
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Third annual harmonic
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Fig. 2  Eigenvalues �i corresponding to the Laplace–Beltrami eigen-
functions φi. (opencircle) annual modes, i ∈ {1, 2}; (squarebox) semi-
annual modes, i ∈ {3, 4}; (triangle) interannual ENSO mode, i = 5; 
(diamond) boreal winter MJO modes, i ∈ {12, 15}; (invertedtriangle) 
boreal summer ISO modes, i ∈ {21, 22}; (asterisk) third harmonic 
of the annual cycle, i.e. four-month quasi-periodic modes, i ∈ {6, 7};  

(plus) diurnal (modulated) modes, i ∈ {8, 9, 13, 14, 16, 17, 23, 24}.  
The remaining modes in this diagram with i ≤ 25 (times) are not 
discussed extensively in the main text, but are included in the space 
of predictor variables to quantify regime predictability of the MJO 
amplitude
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Fig. 3  The ENSO temporal pattern from NLSA (φ5) and the Multi-
variate ENSO Index (MEI) standardized to zero mean and unit vari-
ance. The threshold for significant events (indicated by horizontal 

lines) is one standard deviation away from the mean. The two indices 
are consistent for the major El Niño and La Niña events

Fig. 1  Leading Laplace–Beltrami eigenfunctions φi for the time 
interval January 1, 1992 to December 31, 1993, together with their 
associated power spectral densities (PSDs). The vertical green lines 
indicate the 1/year, 2/year and 3/year frequencies, while the vertical 
red lines indicate the 1/(90 days) and 1/(30 days) frequencies. The 
PSDs were estimated via the multitaper method (Thomson 1982; Ghil 
et al. 2002). The eigenfunctions discussed in the main text are as fol-
lows. a, b Annual modes; c, d semiannnual modes; e ENSO mode; 
f, g four-month quasi-periodic modes; h four-month modulated diur-
nal mode;  k, m MJO modes; l MJO-modulated diurnal modes; r, s 
BSISO mode; t BSISO-modulated diurnal modes. Note that the diur-
nal eigenfunctions always appear as twofold-degenerate pairs, so for 
this reason the second eigenfunctions in each pair (i.e., φ9, φ14, φ17, 
φ24) are not shown here

◂
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during the winters of 1983–1984, 1988–1989, 1996, 1998–
2001 and 2006. The results are consistent with the MEI 
index with a correlation of 0.57 over the 23 years of obser-
vations. Note that the frequency spectrum of our ENSO 
eigenfunction contains weak spectral lines at the second 
and third harmonics of the seasonal cycle. This periodic 
variability can be removed by performing a basis rotation 
(e.g., through SVD as described in TGM), which increases 
the correlation with the MEI index to 0.66.

The reconstruction in Movie 1(d) includes the strong 
El Niño event that took place in January–May 1992. The 
reconstruction also exhibits a weak reemergence of con-
vection in the western Pacific in June 1992, followed by 
a weak phase of suppressed convection (La Niña) in Sep-
tember 1992. Both of the ends of 1992 and 1993 show a 
reemergence of El Niño, but this is significantly weaker 
than the January–May 1992 episode. Also notable are two 
stationary centers of enhanced convection in the Western 
Indian Ocean which are arranged symmetrically about the 

equator at ±5◦ latitudes. These patterns are active during 
the 1992 El Niño event.

4.1.3  Eastward‑propagating intraseasonal modes

The leading eigenfunctions with a dominant intraseasonal 
component are φ12 and φ15 (Fig. 1k, m). Despite being non-
consecutive in the eigenvalue ordering, these modes are 
phase-locked in quadrature and feature broad spectral peaks 
centered at ∼ 1/60 days−1. Spatially, the reconstructions 
for the two boreal winters of 1992 and 1993 in Movie 1(f) 
show clear eastward-propagating wavetrains of enhanced 
and suppressed convection exhibiting the key features of 
the MJO, namely initiation over the Indian Ocean, propa-
gation via the Maritime Continent to the Western Pacific 
warm pool, and eventual demise in the central Pacific near 
the dateline.

In the reconstruction of the boreal winter 1992 in 
Movie 1, the MJO is already active by January 1, 1992 and 

Fig. 4  Reconstruction of the MJO wavetrain observed during the 
TOGA COARE IOP of November 1992–March 1993. The color 
maps show Tb anomalies (in K) obtained from the NLSA MJO modes 
of Fig. 1k, m recovered in data space via (5). Blue (red) colors cor-
respond to increased convection (decreased cloudiness). a No MJO 
activity is present; b, c, d the first MJO initiates over the Indian 

Ocean, propagates eastward over the Indonesian Maritime Continent, 
and decays after reaching the dateline; e, f, g a second, stronger, MJO 
event with an initiation signal over East Africa. See Fig. 1 in Tung 
et al. (2014a) for the manifestation of these events in time-longitude 
sections of the raw data
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remains active until the end of March developing a wave-
train of two events. The following boreal fall and winter, 
which encompass the TOGA COARE IOP, is reconstructed 
in Fig. 4. There, a moderate MJO initiates at the end of 
November 1992 over the Indian Ocean, and reaches the 
dateline by the end of December. Following this event, 
a stronger MJO initiates over the Indian Ocean in early 
January 1993, and reaches the dateline by mid-February. 
Notable features of this stronger event are enhanced con-
vection over eastern tropical Brazil developing prior to 
initiation over the Indian Ocean, as well as an arc-like 
pattern of enhanced convection emanating from eastern 
Africa and merging with the main MJO envelope over 
the Indian Ocean. Tung et al. (2014b) observed a similar 
arc-like structure in Tb composites constructed through 
NLSA-based MJO indices for 1D averaged data. Overall, 
the reconstructions are qualitatively consistent with the two 
well-studied MJOs identified during the TOGA COARE 
IOP (Lin and Johnson 1996a, b; Tung et al. 1999; Yanai 
et al. 2000).

A key feature of the time series for eigenfunctions φ12 
and φ15 is strong intermittency and seasonality, with most 
of the activity occurring during ∼4-month periods start-
ing in late boreal winter and ending in late boreal spring. 
The MJO signals extracted from these eigenfunctions dif-
fer significantly from those extracted via conventional lin-
ear approaches which tend to identify MJO-like signals 
with persistent activity throughout the year (e.g., Wheeler 
and Hendon 2004). We will return to this point in Sect. 4.2. 
Compared to the analysis of TGM, the MJO eigenfunctions 
derived from the 2D data most closely resemble their coun-
terparts derived from antisymmetric 1D data. The develop-
ment of equatorial asymmetry within the MJO lifecycle can 
also be seen in Fig. 4 and Movie 1(f). There, the recovered 
ISO signals are approximately symmetric about the equator 
at initiation over the Indian Ocean, but develop a signifi-
cant equatorial asymmetry as the MJO propagates across 
the Maritime Continent. In TGM, the MJO modes extracted 
from NLSA applied to 1D symmetric data have signifi-
cantly weaker intermittency, and resemble more closely the 
corresponding modes derived via SSA.

4.1.4  Poleward‑propagating intraseasonal modes

The second set of Laplacian eigenfunctions with domi-
nant intraseasonal variability, φ21 and φ22 (Fig. 1r, s), are 
mainly active during boreal summer and describe the pole-
ward-propagating BSISO. As shown in Movie 1(h), these 
modes initiate in boreal spring with a cluster of positive 
Tb (dry) anomalies forming over the northeastern Indian 
Ocean (cf. the MJO modes in Sect. 4.1.3, which initiate 
over the Indian Ocean at a wet phase). That cluster propa-
gates northeastward towards India and the Western Pacific 

(eventually exiting the analysis domain), and is followed by 
a similar pattern of the opposite sign, creating a character-
istic BSISO wavetrain. The frequency of the BSISO modes 
is somewhat shorter than that of the MJO ( ∼ 1/40 days−1),  
and a weak BSISO signal is present all year-round. In terms 
of initiation, BSISO appears to initiate slightly more to the 
north in the Indian Ocean than MJO. During the peak activ-
ity of BSISO [e.g., June 1992 and June 1993 in Movie 1(h)] 
appreciable anomalies also develop in the eastern Pacific to 
the north of the equator. This is consistent with the analy-
sis of Zhang and Dong (2004), who find ISO-like signals 
in that region during boreal summer using combined zonal 
wind and precipitation data.

It is important to note that while the BSISO and MJO 
eigenfunctions are orthogonal on the data manifold, the 
corresponding spatiotemporal patterns are not constrained 
to be orthogonal in space. Visually, the non-orthogonality 
in the patterns is alluded by their similar spatial structure in 
the north of the Maritime Continent. There, the BSISO con-
vective envelope correlates to some extent with the north-
ern branch of the MJO envelope identified in Sect. 4.1.3. 
More quantitatively, the lack of orthogonality can be meas-
ured by the angle between the subspaces spanned by the 
projections of the data in delay-coordinate space onto the 
BSISO and MJO eigenfunctions, respectively. We find that 
the MJO and BSISO spatiotemporal subspaces form an 
angle of 66◦. In contrast, the MJO mode identified through 
SSA (or the equivalent EEOFs) applied to the CLAUS Tb 
data contains both eastward- and poleward-propagating 
anomalies at the north of the Maritime Continent, and is 
generally active year-round (see Movie 2 and Fig. 1 in the 
supplementary material). It is possible that the SSA ISO 
modes are a mixture of the more intrinsic eigenfunctions φi 
identified here.

4.1.5  Higher harmonics of the annual cycle

Appearing after the annual and semiannual periodic 
modes and ENSO is a pair of quasi-periodic eigenfunc-
tions, {φ6,φ7} (Fig. 1f, g), whose dominant frequency is at 
the third harmonic of the annual cycle, 3/y. In the spatial 
reconstruction in Movie 1(e), eigenfunction φ6 features a 
southeastward-propagating wave in the Indian Ocean, as 
well as appreciable variability in the North Atlantic ITCZ 
that propagates westward through South America into the 
Pacific Ocean. Eigenfunction φ7 contains more power at 
interannual timescales than φ6, and features an ENSO-like 
dipole in the western Pacific (not shown here) in addition to 
the southeastward-propagating pattern in the Indian Ocean.

It is interesting to note that the southeastward-propagat-
ing pattern of anomalously high convection in φ6 crosses 
the Indian Ocean around the initiation phase of the MJO 
(see, e.g., the reconstruction in Movie 1 around January 15, 
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1993), suggesting that this mode may play a precondition-
ing role in the convective environment experienced by the 
MJO. In fact, φ6 appears to be related through its phase to 
the timing of both the initiation and termination of the sig-
nificant MJO events extracted by eigenfunctions {φ12,φ15},  
as shown in Fig. 10 ahead. We will discuss further this con-
nection (as well as a similar connection between φ7 and 
BSISO) in Sect. 4.2.1.

Besides the pair {φ6,φ7}, other eigenfunctions in the 
NLSA spectrum with appreciable power at the harmon-
ics of the annual cycle are {φ19,φ20} (Fig. 1p, q) and, to a 
lesser extent, φ10 (Fig. 1i), φ11 (Fig. 1j), and φ18 (Fig. 1o). 
The dominant periodic component in {φ19,φ20} is the 
fourth harmonic of the annual cycle. Eigenfunctions φ10, 
φ11, and φ18 variously have power in the annual-cycle har-
monics 1–4. We refrain from making further physical inter-
pretation of these modes except to note that they might play 
a role in ISO preconditioning analogous to {φ6,φ7}.

4.1.6  Modulated diurnal modes

The modulated diurnal patterns always appear as pairs 
of twofold-degenerate eigenfunctions, namely {φ8,φ9}, 
{φ13,φ14}, {φ16,φ17}, and {φ23,φ24}. Among these families, 
the pair {φ13,φ14} (Fig. 1l) is modulated by the amplitude 
of the MJO. This pair exhibits a discernible intraseasonal 
peak in its frequency spectrum, and has approximately equal 
eigenvalues to the MJO eigenfunctions (see Fig. 2). Moreo-
ver, the amplitude of this diurnal pair, depicted in Fig. 5, is 
correlated with the amplitude of the MJO pair to a moder-
ately high extent (temporal correlation coefficient 0.60). 
As shown in Fig. 1k–m, both the MJO and the diurnal pair 
{φ13,φ14} have significant power on intraseasonal scales, 
indicating that the amplitude of MJO acts as a modulating 
envelope for the amplitude of these diurnal patterns. The cor-
relation in amplitude can also be observed in the physical 
domain in the reconstructions in Movies 1(f) and 1(g).

In Movie 1(g), the diurnal family {φ13,φ14} exhibits 
strong variability over the African and South American 

land masses and islands of the Maritime Continent. Over 
South America, the reconstructed Tb anomaly field exhib-
its a southwestward-propagating pattern originating over 
eastern tropical Brazil, as well as a more pulsating pattern 
over the central Amazon region. Over Africa, the apparent 
migration of Tb anomalies takes place predominantly in a 
zonal, westerly direction. The spatial patterns of these diur-
nal modes are more complicated over the Maritime Con-
tinent, where significant variations in Tb anomalies can be 
seen among the islands, e.g., Borneo and New Guinea.

Besides the MJO-modulated eigenfunctions, the diurnal 
pair {φ23,φ24} (Fig. 1t) also exhibits an intraseasonal ampli-
tude modulation, and in this case the modulating envelope 
is associated with BSISO. Similarly to the pair {φ13,φ14}
, the reconstructed Tb field corresponding to {φ23,φ24} dis-
plays activity over tropical Africa and South America and 
the Maritime Continent. However, in this case significant Tb 
anomalies with an apparent north-northwestward propaga-
tion also take place over the southern tips of India and Indo-
China [see Movie 1(i)]. In addition, the reconstructed field 
from {φ23,φ24} generally exhibits smaller-scale features over 
Africa and South America than the MJO-modulated eigen-
functions, and tends to be confined to the north of the equator.

The other two diurnal eigenfunction families in Fig. 1, 
{φ8,φ9} and {φ16,φ17}, are characterized by modulating 
envelopes at interannual timescales and the higher harmon-
ics of the annual cycle (in particular the third harmonic). 
Among these families, the pair {φ8,φ9} is especially 
strongly modulated, being active during July–November 
and virtually quiescent during the rest of the year. We defer 
a more detailed study of these modes, as well as the ISO-
modulated diurnal modes, to future work.

4.2  Indices for intraseasonal variability

4.2.1  NLSA‑based indices

On the basis of the results in Sects. 4.1.3 and 4.1.4, we 
adopt eigenfunctions {φ12,φ15} and {φ21,φ22} and the 
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Fig. 5  The MJO index rMJO
t  from (16a) and the corresponding index 

√

φ2
13(t)+ φ2

14(t) associated with the diurnal modes in Fig. 1l. The correla-
tion of the two time series is 0.60
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corresponding spatiotemporal patterns as our definition 
of the MJO and BSISO, respectively. These eigenfunction 
families, which are plotted in 2D phase diagrams in Fig. 6, 
are analogous to the PC families of Kikuchi et al. (2012) 
derived from EEOFs of seasonally-partitioned and band-
pass-filtered OLR and wind data, but the seasonality of the 
extracted MJO and BSISO signals emerges here naturally 
from the Laplacian eigenfunctions applied to the full 2D 
Tb record. The fact that the input data were not subjected 
to bandpass filtering opens up the possibility to explore 
directly the relationships of these modes to other impor-
tant modes of tropical variability, such as ENSO and the 
diurnal cycle. In Sect. 5, we will focus on quantifying the 

statistical predictability of the MJO amplitude conditioned 
on a reduced representation of tropical organized convec-
tion given by the Laplacian eigenfunctions discussed in 
Sect. 2.1. Elsewhere (Chen et al. 2014), it is shown that 
the NLSA-based MJO time series are well-described by a 
nonlinear stochastic oscillator model with predictive skill 
extending to 40 days. The skill of these models supports 
the dynamical significance of the MJO signals extracted via 
NLSA. Other applications of the extracted modes include 
phase compositing (Tung et al. 2014b) and real-time 
monitoring.

Following Kikuchi et al. (2012), we construct MJO and 
BSISO indices from the amplitudes of the corresponding 
Laplace–Beltrami eigenfunction pairs, i.e., 

We use these indices, standardized to unit variance, to 
construct a bimodal index, (rMJO

t , rBSISOt ), representing the 
activity of the dominant ISO modes recovered by NLSA in 
the boreal winter and boreal summer. This bimodal index is 
displayed in Fig. 7a for the 1983–2006 period spanned by 
the data.

Significant pure MJO events with respect to the indi-
ces in (16) occur whenever rMJO

t ≥ 1 and rBSISOt < 1 
after standardization. Such events can be easily identified 
in Region I of Fig. 7a. Similarly, significant pure BSISO 
events have standardized rMJO

t < 1 and rBSISOt ≥ 1. These 
events correspond to Region III in Fig. 7a, and can also be 
easily identified. Significant events with respect to both 
rMJO
t  and rBSISOt  can be classified as either MJO or BSISO 

(Region II), but the fraction of the significant ISO events 
with respect to the NLSA-based indices falling in this cat-
egory is relatively small. Moreover, most of the events that 
do belong in Region II can still be identified as either pre-
dominantly MJO or BSISO, for they are relatively far away 
from the rMJO

t = rBSISOt  line where classification is ambig-
uous. For comparison we also show the bimodal ISO index 
from SSA in Fig. 7b and discuss it in more detail in the 
supplementary material along with the temporal patterns.

The strong seasonality of the ISO indices leads to sig-
nificant changes in the corresponding time-dependent cli-
matological PDFs, p(rMJO

t ) and p(rBSISOt ). As shown in 
Fig. 8, at times t preceding the active ISO period in each 
case (e.g., November 1 and April 1 for MJO and BSISO, 
respectively), these distributions have strong peaks and 
large mass at rt � 1. Subsequently, they evolve towards 
broad distributions at the peak of the active phase carry-
ing appreciable density for significant events in the interval 
1 � rt � 4.5 [e.g., March 1 (MJO) and August 1 (BSISO)]. 

(16a)rMJO
t =

√

φ2
12(t)+ φ2

15(t),

(16b)rBSISOt =

√

φ2
21(t)+ φ2

22(t).
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ple per day plotted. The 2D phase spaces are split into 8 phases with 
associated composites reconstructed in Fig. 9
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The seasonality of p(rMJO
t ) will play an important role in 

the regime predictability results in Sect. 5.
Next, we create phase composites for the MJO and 

BSISO by dividing the portion of the 2D phase spaces in 
Fig. 6 with rMJO

t ≥ 1 and rBSISOt ≥ 1 (after standardization) 
into 8 phases, and averaging the reconstructed Tb fields in 
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NLSA-based bimodal ISO index. b SSA-based bimodal ISO index
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Fig. 9  The composite life cycles of a MJO and b BSISO recon-
structed from the Laplace–Beltrami eigenfunctions in Fig. 1. The 
composites correspond to the 8 phases identified in Fig. 6, and exhibit 
eastward- and poleward-propagating patterns characteristic of MJO 
and BSISO, respectively. Note the enhanced convection signals over 
East Africa and eastern tropical Brazil in Phase 1 of the MJO. a MJO 
composites. b BSISO composites
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each phase. The resulting phase composites, displayed in 
Fig. 9, provide an aggregate representation of the MJO and 
BSISO lifecycles as extracted through the corresponding 
Laplace–Beltrami eigenfunctions. These lifecycles were 
discussed in Sects. 4.1.3 and 4.1.4 with reference to the 
1992–1993 reconstruction.

In the case of MJO, initiation over the Indian ocean, 
accompanied by the development of anomalously high 
convection over eastern Africa and tropical eastern Brazil, 
takes place in Phases 1 and 2, and is followed by propaga-
tion over the Maritime Continent and the western Pacific 
warm pool in Phases 3–5 and 6–7, respectively. Termina-
tion at the dateline takes place in Phase 8. As remarked in 
Sect. 4.1.3, the MJO convective envelope is displaced to 

the south of the equator as it passes through the Maritime 
Continent. Moreover, the MJO envelope exhibits a strong 
land-sea contrast, especially over Borneo and New Guinea 
where the reconstructed Tb anomalies are significantly 
weakened.

For BSISO, we chose Phase 1 to correspond to a clus-
ter of positive Tb anomalies developing in the central Indian 
Ocean, as we found that in our reconstructions the first sig-
nificant BSISO event in a given year initiates at a dry phase 
[see Movie 1(h)]. In Phases 2–4, that cluster moves north-
eastward towards the Bay of Bengal and India and branches 
off towards the western Pacific and the Monsoon Trough, 
bypassing the Maritime Continent from the north. Follow-
ing the dry phase of BSISO, a cluster of anomalously high 
convection develops in Phase 5 in the central Indian Ocean, 
and propagates towards India and the western Pacific in 
Phases 6–8, completing the BSISO cycle.

Consider now an intriguing phase relationship men-
tioned in Sect. 4.1.5 between the MJO index and the third 
harmonic of the annual cycle, φ6 (Fig. 1f). As can be seen 
in Fig. 10, the initiation and termination of the active-MJO 
period in a given year (as measured by the NLSA-based 
rMJO
t  index) correlates strongly with two consecutive peaks 

in the φ6(t) waveform. That waveform is quasi-periodic, so 
the duration of the active-MJO period will vary from year 
to year around the four-month period of the third harmonic 
of the annual cycle. A similar (though somewhat weaker) 
phase relationship holds between BSISO and the other 
third-harmonic quasi-periodic eigenfunction, φ7 (Fig. 1g). 
These observations motivate future study of the role of 
the spatiotemporal patterns associated with φ6 and φ7, as 
well as the first two harmonics of the annual cycle (see 
Movie 1), in setting up the background convective environ-
ment underlying the initiation and termination of the MJO 
and BSISO. Note that while φ6 appears to be related to the 
timing of the active-MJO period, the amplitude of the MJO 
within the active period is influenced by other factors, and 
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Fig. 10  The MJO index rMJO
t  and the quasi-periodic eigenfunction φ6 

associated with the third harmonic of the annual cycle. For clarity of 
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in particular interannual convective regimes (see Sect. 5 
ahead). The latter may also be responsible for the devia-
tions of φ6(t) from a purely periodic signal. Note also that 
removal of the first three harmonics of the annual cycle is 
widespread practice in the development of MJO indices 
(e.g., Wheeler and Hendon 2004).

4.2.2  Comparison with linear MJO and BSISO indices

EOFs have been extensively employed to define ISO indi-
ces for prediction and real-time monitoring based on sin-
gle or combined atmospheric data sources. Wheeler and 
Hendon (2004) proposed a widely-used MJO index based 
on the first two EOFs, denoted RMM1 and RMM2, of 
the combined fields of OLR and zonal winds at 200 and 
850 hPa averaged over the equator. These modes are 
obtained using all-round year data after removal of the 
first three harmonics of the annual cycle and interannual 
variability from each of the three atmospheric fields. The 
removal of the interannual variability from these fields 
is necessary because time-averaged anomalies associ-
ated with the mature phase of ENSO resemble phases of 
MJO. Once annual and interannual variability is removed, 
the three fields are normalized by their global variance to 
balance their influence in the final output. Following this 
preprocessing, the first two EOFs vary mostly on the intra-
seasonal timescale of MJO. Together, the first two EOFs 
explain 25% of the variance of the signal with RMM1 lag-
ging RMM2 by 10–15 days. In Fig. 11, we plot for compar-
ison the PDFs of the standardized NLSA and RMM modes 
(for each method we chose to display only one of the two 
degenerate eigenmodes as they have similar distributions). 
The distributions for RMM are close to a normal distribu-
tion. On the other hand, the NLSA probability distributions 
depart significantly from the normal distribution, featuring 
heavy tails due to the intermittency and strong seasonality 
of the recovered MJO and BSISO signals. Most of the sig-
nificant ISO events identified via NLSA lie in the tails of 
the distributions in Fig. 11.

5  Quantifying regime predictability of the MJO 
amplitude

5.1  Predictor and response variables

The spatiotemporal modes extracted through NLSA from 
infrared brightness temperature data were shown in Sect. 4 
to be associated with meaningful features of organized 
tropical convection, including the annual cycle and its 
higher harmonics, interannual and intraseasonal oscilla-
tions, and the diurnal cycle. In this section, we apply the 
information-theoretic framework described in Sect. 2.2 

to assess the regime predictability of the MJO in Tb data, 
using the NLSA eigenfunctions to construct a low-dimen-
sional space of predictor variables. The response variable 
representing the MJO amplitude at lead time τ after fore-
cast initialization time t will be the NLSA-based MJO 
index rMJO

τ+t  from (16a), and in what follows we use the 
term “MJO predictability” to refer to predictability of the 
MJO amplitude. As discussed in Sect. 4.2.2, our defini-
tion of the MJO amplitude exhibits strong seasonality, and 
excludes ISO-like signals taking place year-round or dur-
ing the boreal summer. However, this exclusion takes place 
objectively without subjecting the data to preprocessing. 
Moreover, the space of predictor variables for clustering 
will be the 17-dimensional space spanned by the leading 
25 Laplace–Beltrami eigenfunctions (see Fig. 1), exclud-
ing the diurnals. Thus, we are creating a low-dimensional 
description of the system state X(ti) via a nonlinear pro-
jection map X(ti) �→ Φti from (6) with l = 17. To quantify 
regime predictability, we further coarse-grain Φti �→ kti 
in accordance with (10), where kti is the integer-valued 
affiliation to a partition constructed through the kernel 
K-means clustering algorithm applied to the Φti time series. 
The specific eigenfunction indices used in this study are 
{j1, . . . , j17} = {1, . . . , 7, 10, 11, 12, 15, 18, . . . , 22, 25}, and 
as stated above these eigenfunctions capture the first four 
harmonics of the seasonal cycle, dominant modes of inter-
annual variability (e.g. ENSO), and the dominant modes of 
intraseasonal variability (MJO and BSISO).

Note that our choice to exclude the diurnal modes was not 
due to their presumed lack of relevance to MJO predictability, 
but was rather dictated by numerical considerations as their 
fast oscillation timescale adversely affects the performance of 
clustering. Indeed, the envelope correlation results in Fig. 5, 
as well as other studies (Chen and Houze 1997; Tian et al. 
2006; Ichikawa and Yasunari 2008), suggest that the diurnal 
modes may contain predictive information for the MJO, but 
the present numerical framework is not adapted to access that 
information from the raw eigenfunction time series. A possi-
ble modification of the scheme, which is beyond the scope 
of this paper, would be to extract the modulating envelopes 
of these modes (e.g., via the Hilbert transform, or the modal 
amplitude depicted in Fig. 5), and then include the envelopes 
in the space of predictor variables. Similarly, our truncation of 
the space of predictors to eigenfunction 25 was a compromise 
between predictive information content (which increases with 
the number of eigenfunctions l) on the one hand, and perfor-
mance of the clustering algorithm. In particular, note that for 
a fixed number of samples the predictive information content 
I (rMJO

t+τ , kt) in the partition may actually decrease with l, or 
become strongly sensitive to the input data. We find that the 
choice of predictors indicated above is sufficient to reveal 
MJO amplitude predictability on intraseasonal timescales, 
and its dependence on physically-meaningful large-scale 
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convective regimes, such as the state of ENSO and MJO at 
initialization time. In particular, a major challenge in cluster-
ing algorithms applied to regime identification in atmosphere 
ocean science is to ensure temporal persistence of clusters 
(Christiansen 2007; Franzke et al. 2009; Horenko 2010). In 
our work, temporal persistence of regimes emerges naturally 
by means of the timescale separation achieved by the eigen-
functions and the nonlinear kernel K-means algorithm that 
avoids abrupt transitions by allowing nonconvex clusters to 
exist in the predictor space. As a future alternative, partition-
ing the eigenfunction space with clustering methods enforc-
ing temporal persistence through constrained optimization 
(Metzner et al. 2012) could bring new information in the 
regimes, potentially improving our predictability results.

5.2  Cluster analysis for MJO predictability

As discussed in Sect. 2.2, the statistics of both the predictor 
and response variables exhibit strong periodic time depend-
ence with period T = 1 y due to the seasonal cycle [see (7)]. 
Ideally, one would like to independently estimate the 
prior and conditional PDFs of Φt and rMJO

t  for each of the 
T × δt = 365× 8 = 2920 timestamps per calendar year, 
but the number of available samples from different calendar 
years (23 over the entire CLAUS dataset) is prohibitively 
small for statistically robust PDF and relative entropy esti-
mation. To tackle this issue, two solutions were employed 
here: (1) a window ∆T  was used around each timestamp 
t to increase the sample size; (2) the PDFs were estimated 
using a kernel density estimation (KDE) method (Bowman 
and Azzalini 1997). Using a moderately-small window ∆T  
accounts for years of uncollected data where MJO might 
have occurred earlier or later in the season compared to the 
available samples. This significantly decreases the variance 
in the PDF and relative entropy estimates, at the expense 
of introducing a small bias. Here, ∆T = 15 d so that the 
PDFs at timestamp t ∈ [0, 1] y are estimated from all sam-
ples in the interval [t −∆T , t +∆T ] plus integer multiples 
of 1 year, amounting to approximately 30× 8× 23 = 5520 
samples per estimate. KDE further decreases the variance 
of the estimators by inducing smoothness in the PDFs com-
pared to raw histograms. In KDE, the PDF p(u) of a scalar 
random variable to take the value u is estimated by means 
of a counting sum over the observed values ui smoothed by 
a kernel function Kσ centered at u, i.e.,

where S is the number of samples, and Cσ a normalization 
constant computed from the requirement that 

∑S
i=1 p(ui) = 1.  

The kernel Kσ is required to be a non-negative function sym-
metric in its two arguments, and also depends on a smoothing 

p(u) =
1

Cσ

S
∑

i=1

Kσ (u, ui),

parameter σ controlling the influence of the local neighbor-
hood in the final density estimate p(u). Here, we use a Gauss-
ian kernel, Kσ (u, ui) = e−(u−ui)

2/2σ 2
, where the smoothing 

parameter is proportional to the bandwidth (standard devia-
tion) of the kernel. For the remainder of the paper, all PDFs 
are estimated at 50 equispaced bins using KDE with kernel 
bandwidth estimated as in Bowman and Azzalini (1997) and 
relative entropies are computed directly via discrete sums over 
the bins.

Figure 8 shows the PDFs p(rMJO
t ) of the NLSA MJO 

index estimated via this method for representative times t 
from November–May. Low values of rMJO

t  (roughly in the 
interval [0, 1]) indicate an inactive or weak MJO state. The 
PDFs for early November and early December contain sig-
nificant probability mass in that interval. The active MJO sea-
son starts in mid to late December, with the strongest activity 
occurring in February and March before eventual suppression 
in April–May. From June–October MJO is inactive and the 
density estimates approximately match the November and 
December PDFs. Further details of the time-dependent clima-
tological PDFs were discussed in Sect. 4.2.1.

Following the methodology described in Sect. 2.2, the 
kernel K-means algorithm with the Gaussian kernel in (15) 
is applied to subsets of the Φti time series to create a fam-
ily of partitions Ξt labeled by a time stamp t in the interval 
[0, 1] y. Again, in order to improve statistical robustness of 
the results, we construct each partition using the ≈ 5500 
samples available for the interval [t −∆T , t +∆T ] plus 
integer multiples of 1 year with ∆T = 15 days.

An important parameter in clustering algorithms, 
including kernel K-means, is the number of clusters K . 
In the scheme of GM, this parameter is set by monitor-
ing the change in the predictive information I

(

rMJO
t+τ , kt

)

 
as K  increases from small values, and choosing the opti-
mal cluster number as the largest value of K  beyond 
which there is no significant increase in I

(

rMJO
t+τ , kt

)

. 
In this study, we also took mutual information into 
account, but due to the relatively small number of avail-
able samples, we additionally sought to construct parti-
tions with cluster occupancy exceeding a threshold. This 
was done in order to ensure statistical robustness of the 
cluster-conditional forecast PDFs p

(

rMJO
t+τ | kt

)

 (statistical 
robustness was not an issue in the sample-rich datasets 
studied by GM).

In the kernel K-means algorithm, the geometrical 
structure and occupancy of the clusters are influenced 
by the kernel bandwidth parameter σ. Larger values of 
σ will tend to produce more globular, convex clusters 
similar to the clusters produced by standard K-means. 
As σ decreases, kernel K-means is able to recover non-
convex clusters, but the algorithm becomes increas-
ingly ill-conditioned and sensitive to sampling errors. 
After experimenting with several combinations of 
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(K , σ) with K ≤ 4, we selected the partitions where the 
minimum cluster occupancy was at least 20 %. These 
experiments were repeated with multiple values of the 
bandwidth parameter σ in the interval [0.5, 20] and with 
multiple random initializations. Overall, we found that 
the gain in predictive information at K = 4 relative to 
K = 3 for well-balanced partitions was significantly 
lower than the corresponding increase between K = 3 
and K = 2. Moreover, several of the K = 4 partitions 
consisted of what appeared to be ad hoc subpartitions 
of K = 3 clusters. We therefore chose K = 3 as a rea-
sonable compromise between predictive information 
gain and statistical robustness for the available number 
of samples.

In what follows, we present predictability results for 
initialization times either before the active-MJO season 
(t = November 1 and December 1), or near the peak of the 
active-MJO season (t = February 1). We will see that the 
early- and active-season partitions (and the corresponding 
predictability results) differ significantly, with the former 
being dominated by the interannual modes and the latter by 
both interannual and intraseasonal modes.

5.3  Early‑season regime predictability

We begin by quantifying MJO regime predictability 
with initialization at time t = December 1. As shown in 
Fig. 8, the prior PDF p(rMJO

t ) is strongly peaked at low 
values of the MJO index (≃ 0.3). Moreover, it features 
a significantly thinner right tail than the yearly clima-
tological PDF, indicating that the MJO is mainly inac-
tive at initialization time. We selected a well-balanced 
partition with K = 3 and kernel bandwidth σ = 1.58 
using the method describe above. With this choice of 
parameters the occupation probabilities of the clusters 

are p(kt) = (0.35, 0.36, 0.29). The expected and cluster-
conditional predictability corresponding to this parti-
tion, measured via the metrics I

(

rMJO
t+τ , kt

)

 from (11) and 
D
(

rMJO
t+τ | kt

)

 from (12), respectively, are shown in Fig. 12 
for lead times τ in the interval [0, 150] d. There, the 
expected predictability is seen to decrease rapidly after 
an initial period at short leads (τ � 7 d), becoming essen-
tially negligible by τ = 30 d. However, predictability 
reemerges at later times, developing two distinct peaks at 
τ ∼70 and 90 days, before finally decaying. As indicated 
by the D

(

rMJO
t+τ | kt

)

 scores, this reemergence of predict-
ability is mainly associated with cluster 3 in the partition.

To physically interpret these results, we first consider the 
cluster affiliations kti from (10) of the data samples used to 
construct the partition (i.e., the samples at calendar days 
December 1± 15d), which are visualized in Fig. 13 against 
the rMJO

t+τ  time series at representative leads. In particular, by 
comparing the kti time series to historical ENSO indices it 
emerges that the cluster affiliations are strongly correlated 
with ENSO. Specifically, clusters 1, 2, and 3 are mainly 
occupied during La Niña (1989, 1996, 1997, 1999–2002, 
and 2006), ENSO-neutral (1984–1988, 1990, 1991, 1993, 
2002, 2004), and El Niño years (1988, 1992, 1994, 1995, 
1998, 2003, 2005), respectively.

The influence of interannual modes on the structure of 
the partition is also evident in the cluster-conditional mar-
ginal PDFs for individual eigenfunctions, p(φi(t) | kt), 
examples of which are displayed in Fig. 14. There, the El 
Niño cluster (kt = 3) is positive on {φ5,φ10} and negative 
on φ7. On the other hand, the La Niña cluster (kt = 1) is 
negative on {φ5,φ10} and positive on φ7. The ENSO-neu-
tral cluster (kt = 2) is well distinguishable with respect to 
eigenfunctions {φ7,φ10,φ18}, where it is centered around 
zero. Thus, the three clusters have distinct signatures in the 
feature space of the eigenfunctions, and the partition of that 
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Fig. 12  Predictability scores for forecasts initialized at t = Decem-
ber 1 as measured by the cluster-conditional relative entropy 
D
(

rMJO
t+τ | kt

)

 and mutual information I
(

rMJO
t+τ , kt

)

 at lead time τ asso-
ciated with the La Niña (kt = 1), ENSO-neutral (kt = 2), and El Niño 
(kt = 3) clusters. The El Niño cluster is the most predictable cluster 

for almost all leads, and also displays a reemergence of predictability 
for τ ∈ [65, 95] d. See Fig. 15 for an illustration of the difference of 
the cluster-conditional PDFs relative to climatology giving rise to the 
increased predictability of this cluster. The percentage values in the 
labels for kt indicate occupation probability p(kt) of each cluster
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space via kernel K-means clustering naturally corresponds 
to three regimes in the interannual variability of large-scale 
organized convection.

The three clusters also have distinct consequences on 
MJO regime predictability. As mentioned earlier, the El 
Niño cluster is the only one that exhibits a reemergence 
of predictability (see Fig. 12). This cluster is also the most 
predictable cluster for almost all lead times considered, 
followed by the La Niña and ENSO-neutral clusters in 
that sequence. Figure 15 displays the cluster-conditional 
PDFs p(rMJO

t+τ | kt) for representative lead times in the inter-
val [0, 150] days. As is evident from the PDFs at τ = 65, 
85, and 95 d (which correspond to physical times t + τ 
during the active MJO period), the El Niño and La Niña 
clusters exhibit on average weaker MJO activity than the 

ENSO-neutral cluster. However, that activity is more pre-
dictable in the sense that the PDFs p

(

rMJO
t+τ | kt

)

 have larger 
relative entropy distance from the prior p(rt+τ ). This result 
is consistent with the known tendency of anomalous ISO 
behavior to occur during El Niño and La Niña events (Lau 
2011).

The predictive information content in the cluster-condi-
tional PDFs is especially large for the El Niño cluster at 
τ = 65 and 95 d. The prominent peaks of these distribu-
tions, which are not present in the prior, give rise to the 
observed reemergence of predictability as measured by 
the D

(

rMJO
t+τ | kt

)

 and I
(

rMJO
t+τ , kt

)

 metrics at those lead 
times. Upon inspection of the rMJO

t+τ  time series in Fig. 13, 
one finds that during the years when the El Niño cluster 
is occupied rMJO

t+τ  tends to form two consecutive peaks per 
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Fig. 13  The cluster affiliation sequence kt for forecasts initialized 
at t = December 1, visualized against the MJO index rMJO

t . Note the 
double peaks in rMJO

t  occurring for the years occupied by the El Niño 

cluster (kt = 3). To illustrate the time evolution of the samples in each 
cluster, the cluster affiliations shifted by 30 days (b) and 95 days (c) 
are also shown
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Fig. 14  Representative cluster-conditional marginal PDFs p(φi(t) | kt) 
for the Laplace–Beltrami eigenfunctions used as predictors at initiali-
zation time t = December 1. The ENSO eigenfunction (φ5) separates 
into La Niña (kt = 1), ENSO-neutral (kt = 2) and El Niño (kt = 3

) clusters, corresponding to negative, ≃ 0, and positive φ5 values, 
respectively. A similar separation takes place for eigenfunctions φ7, 
φ10, and φ18
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Fig. 15  Cluster-conditional PDFs, p
(

rMJO
t+τ | kt

)

, for the MJO index 
for forecasts initialized at t = December 1. The prior p(rt+τ ) at each 
forecast time τ is plotted with a dashed line. The relative entropy 
between the posterior cluster-conditional distributions and the prior 
corresponds to the predictive information of the three convective 
regimes represented by the clusters; i.e., La Niña (kt = 1), ENSO-

neutral (kt = 2), and El Niño (kt = 3). For leads up to 20 d, the El 
Niño and La Niña clusters exhibit larger differences from climatology 
than the ENSO-neutral cluster, giving rise to higher relative-entropy 
scores as shown in Fig. 12. The reemergence of predictability for the 
El Niño cluster is associated with the narrow peaks in the correspond-
ing conditional PDFs at τ = 65 and 95 d
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boreal winter. It is possible that during those times (which 
correspond to mid-February to early March) the back-
ground environment over the Warm Pool returns to a state 
which is more representative of ENSO-neutral years, and 
thus more conducive to the formation of “canonical” MJO 
events. It is important to note that the overall suppression 
of rMJO

t  in the La Niña and El Niño clusters does not imply 
complete absence of eastward-propagating MJO-like sig-
nals, for such signals may lie outside the space spanned by 
the eigenfunctions used to construct rMJO

t  (see Sect. 5.1).
As a consistency test, we have repeated this analysis 

for forecasts initialized even earlier in the season, at t = 
November 1. Using the same kernel K-means parameter 
as in the December 1 experiments (σ = 1.58), we obtained 
a partition which is broadly consistent with the structure 
described above. That is, there is a La Niña cluster (kt = 1), 
an El Niño cluster (kt = 2), and a cluster spanning mainly 
ENSO-neutral years with a few samples from ENSO-active 
years (kt = 3). The cluster-conditional and expected pre-
dictability scores, displayed in Fig. 16, are also consistent 
with the December 1 results (Fig. 12) advanced by τ = 30 

d to take into account the difference in initialization times. 
Specifically, following an initial decay of predictability, 
the highest gain of information in Fig. 16 is observed at 
lead time τ = 30 d (at calendar day December 1), and the 
reemergent peaks at lead times τ = 95 d and 125 d (again, a 
shift of 30 days with respect to the previous case).

5.4  Regime predictability during the active‑MJO 
season

We now assess the regime predictability of MJO for fore-
casts initialized during the active MJO season at t = Febru-
ary 1. Following a similar approach as Sect. 5.3, we select 
a partition with K = 3 clusters and Gaussian bandwidth 
σ = 3.16. The resulting predictability scores, the cluster 
affiliation sequence, the cluster-conditional forecast PDFs, 
and representative marginal PDFs of the eigenfunctions are 
shown in Figs. 17, 18 and 19, respectively.

Inspecting the affiliation sequences in Fig. 18, it 
becomes apparent that one of the clusters (kt = 1) persists 
throughout the interval [t −∆T , t +∆t] used for clustering, 
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Fig. 16  Predictability scores for forecasts initialized at t = Novem-
ber 1. The partition for November 1 has a similar structure as the 
December 1 partition and consists of La Niña (kt = 1), El Niño 
(kt = 2), and ENSO-neutral (kt = 3) clusters. Shifted forward by 30 

d, the predictability scores shown here are consistent with the t = 
December 1 results in Fig. 12, demonstrating robustness of the parti-
tions constructed via the kernel K-means algorithm
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Fig. 17  Predictability scores for forecasts initialized at t = February 
1. In this case, the most predictive cluster at all times is a La Niña 
cluster (kt = 1) (cf. Figs. 12 and 16). The other two clusters are both 
occupied during neutral and positive phases of ENSO, and they are 

separated with respect to the first MJO eigenfunction, φ12. According 
to Fig. 6, cluster 3 (negative φ12 values in Fig. 20) mainly consists 
of MJO Phases 8 and 1–3, whereas cluster 2 (positive φ12) occupies 
Phases 4–7
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whereas the affiliation to the other two clusters exhibits a 
switching behavior during that interval (cf. the affiliation 
sequences for December in Fig. 13, where all three clusters 
are persistent). Indeed, as is evident from the years during 
which cluster 1 is occupied (1984, 1989, 1996, 1999–2001, 
2005–2006), as well as the cluster-conditional PDFs in 
Fig. 19, this cluster is mainly dominated by La Niña, and 
is in general agreement with the La Niña clusters identi-
fied in Sect. 5.3. According to the relative entropy results 
in Fig. 17, this cluster is the most predictable of the three. 
Intuitively, one would expect the conditional background 
environment during La Niña events to act detrimentally to 
large-scale organized convection, leading to statistically 
anomalous (hence predictable) MJO behavior. This pic-
ture is consistent with the conditional PDFs p

(

rMJO
t+τ | kt

)

 

in Fig. 19 for the La Niña cluster, which are markedly 
skewed towards low values of the MJO index, producing 
large values in relative entropy of the prior relative to these 
distributions.

Turning now to the remaining two clusters (kt = 2 and 3), 
the conditional PDFs for the eigenfunctions in Fig. 20 indi-
cate that these clusters are mainly occupied during the posi-
tive phase of the ENSO eigenfunction φ5 (including El Niño 
events), but are generally not well distinguishable on the 
basis of interannual eigenfunctions. Instead, these clusters 
are mainly separated in terms of intraseasonal eigenfunc-
tions, and in particular the MJO eigenfunctions themselves 
(see the PDF for φ12 in Fig. 20). While clusters 2 and 3 are 
both less predictable than cluster 1, an interesting asym-
metry in predictability emerges, namely that for leads up 
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Fig. 18  The cluster affiliation sequence kt for forecasts initialized at 
t = February 1, visualized against the MJO index rMJO

t . The La Niña 
cluster (kt = 1) is in good agreement with the La Niña clusters found 

for t = December 1 and November 1. The other two clusters are split 
on the MJO eigenfunction φ12
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to τ ≃ 25 d cluster 2 is more predictable than cluster 3. 
Inspecting the occupancy of these two clusters on the MJO 
eigenfunction space, {φ12,φ15} (see Fig. 6), one finds that 

cluster 3 (negative φ12) mainly consists of Phases 8 and 1–3, 
whereas cluster 2 (positive φ12) occupies Phases 4–7. That 
is, according to the phase composites in Fig. 9, cluster 3 

Fig. 19  Cluster-conditional PDFs p
(

rMJO
t+τ | kt

)

 for the MJO index 
for forecasts initialized at t = February 1. The conditional PDFs for 
the La Niña cluster (kt = 1) are markedly skewed towards low val-

ues of the MJO index, producing large values in the entropy of 
p
(

rMJO
t+τ | kt = 1

)

 relative to the prior p(rMJO
t+τ )
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Fig. 20  Representative cluster-conditional marginal PDFs 
p(φi(t) | kt) for the Laplace–Beltrami eigenfunctions used as predic-
tors at initialization time t = February 1. The La Niña cluster (kt = 1)  

is negative on φ5 and takes small values on the MJO eigenfunctions 
(φ12 and φ15). Clusters 2 and 3 are mainly split with respect to the 
first MJO eigenfunction, φ12
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represents the initiation and development of the MJO over 
the Indian Ocean, and cluster 2 corresponds to its passage 
over the Maritime Continent and eventual decay at the date-
line. When an MJO is in its mature or termination phase 
and forecasting is initialized in the midst of the active MJO 
season (in this case, February 1) there exist at least two 
probable scenarios for the future evolution of MJO activity, 
namely quiescence or initiation of a subsequent MJO in a 
wavetrain. On the other hand, when the MJO is in its ini-
tiation and development phase and ENSO is in a neutral or 
positive state, it is fairly likely that it will be able to propa-
gate all the way to the Western Pacific. The observed asym-
metry in cluster predictability is consistent with this basic 
intuition.

5.5  Comparison of early‑ and active‑season 
predictability

A comparison of Figs. 12, 16, and 17 immediately reveals 
that the predictive information content in the partitions con-
structed for the early-season forecasts (t = November 1 and 
December 1) differs qualitatively from the predictive infor-
mation in forecasts initialized during the active season (t = 
February 1). In particular, the early-season results exhibit 
an initial decay of predictability starting from large values 
of mutual information 

[

I (rMJO
t+τ , kt) ≃ 15

]

 and lasting for 
τ ∼ 20 d, which has no counterpart in the active-season 
result. Instead, the mutual information values for the t = 
February 1 forecasts at τ � 20 days leads are in the same 
range 

[

I (rMJO
t+τ , kt) ≃ 2.5

]

 as the predictability reemer-
gence peaks occurring at later times (τ ≃ 60 d) in the early-
season experiments. In Sect. 5.3, we associated the initial 
large values of mutual information in the early-season 
forecasts to eigenfunctions with significant interannual 
variability, and in particular active ENSO states. Thus, our 
results suggest that the convective activity represented by 
Tb carries considerable predictive information in its inter-
annual planetary-scale regimes. This information can be 
leveraged for statistical MJO forecasting initialized before 
the active-MJO period, but does not persist into the boreal 
winter months. During the active-MJO period, the domi-
nant non-interannual large-scale predictor for MJO appears 
to be the state of the MJO itself. This is consistent with the 
stochastic modeling study of Chen et al. (2014), who found 
that the predictive skill of their nonlinear oscillator models 
is highest during strong-MJO winters.

In interpreting these observations, it is important to 
keep in mind certain aspects of the predictability analy-
sis presented here. First, as already noted in Sect. 5.3, we 
are defining MJO activity through the NLSA-based rMJO

t  
index. It is likely that there exist other MJO-like signals 
which are not represented by this index, but it appears that 
rMJO
t  is able to isolate an ISO with realistic MJO features, 

well-defined temporal structure (Chen et al. 2014), and 
non-trivial predictability conditioned on large-scale inter-
annual convective regimes. Second, in the information-the-
oretic framework employed here predictability corresponds 
to deviations in the forecast distribution from climatol-
ogy, and these deviations are not necessarily related to 
individual MJO initiation or termination events. In order 
to describe MJO initiation in the present framework, one 
could construct a binary random variable ητ (t) = 1 if 
rMJO
t < 1 and rMJO

t+τ ≥ 1 [and ητ (t) = 0 otherwise], and 
compute the mutual information I (ητ (t), kt). It is possible 
that the predictability properties of ητ (t) (and an analogous 
binary variable representing termination) are significantly 
different from the predictability of rMJO

t . Third, in accord-
ance with the data-processing inequality in (13), the lower 
predictability scores in the t = February 1 forecasts condi-
tioned on the coarse-grained initial data kt does not imply 
absence of predictability conditioned on finer-scale initial 
data. Indeed, we saw in in Sect. 4.2.1 that the MJO mode 
recovered by NLSA exhibits anomalous convection signals 
over eastern Africa and eastern tropical Brazil (Phase 1 in 
Fig.9), so it is possible that the convective activity localized 
in those regions could provide higher predictive informa-
tion than what is available in the large-scale regimes repre-
sented by kt. In summary, our study firmly establishes the 
role of planetary-scale interannual convective regimes in 
early-season MJO forecasting with intraseasonal leads, but 
leaves open the possibility that finer-scale predictors are 
important during the active-MJO season.

6  Conclusions

In this paper, we have studied the dominant large-scale 
modes of organized tropical convection and the regime 
predictability of the MJO amplitude in satellite observa-
tions of infrared brightness temperature (Tb) over the tropi-
cal belt 15◦S− 15◦N. In contrast to earlier studies, which 
rely on preprocessing steps such as spectral windowing, 
bandpass filtering, and seasonal partitioning to isolate the 
signals of interest, our objective has been to extract physi-
cally meaningful temporal and spatiotemporal modes of 
organized convection applying no preprocessing to the 
data. To that end, we used a nonlinear data analysis tech-
nique (NLSA; Giannakis and Majda 2012a, 2013, 2014) 
designed to extract intrinsic timescales from high-dimen-
sional data generated by dynamical systems. The key dif-
ference of NLSA from classical eigendecomposition tech-
niques such as SSA, EEOFs, and related algorithms is that 
the covariance matrix is replaced by a discrete Laplace–
Beltrami operator on the nonlinear data manifold. This 
operator is computed empirically from data using kernel 
methods, and its eigenfunctions (which can be thought as 
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nonlinear analogs to PCs) provide natural basis functions 
for dimension reduction and feature extraction tailored to 
the manifold structure of the data. In particular, by using 
a kernel defined in Takens embedding space, the Laplace–
Beltrami eigenfunctions from NLSA are predisposed to 
reveal intrinsic timescales of the dynamical system gener-
ating the data.

The hierarchy of modes extracted from the Tb data via 
NLSA spans interannual timescales, the annual cycle and 
its harmonics, ISOs, and diurnal modes. A major result of 
this analysis has been that the eastward-propagating boreal-
winter MJO and the poleward-propagating BSISO emerge 
naturally as distinct families of modes characterized by 
strong intermittency and seasonality. These modes were 
used here to create a bimodal ISO index with significantly 
higher discriminating power than what is possible through 
conventional linear approaches. Moreover, the MJO and 
BSISO patterns from NLSA are non-orthogonal in space, 
and exhibit finer-detail structures than their SSA-based 
counterparts, including a signal of enhanced convection 
over eastern Africa and eastern tropical Brazil at the initia-
tion phase of the MJO.

Because no preprocessing has been applied to the data, 
the NLSA modes provide an objective framework to study 
MJO-BSISO interactions, as well as interactions of ISOs 
with other phenomena such as ENSO and the diurnal cycle. 
Notably, the NLSA spectrum contains families of diurnal 
modes active over Africa, the Maritime Continent, and 
South America with envelopes modulated by MJO and 
BSISO. These modes should provide a useful basis to study 
ISO-diurnal cycle interactions. Intriguingly, we observed 
that the initiation and termination of the active-MJO period 
in a given year (as measured by the corresponding NLSA 
index) correlates strongly with a quasi-periodic mode at 
the third harmonic of the annual cycle featuring a south-
eastward-propagating anomaly over the Indian Ocean. In 
other work (Chen et al. 2014), the well-defined tempo-
ral structure of the MJO eigenfunctions was exploited to 
construct nonlinear stochastic oscillator models with MJO 
forecast skill extending to 40-day leads, and low parametric 
sensitivity.

Empirical MJO forecasting was a major objective in this 
work too, and was approached here from the standpoint of 
statistical initial-value predictability conditioned on coarse-
grained initial data (regimes). Specifically, we constructed 
a space of predictor variables representing the state of 
large-scale convective organization through the leading-few 
eigenfunctions from NLSA, and partitioned that space into 
a discrete set of regimes using the kernel K-means cluster-
ing algorithm. Following Giannakis and Majda (2012c, d) 
and Giannakis et al. (2012b), we assessed MJO predictabil-
ity by measuring the information gain (relative entropy) of 
the empirical forecast distribution of the NLSA MJO index 

conditioned on the membership of the initial data to the 
clusters in the partition.

In our experiments, the predictive information content 
for MJO in large-scale convective regimes was especially 
high for forecasts initialized before the active-MJO sea-
son, as early as November 1. The main contributor to the 
increased predictability was the interannual component 
of Tb variability, and in particular significant El Niño and 
La Niña events. The occurrence of such events alters sig-
nificantly the statistical properties of the NLSA-derived 
MJO index, and as a result its information-theoretic pre-
dictability persists over intraseasonal-scale leads (60–
80 days). Experiments initialized during the active MJO 
period (initialization time at February 1) generally yielded 
weaker MJO predictability conditioned on coarse-grained 
Tb regimes than the early-season experiments. In this case, 
predictability was governed by both ENSO as well as the 
current state of the MJO and extended up to ≃ 40 d leads. 
This result is consistent with Chen et al. (2014), who found 
similar predictability limits for MJO forecasts with their 
stochastic model initialized in strong MJO winters.

The analysis presented here was performed using only 
infrared brightness temperature data. However, addi-
tional information, such as lower- and upper-level zonal 
winds carry important information beyond the pure Tb data 
(Wheeler and Hendon 2004), and will be incorporated in 
future work. Also, the emergence of a clear northeastward-
propagating BSISO mode in the domain 15◦S− 15◦N with 
relatively limited northward extent motivates an extension 
of the domain further to the north, enabling the study of 
interactions with the Indian Monsoon. Finally, methods for 
computing the eigenfunction values (and hence our ISO 
indices) from newly acquired data can be used for real-time 
monitoring and also in nonparametric forecasting applica-
tions (Zhao and Giannakis 2015). We plan to study these 
topics in future work.
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