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ABSTRACT

In iterative approaches to empirical game-theoretic analysis (EGTA), the strategy
space is expanded incrementally based on analysis of intermediate game models.
A common approach to strategy exploration, represented by the double oracle
algorithm, is to add strategies that best-respond to a current equilibrium. This
approach may suffer from overfitting and other limitations, leading the developers
of the policy-space response oracle (PSRO) framework for iterative EGTA to gen-
eralize the target of best response, employing what they term meta-strategy solvers

(MSSs). Noting that many MSSs can be viewed as perturbed or approximated
versions of Nash equilibrium, we adopt an explicit regularization perspective to the
specification and analysis of MSSs. We propose a novel MSS called regularized

replicator dynamics (RRD), which simply truncates the process based on a regret
criterion. We show that the regularization approach exhibits desired properties for
strategy exploration and RRD outperforms existing MSSs in various games. We
extend our study to three-player games, for which the payoff matrix is cubic in the
number of strategies and so exhaustively evaluating profiles may not be feasible.
We propose a profile search method that can identify solutions from incomplete
models, and combine this with iterative model construction using a regularized
MSS. Finally, we suggest an explanation for the effectiveness of regularization
demonstrated in our experiments.

1 INTRODUCTION

The term empirical game-theoretic analysis (EGTA) (Tuyls et al., 2020; Wellman, 2016) describes a
broad set of methods for game reasoning with models based on simulation data. Many of multiagent
systems of interest are not easily expressed or tackled analytically, and EGTA offers an alternative
approach whereby a space of strategies is examined through simulation, combined with game model
induction and inference. The number of strategies that can be explicitly incorporated in game models
is significantly limited by computational constraints, hence the selection of strategies to include
is pivotally important. For accurate analysis results, we require that the included strategies are
high-performing and cover the key strategic issues (Balduzzi et al., 2019). The challenge of efficiently
assembling an effective portfolio of strategies for EGTA is called the strategy exploration problem
(Jordan et al., 2010).

Strategy exploration in EGTA is most clearly formulated within an iterative procedure, whereby
generation of new strategies is interleaved with game model estimation and analysis. The Policy

Space Response Oracle (PSRO) algorithm of Lanctot et al. (2017) provides a flexible framework for
iterative EGTA, where at each iteration, new strategies are generated through reinforcement learning
(RL). The learning player trains in an environment where other players are fixed in a profile (pure
or mixed) comprising strategies from previous iterations. The key design question is how to set
the other-player profile to be employed as a training target. In PSRO, the component that derives
this target is called a meta-strategy solver (MSS), as it takes an empirical game model as input and
“solves” it to produce the target profile. The learning agent then employs RL to search for a strategy
best-responding to the MSS target. In effect, specifying an MSS defines the strategy exploration
method for PSRO.

An obvious choice for MSS is the solution concept employed as the objective game analysis, often
Nash equilibrium (NE). Incrementally adding strategies that are best-responses to NE of the current
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strategy set is known as the double oracle (DO) algorithm (McMahan et al., 2003), and PSRO with
NE as MSS is essentially DO with RL for computing (approximate) best-response. Though DO is
often effective, there is ample evidence that best-response to NE is not always the best approach to
strategy exploration. Schvartzman & Wellman (2009b) observed cases where it would approach true
equilibrium extremely slowly, such that even adding random strategies could provide substantial
speedups. More generally, Lanctot et al. (2017) argued that best-responding to Nash overfits to the
current equilibrium strategies, and thus tends to produce results that do not generalize to the overall
space. This was indeed their major motivation for defining a generalized MSS concept for strategy
exploration. For example, as an alternative MSS Lanctot et al. (2017) proposed projected replicator

dynamics (PRD), which employs a replicator dynamics (RD) search for equilibrium (Taylor & Jonker,
1978; Smith & Price, 1973), truncating the replicator updates to ensure a lower bound on probability
of playing each pure strategy.

In this study, we take a further step in this direction and adopt an explicit regularization perspective
to the specification and analysis of MSSs. We propose a novel MSS called Regularized Replicator
Dynamics (RRD), which truncates the NE search process in intermediate game models based on a
regret criterion. Specifically, at each iteration of PSRO, we update players’ strategy profile with RD in
the empirical game, stopping if the regret of current profile with respect to the empirical game meets
certain regret threshold. We show that RRD exhibits many desired proprieties for strategy exploration
compared to previous MSSs (e.g., adjust exploration based on the potential of strategies). In terms
of convergence, we prove that PSRO with RRD converges to a game model containing profiles
with regret bound related to the selected threshold, and show that RRD finds profiles with regret
much lower than the theoretical regret bound in practice, which we claim is one typical advantage
of exploring strategies with empirical game models. We demonstrate the performance of RRD in
various games and show that RRD outperforms several existing MSSs in terms of convergence rate
and quality of intermediate empirical game models. Moreover, we investigate several features of
learning with RRD and find that the superior learning performance obtained by RRD is not sensitive
to the precision of regret threshold but highly relies on the specific search procedure dictated by RRD,
that is, using other profiles with the same regret bound as best-response targets would yield much
worse learning performance compared to using profiles proposed by RRD.

When the number of players increases, the cost of analyzing a game model substantially ascends in
PSRO since the payoff matrix grows exponentially in the number of players. To mitigate this issue,
we propose a PSRO-compatible profile search method, called Backward Profile Search (BPS),
which finds solution concepts without simulating the whole payoff matrix. We combine RRD with
BPS by only applying RRD to the subgame proposed by BPS, and we demonstrate the effectiveness
of RRD in a 3-player game.

Finally, we investigate the cause of the effectiveness of regularization through experiments and find
that regularization could significantly reduce the regret of best-response targets with respect to the
full game, which we claim largely accounts for the improved performance.

Contributions of this study include:

1. A novel MSS RRD that truncates the NE search process in intermediate game models based
on a regret criterion. Our MSS exhibits many desired proprieties for strategy exploration
compared to previous MSSs. We demonstrate that our MSS outperforms several existing
ones in various games under a convincing evaluation criterion for EGTA.

2. A comprehensive analysis on learning with RRD, including theoretical convergence guaran-
tee as well as various features observed through experiments.

3. A new profile search method compatible with the iterative model construction, which finds
solution concepts without simulating the whole payoff matrix. We combine RRD with the
search method and show its effectiveness for learning in a 3-player game.

4. A novel explanation of the effectiveness of regularization in PSRO.

2 RELATED WORK ON STRATEGY EXPLORATION

The first instance of automated strategy generation in EGTA was a genetic search over a parametric
strategy space, optimizing performance against an equilibrium of the empirical game (Phelps et al.,
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2006). Schvartzman & Wellman (2009a) deployed tabular RL as a best-response oracle in EGTA for
strategy generation. These same authors framed the general problem of strategy exploration in EGTA
and investigated whether better options exist beyond best-responding to an equilibrium (Schvartzman
& Wellman, 2009b). Jordan et al. (2010) further extended this line of work by adding strategies that
maximize the deviation gain from an empirical rational closure.

Investigation of strategy exploration was advanced significantly by introduction of the PSRO frame-
work (Lanctot et al., 2017). PSRO applied deep RL as an approximate best-response oracle to certain
designated other-agent profile selected by the MSS. When employing NE as MSS, PSRO reduces
to the DO algorithm (McMahan et al., 2003). To generate strategy effectively, Lanctot et al. (2017)
balanced between overfitting to NE and generalizing to the strategy space outside the empirical game,
and proposed projected replicator dynamics (PRD), which employs an RD search for equilibrium
(Taylor & Jonker, 1978; Smith & Price, 1973) and ensures a lower bound on probability of playing
each pure strategy. For notation simplicity, we refer to a MSS as PSRO with that MSS when the
context is unambiguous. For example, we refer to PRD as PSRO with PRD.

Following the line of PSRO, many works present MSS instances that regularize the target profile to
prevent from best-responding to an exact equilibrium. Specifically, Wang et al. (2019) employed
a mixture of NE and uniform, which essentially samples whether to apply DO or FP for every
PSRO iteration, thus illustrating the possibility of combining MSSs, Wright et al. (2019) added a
fine-tuning step to DO, which fine-tunes the generated policy network against a mix of previous
equilibrium strategies. Balduzzi et al. (2019) introduced a new MSS, called rectified Nash, designed
to increase diversity of empirical strategy space. Dinh et al. (2021) proposed a MSS for two-player
zero-sum game that applies online learning to the empirical game and outputs the online profile as a
best-response target. Beyond selecting NE as a solution concept, Muller et al. (2020) proposed a new
MSS based on an evolutionary-based concept, ↵-rank Omidshafiei et al. (2019), within the PSRO
framework.

PSRO also generalizes many classic learning dynamics in game theory. For example, selecting
a uniform distribution over current strategies as MSS essentially reproduces the classic fictitious

play (FP) algorithm Brown (1951). Moreover, an MSS that iteratively best-responds to the most
recent strategy duplicates the iterated best response algorithm. Note that those algorithms do not
substantively rely on the empirical game since they derive from the strategy sets directly.

3 PRELIMINARIES

A normal-form game G = (N, (Si), (ui)) is a tuple of a finite set of players N indexed by i; a
non-empty set of strategies Si for player i 2 N ; and a utility function ui :

Q
j2N Sj ! R for player

i 2 N , where
Q

is the Cartesian product.

A mixed strategy �i is a probability distribution over strategies in Si, with �i(si) denoting the
probability player i plays strategy si. We adopt conventional notation for the other-agent profile:
��i =

Q
j 6=i �j . Let �(·) represent the probability simplex over a set. The mixed strategy space for

player i is given by �(Si). Similarly, �(S) =
Q

i2N �(Si) is the mixed profile space.

Player i’s best response to profile � is the subset of strategies yielding maximum payoff for i, fixing
the other players’ strategies:

br i(��i) = argmax
�0
i2�(Si)

ui(�
0
i,��i).

Let br(�) =
Q

i2N br i(��i) be the overall best-response correspondence for a profile �. A Nash
equilibrium (NE) is a profile �⇤ such that �⇤ 2 br(�⇤).

Player i’s regret in profile � in game G is given by

⇢Gi (�) = max
s0i2Si

ui(s
0
i,��i)� ui(�i,��i).

Regret captures the maximum player i can gain in expectation by unilaterally deviating from its
mixed strategy in � to an alternative strategy in Si. An NE strategy profile has zero regret for each
player. A profile is said to be an ✏-Nash equilibrium (✏-NE) if no player can gain more than ✏ by
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unilateral deviation. The regret of a strategy profile � is defined as the sum over player regrets:

⇢G(�) =
X

i2N

⇢Gi (�).

An empirical game GS#X is an approximation of the true game G, in which players choose from
restricted strategy sets Xi ✓ Si, and payoffs are estimated through simulation. That is, GS#X =
(N, (Xi), (ûi)), where û is a projection of u onto the strategy space X . We use the notation ⇢GS#X to
refer to the regret with respect to an empirical game as opposed to the full game.

Solver-based regret (Wang et al., 2021) is the regret (with respect to the full game) of the profile
selected by a particular MSS based on an empirical game. For example, NE-based regret is the regret
of the NE of an empirical game. When the MSS used in the solver-based regret is same as the MSS
used for strategy exploration, we refer to the solver-based regret as online regret.

The profile in the empirical game closest to being a solution of the full game is called minimum-regret

constrained-profile (MRCP) (Jordan et al., 2010). Formally, �̄ is an MRCP iff:

�̄ = argmin
�2�(X)

X

i2N

⇢Gi (�)

The regret of MRCP thus provides a natural measure of how well X covers the strategically relevant
space (Wang et al., 2021).

We use the term exploratory probability to represent the probability assigned to strategies for
exploration purpose (e.g., the probability lower bound in PRD and the probability of strategies
outside NE support when mixing uniform and NE (Wang et al., 2019)).

Replicator Dynamics (RD) describes the evolution of players’ strategy profiles and provides insights
into the dynamical characteristics of games. For 2-player games with empirical payoff matrix
U = (U1,U2), the evolution of probability on the k-th strategy of player 1 and 2 is given by

d�k
1

dt
= �k

1 [(U1�2)
k � �T

1 U1�2],
d�k

2

dt
= �k

2 [(�
T
1 U2)

k � �T
1 U1�2]

where �1 and �2 are column vectors of strategy probabilities of two players, respectively.

4 REGULARIZATION FOR STRATEGY EXPLORATION

4.1 REGULARIZATION IN REGRET SPACE

In previous work (discussed in §2), many MSSs can be viewed as perturbed or approximated
versions of NE. The perturbation or approximation are usually achieved by heuristically assigning
strategies with fixed minimal exploratory probabilities. Despite the simplicity of this method, the
quality of exploration is questionable. For example, consider a perturbation scheme, as employed
in PRD, which guarantees each strategy to be sampled with a fixed minimal probability � > 0.
Note that the scheme simply treats all exploratory strategies, i.e., strategies that take the minimal
probability �, strategically equivalent. However, those strategies are not equally important for strategy
exploration. Best responding against some exploratory strategies may not approach NE strategies, so
they are obviously negligible than those potentially yielding NE strategies in strategy exploration.
Therefore, such homogeneous exploration fails to take into account the relative importance of
strategies during strategy exploration and may hinder the learning progress. We refer to this as
homogeneous exploration issue.

Moreover, the selection of the exploratory probability threshold � is non-trivial in PSRO. Note that
the total probability on the exploratory strategies is accumulating as the game model expands, and
could become extremely large, thus hindering the learning. Specifically, a large � could decelerate
the learning since a large portion of probabilities are assigned to exploratory strategies, leading NE
search astray. On the other hand, if we select a small � to prevent the total probability from growing
fast, the effect of regularization would be not apparent. Therefore, the selection of a fixed exploratory
probability is arduous and a dynamic selection scheme is required. We refer to this as threshold

selection issue.
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To mitigate these issues, we propose a new MSS, called Regularized Replicator Dynamics, which
truncates NE search within the empirical game based on regret information. In brief, at each iteration
of PSRO, we update players’ strategy profile with RD in the empirical game, stopping if the regret
(with respect to the empirical game) of current profile meets certain regret threshold �. The procedure
of PSRO with RRD is shown in Algorithm 1 (PSRO) and Algorithm 2 (RRD), where the latter finds the
best-response target for the former. In Algorithm 2, we first initialize RD with a uniform distribution
over strategies. Then we apply RD update until the regret (with respect to the empirical game) of
current profile in RD is below our regret threshold �. For example, in 2-player games, we update
players’ mixed strategies at each RD iteration by �1  P (�1 + ↵d�1

dt ) and �2  P (�2 + ↵d�2
dt ),

where ↵ is a step size for RD and P is a projection operator that maintains the feasibility of mixed
strategies, namely P (�i) = argmin�0

i2� ||�0
i��i||. Since RD may not converge to an equilibrium in

certain games, the minimum reachable regret by RD, denoted by �min, could be non-zero. Therefore,
if the selected � is smaller than �min, RD would never stop. To handle this issue, we select � by
first running RD for a sufficient large number of iterations T 0 to obtain �min and only choosing
� � �min. With this approach, the regret threshold � is always reachable by RD1. Finally, the output
profile returns to PSRO as a best response target.

Algorithm 1 PSRO with RRD
Input: initial strategy sets for all players X
Simulate expected utility for � 2 X
Initialize a meta-strategy �i = Uniform(Xi)
while PSRO iteration i = 1, 2, ..., T do

for player i 2 N do
for many RL training episodes do

Sample a profile s�i 2 ��i

Train BR oracle s0i against s�i

end for
Add the new strategy to the strategy set

end for
Simulate missing utilities for profiles in X
Compute a meta-strategy � = RRD(GS#X)

end while
Return An empirical game GS#X

Algorithm 2 RRD
Input: an empirical game GS#X
Parameters: regret threshold � and step size ↵
for RD update

Initialize RD with �i = Uniform(Xi)
while ⇢GS#X (�) > � do

for player i 2 N do
�i  P (�i + ↵d�i

dt )
end for

end while
Return �

The desired properties of RRD resolve both the homogeneous exploration issue and the threshold
selection issue. First, RRD can be viewed as an exploration approach wherein the exploratory
probability on each strategy is directed by RD rather than a fixed value as in prior literature. In
other words, RRD controls exploration through the interactions among players based on their
utility information, thus taking into account the relative importance of strategies. We give a simple
illustration of this property in Appendix G.

Second, RRD adjusts regularization probabilities automatically based on the information collected
over PSRO iterations. Since RRD does not rely on any fixed exploratory probability parameters, it
would not suffer from the total exploratory probability explosion as PSRO proceeds. Despite RRD
requires a regret threshold � as the stopping criterion for RD, we show that the selection of this
threshold turns to be much easier since a wide range of such parameters leads to a superior learning
performance (details in Section 5).

4.2 CONVERGENCE OF REGULARIZATION

One natural question to ask is that whether the quality of solution is guaranteed with RRD. To answer
this question, we seek a theoretical bound for the regret of solution given by RRD and prove that
RRD with a selected regret threshold � would end up with an empirical game containing profiles that
have � regret or better with respect to the full game, i.e., a �-NE.

1We found that a typical �min is approximately 1e-6 in our experiments, which is sufficiently small for a
claim of convergence. Therefore, the selection of � is almost non-restrictive. But in other games, RD may reach
a profile with a relative large regret.
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Theorem 1. Policy Space Response Oracle with Regularized Replicator Dynamics associated with a
selected regret threshold � converges to an empirical game containing at least one �-NE.

We prove Theorem 1 in Appendix A. The purpose of Theorem 1 is to reveal the authentic convergence
property of RRD rather than pursuing a strong NE convergence guarantee. Despite Theorem 1
indicates that the convergence of RRD is not as strong as the convergence of DO in the limit, which
converges to exact NE, we focus more on their practical performance under computational budget
constraints where the limit (i.e., all strategies are explored) would never be reached.

4.3 REGULARIZED STRATEGY EXPLORATION IN MULTI-PLAYER GAMES

One major obstacle of extending PSRO to games with more than two players is that the size of the
empirical game grows exponentially in the number of players and analyzing it becomes difficult.
Even in games with few players, an exhaustive simulation of the payoff matrix is not affordable. To
mitigate this issue, we propose a PSRO-compatible profile search scheme, called backward profile

search (BPS), which finds solution concepts without simulating the whole payoff matrix. Our scheme
BPS is based on the idea by Brinkman & Wellman (2016) and modified for PSRO compatibility.

BPS searches for an empirical NE starting from the profile constituted by the newest added strategies
at current PSRO iteration, denoted as the initial subgame, and the NE of the subgame is proposed
as a candidate NE. Rather than simulating the whole payoff matrix, BPS only simulates possible
deviation profiles to the candidate NE in the empirical game. If no beneficial deviation can be found,
the candidate NE is confirmed as the NE of the empirical game. Otherwise, the deviation profile is
added to the previous subgame to form a new subgame. Then BPS loops from calculating a candidate
NE of the new subgame and stops until an empirical NE is confirmed. For strategy exploration, we
only apply RRD to the subgame containing a confirm NE, enabling a moderate number of simulation
savings as well as a superior learning. We show our BPS algorithm and give details of how RRD is
applied in Appendix C

5 EXPERIMENTAL RESULTS

5.1 PERFORMANCE OF REGULARIZED MSSS

We evaluate the performance of RRD in terms of online regret as well as the evaluation criterion
specific for PSRO by Wang et al. (2021) in 2-player Leduc poker and real-world games defined by
Czarnecki et al. (2020). The online regret metric was widely employed in prior work for comparing
online performance of algorithms while the one by Wang et al. (2021) evaluates the learning perfor-
mance of algorithms in terms of the strategic coverage of the empirical game. We show that RRD
outperforms other MSSs with either evaluation metric.

5.1.1 2-PLAYER LEDUC POKER

In Figure 1a, we show the online regret (with respect to the full game) of DO, PRD, RRD with fixed
number of RD iterations and RRD with regret threshold. We first observe that RRD yields a rapid
convergence to a low-regret value compared to others. To show the benefits of using a regret threshold
as a stopping criterion compared to using a fixed number of RD iterations, we plot the regret curve of
RD using a fixed number of iterations. We observe that despite its learning performance outperforms
DO and PRD, it is worse than the performance with a regret threshold. This is because the number of
RD iterations needed for convergence to a superior profile varies across PSRO iterations. In particular,
using an underestimated number of RD iterations may generate a profile with poor performance
for strategy exploration while using an overestimated one pushes learning towards DO, thus losing
regularization. Moreover, as shown in Appendix B.2, we observe that using a fixed number of
iterations could lead to a profile with arbitrarily high regret, which affects the generation of effective
strategies.

In Figure 1b, we follow the rule of consistency (Wang et al., 2021), a critical evaluation consideration
for EGTA, and verify the learning performance of RRD. According to the consistency criterion, we
compare MSSs with the same RRD-based regret and authenticate the faster convergence of RRD over
DO and PRD in terms of the strategic coverage of the empirical game.
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(a) Online regret curves. (b) Regret curves with rule of consistency.

Figure 1: Results for 2-player Leduc poker.

5.1.2 REAL-WORLD GAMES

To further evaluate our algorithm, we select Hex, a two-player board game, in which players attempt to
connect opposite sides of a hexagonal board, and a random game of skill (RGS) defined by Czarnecki
et al. (2020), whose geometry of strategy space assembles the shape of a spinning top. We evaluate
MSSs in terms of the regret of MRCP (averaged over 5 different initial strategies for hex and starting
from the uniform strategy for RGS), which is theoretically justified evaluation metric for PSRO when
its computation is feasible (Wang et al., 2021). We observe that RRD exhibits faster convergence in
both games. We report experimental details (e.g., standard deviation) in Appendix B.3.

(a) Hex. (b) Random game of skill.

Figure 2: Results for real-world games.

5.1.3 MULTI-PLAYER GAMES

We combine BPS with RRD and apply the combination to 3-player Leduc poker. As shown in
Figure 3, although RRD is only applied to the subgame of the empirical game, we still gain benefits
from regularization. Meanwhile, we list the average of number of simulations required to confirm a
NE at different PSRO iterations in Table 1. As shown in Table 1, BPS saves a reasonable number of
simulations compared to using the whole payoff matrix. Moreover, the benefit of BPS becomes more
apparent as the number of iteration increases.

5.2 ANALYSIS OF LEARNING WITH RRD

To investigate the stability of learning performance with respect to regret threshold �, we select a wide
range of �s for RRD and compare their learning performance with DO in Figure 4a (i.e., averaged
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regret with standard deviation at iteration 100). We find that the range of regret thresholds, yielding
a better learning performance than DO, is wide, which is a desirable property for hyperparameter
tuning. In addition, we observe that as regret threshold � increases, the learning performance first
improves and then becomes worse. This means that both excessive and inadequate regularization
would damage the learning performance.

Figure 3: RRD for 3-player Leduc poker

Iter# #Sims w. BPS #Sims w/o BPS Diff.

10 880 1000 120
20 7100 8000 900
25 14200 15625 1425
30 24667 27000 2333
35 39112 42875 3763
40 58400 64000 5600
45 82234 91125 8891
50 112290 125000 12710

Table 1: RRD for 3-player Leduc poker

Besides, we observe that the regret of the RRD profile after convergence verifies our Theorem 1
empirically. Since we set regret threshold � = 0.35 for both games, Theorem 1 implies that there
must exist a profile with regret lower than or equal to 0.35. In practice, we observe that the regret of
MRCP is much lower than � = 0.35. This phenomenon indicates a tremendously desirable property
of learning in games with EGTA. The property is that distinct from online game learning wherein
the online profile is expected to converge to certain solution concept, learning with EGTA succeeds
whenever the solution falls into the empirical game, which does not require the convergence of online
profiles given by MSSs, and thus reducing the difficulty of learning. This explains why learning with
regularization leads to convergence in contrast with being cyclic in online settings (Mertikopoulos
et al., 2018).

Finally, motivated by the fact that there exists infinite number of �-NE in an empirical game, we
question whether the superior performance is biased towards the one determined by RRD. We answer
this question by assigning RD with a different initialization. Recall that we initialize RRD with a
uniform distribution over strategies in the empirical game. We attempt to start RD with a randomly
selected profile from the empirical game and stop it with the same regret threshold �. As shown
in Figure 4b, despite outputting a �-NE, this RD turns to output profiles with terrible online regret.
Even following the rule of consistency, its learning performance is worse than DO and hence worse
than RRD with uniform initialization. This indicates that the superior performance is biased towards
the one determined by RRD and that not all �-NE exhibit the same capability for being an effective
best-response target.

(a) Range of regret threshold. (b) Non-uniform initial strategies of RD.

Figure 4: Properties of RRD.
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6 WHY AVOID OVERFITTING TO NE?

As discussed in Section 2, many MSSs, which apply regularization to NE, have been proposed
and showed benefits for accelerating learning. However, there are very few explanations on why
regularization works. We survey some previous efforts that attempt to explain the effectiveness of
regularization in Appendix D, and we propose a novel insight based on our experimental observations.

As an iterative learning approach, PSRO predicts players’ behavior in an empirical game at each
iteration and trains best-response against these strategies to improve the performance of strategies
progressively. Since the NE of an empirical game represent players’ perfect rationality in the empirical
game, it is very natural to select the empirical NE as a training target assuming players would play it
at the current iteration. However, we find that in many games empirical NE possess higher regret
with respect to the full game than other profiles, which is caused by the limited game information in
an empirical game. Our key experimental observation is that the stability of profiles, i.e., regret w.r.t
the full game, improves by applying regularization since we not only best respond to strategies in the
NE support but also exploratory strategies, thus preventing players from being heavily exploited.

To observe this phenomenon, in Figure 5a and Figure 5b, we consider two PSRO runs with MSS
RRD and NE, respectively, and plot the regret of RRD profile and the regret of NE based on the same
empirical games in each run. In both plots, we observe that given an intermediate empirical game,
the regret (with respect to the full game) of RRD profile is much smaller than that of the empirical
NE, which is perfectly stable in the empirical game. Therefore, regularization in fact decreases the
regret of target profiles and improves the stability of solutions. We believe that the decrease in regret
is the major factor for improved learning performance since the low-regret profile is closer to a true
NE and training against such a low-regret profile may speed up overall convergence.

(a) PSRO with RRD. (b) PSRO with Nash.

Figure 5: Analysis for regularization.

Note that this observation does not mean that the lower-regret profile we select, the better overall
learning performance we obtain because the pursue of selecting an extremely stable profile as the
training target may result in a slow update of the training target, yielding similar strategies to be
added over PSRO iterations. We give an example for illustration and show the performance of using
MRCP as a MSS in Appendix E.

7 CONCLUSION

In this work, we propose RRD as a novel MSS for PSRO, which applies regularization in the regret
space and prevents overfitting to an empirical NE. Theoretically, we prove the performance guarantee
of RRD. In our experiments, we show that RRD outperforms several existing MSSs in various games
and investigate many properties of learning with RRD. We extend our study to 3-player games and
propose BPS, a PSRO-compatible profile search method that reduces simulation cost, and show the
benefit of regularization when combining BPS with RRD in 3-player Leduc poker. Finally, we study
the mechanism of regularization behind the learning performance and claim that regularization could
significantly change the stabilization of profile targets, thus contributing to a faster learning.
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