
PoliFormer: Scaling On-Policy RL with Transformers
Results in Masterful Navigators

Kuo-Hao Zeng Zichen Zhang Kiana Ehsani Rose Hendrix Jordi Salvador

Alvaro Herrasti Ross Girshick Aniruddha Kembhavi Luca Weihs

PRIOR @ Allen Institute for AI
poliformer.allen.ai

Abstract: We present POLIFORMER (Policy Transformer), an RGB-only indoor
navigation agent trained end-to-end with reinforcement learning at scale that gen-
eralizes to the real-world without adaptation despite being trained purely in simu-
lation. POLIFORMER uses a foundational vision transformer encoder with a causal
transformer decoder enabling long-term memory and reasoning. It is trained for
hundreds of millions of interactions across diverse environments, leveraging par-
allelized, multi-machine rollouts for efficient training with high throughput. PO-
LIFORMER is a masterful navigator, producing state-of-the-art results across two
distinct embodiments, the LoCoBot and Stretch RE-1 robots, and four naviga-
tion benchmarks. It breaks through the plateaus of previous work, achieving an
unprecedented 85.5% success rate in object goal navigation on the CHORES-S
benchmark, a 28.5% absolute improvement. POLIFORMER can also be trivially
extended to a variety of downstream applications such as object tracking, multi-
object navigation, and open-vocabulary navigation with no finetuning.

Keywords: Embodied Navigation, On-Policy RL, Transformer Policy

1 Introduction
Reinforcement Learning (RL) has been used extensively to train embodied robotic agents to com-
plete a variety of indoor navigation tasks. Large-scale, on-policy, end-to-end RL training with DD-
PPO [1] enables near-perfect PointNav1 performance when using a shallow GRU-based [2] architec-
ture. However, this approach fails to result in the same breakthroughs for harder navigation problems
like Object Goal Navigation (ObjectNav [3]) where an agent must explore its environment to locate
and navigate to an object of the requested type. RL approaches for ObjectNav have generally not
advanced beyond shallow GRU architectures due to challenges presented by training instability and
unreasonably long training times with wider and deeper models, such as scaled-up transformers [4].

In a departure from on-policy RL, which is sample inefficient and often uses complex reward shap-
ing and auxiliary losses [5], Imitation Learning (IL) has recently shown promise for ObjectNav.
Ehsani et al. (2023) [6] demonstrated that the transformer-based SPOC agent, when trained to im-
itate heuristic shortest-path planners, can be trained stably, is sample efficient, and is significantly
more effective than prior RL approaches on their benchmark. SPOC, however, ultimately falls short
of mastery, plateauing at a success rate of ∼57%. Critically, as we show in our experiments, the
performance of SPOC does not seem to improve significantly when further scaling up data and
model depth; we suspect this is a consequence of insufficient state-space exploration as expert tra-
jectory datasets frequently contain few examples of error recovery, which can lead to sub-optimal
performance due to compounding errors [7] or non-trivial domain shifts during inference.

1Point Goal Navigation is the task of navigating to a goal location using privileged GPS coordinates.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://poliformer.allen.ai


40

70

100

SPOC PoliFormer

SR

ObjectNav in CHORES-S

Stretch

40

60

80

EmbCodebook PoliFormer

SR

ArchitecTHOR

LoCoBot
Simulation

40

70

100

SPOC PoliFormer

SR

6-room Apartment

Stretch

40

60

80

Phone2Proc PoliFormer

SR

6-room Apartment

LoCoBot

Real

Scaling On-Policy RL Training with Transformers

…
…

…
…

102

Hundreds of Parallel RolloutsContinual Improvement with Scale Transformer-based Policy with Visual Foundation Model

Hundreds of Millions of Model Parameters

Tr
an

sf
or

m
er

 
St

at
e 

En
co

de
r

Vision 
Transformer

Goal Encoder

STATE TOKEN Causal Transformer Decoder

At
te

nt
io

n 
La

ye
r

Ac
tio

n
Va

lu
e

Search for 
a sofa

KV-cache

10M 100M 700M
Training steps

20
30
40
50
60
70
80

Su
cc

es
s 

Ra
te

 (%
) o

n 
C

H
O

RE
S 

(v
al

)

Figure 1: POLIFORMER, a transformer-based policy trained using RL at scale in simulation,
achieves significant performance improvements in simulation (bottom-left) and the real world
(bottom-right), across two embodiments. SR denotes Success Rate. We scale on-policy RL training
across multiple dimensions: (top-left) we observe continual performance improvement with scaling
RL training; (top-middle) we leverage hundreds of parallel rollouts for higher throughput; (top-right)
we develop a transformer-based policy scaling model parameters to hundreds of millions.

In contrast to IL, RL requires that agents learn via interactive trial-and-error, allowing for deep
exploration of the state space. This exploration has the potential to produce agents that can learn
behaviors that are superior to those in the expert demonstrations. This raises the question: can we
bring together the modeling insights from SPOC-like architectures and the exploratory power of RL
to train a masterful navigation agent? Unfortunately, this cannot be done naively due to RL’s sample
inefficiency and complexities in using deep (transformer) architectures with RL algorithms. In this
work, we develop an effective method for training large transformer-based architectures with RL,
breaking through the plateaus of past work, and achieving SoTA results across four benchmarks.

Our method, POLIFORMER, is a transformer-based model trained with on-policy RL in the AI2-
THOR [8] simulator at scale, that can effectively navigate in the real world without any adaptation.
We highlight three primary design decisions that make this result possible. (i) Scale in Architecture:
Building on the SPOC architecture, we develop a fully transformer-based policy model that uses a
powerful visual foundation model (DINOv2 [9], a vision transformer), incorporates a transformer
state encoder for improved state summarization, and employs a transformer decoder for explicit tem-
poral memory modeling (Fig. 1, top-right). Importantly, our transformer decoder is causal and uses
a KV-cache [10], which allows us to avoid huge computational costs during rollout collection and
makes RL training affordable. (ii) Scale in Rollouts: We leverage hundreds of parallel rollouts and
large batch sizes, which leads to high training throughput and allows us to train using a huge num-
ber of environment interactions (Fig. 1, top-middle). (iii) Scale in Diverse Environment Interactions:
Training POLIFORMER with RL at scale in 150k procedurally generated PROCTHOR houses [11]
using optimized Objaverse [12, 13, 14] assets results in steady validation set gains (Fig. 1, top-left).

POLIFORMER achieves excellent results across multiple navigation benchmarks in simulation. On
CHORES-S, it achieves an impressive 85.5% Success Rate, a higher than +28.5% absolute improve-
ment over the previous SoTA model [6]. Similarly, it also obtains SoTA Success Rates on Proc-
THOR (+8.7%), ArchitecTHOR (+10.0%) and AI2-iTHOR (+6.9%). These results hold across
two embodiments, LoCoBot [15] and Stretch RE-1 [16], with distinct action spaces (Fig. 1, bottom-
left). In the real world (Fig. 1, bottom-right), it outperforms ObjectNav baselines in the sim-to-real
zero-shot transfer setting using LoCoBot (+13.3%) and Stretch RE-1 (+33.3%).2

We further train POLIFORMER-BOXNAV that accepts a bounding box (e.g., from an off-the-shelf
open-vocab object detector [18, 19] or VLMs [20, 21]) as its goal specification in place of a given

2POLIFORMER even outperforms Phone2Proc [17], a baseline finetuned in 3D-reconstructed test scenes.

2



category. This abstraction makes POLIFORMER-BOXNAV a general purpose navigator that can be
“prompted” by an external model akin to the design of Segment Anything [22]. It is extremely
effective at exploring its environment and, once it observes a bounding box, beelines towards it.
POLIFORMER-BOXNAV is a leap towards training a foundation model for navigation; with no fur-
ther training, this general navigator can be used in the real world for multiple downstream tasks such
as open vocabulary ObjectNav, multi-target ObjectNav, human following, and object tracking.

In summary, our contributions include: (i) POLIFORMER, a transformer-based policy trained by RL
at scale in simulation that achieves SoTA results over four benchmarks in simulation and in the real
world across two different embodiments. (ii) A training recipe that enables effective end-to-end
policy learning with large-scale neural models via on-policy RL. (iii) A general purpose navigator,
POLIFORMER-BOXNAV, that can be used zero-shot for multiple downstream navigation tasks.

2 Related Work
IL and RL on Embodied Navigation. Recent advancements include Point Goal Navigation [1],
Object Goal Navigation [3, 23, 24, 25], Exploration [26, 27, 28], and Social Navigation [29], as
well as successful sim-to-real transfer [6] and high performance in various downstream applica-
tions [16, 30, 31, 32, 33, 34, 35]. The prevalent approaches to building capable navigation agents
include both end-to-end training [1, 6] and modular methods that leverage mapping [36, 37, 38] or
off-the-shelf foundation models [39, 40, 41, 42, 43]. In these frameworks, the policy models are typ-
ically optimized via Imitation Learning (IL) using expert trajectories [44, 45, 46, 47, 48, 49, 50] or
Reinforcement Learning (RL) within interactive environments [29, 51, 52, 53, 54, 55, 56, 57, 58, 59]
and with carefully tuned reward shaping and auxiliary losses [5, 60, 61, 62, 63].

Transformer-based Policies for Embodied Agents. Recent works use transformer-based archi-
tectures for embodied agents. Decision Transformer (DT [64]) learns a policy offline, conditioning
on previous states, actions, and future returns, providing a path for using transformers as sequen-
tial decision-making models. ODT [65] builds on DT and proposes to blend offline pretraining and
online finetuning, showing competitive results in D4RL [66]. More recently, MADT [67] shows
few-shot online RL finetuning on the offline trained DT in multi-agent game environments. The
Skill Transformer [68] learns a policy via IL for mobile manipulation tasks. While the focus of
these works is control towards specific tasks (relying on IL pre-training), we train from scratch
using pure RL targeting a navigation policy that can be used zero-shot for many downstream tasks.

There has been a huge effort on improving the scale and training stability of transformer poli-
cies. GTrXL [69] proposes to augment causal transformer policies with gating layers towards
stable RL training in [70]. PDiT [71] proposes to interleave perception and decision transformer-
based blocks showing its effectiveness in fully-observed environments. GATO [72] learns a large-
scale transformer-based policy on a diverse set of tasks, including locomotion and manipulation.
Performer-MPC [73] proposes learnable Model Predictive Control policies with low-rank attention
transformers (Performer [74]) as learnable cost functions. SLAP [75] learns a policy for mobile
manipulation based on a hybrid design. Radosavovic et al. [76] learn a causal transformer using RL
and IL for real-world humanoid locomotion. However, their input is proprioceptive state, without
visual observations, and their learned policy is intended to be stationary (walking steadily in the
real-world). NavFormer [77] learns image-goal conditioned transformer policies using offline-RL
for target navigation. In contrast to existing approaches, we achieve efficient large-scale transformer-
based on-policy RL training for a partially-observed, long-horizon, navigation task using RGB sen-
sor inputs and show that our policy can be seamlessly deployed in the real world. We accomplish
this without complex inductive biases or multi-task dataset aggregation due to the sheer amount of
procedural scene layouts and visual variety of objects in simulation.

Toward Navigation Foundation Models. Many recent works attempt to produce general-purpose
“foundational” navigation models. The causal transformer for humanoid outdoor locomotion [76],
relying on proprioceptive state, shows emergent behaviors like arm swinging and in-context adapta-
tion. GNM [78] trains image goal-conditioned policies (i.e., conditioning on an image at the desired
goal location) by IL across various embodiments, which allows them to scale up the size of their

3



g

Tr
an

sf
or

m
er

 S
ta

te
 E

nc
od

er

Ti
m

e
t

t−
1

t−
2

t−
3

t−
4

Pr
ev

io
us

 
Ac

tio
ns

at−5
at−4

at−3
at−2

at−1

St
at

e 
Fe

at
ur

es
st−4

st−3
st−2

st−1
st

st

Pr
ed

ic
te

d 
Ac

tio
ns

at−4
at−3

at−2
at−1

at

Ac
tio

n 
H

ea
d

C
rit

ic
 

H
ea

d

Va
lu

e 
Es

tim
at

io
n

et−4
et−3

et−2
et−1

etbt

Causal Transformer Decoder

qt

kt

vt

At
te

nt
io

n 
La

ye
r

Nx

Value cache

Key cache

Vi
si

on
 

Tr
an

sf
or

m
er

 
M

od
el

M
LP

it

rt

RGB observation STATE
f

G
oa

l 
Sp

ec
ifi

ca
tio

n 
En

co
de

r

M
LPSearch for 

a sofa

Goal Specification

(Optional) b-box

x2, y2

area

Po
si

tio
na

l 
En

co
di

ng
C

oo
rd

in
at

e 
Ty

pe
 E

m
be

d

M
LP

x1, y1 t
bg

Figure 2: POLIFORMER is a fully transformer-based policy model. At each timestep t, it takes an
ego-centric RGB observation it, extracts visual representations rt using a vision transformer model,
further encodes state features st using the visual representations and goal features g (and optional
detected bounding box goal features gtb), models state belief bt over time, employing a causal trans-
former decoder, and, finally, predicts action logits at and a value estimation et via linear actor and
critic heads, respectively. For rollout collection and inference, we leverage the KV-cache [10] as our
temporal cache strategy to prevent recomputing the forward pass for all prior timesteps at each new
timestep, saving memory and speeding up both training and inference.

training data and manages to generalize to controlling unseen embodiments. NOMAD [79], which
extends ViNT [80] uses a diffusion policy and also uses image goal conditioning. Unlike these
works, we navigate from rich RGB image inputs and specify goals with natural-language text (or
with bounding boxes), as such goals are far more easily available in real-world settings.

3 Method
RL, while effective and intuitive for training policies, has not yet been scaled in embodied AI to the
same degree as in other domains. RL has primarily been applied to short-horizon tasks [81, 82],
smaller environments [83, 84], or tasks utilizing privileged knowledge [1]. We scale learning in
three directions; (i) Network Capacity, via POLIFORMER’s deep, high-capacity, model architecture
(Sec. 3.1); (ii) Parallelism and Batch size via our highly-parallelized training methodology that lever-
ages large batch sizes for efficiency (Sec. 3.2), and (iii) Training Environments via our optimization
of the simulation environment to support high-speed training (Sec. 3.3).

3.1 The POLIFORMER Architecture

We now detail POLIFORMER’s transformer architecture (see Fig. 2), which is inspired by SPOC [6].
While we make several subtle, but important, changes to the SPOC architecture (detailed below), our
largest architectural difference is in the transformer decoder: we replace the standard transformer
decoder block [4, 85] with the implementation used in the Llama 2 LLM [86]. This change has
dramatic implications for training and inference speed.

At each timestep t, POLIFORMER takes an ego-centric RGB observation it as input and employs
a frozen vision transformer model to extract a visual representation rt. This representation, along
with an embedding g of the goal, are summarized by a transformer state encoder to produce the
state representation st. The causal transformer decoder then encodes the state feature st (along with
s0, . . . , st−1) into a belief bt. Finally, the linear actor and critic heads project bt to predict action
logits at and a value estimate et, respectively.

Vision Transformer Model. Inspired by prior work [6, 87], we choose DINOv2 [9] as our visual
foundation backbone, because of its remarkable dense prediction and sim-to-real transfer abilities.
The visual backbone takes an ego-centric RGB observation i ∈ RH×W×3 as input and produces a
patch-wise representation r ∈ RH

14×
W
14×h, where H and W are the observation height and width,

and h is the hidden dimension of the visual representation. We reshape the visual representation into

4



a ℓ× h matrix, ℓ = H ·W/196, and project the representation to produce v ∈ Rℓ×d, where d is the
input dimension to the transformer state encoder. For effective sim-to-real transfer, it is important to
keep the vision transformer model frozen when training in simulation.

Goal Encoder. For fair comparison, when training agents on ObjectNav benchmarks using the
LoCoBot, we follow EmbCLIP [39] and use a one-hot embedding layer to encode the target object
category. On benchmarks using the Stretch RE-1 robot, we follow SPOC [6] and use a FLAN-T5
small [88, 89] model to encode the given natural language goal and use the last hidden state from
the T5 model as the goal embedding. Before passing the goal embedding to the transformer state
encoder, we always project the embedding to the desired dimension d, resulting in g ∈ R1×d.

In select experiments (detailed in Sec. 4), we specify the goal object via a bounding box (b-box),
either in addition to or as an alternative to text. In this case, the goal encoder processes the b-box
using both the sinusoidal positional encoding and the coordinate-type embeddings to embed the top-
left, bottom-right b-box coordinates and its area (5 values in total), followed by an MLP to project
the hidden feature to the desired dimension d, resulting in gb ∈ R5×d.

Transformer State Encoder. This module summarizes the state at each timestep as a vector s ∈ Rd.
The input to this encoder includes the visual representation v, the goal feature g (and/or gb), and an
embedding f of a STATE token. We concatenate these features together and feed them to a non-
causal transformer encoder. This encoder then returns the output corresponding to the STATE token
as the state feature vector. Since the transformer state encoder digests both visual and goal features,
the produced state feature vector can also be seen as a goal-conditioned visual state representation.

Causal Transformer Decoder. We use a causal transformer decoder to perform explicit memory
modeling over time. This can enable both long-horizon (e.g., exhaustive exploration with back-
tracking) and short-horizon (e.g., navigating around an object) planning. Concretely, the causal
transformer decoder constructs its state belief bt using the sequence of state features s = {sj |j=t

j=0}
within the same trajectories.

Unlike RNN-based causal decoders [90] which, during rollout collection, require only constant time
to compute the representation at each timestep, standard implementations of causal transformers
require t2 time to compute the representation at timestep t. This substantial computational cost
makes large-scale on-policy RL with causal transformer models slow. To overcome this challenge,
we leverage the KV-cache technique [10] to keep past feed-forward results in two cache matrices,
one for Keys and one for Values. With a KV-cache, our causal transformer decoder only performs
feedforward computations with the most current state feature which results in computation time
growing only linearly in t rather than quadratically. While this is still mathematically slower than
the constant time required for RNN-based decoders, empirically, we found only a small difference
between KV-cache-equipped causal transformers and RNNs in overall training FPS for our setting.
Compared to other temporal cache strategies, we found that KV-Cache offers the most significant
speed improvements. Please see App. B.3 and Fig. 5 for a discussion of the impact on training speed
resulting from different cache strategies.

3.2 Scalable RL Training Recipe

While KV-cache accelerates the causal transformer, this alone is not sufficient to enable efficient and
fast RL training. In this section, we describe the methodology we use to achieve faster training. Al-
though each of these individual findings may have been discussed in other works, we emphasize the
critical importance of these hyperparameters for efficient training and, consequently, stellar results.

We parallelize the training process using multi-node training, increasing the number of parallel roll-
outs by a factor of 4 compared to previous approaches [30, 59, 87] (we use 192 parallel rollouts for
Stretch RE-1 agents and 384 for LoCoBot agents). We employ the DD-PPO [1] learning algorithm
across 4 nodes, utilizing a total of 32 A6000 GPUs and 512 CPU cores. This scaling accelerates the
training speed by approximately 3.4×, a near-linear gain compared to single-node training; we train
for ∼4.5 days with 4 nodes, while this would have required 15.3 days with a single node.

5



Our batch size during training, in number of frames, is equal to the number of parallel rollouts (R)
multiplied by the length of these rollouts (T ) and thus, by increasing R as above, we multiplicatively
increase the total batch size. We follow SPOC [6] and use a small constant learning rate of 2 · 10−4

throughout the experiments. Instead of annealing the learning rate during training, we instead follow
PROCTHOR [11] and increase the batch size by changing the rollout length from T=32, to T=64,
and finally to T=128 (resulting in a final batch size of 49,152 frames for LoCoBot agents). We
make these increases every 10M steps until we reach T=128.

3.3 Scaling Environment Interactions

For the experiments on LoCoBot, we use the original PROCTHOR-10k houses for training for a
fair comparison to baselines. With the KV-cache technique, our training steps per second is ∼2.3k
for training POLIFORMER, using 384 rollouts on 32 GPUs. For the experiments on Stretch, fol-
lowing [6], we use the PROCTHOR-150k houses with ∼40k annotated Objaverse 3D assets. As
on-policy RL requires the agent to interact with the environment on-the-fly, we found the continu-
ous physics simulation used by the Stretch RE-1 agent in AI2-THOR to be too slow to efficiently
train at scale. To overcome this, we discretely approximate the agent’s continuous movement via a
teleportation-with-collision-checks approach. In particular, to move the agent, we perform a physics
cast using a capsule collider representing the agent along the desired movement direction. If the
cast does not hit any object (suggesting no potential collisions), we teleport the agent to the target
location, otherwise we let AI2-THOR simulate continuous movement as usual. For rotations, we
first teleport the agent to the target rotation pose. If the agent’s capsule collides with any object,
we teleport the agent back and let the AI2-THOR simulate the continuous rotation. For our tasks,
these approximations increase simulation speed by ∼40%. We also found that AI2-THOR scene
loading and resetting was a significant bottleneck when using Objaverse assets. We streamline AI2-
THOR’s Objaverse 3D asset loading pipeline by saving objects in the Msgpack format (natively
usable with Unity’s C# backend) as opposed to Python-only Pickle files. This change dramatically
decreases the loading time of a new scene from ∼25s to ∼8s. With all these changes, our training
steps per second increases from ∼550 to ∼950 using 192 rollouts on 32 GPUs for training Stretch
RE-1 agent, reducing the training time by ∼42%.

4 Results
We now present our experimental results. In Sec. 4.1 we demonstrate that scaling RL with PO-
LIFORMER produces SoTA results on four simulation benchmarks across two embodiments (Lo-
CoBot and Stretch RE-1). Then, in Sec. 4.2, we show that POLIFORMER, despite being trained
purely in simulation, transfers very effectively to the real world, outperforming previous work; we
again show these results on the above two embodiments. In Sec. 4.3, we provide ablations for vari-
ous design choices. Finally, we qualitatively show that POLIFORMER-BOXNAV can be extended to
a variety of downstream applications in a zero-shot manner in Sec. 4.4.

Baselines. For our baselines, we chose a set of prior works in both imitation learning and reinforce-
ment learning. SPOC [6] is a supervised imitation learning baseline trained on shortest path expert
trajectories in AI2THOR. SPOC* is similar to SPOC, but is trained on more expert trajectories
(2.3M vs. 100k). We build this baseline to verify if SPOC easily scales with more data. Emb-
SigLIP [6] is an RL baseline also used by [6], but trained with comparable GPU hours with SPOC.
The baselines [11, 63, 87] for LoCoBot-embodiment are all trained by RL using the same training
steps used by POLIFORMER. We have three experiment configurations for our studies, specifying
the goal as (a) natural language instruction text, (b) a b-box for the target object, and (c) b-box &
text. Following [6], b-boxes in simulation are the ground-truth b-boxes, and so such models are not
comparable fairly with RGB-only models. In the real world we replace GT b-boxes with outputs
from the open-vocabulary object detector Detic [18], which uses only RGB images as input, and so
all comparisons are fair.

Implementation Details. For LoCoBot benchmarks, we follow [87] to train our model and base-
lines on 10k training scenes in ProcTHOR houses for 435M training steps. The evaluation sets
consist of 800 tasks in 20 scenes for AI2-iTHOR, 1200 tasks in 5 scenes for ARCHITECTHOR,

6



Inputs Model Loss CHORES-S ObjectNav
Success (SEL)

RGB+text

SPOC [6] IL 57.0 (46.2)
SPOC∗ IL 60.0 (30.5)

EmbSigLIP [6] RL 36.5 (24.5)
POLIFORMER RL 85.5 (61.2)

RGB SPOC IL 85.0 (61.4)
+text+b-box POLIFORMER RL 95.5 (71.4)

RGB+b-box POLIFORMER RL 92.0 (73.9)

(a) Stretch RE-1 on CHORES-S

Inputs Model PROCTHOR-10k ARCHITECTHOR AI2-iTHOR
Success (SPL)

RGB+text

PROCTHOR [11]3 67.7 (49.0) 55.8 (38.3) 70.0 (57.1)
SGC [63] 70.8 (48.6) 53.8 (34.8) 71.4 (59.3)

EmbCodebook [87] 73.7 (48.4) 58.3 (35.6) 78.4 (23.7)
POLIFORMER 82.4 (58.5) 68.3 (45.1) 85.3 (72.7)

RGB POLIFORMER 90.4 (66.6) 81.9 (55.6) 94.9 (83.5)+text+b-box

RGB+b-box POLIFORMER 87.4 (56.2) 85.7 (47.6) 92.1 (78.6)

(b) LoCoBot on ProcTHOR-10k (val), ArchitecTHOR and AI2-iTHOR (test)

Table 1: Across four ObjectNav benchmarks, POLIFORMER obtains SoTA performance. (a) Results
on the CHORES-S ObjectNav benchmark, which uses the Stretch RE-1 embodiment, POLIFORMER
dramatically outperforms the previous SoTA, IL-trained SPOC. (b) On three LoCoBot-embodiment
test suites, POLIFORMER outperforms all prior work (all trained using RL).

Model PROCTHOR-10k (val) ARCHITECTHOR
Vision Backbone Encoder Decoder Success

CLIP (ResNet50) 1x CNN 1x GRU 67.7 55.8
DINOv2 (ViTs) 1x CNN 1x GRU 73.1 60.8
DINOv2 (ViTs) 3x Tx 3x GRU 73.6 59.8
DINOv2 (ViTs) 3x Tx 1x Tx 77.2 59.1
DINOv2 (ViTs) 3x Tx 3x Tx 80.4 63.9
DINOv2 (ViTb) 3x Tx 3x Tx 82.4 68.3

(a) Ablations on design choices for scaling model capacity

Model Stretch RE-1 LoCoBot
ProcTHOR [11] - 26.7
Phone2Proc [17] - 66.7
SPOC [6] 50.0 -
POLIFORMER (ours) 83.3 80.0
SPOC+Detic [6] 83.3 -
POLIFORMER +Detic (ours) 88.9 -

(b) Real-world results - Success

Table 2: We present (a) ablation studies on design choices for scaling up model capacity; and (b) the
real-world results, on two different embodiements.

and 1500 tasks in 150 scenes for PROCTHOR-10k. For Stretch-RE1, we train our model and base-
lines on 150k ProcTHOR houses populated with Objaverse assets processed by ObjaTHOR. Then,
we evaluate on 200 tasks in 200 scenes as in [6]. Training takes 4.5 days on 32 GPUs. Please see
App. B for more details about training, inference, and environment setups.

4.1 POLIFORMER Achieves SoTA on four Benchmarks
Table 1a shows that, on the CHORES-S benchmark, POLIFORMER achieves 28.5% absolute gain
in success rate over the previous best model. EmbSigLIP baseline results are taken from [6]; we
suspect that its poor performance is, in part, due to its training budget being limited to match the
training budget of SPOC.

POLIFORMER works across embodiments. Table 1b shows that the remarkable performance
of POLIFORMER is not limited to one embodiment. The LoCoBot and Stretch-RE1 robots have
different body sizes, action spaces, and camera configurations. Nevertheless, POLIFORMER is able
to achieve 8.7%, 10.0%, and 6.9% absolute gain over the best baseline on PROCTHOR-10k (val),
ARCHITECTHOR, and AI2-iTHOR.

4.2 POLIFORMER Generalizes to the Real World
We evaluated POLIFORMER on two real-world benchmarks for two different embodiments to show
its sim-to-real transfer capabilities. We used the same evaluation set of 15 tasks for LoCoBot (3 dif-
ferent starting poses with 5 different targets), and 18 tasks for Stretch-RE1 (3 different starting poses
with 6 different goal specifications), similar to [17] and [6], respectively. We do not use any real-
world finetuning, and the testing houses were not seen during training. In the text-only setting, PO-
LIFORMER achieves a remarkable improvement of 33.3% and 13.3% over the baselines for Stretch-
RE1 and LoCoBot respectively (Tab. 2b). POLIFORMER even outperforms Phone2Proc [17], a
baseline that has access to privileged information about the layout of the environment for finetuning.

4.3 Ablation Studies

The recipe for building the effective RL navigation model is the end product of several design de-
cisions guided by experimentation, the combination resulting in our SoTA performance. Table 2a,
shows the process of scaling POLIFORMER. Row 1 vs. Row 2: Moving from the CLIP ResNet-
50 visual encoder to the ViT-small DINOv2 improves the success rate by an average of 5.2%.

3We report ProcTHOR results from [87] as these are the most up-to-date for recent AI2-THOR versions.

7



Find the kitchen

1E

1 E
Find the book 
titled ‘Humans’

S

S E

E

Robot sees a book but continues to find the right book.

Find a houseplant, 
toilet, and sofa

S1
2

E

Robot’s View: 
Robot issues a seen-object action at each goal

Follow the car

S

1

E

E

Robot’s View

E21

Novel 
Textures

1

2

2

Dynamic 
Environments

S

People Glass

Figure 3: We use POLIFORMER-BOXNAV zero-shot to find a book with a particular title, navigate
to a kitchen, navigate to multiple objects sequentially, and follow a toy car around an office building.

Row 3 vs. Row 5: Using a 3-layer transformer decoder instead of 3-layer GRU increases the per-
formance by 5.5%. Row 4 vs. Row 5: Increasing the number of decoder layers from 1 to 3 increases
the performance by 4%. Row 5 vs. Row 6: Using a larger capacity visual encoder (ViT-b instead of
ViT-s), results in a 3.2% gain. In all, these changes result in a 13.6% absolute avg. improvement.

Has POLIFORMER performance saturated? Figure 1 (top-left) shows CHORES-S ObjectNav
validation success rate as we train POLIFORMER for ∼700M environment steps. As that plot shows,
POLIFORMER’s performance does not appear to have converged, and we expect that performance
will continue to improve with more compute. This suggests that achieving near-perfect ObjectNav
performance may only require further scaling our training approach.

4.4 Scaling POLIFORMER to Everyday Tasks

By specifying POLIFORMER’s goal purely using b-boxes, we produce POLIFORMER-BOXNAV.
While POLIFORMER-BOXNAV lacks the ability to leverage some helpful priors about where ob-
jects of certain types should reside (comparing rows 6 & 7 in Table 1a we see POLIFORMER-
BOXNAV performs slightly worse than a model having both b-box and text goal specifications), this
design decision makes POLIFORMER-BOXNAV a fully general-purpose, promptable, navigation
system that can navigate to any goal specifiable using a b-box. Figure 3 shows four qualitative ex-
amples where, by using an open-vocabulary object detector (Detic [18]) and a VLM (GPT-4o [91]),
POLIFORMER-BOXNAV is able to, zero-shot, navigate to (1) a book with a particular title, (2) a
given room type, (3) multiple objects sequentially, and (4) a toy car as the car is driven around an
office building. Simply by specifying goals as b-boxes and leveraging off-the-shelf systems, we
obtain complex navigation behaviors that would otherwise need to be trained for individually: a
painful process requiring new reward functions or data collection. Finally, we encourage readers to
visit our website to view more qualitative results presented in video format.

5 Discussion
Limitations: Training RL agents for long-horizon tasks with a large search space requires extensive
compute and demands careful reward shaping. While we believe POLIFORMER is capable of scaling
to other tasks, it requires crafting new reward models for novel tasks such as manipulation. More
discussion on limitations in App. E. Conclusion: In this paper we provide a recipe for scaling RL for
long-horizon navigation tasks. Our model, POLIFORMER, achieves SoTA results on four simulation
benchmarks and two real-world benchmarks across two different embodiments. We also show that
POLIFORMER has remarkable potential for use in downstream everyday tasks.

8

https://poliformer.allen.ai


References

[1] E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva, and D. Batra. DD-
PPO: learning near-perfect pointgoal navigators from 2.5 billion frames. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=H1gX8C4YPr.

[2] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN encoder-decoder for statistical machine trans-
lation. In A. Moschitti, B. Pang, and W. Daelemans, editors, Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT, a Special Interest Group of the ACL, pages
1724–1734. ACL, 2014. doi:10.3115/V1/D14-1179. URL https://doi.org/10.3115/v1/

d14-1179.

[3] D. Batra, A. Gokaslan, A. Kembhavi, O. Maksymets, R. Mottaghi, M. Savva, A. Toshev, and
E. Wijmans. ObjectNav revisited: On evaluation of embodied agents navigating to objects.
CoRR, abs/2006.13171, 2020. URL https://arxiv.org/abs/2006.13171.

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. Attention is all you need. In I. Guyon, U. von Luxburg, S. Ben-
gio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pages 5998–6008, 2017. URL https://proceedings.neurips.cc/paper/2017/hash/

3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[5] J. Ye, D. Batra, A. Das, and E. Wijmans. Auxiliary tasks and exploration enable objectnav.
CoRR, abs/2104.04112, 2021. URL https://arxiv.org/abs/2104.04112.

[6] K. Ehsani, T. Gupta, R. Hendrix, J. Salvador, L. Weihs, K.-H. Zeng, K. P. Singh, Y. Kim,
W. Han, A. Herrasti, et al. Imitating shortest paths in simulation enables effective navigation
and manipulation in the real world. In CVPR, 2024.

[7] N. Rajaraman, Y. Han, L. F. Yang, K. Ramchandran, and J. Jiao. Provably breaking the
quadratic error compounding barrier in imitation learning, optimally. ArXiv, abs/2102.12948,
2021. URL https://api.semanticscholar.org/CorpusID:232046264.

[8] E. Kolve, R. Mottaghi, W. Han, E. VanderBilt, L. Weihs, A. Herrasti, M. Deitke, K. Ehsani,
D. Gordon, Y. Zhu, A. Kembhavi, A. K. Gupta, and A. Farhadi. AI2-THOR: An Interac-
tive 3D Environment for Visual AI. ArXiv, abs/1712.05474, 2017. URL https://api.

semanticscholar.org/CorpusID:28328610.

[9] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez,
D. Haziza, F. Massa, A. El-Nouby, R. Howes, P.-Y. Huang, H. Xu, V. Sharma, S.-W. Li,
W. Galuba, M. Rabbat, M. Assran, N. Ballas, G. Synnaeve, I. Misra, H. Jegou, J. Mairal,
P. Labatut, A. Joulin, and P. Bojanowski. DINOv2: Learning robust visual features without
supervision, 2023.

[10] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek, K. Xiao, S. Agrawal, and
J. Dean. Efficiently scaling transformer inference. In MLSys, 2023.

[11] M. Deitke, E. VanderBilt, A. Herrasti, L. Weihs, K. Ehsani, J. Salvador, W. Han, E. Kolve,
A. Kembhavi, and R. Mottaghi. ProcTHOR: Large-scale embodied AI using procedural gen-
eration. In NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/

hash/27c546ab1e4f1d7d638e6a8dfbad9a07-Abstract-Conference.html.

9

https://openreview.net/forum?id=H1gX8C4YPr
http://dx.doi.org/10.3115/V1/D14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://arxiv.org/abs/2006.13171
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2104.04112
https://api.semanticscholar.org/CorpusID:232046264
https://api.semanticscholar.org/CorpusID:28328610
https://api.semanticscholar.org/CorpusID:28328610
http://papers.nips.cc/paper_files/paper/2022/hash/27c546ab1e4f1d7d638e6a8dfbad9a07-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/27c546ab1e4f1d7d638e6a8dfbad9a07-Abstract-Conference.html


[12] M. Deitke, D. Schwenk, J. Salvador, L. Weihs, O. Michel, E. VanderBilt, L. Schmidt,
K. Ehsani, A. Kembhavi, and A. Farhadi. Objaverse: A Universe of Annotated 3D Ob-
jects. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
13142–13153, 2022. URL https://api.semanticscholar.org/CorpusID:254685588.

[13] Y. Yang, F. Sun, L. Weihs, E. VanderBilt, A. Herrasti, W. Han, J. Wu, N. Haber, R. Krishna,
L. Liu, C. Callison-Burch, M. Yatskar, A. Kembhavi, and C. Clark. Holodeck: Language
guided generation of 3d embodied AI environments. CoRR, abs/2312.09067, 2023. doi:10.
48550/ARXIV.2312.09067. URL https://doi.org/10.48550/arXiv.2312.09067.

[14] A. I. for AI. ObjaTHOR: Python package for importing and loading external assets into ai2thor.
https://github.com/allenai/objathor, 2024.

[15] A. Gupta, A. Murali, D. P. Gandhi, and L. Pinto. Robot learning in homes: Improving gener-
alization and reducing dataset bias. In NeurIPS, 2018.

[16] C. C. Kemp, A. Edsinger, H. M. Clever, and B. Matulevich. The Design of Stretch: A
Compact, Lightweight Mobile Manipulator for Indoor Human Environments. In 2022 In-
ternational Conference on Robotics and Automation, ICRA 2022, Philadelphia, PA, USA, May
23-27, 2022, pages 3150–3157. IEEE, 2022. doi:10.1109/ICRA46639.2022.9811922. URL
https://doi.org/10.1109/ICRA46639.2022.9811922.

[17] M. Deitke, R. Hendrix, L. Weihs, A. Farhadi, K. Ehsani, and A. Kembhavi. Phone2Proc:
Bringing robust robots into our chaotic world, 2022.

[18] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra. Detecting twenty-thousand classes
using image-level supervision. In S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and
T. Hassner, editors, Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv,
Israel, October 23-27, 2022, Proceedings, Part IX, volume 13669 of Lecture Notes in Com-
puter Science, pages 350–368. Springer, 2022. doi:10.1007/978-3-031-20077-9 21. URL
https://doi.org/10.1007/978-3-031-20077-9_21.

[19] M. Minderer, A. Gritsenko, and N. Houlsby. Scaling open-vocabulary object detection. In
NeurIPS, 2023.

[20] J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou. Qwen-vl:
A versatile vision-language model for understanding, localization, text reading, and beyond,
2023.

[21] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. In NeurIPS, 2023.

[22] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C. Berg, W. Lo, P. Dollár, and R. B. Girshick. Segment anything. In IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2023, Paris, France, October 1-6, 2023, pages
3992–4003. IEEE, 2023. doi:10.1109/ICCV51070.2023.00371. URL https://doi.org/

10.1109/ICCV51070.2023.00371.

[23] A. Majumdar, G. Aggarwal, B. Devnani, J. Hoffman, and D. Batra. ZSON:
zero-shot object-goal navigation using multimodal goal embeddings. In NeurIPS,
2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/

d0b8f0c8f79d3a621af945cafb669f4b-Abstract-Conference.html.

[24] S. Wani, S. Patel, U. Jain, A. X. Chang, and M. Savva. MultiON: Benchmarking Seman-
tic Map Memory using Multi-Object Navigation. In H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems 33: An-
nual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

6e01383fd96a17ae51cc3e15447e7533-Abstract.html.

10

https://api.semanticscholar.org/CorpusID:254685588
http://dx.doi.org/10.48550/ARXIV.2312.09067
http://dx.doi.org/10.48550/ARXIV.2312.09067
https://doi.org/10.48550/arXiv.2312.09067
https://github.com/allenai/objathor
http://dx.doi.org/10.1109/ICRA46639.2022.9811922
https://doi.org/10.1109/ICRA46639.2022.9811922
http://dx.doi.org/10.1007/978-3-031-20077-9_21
https://doi.org/10.1007/978-3-031-20077-9_21
http://dx.doi.org/10.1109/ICCV51070.2023.00371
https://doi.org/10.1109/ICCV51070.2023.00371
https://doi.org/10.1109/ICCV51070.2023.00371
http://papers.nips.cc/paper_files/paper/2022/hash/d0b8f0c8f79d3a621af945cafb669f4b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/d0b8f0c8f79d3a621af945cafb669f4b-Abstract-Conference.html
https://proceedings.neurips.cc/paper/2020/hash/6e01383fd96a17ae51cc3e15447e7533-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6e01383fd96a17ae51cc3e15447e7533-Abstract.html


[25] R. Ramrakhya, E. Undersander, D. Batra, and A. Das. Habitat-web: Learning embodied object-
search strategies from human demonstrations at scale. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages
5163–5173. IEEE, 2022. doi:10.1109/CVPR52688.2022.00511. URL https://doi.org/

10.1109/CVPR52688.2022.00511.

[26] D. S. Chaplot, D. Gandhi, S. Gupta, A. Gupta, and R. Salakhutdinov. Learning to explore
using active neural slam. ICLR, 2020.

[27] B. Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings 1997
IEEE International Symposium on Computational Intelligence in Robotics and Automation
CIRA’97.’Towards New Computational Principles for Robotics and Automation’, pages 146–
151. IEEE, 1997.

[28] J. Ye, D. Batra, A. Das, and E. Wijmans. Auxiliary tasks and exploration enable objectnav.
CoRR, abs/2104.04112, 2021. URL https://arxiv.org/abs/2104.04112.

[29] X. Puig, E. Undersander, A. Szot, M. D. Cote, T. Yang, R. Partsey, R. Desai, A. W. Clegg,
M. Hlavac, S. Y. Min, V. Vondrus, T. Gervet, V. Berges, J. M. Turner, O. Maksymets, Z. Kira,
M. Kalakrishnan, J. Malik, D. S. Chaplot, U. Jain, D. Batra, A. Rai, and R. Mottaghi. Habitat
3.0: A Co-Habitat for Humans, Avatars and Robots. CoRR, abs/2310.13724, 2023. doi:
10.48550/ARXIV.2310.13724. URL https://doi.org/10.48550/arXiv.2310.13724.

[30] S. Yenamandra, A. Ramachandran, K. Yadav, A. Wang, M. Khanna, T. Gervet, T. Yang,
V. Jain, A. W. Clegg, J. M. Turner, Z. Kira, M. Savva, A. X. Chang, D. S. Chaplot, D. Ba-
tra, R. Mottaghi, Y. Bisk, and C. Paxton. Homerobot: Open-vocabulary mobile manip-
ulation. CoRR, abs/2306.11565, 2023. doi:10.48550/ARXIV.2306.11565. URL https:

//doi.org/10.48550/arXiv.2306.11565.

[31] K. Ehsani, A. Farhadi, A. Kembhavi, and R. Mottaghi. Object manipulation via visual target
localization. In S. Avidan, G. J. Brostow, M. Cissé, G. M. Farinella, and T. Hassner, editors,
Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27,
2022, Proceedings, Part XXXIX, volume 13699 of Lecture Notes in Computer Science, pages
321–337. Springer, 2022. doi:10.1007/978-3-031-19842-7 19. URL https://doi.org/10.

1007/978-3-031-19842-7_19.

[32] N. Yokoyama, A. Clegg, E. Undersander, S. Ha, D. Batra, and A. Rai. Adaptive skill co-
ordination for robotic mobile manipulation. ArXiv, abs/2304.00410, 2023. URL https:

//api.semanticscholar.org/CorpusID:261886226.

[33] A. Goyal, J. Xu, Y. Guo, V. Blukis, Y. Chao, and D. Fox. RVT: Robotic View Transformer for
3D Object Manipulation. CoRR, abs/2306.14896, 2023. doi:10.48550/ARXIV.2306.14896.
URL https://doi.org/10.48550/arXiv.2306.14896.

[34] J. Gu, D. S. Chaplot, H. Su, and J. Malik. Multi-skill Mobile Manipulation for Object Re-
arrangement. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.

net/pdf?id=Z3IClM_bzvP.

[35] J. Yang, C. Glossop, A. Bhorkar, D. Shah, Q. Vuong, C. Finn, D. Sadigh, and S. Levine.
Pushing the limits of cross-embodiment learning for manipulation and navigation. In arXiv
preprint arXiv:2402.19432, 2024.

[36] D. S. Chaplot, R. Salakhutdinov, A. Gupta, and S. Gupta. Neural topological slam for visual
navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020.

[37] M. Chang, T. Gervet, M. Khanna, S. Yenamandra, D. Shah, S. Y. Min, K. Shah, C. Paxton,
S. Gupta, D. Batra, et al. GOAT: Go to any thing. arXiv preprint arXiv:2311.06430, 2023.

11

http://dx.doi.org/10.1109/CVPR52688.2022.00511
https://doi.org/10.1109/CVPR52688.2022.00511
https://doi.org/10.1109/CVPR52688.2022.00511
https://arxiv.org/abs/2104.04112
http://dx.doi.org/10.48550/ARXIV.2310.13724
http://dx.doi.org/10.48550/ARXIV.2310.13724
https://doi.org/10.48550/arXiv.2310.13724
http://dx.doi.org/10.48550/ARXIV.2306.11565
https://doi.org/10.48550/arXiv.2306.11565
https://doi.org/10.48550/arXiv.2306.11565
http://dx.doi.org/10.1007/978-3-031-19842-7_19
https://doi.org/10.1007/978-3-031-19842-7_19
https://doi.org/10.1007/978-3-031-19842-7_19
https://api.semanticscholar.org/CorpusID:261886226
https://api.semanticscholar.org/CorpusID:261886226
http://dx.doi.org/10.48550/ARXIV.2306.14896
https://doi.org/10.48550/arXiv.2306.14896
https://openreview.net/pdf?id=Z3IClM_bzvP
https://openreview.net/pdf?id=Z3IClM_bzvP


[38] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot. Navigating to objects in the real
world. Science Robotics, 2023.

[39] A. Khandelwal, L. Weihs, R. Mottaghi, and A. Kembhavi. Simple but effective: CLIP
embeddings for embodied AI. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pages 14809–14818.
IEEE, 2022. doi:10.1109/CVPR52688.2022.01441. URL https://doi.org/10.1109/

CVPR52688.2022.01441.

[40] M. Shridhar, L. Manuelli, and D. Fox. CLIPort: What and where pathways for robotic manip-
ulation. In CoRL, 2022.

[41] A. Majumdar, K. Yadav, S. Arnaud, Y. J. Ma, C. Chen, S. Silwal, A. Jain, V. Berges,
P. Abbeel, J. Malik, D. Batra, Y. Lin, O. Maksymets, A. Rajeswaran, and F. Meier. Where
are we in the search for an artificial visual cortex for embodied intelligence? CoRR,
abs/2303.18240, 2023. doi:10.48550/ARXIV.2303.18240. URL https://doi.org/10.

48550/arXiv.2303.18240.

[42] B. Ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Irpan,
E. Jang, R. Julian, D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao, P. Sermanet, A. Toshev,
V. Vanhoucke, F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes, N. Sievers,
C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao, P. Pastor, L. Luu, K. Lee, Y. Kuang,
S. Jesmonth, N. J. Joshi, K. Jeffrey, R. J. Ruano, J. Hsu, K. Gopalakrishnan, B. David, A. Zeng,
and C. K. Fu. Do as I can, not as I say: Grounding language in robotic affordances. In
K. Liu, D. Kulic, and J. Ichnowski, editors, Conference on Robot Learning, CoRL 2022, 14-18
December 2022, Auckland, New Zealand, volume 205 of Proceedings of Machine Learning
Research, pages 287–318. PMLR, 2022. URL https://proceedings.mlr.press/v205/

ichter23a.html.

[43] S. Nasiriany, F. Xia, W. Yu, T. Xiao, J. Liang, I. Dasgupta, A. Xie, D. Driess, A. Wahid,
Z. Xu, et al. PIVOT: Iterative visual prompting elicits actionable knowledge for vlms. In arXiv
preprint arXiv:2402.07872, 2024.

[44] S. Srivastava, C. Li, M. Lingelbach, R. Mart’in-Mart’in, F. Xia, K. Vainio, Z. Lian, C. Gokmen,
S. Buch, C. K. Liu, S. Savarese, H. Gweon, J. Wu, and L. Fei-Fei. BEHAVIOR: Benchmark for
Everyday Household Activities in Virtual, Interactive, and Ecological Environments. In Con-
ference on Robot Learning, 2021. URL https://api.semanticscholar.org/CorpusID:

236957374.

[45] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n, C. Wang, G. Levine,
M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter,
K. Kim, A. Lou, C. R. Matthews, I. Villa-Renteria, J. H. Tang, C. Tang, F. Xia, S. Savarese,
H. Gweon, K. Liu, J. Wu, and L. Fei-Fei. BEHAVIOR-1K: A Benchmark for Embodied AI
with 1, 000 Everyday Activities and Realistic Simulation. In K. Liu, D. Kulic, and J. Ichnowski,
editors, Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New
Zealand, volume 205 of Proceedings of Machine Learning Research, pages 80–93. PMLR,
2022. URL https://proceedings.mlr.press/v205/li23a.html.

[46] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. J. Joshi,
R. Julian, D. Kalashnikov, Y. Kuang, I. Leal, K. Lee, S. Levine, Y. Lu, U. Malla, D. Man-
junath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao,
K. Rao, M. S. Ryoo, G. Salazar, P. R. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone,
C. Tan, H. T. Tran, V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu,
and B. Zitkovich. RT-1: robotics transformer for real-world control at scale. In K. E.
Bekris, K. Hauser, S. L. Herbert, and J. Yu, editors, Robotics: Science and Systems XIX,
Daegu, Republic of Korea, July 10-14, 2023, 2023. doi:10.15607/RSS.2023.XIX.025. URL
https://doi.org/10.15607/RSS.2023.XIX.025.

12

http://dx.doi.org/10.1109/CVPR52688.2022.01441
https://doi.org/10.1109/CVPR52688.2022.01441
https://doi.org/10.1109/CVPR52688.2022.01441
http://dx.doi.org/10.48550/ARXIV.2303.18240
https://doi.org/10.48550/arXiv.2303.18240
https://doi.org/10.48550/arXiv.2303.18240
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://api.semanticscholar.org/CorpusID:236957374
https://api.semanticscholar.org/CorpusID:236957374
https://proceedings.mlr.press/v205/li23a.html
http://dx.doi.org/10.15607/RSS.2023.XIX.025
https://doi.org/10.15607/RSS.2023.XIX.025


[47] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, X. Chen, K. Choromanski, T. Ding, D. Driess,
A. Dubey, C. Finn, P. Florence, C. Fu, M. G. Arenas, K. Gopalakrishnan, K. Han, K. Hausman,
A. Herzog, J. Hsu, B. Ichter, A. Irpan, N. J. Joshi, R. Julian, D. Kalashnikov, Y. Kuang, I. Leal,
L. Lee, T. E. Lee, S. Levine, Y. Lu, H. Michalewski, I. Mordatch, K. Pertsch, K. Rao, K. Rey-
mann, M. S. Ryoo, G. Salazar, P. Sanketi, P. Sermanet, J. Singh, A. Singh, R. Soricut, H. T.
Tran, V. Vanhoucke, Q. Vuong, A. Wahid, S. Welker, P. Wohlhart, J. Wu, F. Xia, T. Xiao, P. Xu,
S. Xu, T. Yu, and B. Zitkovich. RT-2: vision-language-action models transfer web knowledge
to robotic control. CoRR, abs/2307.15818, 2023. doi:10.48550/ARXIV.2307.15818. URL
https://doi.org/10.48550/arXiv.2307.15818.

[48] O. X.-E. Collaboration, A. O’Neill, A. Rehman, A. Gupta, A. Maddukuri, A. Gupta,
A. Padalkar, A. Lee, A. Pooley, A. Gupta, A. Mandlekar, A. Jain, A. Tung, A. Bewley, A. Her-
zog, A. Irpan, A. Khazatsky, A. Rai, A. Gupta, A. Wang, A. Kolobov, A. Singh, A. Garg,
A. Kembhavi, A. Xie, A. Brohan, A. Raffin, A. Sharma, A. Yavary, A. Jain, A. Balakrishna,
A. Wahid, B. Burgess-Limerick, B. Kim, B. Schölkopf, B. Wulfe, B. Ichter, C. Lu, C. Xu,
C. Le, C. Finn, C. Wang, C. Xu, C. Chi, C. Huang, C. Chan, C. Agia, C. Pan, C. Fu, C. Devin,
D. Xu, D. Morton, D. Driess, D. Chen, D. Pathak, D. Shah, D. Büchler, D. Jayaraman,
D. Kalashnikov, D. Sadigh, E. Johns, E. Foster, F. Liu, F. Ceola, F. Xia, F. Zhao, F. V. Fru-
jeri, F. Stulp, G. Zhou, G. S. Sukhatme, G. Salhotra, G. Yan, G. Feng, G. Schiavi, G. Berseth,
G. Kahn, G. Yang, G. Wang, H. Su, H.-S. Fang, H. Shi, H. Bao, H. B. Amor, H. I. Christensen,
H. Furuta, H. Bharadhwaj, H. Walke, H. Fang, H. Ha, I. Mordatch, I. Radosavovic, I. Leal,
J. Liang, J. Abou-Chakra, J. Kim, J. Drake, J. Peters, J. Schneider, J. Hsu, J. Vakil, J. Bohg,
J. Bingham, J. Wu, J. Gao, J. Hu, J. Wu, J. Wu, J. Sun, J. Luo, J. Gu, J. Tan, J. Oh, J. Wu, J. Lu,
J. Yang, J. Malik, J. Silvério, J. Hejna, J. Booher, J. Tompson, J. Yang, J. Salvador, J. J. Lim,
J. Han, K. Wang, K. Rao, K. Pertsch, K. Hausman, K. Go, K. Gopalakrishnan, K. Goldberg,
K. Byrne, K. Oslund, K. Kawaharazuka, K. Black, K. Lin, K. Zhang, K. Ehsani, K. Lekkala,
K. Ellis, K. Rana, K. Srinivasan, K. Fang, K. P. Singh, K.-H. Zeng, K. Hatch, K. Hsu, L. Itti,
L. Y. Chen, L. Pinto, L. Fei-Fei, L. Tan, L. J. Fan, L. Ott, L. Lee, L. Weihs, M. Chen, M. Lepert,
M. Memmel, M. Tomizuka, M. Itkina, M. G. Castro, M. Spero, M. Du, M. Ahn, M. C. Yip,
M. Zhang, M. Ding, M. Heo, M. K. Srirama, M. Sharma, M. J. Kim, N. Kanazawa, N. Hansen,
N. Heess, N. J. Joshi, N. Suenderhauf, N. Liu, N. D. Palo, N. M. M. Shafiullah, O. Mees,
O. Kroemer, O. Bastani, P. R. Sanketi, P. T. Miller, P. Yin, P. Wohlhart, P. Xu, P. D. Fagan,
P. Mitrano, P. Sermanet, P. Abbeel, P. Sundaresan, Q. Chen, Q. Vuong, R. Rafailov, R. Tian,
R. Doshi, R. Mart’in-Mart’in, R. Baijal, R. Scalise, R. Hendrix, R. Lin, R. Qian, R. Zhang,
R. Mendonca, R. Shah, R. Hoque, R. Julian, S. Bustamante, S. Kirmani, S. Levine, S. Lin,
S. Moore, S. Bahl, S. Dass, S. Sonawani, S. Tulsiani, S. Song, S. Xu, S. Haldar, S. Karamcheti,
S. Adebola, S. Guist, S. Nasiriany, S. Schaal, S. Welker, S. Tian, S. Ramamoorthy, S. Dasari,
S. Belkhale, S. Park, S. Nair, S. Mirchandani, T. Osa, T. Gupta, T. Harada, T. Matsushima,
T. Xiao, T. Kollar, T. Yu, T. Ding, T. Davchev, T. Z. Zhao, T. Armstrong, T. Darrell, T. Chung,
V. Jain, V. Kumar, V. Vanhoucke, W. Zhan, W. Zhou, W. Burgard, X. Chen, X. Chen, X. Wang,
X. Zhu, X. Geng, X. Liu, X. Liangwei, X. Li, Y. Pang, Y. Lu, Y. J. Ma, Y. Kim, Y. Chebotar,
Y. Zhou, Y. Zhu, Y. Wu, Y. Xu, Y. Wang, Y. Bisk, Y. Dou, Y. Cho, Y. Lee, Y. Cui, Y. Cao, Y.-H.
Wu, Y. Tang, Y. Zhu, Y. Zhang, Y. Jiang, Y. Li, Y. Li, Y. Iwasawa, Y. Matsuo, Z. Ma, Z. Xu,
Z. J. Cui, Z. Zhang, Z. Fu, and Z. Lin. Open X-Embodiment: Robotic learning datasets and
RT-X models. In ICRA, 2024.

[49] A. Khazatsky, K. Pertsch, S. Nair, A. Balakrishna, S. Dasari, S. Karamcheti, S. Nasiriany,
M. K. Srirama, L. Y. Chen, K. Ellis, et al. DROID: A large-scale in-the-wild robot manipulation
dataset. In arXiv preprint arXiv:2403.12945, 2024.

[50] C. Chi, Z. Xu, C. Pan, E. Cousineau, B. Burchfiel, S. Feng, R. Tedrake, and S. Song. Universal
manipulation interface: In-the-wild robot teaching without in-the-wild robots. In RSS, 2024.

[51] J. Gu, F. Xiang, X. Li, Z. Ling, X. Liu, T. Mu, Y. Tang, S. Tao, X. Wei, Y. Yao, X. Yuan,
P. Xie, Z. Huang, R. Chen, and H. Su. ManiSkill2: A Unified Benchmark for General-
izable Manipulation Skills. In The Eleventh International Conference on Learning Rep-

13

http://dx.doi.org/10.48550/ARXIV.2307.15818
https://doi.org/10.48550/arXiv.2307.15818


resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=b_CQDy9vrD1.

[52] C. Li, F. Xia, R. Martı́n-Martı́n, M. Lingelbach, S. Srivastava, B. Shen, K. E. Vainio, C. Gok-
men, G. Dharan, T. Jain, A. Kurenkov, C. K. Liu, H. Gweon, J. Wu, L. Fei-Fei, and S. Savarese.
igibson 2.0: Object-centric simulation for robot learning of everyday household tasks. In
A. Faust, D. Hsu, and G. Neumann, editors, Conference on Robot Learning, 8-11 November
2021, London, UK, volume 164 of Proceedings of Machine Learning Research, pages 455–
465. PMLR, 2021. URL https://proceedings.mlr.press/v164/li22b.html.

[53] B. Shen, F. Xia, C. Li, R. Martı́n-Martı́n, L. Fan, G. Wang, C. Pérez-D’Arpino, S. Buch, S. Sri-
vastava, L. Tchapmi, M. Tchapmi, K. Vainio, J. Wong, L. Fei-Fei, and S. Savarese. iGibson
1.0: A Simulation Environment for Interactive Tasks in Large Realistic Scenes. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS 2021, Prague, Czech Re-
public, September 27 - Oct. 1, 2021, pages 7520–7527. IEEE, 2021. doi:10.1109/IROS51168.
2021.9636667. URL https://doi.org/10.1109/IROS51168.2021.9636667.

[54] A. Szot, A. Clegg, E. Undersander, E. Wijmans, Y. Zhao, J. M. Turner, N. Maestre,
M. Mukadam, D. S. Chaplot, O. Maksymets, A. Gokaslan, V. Vondrus, S. Dharur,
F. Meier, W. Galuba, A. X. Chang, Z. Kira, V. Koltun, J. Malik, M. Savva, and
D. Batra. Habitat 2.0: Training Home Assistants to Rearrange their Habitat. In
M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems 34: Annual Conference on Neu-
ral Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 251–266, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/

021bbc7ee20b71134d53e20206bd6feb-Abstract.html.

[55] F. Xiang, Y. Qin, K. Mo, Y. Xia, H. Zhu, F. Liu, M. Liu, H. Jiang, Y. Yuan, H. Wang, L. Yi,
A. X. Chang, L. J. Guibas, and H. Su. SAPIEN: A SimulAted Part-based Interactive ENvi-
ronment. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2020.

[56] X. Puig, K. Ra, M. Boben, J. Li, T. Wang, S. Fidler, and A. Torralba. VirtualHome: Sim-
ulating Household Activities via Programs. In 2018 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages
8494–8502. Computer Vision Foundation / IEEE Computer Society, 2018. doi:10.1109/CVPR.
2018.00886. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_

VirtualHome_Simulating_Household_CVPR_2018_paper.html.

[57] C. Gan, J. Schwartz, S. Alter, D. Mrowca, M. Schrimpf, J. Traer, J. D. Freitas,
J. Kubilius, A. Bhandwaldar, N. Haber, M. Sano, K. Kim, E. Wang, M. Lingelbach,
A. Curtis, K. T. Feigelis, D. Bear, D. Gutfreund, D. D. Cox, A. Torralba, J. J. Di-
Carlo, J. Tenenbaum, J. H. McDermott, and D. Yamins. ThreeDWorld: A Platform
for Interactive Multi-Modal Physical Simulation. In J. Vanschoren and S. Yeung, edi-
tors, Proceedings of the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual, 2021.
URL https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/

735b90b4568125ed6c3f678819b6e058-Abstract-round1.html.

[58] Z. Zhang and L. Weihs. When learning is out of reach, reset: Generalization in autonomous
visuomotor reinforcement learning. arXiv preprint arXiv: Arxiv-2303.17600, 2023.

[59] M. Khanna, Y. Mao, H. Jiang, S. Haresh, B. Schacklett, D. Batra, A. Clegg, E. Undersander,
A. X. Chang, and M. Savva. Habitat synthetic scenes dataset (hssd-200): An analysis of 3d
scene scale and realism tradeoffs for objectgoal navigation. In CVPR, 2024.

[60] Z. D. Guo, M. G. Azar, B. Piot, B. A. Pires, and R. Munos. Neural predictive belief represen-
tations. ICLR, 2019.

14

https://openreview.net/pdf?id=b_CQDy9vrD1
https://proceedings.mlr.press/v164/li22b.html
http://dx.doi.org/10.1109/IROS51168.2021.9636667
http://dx.doi.org/10.1109/IROS51168.2021.9636667
https://doi.org/10.1109/IROS51168.2021.9636667
https://proceedings.neurips.cc/paper/2021/hash/021bbc7ee20b71134d53e20206bd6feb-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/021bbc7ee20b71134d53e20206bd6feb-Abstract.html
http://dx.doi.org/10.1109/CVPR.2018.00886
http://dx.doi.org/10.1109/CVPR.2018.00886
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/735b90b4568125ed6c3f678819b6e058-Abstract-round1.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/735b90b4568125ed6c3f678819b6e058-Abstract-round1.html


[61] Z. D. Guo, B. A. Pires, B. Piot, J.-B. Grill, F. Altché, R. Munos, and M. G. Azar. Boot-
strap latent-predictive representations for multitask reinforcement learning. In International
Conference on Machine Learning, 2020.

[62] K.-H. Zeng, L. Weihs, A. Farhadi, and R. Mottaghi. Pushing it out of the way: Interactive vi-
sual navigation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021.

[63] K. P. Singh, J. Salvador, L. Weihs, and A. Kembhavi. Scene Graph Contrastive Learning for
Embodied Navigation. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 10884–10894, October 2023.

[64] L. Chen, K. Lu, A. Rajeswaran, K. Lee, A. Grover, M. Laskin, P. Abbeel, A. Srini-
vas, and I. Mordatch. Decision transformer: Reinforcement learning via sequence mod-
eling. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin, P. Liang, and J. W. Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, vir-
tual, pages 15084–15097, 2021. URL https://proceedings.neurips.cc/paper/2021/

hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html.

[65] Q. Zheng, A. Zhang, and A. Grover. Online decision transformer. In ICML, 2022.

[66] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine. D4RL: Datasets for deep
data-driven reinforcement learning. ArXiv, abs/2004.07219, 2020. URL https://api.

semanticscholar.org/CorpusID:215827910.

[67] L. Meng, M. Wen, C. Le, X. Li, D. Xing, W. Zhang, Y. Wen, H. Zhang, J. Wang, Y. Yang, et al.
Offline pre-trained multi-agent decision transformer. Machine Intelligence Research, 2023.

[68] X. Huang, D. Batra, A. Rai, and A. Szot. Skill transformer: A monolithic policy for mobile
manipulation. In CVPR, 2023.

[69] E. Parisotto, F. Song, J. Rae, R. Pascanu, C. Gulcehre, S. Jayakumar, M. Jaderberg, R. L.
Kaufman, A. Clark, S. Noury, et al. Stabilizing transformers for reinforcement learning. In
ICML, 2020.

[70] C. Beattie, J. Z. Leibo, D. Teplyashin, T. Ward, M. Wainwright, H. Küttler, A. Lefrancq,
S. Green, V. Valdés, A. Sadik, J. Schrittwieser, K. Anderson, S. York, M. Cant, A. Cain,
A. Bolton, S. Gaffney, H. King, D. Hassabis, S. Legg, and S. Petersen. Deepmind lab. ArXiv,
abs/1612.03801, 2016. URL https://api.semanticscholar.org/CorpusID:3221395.

[71] H. Mao, R. Zhao, Z. Li, Z. Xu, H. Chen, Y. Chen, B. Zhang, Z. Xiao, J. Zhang, and J. Yin.
PDiT: Interleaving perception and decision-making transformers for deep reinforcement learn-
ing. In AAMAS, 2024.

[72] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-Maron, M. Gimenez,
Y. Sulsky, J. Kay, J. T. Springenberg, et al. A generalist agent. In TMLR, 2022.

[73] X. Xiao, T. Zhang, K. Choromanski, E. Lee, A. Francis, J. Varley, S. Tu, S. Singh, P. Xu, F. Xia,
et al. Learning model predictive controllers with real-time attention for real-world navigation.
In CoRL, 2023.

[74] K. Choromanski, V. Likhosherstov, D. Dohan, X. Song, A. Gane, T. Sarlos, P. Hawkins,
J. Davis, A. Mohiuddin, L. Kaiser, et al. Rethinking attention with performers. In ICLR,
2021.

[75] P. Parashar, V. Jain, X. Zhang, J. Vakil, S. Powers, Y. Bisk, and C. Paxton. Spatial-language
attention policies for efficient robot learning. In CoRL, 2023.

15

https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/7f489f642a0ddb10272b5c31057f0663-Abstract.html
https://api.semanticscholar.org/CorpusID:215827910
https://api.semanticscholar.org/CorpusID:215827910
https://api.semanticscholar.org/CorpusID:3221395


[76] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath. Real-world humanoid
locomotion with reinforcement learning. Science Robotics, 2024.

[77] H. Wang, A. H. Tan, and G. Nejat. Navformer: A transformer architecture for robot target-
driven navigation in unknown and dynamic environments. In IEEE Robotics and Automation
Letters, 2024.

[78] D. Shah, A. Sridhar, A. Bhorkar, N. Hirose, and S. Levine. GNM: A general navigation model
to drive any robot. In ICRA, 2023.

[79] A. Sridhar, D. Shah, C. Glossop, and S. Levine. Nomad: Goal masked diffusion policies for
navigation and exploration. In ICRA, 2023.

[80] D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine. Vint: A
foundation model for visual navigation. In CoRL, 2023.

[81] T. Haarnoja, A. Zhou, S. Ha, J. Tan, G. Tucker, and S. Levine. Learning to walk via deep rein-
forcement learning. ArXiv, abs/1812.11103, 2018. URL https://api.semanticscholar.

org/CorpusID:57189150.

[82] S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies.
J. Mach. Learn. Res., 17:39:1–39:40, 2015. URL https://api.semanticscholar.org/

CorpusID:7242892.

[83] W. Yang, X. Wang, A. Farhadi, A. K. Gupta, and R. Mottaghi. Visual semantic navigation
using scene priors. ArXiv, abs/1810.06543, 2018. URL https://api.semanticscholar.

org/CorpusID:53116049.

[84] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Ried-
miller. Playing atari with deep reinforcement learning. ArXiv, abs/1312.5602, 2013. URL
https://api.semanticscholar.org/CorpusID:15238391.

[85] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. In NeurIPS, 2019.

[86] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra,
P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer, M. Chen, G. Cucurull, D. Es-
iobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn,
S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Ko-
renev, P. S. Koura, M. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet,
T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Sal-
adi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor,
A. Williams, J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang,
A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023. doi:10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

[87] A. Eftekhar, K.-H. Zeng, J. Duan, A. Farhadi, A. Kembhavi, and R. Krishna. Selective vi-
sual representations improve convergence and generalization for embodied ai. arXiv preprint
arXiv:2311.04193, 2023.

[88] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. In JMLR,
2020.

[89] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, E. Li, X. Wang, M. Dehghani,
S. Brahma, A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, S. Narang,
G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean, J. Devlin,

16

https://api.semanticscholar.org/CorpusID:57189150
https://api.semanticscholar.org/CorpusID:57189150
https://api.semanticscholar.org/CorpusID:7242892
https://api.semanticscholar.org/CorpusID:7242892
https://api.semanticscholar.org/CorpusID:53116049
https://api.semanticscholar.org/CorpusID:53116049
https://api.semanticscholar.org/CorpusID:15238391
http://dx.doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/arXiv.2307.09288


A. Roberts, D. Zhou, Q. V. Le, and J. Wei. Scaling instruction-finetuned language models,
2022. URL https://arxiv.org/abs/2210.11416.

[90] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. In arXiv preprint arXiv:1412.3555, 2014.

[91] OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi:10.48550/ARXIV.2303.
08774. URL https://doi.org/10.48550/arXiv.2303.08774.

[92] L. Weihs, J. Salvador, K. Kotar, U. Jain, K.-H. Zeng, R. Mottaghi, and A. Kembhavi. AllenAct:
A framework for embodied ai research. arXiv preprint arXiv:2008.12760, 2020.

[93] J. Singla, A. Agarwal, and D. Pathak. Sapg: Split and aggregate policy gradients. In arXiv
preprint arXiv:2407.20230, 2024.

17

https://arxiv.org/abs/2210.11416
http://dx.doi.org/10.48550/ARXIV.2303.08774
http://dx.doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/arXiv.2303.08774


Appendices for PoliFormer: Scaling On-Policy RL with Transformers Results
in Masterful Navigators

These appendices contain additional information about our:

• Zero-shot real-world applications (App. A),

• Training procedure (App. B),

• Environment, benchmarks, and quantitative real-world experiments (App. C),

• Simulation evaluations (App. D), and

• Limitations (App. E).

Please find our project website (see the poliformer.allen.ai) that contains

• Six real-world qualitative videos where POLIFORMER performs the everyday tasks of Sec-
tion 4.4 (recall also Figure 3), and

• Four qualitative videos in simulation showing our POLIFORMER’s behavior in the
four benchmark environments (CHORES, PROCTHOR, AI2-iTHOR, and ARCHITEC-
THOR).

A Details about Zero-shot Real-world Downstream Applications using an
Open-Vocab Object Detector and VLM

By specifying POLIFORMER’s goal purely using b-boxes, we produce POLIFORMER-BOXNAV.
POLIFORMER-BOXNAV is extremely effective at exploring its environment and, once it observes
a bounding box, takes a direct and efficient path towards it. We now describe how we utilize this
behavior to apply POLIFORMER-BOXNAV zero-shot to a variety of downstream applications by
leveraging an open vocabulary object detector (Detic [18]) and a VLM (GPT-4o [91]).

Open Vocabulary ObjectNav. To perform open vocabulary object navigation (i.e., where one
must navigate to any given object type), we simply prompt the Detic object detector with the novel
object type, for example, Bicycle. As POLIFORMER-BOXNAV relies on the b-box as its goal
specification, it finds a bicycle in the scene smoothly.

Multi-target ObjectNav. To enable multi-target object goal navigation, we make a few simple
modifications to the inputs and output of the Detic detector. On the input side, we query with
multiple prompts simultaneously (one for each object type); for instance, HousePlant, Toilet,
and Sofa, as shown in Fig. 3 (bottom-left). We then, on the output side, only return the b-box with
the highest confidence score. Since the returned b-box also contains the predicted object type, we
know what the target object the agent finds is when issuing a Done action. Therefore, we remove
the found target from the list of target types, and reset the POLIFORMER’s KV-cache. If the agent
issues a Done action without a detected b-box, we terminate the episode and consider it a failure.
As a result, the agent is required to find all the targets from the list of target types to succeed in an
episode.

Human Following. We change the Detic prompt to Person. Once a b-box is detected, PO-
LIFORMER drives the agent to approach it. Our experiment participant continues to walk away,
so the agent keeps approaching them to minimize the distance.

Object Tracking. In this example, we control a remote control car that moves in the environment,
and prompt the agent to find the car. Similar to Human Following, we change the prompt to Toy

Truck in this example. As a result, the agent keeps trying to move closer to the detected b-box of
the RC car, while avoiding collisions with objects in the dynamic scene.

Room Navigation. In this example, shown in Fig. 3 (middle-left), we provide no detections to the
agent. As the agent sees no detections, it continuously explores the scene. As the agent explores, we

18

https://poliformer.allen.ai


0 1 0 1 2 3 4 5 0 1 2 0 1 2 0 1

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 1 1 1 1 1 1

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 1

1st rollout 2nd rollout

1st episode 2nd episode 1st episode 2nd episode 3rd episode

Figure 4: Attention Masks for training with block lower triangular structure.

query GPT4-o every 5 timesteps with the prompt Am I in a Kitchen? Please return Yes

or No. with the most recent visual observation. Once GPT-4o returns Yes, the agent issues a Done
action to end the episode.

Instance Description Navigation. In this example, shown in Fig. 3 (upper-left), the agent is
prompted to find a specific book titled “Humans”. Detic can generate open-vocabulary bounding
boxes using instance-level descriptions but we found that doing this alone leads to high false-positive
rates. To reduce these errors, we use GPT4-o to filter positive detections from Detic. In particular,
a sample filtering prompt is “Is there a book titled “Humans” in this image? Please return Yes or
No.”. We find this combination works well in practice. The agent, not GPT-4o, remains responsible
for deciding when it has successfully completed its task, and in the Fig. 3 example sees many books
in its search but perseveres and eventually finds the correct one.

B Additional Training Details

B.1 Reward Shaping

For reward shaping, we follow EmbCodebook [87] and PROCTHOR [11] and use the implementa-
tion in AllenAct [92]: Rpenalty +Rsuccess +Rdistance, where Rpenalty = −0.01 encourages an
efficient navigation, Rsuccess = 10 when the agent successfully completes the task (= 0 otherwise),
and Rdistance is the change of L2 distances from target between two consecutive steps. Note that we
only provide a nonzero Rdistance if the new distance is less than previously seen in the episode. We
do not enforce a negative reward for increasing distance. This formulation encourages exploration.

B.2 Episodic Attention Mask

During training, to ensure that the causal transformer decoder cannot access observations or states
across different episodes, we construct the episodic attention mask to only allow the past experiences
within the same episode to be attended. In Fig. 4, we show a couple of possible rollouts collected
during training. With the episodic attention mask, observations and states in an episode can only
attend to previous ones within the same episode, in contrast with a naive causal mask where they
could also potentially attend to observations and states in previous episodes.

B.3 Different Temporal Cache Strategies

Besides the KV-Cache, in this subsection, we ablate four different temporal cache strategies (shown
in Fig. 5 top):

19



g

Ti
m

e
t

t−
1

t−
2

t−
3

t−
4

Pr
ev

io
us

 
Ac

tio
ns

at−5
at−4

at−3
at−2

at−1

St
at

e 
Fe

at
ur

es
st−4

st−3
st−2

st−1
st

Pr
ed

ic
te

d 
Ac

tio
ns

at−4
at−3

at−2
at−1

at

Ac
tio

n 
H

ea
d

C
rit

ic
 

H
ea

d

Va
lu

e 
Es

tim
at

io
n

et−4
et−3

et−2
et−1

etbt

Causal Transformer Decoder

qt

kt

vt

At
te

nt
io

n 
La

ye
r

Nx

Value cache

Key cache

Vi
si

on
 

Tr
an

sf
or

m
er

 
M

od
el

M
LP

it

rt

RGB observation STATE
f

G
oa

l 
Sp

ec
ifi

ca
tio

n 
En

co
de

r

M
LPSearch for 

a sofa

Goal Specification

(Optional) b-box

x2, y2

area

Po
si

tio
na

l 
En

co
di

ng
C

oo
rd

in
at

e 
Ty

pe
 E

m
be

d

M
LP

x1, y1 t
bg (iv

) K
V-

C
ac

he

(ii
i) 

St
at

e-
C

ac
he

st

Tr
an

sf
or

m
er

 S
ta

te
 E

nc
od

er

(ii
) F

ea
tu

re
-C

ac
he(i)

 N
o-

 
C

ac
he

Tr
ai

ni
ng

 S
te

p 
pe

r S
ec

on
d 

(S
PS

)

0

750

1500

2250

3000

Different Temporal Cache Strategies 
Stretch RE-1 LoCoBot

2,300

950

2,050

850
1,170

560

150110

(i) No-Cache
(ii) Feature-Cache
(iii) State-Cache
(iv) KV-Cache

Figure 5: Different temporal cache strategies and their impact on the training speed. We ablate four
different cache strategies, including (i) No-Cache, (ii) Feature-Cache, (iii) State-Cache, and (iv)
KV-Cache, shown at top. The bottom chart shows the training Step per Second (SPS) achieved by
different strategies, on both LoCoBot and Stretch RE-1 agents.

(i) No-Cache, we cache the raw frames (visual observation it) to provide past experiences
for the causal transformer decoder. Therefore, POLIFORMER has to rerun the feedforward
across all modules with the cached frames and the latest visual observation at each timestep.

(ii) Feature-Cache, we cache the features, including visual representation vt and goal embed-
ding gt (as well as gtb). In this case, POLIFORMER needs to recompute the transformer state
encoder and causal transformer decoder with the cached features and the latest feature at
each timestep.

(iii) State-Cache, we cache the state feature vector st. Since it is right before the causal trans-
former decoder, POLIFORMER only requires to pass the cache state features and the latest
state feature vector to the decoder, without recomputing the visual transformer model, goal
encoder, and transformer state encoder.

(iv) KV-Cache, as described in Sec. 3.1, we cache the Keys and Values inside the causal trans-
former decoder, further reducing the required computation time for the transformer decoder
from t2 to t theoretically. In addition, since this strategy operates at very end, all the re-
computations required by modules preceding causal transformer decoder can be saved.

The speed profile results are shown in Fig. 5 bottom. It clearly shows that placing the cache closer
to the causal transformer decoder improves the training efficiency significantly.

B.4 Hyperparameters for Training

Tab. 3 lists the hyperparameters used in our training and model architecture design. Please find more
details such as scene texture randomization, visual observation augmentations, and goal specification
randomization when using text instruction in our codebase.

20



Training and Model Details
Parameter Value
Allowed Steps 600 (Stretch RE-1), 500 (LoCoBot)
Total Rollouts 192 (Stretch RE-1), 384 (LoCoBot)
Learing Rate 0.002
Mini Batch per Update 1
Update Repeats 4
Max Gradient Norm 0.5
Discount Value Factor γ 0.99
GAE λ 0.95
PPO Surrogate Objective Clipping 0.1
Value Loss Weight 0.5
Entropy Loss Weight 0.01
Training Stages 3
Steps for PPO Update Stage 1 32
Steps for PPO Update Stage 2 64
Steps for PPO Update Stage 3 128
Transformer State Encoder Layers 3
Transformer State Encoder Hidden Dims 512
Transformer State Encoder Heads 8
Causal Transformer Deocder Layers 3
Causal Transformer Deocder Hidden Dims 512
Causal Transformer Deocder Heads 8

Table 3: Hyperparameters for training and model architecture.

C Additional Details about Environment, Benchmarks, and Real-World
Experiments

Action Space. Following prior work using AI2-THOR, we discretize the action space for both
LoCoBot and Stretch RE-1. For LoCoBot, we discretize the action space into 6 actions, including
{MoveAhead, RotateRight, RotateLeft, LookUp, LookDown, Done}, where MoveAhead moves
the agent forward by 0.2 meters, RotateRight rotates the agent clockwise by 30◦ around the yaw-
axis, RotateLeft rotates the agent counter-clockwise by 30◦ around the yaw-axis, LookUp rotates
agent’s camera clockwise by 30◦ around the roll-axis, LookDown rotates agent’s camera counter-
clockwise by 30◦ around the roll-axis, and Done indicates that the agent found the target and ends
an episode. We follow previous works [11, 17, 87] to use the same action space for LoCoBot for
a fair comparison. For Stretch RE-1, we remove the LookUp and LookDown camera actions, and
add MoveBack, RotateRightSmall, and RotateLeftSmall to the action space, where MoveBack
moves the agent backward by 0.2 meters, RotateRightSmall rotates the agent clockwise by 6◦

around the yaw-axis, and RotateLeftSmall rotates the agent counter-clockwise by 6◦ around the
yaw-axis. Again, this action space is identical to the one used in prior work [6] for fair comparison.

Success Criteria. We follow the definition of Object Goal Navigation defined in [3], where an agent
must explore its environment to locate and navigate to an object of interest within an allowed number
of steps n. The agent has to issue the Done action to indicate it found the target. The environment
will then judge if the agent is within a distance d from the target and if the target can be seen in
the agent’s view. An episode is also classified as failed if the agent runs more than n steps without
issuing any Done action. Across different benchmarks, n and d vary depending on the scenes size
and complexity and agent’s capabilities. We follow ProcTHOR [11] to use n = 500 and d = 1
meter for LoCoBot, and follow CHORES-S [6] to use n = 600 and d = 2 meters for Stretch RE-1.

SPL and SEL. Success Weighted by Path Length (SPL) and Success Weighted by Episode Legnth
(SEL) are two popular evaluation metrics to evaluate how efficient an agent is to find the target.
SPL is defined as 1

N

∑N
i=1 Si

li
max(li,pi)

, where N is the total number of episodes, Si is a binary

21



StorageKitchenBathroomOfficeBedroom

Corridor

Livingroom

Start 1

Start 2
Start 3

StorageKitchenBathroomOfficeBedroom

Corridor

Livingroom

Start 1
Start 2

Start 3

(a) Starting Poses for LoCoBot

(b) Starting Poses for Stretch RE-1

Figure 6: Starting Poses of (a) LoCoBot and (b) Stretch RE-1 used in the real world experiments.
The arrow direction indicates where the agent faces with.

indicator of success for episode i, li is the shortest travel distance to the target, and pi is the actual
travel distance. SEL is defined similarly: 1

N

∑N
i=1 Si

wi

max(wi,ei)
, where wi is the shortest number of

steps to find the target, and ei is the actual number of steps used by the agent. By definition, SPL
focuses on how far the agent has traveled, while SEL focuses on how many steps the agent has used
(which also penalizes excessive in-place rotation). SPL can be derived by computing the geodesic
distance between the agent’s starting location and the target’s location, while SEL needs a planner
with privileged environment information to calculate the number of steps of expert trajectories.
Therefore, we follow ProcTHOR [11] to report SPL to evaluate the LoCoBot agent, since those
benchmarks do not provide planner, while we follow CHORES-S [6] to report SEL, since expert
trajectories are available.

Real-world Experiment Setup. For the experiments using LoCoBot, we follow Phone2Proc [17]
to use the same five target object categories, including Apple, Bed, Sofa, Television, and Vase,
and the three starting poses, shown in Fig. 6 (a). Among those target categories, Apple can be found
in the Living room and Kitchen, Bed can only be found in the Bedroom, Sofa and Television

can only be found in the Living room, and Vase can be found in the Livingroom, Corridor, Office,
and Kitchen. For the experiments using Stretch RE-1, we follow SPOC [6] to use the same six
target object categories, including Apple, Bed, Chair, HousePlant, Sofa, and Vase, and the three
starting poses, shown in Fig. 6 (b). Among the categories not mentioned above, Chair can be found
in the Living room, Office, and Kitchen, and HousePlant can be found in the Living room, Office,
Bathroom, and Kitchen. Note that we use the hardware design intorduced in SPOC [6] for Stretch
RE-1. Instead of using the off-the-shelf camera equipped on the Stretch RE-1 (due to its narrow field
of view), we use an Intel RealSense 455 fixed camera, which has a vertical field of view of 59◦ and
a resolution of 1280× 720. The camera is mounted facing forward but pointing downward, with the
horizon at a nominal angle of 30◦. Please find more details in App. C.1. in SPOC [6].

Details about Different Benchmarks

First, during the training and testing stages, the possible target object types the agent is tasked
with searching for include AlarmClock, Apple, BasketBall, Bed, Bowl, Chair, GarbageCan,
HousePlant, Laptop, Mug, Sofa, SprayBottle, Television, Toilet, and Vase. We then out-
line the differences between the environments.

(i) AI2-iTHOR: This environment consists of 60 training scenes, 20 validation scenes, and 20
test scenes, and our training and evaluation never touch the training scenes. All the scenes

22



are created by human designers, including the structure, layout, and object placements,
producing 750 episodes for validation and 800 episodes for testing. Moreover, iTHOR
has 4 different styles of scenes, including LivingRoom, Kitchen, Bathroom, and Bedroom,
where each style contains the objects which are semantically associated with it. Since each
iTHOR scene only contains a single room, it doesn’t require much exploration but rather
focuses on recognition capability.

(ii) ArchitecTHOR: This environment consists of 10 high-quality large interactive houses de-
signed by human designers, including 5 for validation and 5 for testing. Both validation
and testing scenes have 1, 200 episodes each. It includes multiple rooms, larger navigable
spaces, and more objects to explore. Since they are much larger than iTHOR scenes, they
serve as a better benchmark to test the agent’s exploration ability. Since ArchitecTHOR is
designed by human designers, it also conforms to human priors on room layout and object
placement.

(iii) ProcTHOR-val: This environment contains 1, 550 episodes across 150 procedurally gen-
erated houses. The way these houses are generated follows the same pipeline used in
ProcTHOR. Therefore, the distribution of layout styles, number of rooms, and object place-
ments respects the ProcTHOR-10k training houses’ distribution, where our LoCoBot agent
is trained.

(iv) CHORES-S: This environment contains 200 episodes across 200 procedurally generated
houses, using the same approach as ProcTHOR. However, it includes the Objaverse 3D as-
sets, presented by SPOC, which introduced 41, 133 assets into the ProcTHOR-150k houses,
creating a more diverse scene distribution. Our Stretch Agent is trained on 80, 000 houses
out of the ProcTHOR-150k training houses; the 200 CHORES-S test houses and episodes
are not seen during training.

D More Simulation Evaluations

Performance Variance. On CHORES-S, since we follow SPOC [6] to apply test-time data augmen-
tation and non-deterministic action sampling, we found that performance varies even using the same
checkpoint, especially given that we are only evaluating on 200 episodes. As a result, we re-evaluate
our POLIFORMER and SPOC*4 16 times and report mean success rate (mSR) and standard deviation
(std). POLIFORMER achieves 82.5% mSR with 1.897 std, while SPOC* achieves 56.7% mSR with
2.697 std. This result indicates that POLIFORMER not only achieves a higher mSR than SPOC*,
but also exhibits more reliably consistent behavior, i.e. a lower std, when run on the same episodes
multiple times.

Inputs Model Loss EasyObjectNav RegularObjectNav HardObjectNav
Success (SEL) Success (SEL) Success (SEL)

RGB+text
SPOC [6] IL 62.9 (40.5) 48.2 (38.9) 34.1 (27.4)
SPOC∗ IL 69.7 (43.3) 53.5 (34.3) 31.0 (19.6)

POLIFORMER RL 89.0 (62.1) 82.6 (71.8) 72.3 (62.8)

RGB SPOC IL 90.3 (67.7) 78.7 (62.6) 70.6 (52.5)
+text+b-box POLIFORMER RL 98.1 (86.5) 90.4 (79.6) 86.0 (75.0)

RGB+b-box POLIFORMER RL 97.1 (83.2) 91.9 (79.8) 87.6 (75.0)

Table 4: Large-scale evaluation results with different difficulty tiers. We evaluate performance on
2,000 episodes per tier.

Larger Scale Simulation Benchmark using Stretch RE-1. To further analyze POLIFORMER’s
performance through different difficulty settings, we construct 3 different levels of Object Goal
Navigation benchmarks, EasyObjectNav, RegularObjectNav, and HardObjectNav, where each

4SPOC* is similar to SPOC but is trained on more expert trajectories (2.3M vs. 100k).

23



level contains 2k episodes, using Stretch RE-1. We construct these differentiated tasks by ensuring
the oracle expert path length between the agent and target is 1 to 3 meters long for EasyObjectNav,
greater than 3 meters for RegularObjectNav, and larger than 10 meters for HardObjectNav. The
results are shown in Tab. 4. We observe that every model performs better as the agent is closer to
the target at the episode start. In addition, on EasyObjectNav the agent barely needs exploration
to find the target. Thereby, we find that POLIFORMER lagging behind POLIFORMER-BOXNAV by
∼9% could result from a Recognition Issue. Moreover, the gap on HardObjectNav is widened to
∼13.7%, and it could result from an additional Exploration Issue. The performance gap between
HardObjectNav and EasyObjectNav could also support that an Exploration Issue exists, but not
just the Recognition Issue.

Average Collision Rate
(%)

PoliFormer w. Text
goal

PoliFormer w. Box
goal

PoliFormer w. Box
+ Text goal

ProcTHOR-val 2.2 2.9 2.8
ArchitecTHOR 3.0 3.6 3.7

AI2-iTHOR 2.9 3.5 3.2

Table 5: Average Collision Rates for Different Benchmarks.

Average Collision Rate. As shown in Tab. 5. We measure the average collision rate achieved
by POLIFORMER using the LoCoBot agent in ProcTHOR-val, ArchitecTHOR, and AI2-iTHOR.
We compute the collision rate by #collision

#steps within an episode and we average the rate across all
evaluation episodes to obtain an average collision rate.

ProcTHOR-10k val PoliFormer w. Text
goal

PoliFormer w. Box
goal

PoliFormer w. Box
+ Text goal

x=0 82.4 (58.5) 87.4 (56.2) 90.4 (66.6)
x=1 82.2 (56.7) 85.1 (55.0) 89.8 (65.3)
x=2 80.1 (52.9) 82.7 (51.1) 86.1 (59.7)
x=3 74.5 (41.9) 75.4 (42.3) 83.4 (50.1)

ArchitecTHOR PoliFormer w. Text
goal

PoliFormer w. Box
goal

PoliFormer w. Box
+ Text goal

x=0 68.3 (45.1) 85.7 (47.6) 81.9 (55.6)
x=1 67.0 (43.5) 85.1 (47.2) 81.9 (53.3)
x=2 63.3 (39.5) 78.9 (43.6) 78.2 (50.0)
x=3 60.1 (31.8) 69.6 (34.5) 71.5 (39.9)

AI2-iTHOR PoliFormer w. Text
goal

PoliFormer w. Box
goal

PoliFormer w. Box
+ Text goal

x=0 85.3 (72.7) 92.1 (78.6) 94.9 (83.5)
x=1 85.3 (71.0) 91.6 (78.3) 93.4 (81.4)
x=2 85.1 (67.0) 90.0 (74.1) 92.6 (78.1)
x=3 80.8 (59.1) 86.0 (64.3) 90.6 (69.6)

Table 6: Success Rate and SPL achieved by POLIFORMER with different level of noise across
different benchmarks. We inject the gaussian noise G(0, x ∗ σ) into the action, where x is a variable
to control the scale of the noise, and σ = step size

3 for movement and σ = rotation degree
3 for rotation.

The LoCoBot agent has a step size of 0.25m and rotation degree of 30 degrees by default.

Robustness of POLIFORMER. To evaluate the robustness of PoliFormer, we inject the gaussian
noise into the action only at the evaluation stage. The results using LoCoBot across ProcTHOR-val,
ArchitecTHOR, and AI2-iTHOR are shown in Tab. 6. POLIFORMER is robust to action noise even
when experiencing substantial perturbations (3×σ is a very large and unrealistic amount of noise).

24



E Additional Discussion on Limitations

Depth Sensor. It is important to note that POLIFORMER is not equipped with a depth sensor (which
has been proven to be effective for manipulation). While the lack of the depth sensor does not
affect our agent’s performance on navigation, we acknowledge that integrating the depth sensor into
our visual representation is an interesting direction for future work, especially when considering
mobile-manipulation extensions.

Discretized Action Space. To have a fair comparison with baselines, we use the same discretized
action space in this work (see App. C). The discretized action space might not be efficient and
realistic in many real-world scenarios where the agent must act in a timely manner.

Cross-embodiment. In this paper, we demonstrate that we can train POLIFORMER using LoCoBot
and Stretch RE-1. However, we have not yet explored training a single POLIFORMER for both
embodiments. We leave this interesting research direction as future work.

Further Scaling. Our training and validation curves strongly suggest that even further scaling of
model parameters and training time may lead to even more masterful models than those we have
trained in this work. This perspective is exciting and we hope to enable further scaling with more
computation resources and better visual foundation models in the near future.

Failure Analysis. The main mode of failure for POLIFORMER is the agent’s limited memory. PO-
LIFORMER clearly demonstrates memorization capabilities and is able to perform long-horizon tasks
by exploring large indoor scenes without access to explicit mapping. However, as the trajectories
get longer (specifically after visiting more than 4 rooms in an environment), the agent’s recollection
of the rooms it has explored deteriorates and the robot might re-visit rooms that it has explored
previously.

Extensive Use of GPUs and Significant Training Time. We acknowledge that PoliFormer re-
quires a large number of GPUs to train efficiently. Our main focus in this work is on pushing the
performance of navigation agents to its limit without constraints on computing resources. Given the
trend of GPU improvements over the last 10 years, we believe that the resources used in this work
will become relatively commonplace in the near future. Empirically, we found that training with a
smaller number of GPUs (e.g., 8 A6000 in a single host) could yield similar final performance, with
the downside of slower training speed (∼ 3.5× longer to train compared to 32 A6000 in four nodes).
Moreover, there are many interesting research directions in improving training speed/efficiency; for
example, since our submission, we have found that removing the average pooling from PoliFormer’s
visual encoder can increase convergence speed by up to 2×. E.g., for the LoCoBot agent, we keep
the number of tokens (e.g., 256 tokens) from DINOv2, instead of spatially average pooling them to
7× 7 (resulting in 49 tokens). This implies that a better visual encoder with a larger receptive view
over the visual observation could even further speed up training. Furthermore, we believe that incor-
porating more advanced techniques such as mixed precision training, flash attention, and advanced
GPUs optimized for transformer models could reduce the training resource requirements.

Sample Efficiency. We hypothesize that an ”IL pretraining +RL finetuning” paradigm could further
improve sample efficiency. Early in on-policy RL training, policies trained from scratch are effec-
tively random and thus produce a vast amount of marginally useful experiences. Pretraining with IL
may improve sample efficiency by providing helpful priors on navigation and thus produce meaning-
ful RL gradients faster. While it is nontrivial to implement this two-stage pipeline, we hypothesize
that training PoliFormer using IL on expert data (e.g., the shortest path trajectories from SPOC) first
and finetuning using on-policy RL could be an option to improve the sample efficiency. Since we
focus on obtaining SoTA performance in this work, we believe that improving sample efficiency, by
an IL+RL pipeline or with new RL algorithms such as SAPG [93], is an exciting research direction
for future work.

25


	Introduction
	Related Work
	Method
	The PoliFormer Architecture
	Scalable RL Training Recipe
	Scaling Environment Interactions

	Results
	PoliFormer Achieves SoTA on four Benchmarks
	PoliFormer Generalizes to the Real World
	Ablation Studies
	Scaling PoliFormer to Everyday Tasks

	Discussion
	Details about Zero-shot Real-world Downstream Applications using an Open-Vocab Object Detector and VLM
	Additional Training Details
	Reward Shaping
	Episodic Attention Mask
	Different Temporal Cache Strategies
	Hyperparameters for Training

	Additional Details about Environment, Benchmarks, and Real-World Experiments
	More Simulation Evaluations
	Additional Discussion on Limitations

