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ABSTRACT

Recent text-to-video (T2V) models have achieved impressive visual fidelity, yet
they remain prone to failures in two critical dimensions: adhering to prompt se-
mantics and respecting physical commonsense. Existing benchmarks, including
VIDEOPHY and VIDEOPHY-2, formalize these axes but provide only scalar scores,
leaving model errors unexplained and hindering reliable evaluation. To address
this, we present Cosmos-Eval, an explainable evaluation framework that jointly
assesses semantic adherence and physical consistency. Cosmos-Eval produces fine-
grained 5-point scores with natural-language rationales, leveraging the physically
grounded ontology of Cosmos-Reason1 and an LLM-based rationale refinement
pipeline. This enables precise identification of semantic mismatches and vio-
lations of physical laws, such as floating objects or momentum inconsistencies.
Experiments on VIDEOPHY-2 show that Cosmos-Eval matches state-of-the-art
auto-evaluators in score alignment (Pearson 0.46 vs. 0.43 for semantics; Q-Kappa
0.33 vs. 0.33 for physics) while also delivering state-of-the-art rationale quality
(e.g., best BERTScore F1 and BLEU-4 on both SA and PC). Beyond this bench-
mark, our framework generalizes to other evaluation suites, establishing a unified
paradigm for explainable physics-and-semantics reasoning in T2V evaluation and
enabling safer, more reliable model development.

1 INTRODUCTION

Recent breakthroughs in text-to-video (T2V) generation—from diffusion-based models like Lumiere
(Bar-Tal et al., 2024) and Stable Video Diffusion (Blattmann et al., 2023) to transformer-driven
systems like VideoPoet (Kondratyuk et al., 2024)—have enabled realistic video synthesis. Yet today’s
systems are still far from acting as “general-purpose physical world simulators” (Bansal et al., 2025a):
clips may look sharp but objects float, collisions miss responses, or the scene fails to reflect what the
prompt describes. Importantly, evaluation protocols tell us that a video is wrong but rarely why.

A growing body of work converges on two complementary axes for judging T2V. VIDEOPHY
(Bansal et al., 2025a) formalizes Semantic Adherence (SA)—whether entities, actions, and relations
requested by a caption are grounded in the video—and Physical Commonsense (PC)—whether
the dynamics (stability, contact, collisions, causality) are plausible even without the caption. The
follow-up VIDEOPHY-2 (Bansal et al., 2025b) expands to hundreds of real-world actions and releases
VIDEOPHY-2-AUTOEVAL, an automatic evaluator that outputs five-point SA/PC scores strongly
correlated with human judgments, as reported in their published experiments. However, these
evaluators primarily return numbers; they do not surface concrete evidence behind a grade, which
makes it hard to diagnose failure modes or trust the assessment.

At the same time, advances in physical reasoning and multimodal explainability suggest a way
forward. NVIDIA’s Cosmos-Reason1 (NVIDIA et al., 2025) organizes physical commonsense
into a hierarchical ontology (e.g., conservation, object permanence, spatial/temporal relations) and
demonstrates video-based reasoning. In parallel, explainable evaluation methods show that structured
prompting, multi-step verification, and LLM-as-a-judge pipelines can improve specificity and relia-
bility of textual feedback (Mou et al., 2025; Gu et al., 2024). What is missing is a unified evaluator
that marries the score fidelity of VIDEOPHY-2-AUTOEVAL with physically grounded rationales that
make scores interpretable and therefore actionable.
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Please evaluate whether this video follows physical commonsense principles

Ours

2

Given this video with physical commonsense score: 2,please explain why this score was 

assigned by analyzing the video's adherence to physical laws.

Ours

<think>Okay, let me watch this video carefully... I notice a bowling ball rolling down the lane towards 
the pins. The ball looks solid enough, maintaining its shape as it moves. I can see the lighting 
reflecting off the ball, which seems right for a smooth surface. Now, the ball approaches the pins, and 
something feels off. Wait, let me look closer... Actually, the ball is moving way too fast! In reality, a 
bowling ball wouldn't gain such speed just from rolling down the lane. Oh wait, maybe there's some 
kind of force acting on it? But then again, there doesn't seem to be any external factors pushing it 
along.
Hmm, this seems odd. The ball's acceleration looks inconsistent with how much energy it should 
have when it starts rolling. I mean, it's like it's suddenly speeding up without any reason. The pins are 
set up neatly, and they don't react at all to the ball's approach. That's strange because usually, when a 
ball hits them, there's some kind of reaction. But nope, nothing happens here. It's like the pins aren't 
even aware the ball is coming.
Let me think about the whole sequence now. The ball rolls smoothly until it reaches the pins, and 
then... nothing. It just stops right there. Yes, that confirms my suspicion—the video skips over the 
actual impact entirely. There's no collision or scattering of pins, which you'd expect in a normal 
bowling scenario. This looks like a significant oversight in the video's depiction of physics.
So, putting it all together, while the initial rolling motion of the ball looks okay, the excessive speed 
and the lack of realistic interactions with the pins really throw off the physics. It's like watching a 
cartoon version of bowling instead of a realistic one. The video mostly adheres to physical laws, but 
those major issues with the ball's acceleration and the absence of pin interaction make it feel off. I 
guess the score of 2 fits well here—it acknowledges some adherence but clearly highlights the big 
problems.</think>
<answer>
The video demonstrates a bowling ball rolling down the lane at an unrealistic speed, lacking proper 
acceleration and interaction with the pins upon impact, which violates principles of inertia and 
momentum conservation. The physical commonsense is poor because the ball's excessive speed 
and the absence of realistic pin displacement contradict expected physical behaviors. This 
justifies a pc_score of 2 due to significant deviations from real-world physics despite some adherence 
to basic rolling dynamics.
<answer>

Please evaluate whether this video follows physical 

commonsense principles

VideoPhy2-eval
2

Given this video with physical commonsense score: 

2,please explain why this score was assigned by 

analyzing the video's adherence to physical laws.

VideoPhy2-eval
……

Evaluation Criteria:
1.Object Behavior: Do objects behave according to their 
expected physical properties?
2.Motion and Forces: Are motions and forces depicted in the 
video consistent with real-world physics?
3.Interactions: Do objects interact with each other and their 
environment in a plausible manner?
4.Consistency Over Time :Does the video maintain 
consistency across frames without abrupt, unexplainable 
changes in object behavior or motion
Scoring Scale:
1: No adherence to physical commonsense. The video 
contains numerous violations of fundamental physical laws.
 2: Poor adherence. Some elements follow physics, but major 
violations are present.
3: Moderate adherence. The video follows physics for the 
most part but contains noticeable inconsistencies.
4: Good adherence. Most elements in the video follow 
physical laws, with only minor issues.
5: Perfect adherence. The video demonstrates a strong 
understanding of physical commonsense with no violations.

VideoPhy2-eval

Cosmos-Eval(Ours)

Figure 1: Score-only vs. explainable evaluation. Qualitative PC example: VIDEOPHY-2-
AUTOEVAL outputs only a numeric score (e.g., PC= 2) without justification, while Cosmos-Eval
augments the score with a concise, physics-grounded rationale (e.g., implausible acceleration and
missing collision dynamics), improving diagnosability and trust.

Our solution: Cosmos-Eval. We introduce Cosmos-Eval, an explainable SA/PC evaluation frame-
work that reports five-point scores and concise, evidence-based rationales for each test case by
default. Cosmos-Eval builds on Cosmos-Reason1 to reason about physics, and uses a reference-
seeded, judge-verified controller to iteratively refine rationales into an evidence-grounded chain of
thought, then distills this behavior into a lightweight model for deployment. As illustrated in Fig. 1, a
score-only evaluator such as VIDEOPHY-2-AUTOEVAL might return “PC= 2” for a bowling clip;
Cosmos-Eval produces the same score and adds a short rationale (e.g., implausible acceleration and
missing collision response), enabling concrete, actionable diagnostics.

Core Contributions.

• Explainable SA/PC paradigm. Within the VIDEOPHY/VIDEOPHY-2 setting, we pair five-point
SA/PC scores with detailed rationales that support auditing, ablations, and failure localization
(e.g., SA: “caption mentions a red ball, but video shows a blue cube”; PC: “object floats mid-air,
violating gravity”), addressing the interpretability gap of prior benchmarks.

• Score alignment with state-of-the-art auto-evaluators. On the official VIDEOPHY-2 test set, our
scores match VIDEOPHY-2-AUTOEVAL (SA Pearson: 0.46 vs. 0.43; PC Q-Kappa: 0.33 vs. 0.33)
while adding rationales, avoiding the accuracy–interpretability trade-off.

• Physically grounded rationale quality. Leveraging Cosmos-Reason1’s ontology and our Stage-2
controller, our rationales achieve state-of-the-art similarity to references for SA/PC (e.g., SA
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saModel

pcModel

SA Score: 5

PC Score: 4

Desktop Newton’s cradle, 

rightmost ball released to start; 

static camera, 4–6-second loop, 

smooth motion.

Caption

( )sax video caption+

Stage0

( )pcx video

( )sax video caption+

The inelastic losses look …..mping 

is tuned a bit too ideally (or the loop 

boundary re-injects energy), so it’s 

realistic but not perfect.

Reference PC Reason:

( )pcx videoSA Score+ + PC Score

Stage1

SA ref reason generation (Fig3) PC ref reason generation (Fig4)

Reference SA Reason

Complex COT Final Respond

SA Score PC Score

Reference PC Reason

Complex COT Final Respond

Stage2(Fig5)

SA COT generation
PC COT generation

Across all three reasons, the video 

and caption……“smooth motion.” 

These shared mismatches justify a 

moderate alignment (score 3).

Reference SA Reason:

( )sax video caption+ ( )pcx video

Figure 2: Pipeline overview (Stages 0–2; Stage 3 training). Stage 0 (frozen VideoPhy scorers)
maps inputs to discrete labels sSA, sPC (Eqs. 1–2). Stage 1 (reason generation) produces SA/PC
reference rationales rsaref , r

pc
ref (Figs. 3, 4). Stage 2 (reason-augmented CoT) uses a judge-verified

controller to build evidence-grounded chains and final responses (Fig. 5). Stage 3 (two-run SFT;
training) first fine-tunes a score head to predict 5-point labels {1, . . . , 5}, then fine-tunes rationale
generation conditioned on the predicted score with CoT-style prompting, so the system outputs
calibrated scores and concise, reference-faithful explanations at test time.

BERTScore F1 52.44 / BLEU-4 26.70; PC BERTScore F1 54.50 / BLEU-4 27.86), outperforming
generic VLMs (e.g., Qwen-2.5-VL on PC: 36.31 / 4.44).

• Generalizable pipeline. Our reference-seeded, judge-verified rationale workflow and two-run SFT
are scorer- and dataset-agnostic. In this work we evaluate on VIDEOPHY-2; extending to additional
suites (e.g., T2VPhysBench) is a promising direction for future validation.

2 METHOD

We present the pipeline in execution order: Stage 0 (VideoPhy scorers→ discrete SA/PC scores),
Stage 1 (reason generation), Stage 2 (reason-augmented CoT), and Stage 3 (SFT on textualized scores
and Stage-2 <think>/<answer>). Stages 0–2 are generative (no parameter updates); Stage 3 sets
training objectives (Sec. 4). The stages form a causal flow—scores as priors→ reference reason→
evidence-verified chain→ distilled model. Removing any stage degrades this flow: omitting Stage 0
weakens ultimate agreement with human judgments; Stage 1 is necessary to provide a score-aligned
anchor rτref ; omitting Stage 2 removes evidence verification and reduces rationale reliability; omitting
Stage 3 forces deployment to run Stages 0–2 online (high latency, unstable consistency). Overall,
Stages 0–3 instantiate an information-theoretic pipeline (IB at Stage 0; conditional MI at Stages 1–3).
Fig. 2 provides the high-level view of Stages 0–2: we first compute sSA, sPC via Eqs. equation 1–
equation 2 (Stage 0), then synthesize score-aligned reference reasons (Stage 1), and finally run an
evidence-verified controller that yields an explicit CoT and the final judgment (Stage 2).

Task summary (SA/PC). Following Bansal et al. (2025b), we evaluate two axes: SA—given video
v and caption c, check whether key entities/actions/relations in c are grounded in v; and PC—given v
only, judge whether the observed dynamics (stability, contact, collisions, causality) are physically
plausible. Both use a 5-point integer scale {1, . . . , 5} and are evaluated independently (high SA need
not imply high PC). Evaluations are per input instance.

Notational conventions. We adopt compact notation for clarity. We index tasks by τ ∈ {sa,pc}
with inputs xsa = (v, c) and xpc = v. Frozen VideoPhy scorers output labels sSA, sPC ∈
{1, 2, 3, 4, 5}. A stand-alone reason is r; evidence snippets e appear only in Stage 2 (CoT), not in
Stage 1. Task prompts are Pτ . In Stage 1 (SA) we query an ensemble {Mm}Mm=1 and aggregate
with a consensus extractor Jsa; in Stage 1 (PC) a base generatorMbase (reused in Stage 3) samples
multiple reasons and a VLM judge Jpc selects one. For Stage 2, ci denotes a control code from
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strategy set C (Sec. 2.3); the history is Hτ = {(eτi , rτi )}. Unless stated otherwise, M denotes a
generator LLM/VLM used only at inference time. The Stage 1 output that seeds Stage 2 is rτref (the
“reference answer”). We use an attempt budget N ∈ N and an acceptance indicator passτi ∈ {0, 1}.
The verifier Vτ is an LLM judge with a fixed prompt Uτ returning PASS or FAIL.

2.1 STAGE 0: DISCRETE SCORING VIA VIDEOPHY-2-AUTOEVAL

Given xsa = (v, c) and xpc = v, frozen VIDEOPHY-2-AUTOEVAL scorers output discrete labels:
sSA = ModelSA(x

sa) ∈ {1, 2, 3, 4, 5}, (1)
sPC = ModelPC(x

pc) ∈ {1, 2, 3, 4, 5}. (2)
These scores are reported as discrete labels and passed as conditioning inputs to Stage 1.

2.2 STAGE 1: REFERENCE REASON GENERATION

Goal. From the task input and the Stage-0 score, produce a task-specific reference answer rτref to seed
Stage 2.

SA (Fig. 3). Given xsa = (v, c) and sSA (Eq. equation 1), we query an ensemble of M VLMs
{Mm}Mm=1. Each model generates exactly one reason, forming an M -sized pool:

Rsa
pool =

{
rsa,m0 =Mm(Psa, xsa, sSA; generate)

}M

m=1
. (3)

A separate aggregator LLM extracts the common content across models to produce the reference
answer:

rsaref = Jsa(Rsa
pool; x

sa, sSA) ≡ Cons(Rsa
pool), (4)

where Cons(·) denotes consensus-style extraction (e.g., intersecting claims, majority agreements,
consistent justifications).

PC (Fig. 4). Given xpc = v and sPC (Eq. equation 2), a single base VLMMbase (later used in
Stage 3) samples K candidate reasons:

Rpc
pool =

{
rpc0,k =Mbase(P

pc, xpc, sPC; sample)
}K

k=1
. (5)

An LLM judge selects the most appropriate reason conditioned on the video and the score:
rpcref = Jpc(R

pc
pool; x

pc, sPC). (6)

This is a selection step that reduces the K-candidate pool to a single reason—analogous to SA’s
reduction step (consensus vs. best-candidate).

Output. Stage 1 returns the task-specific reference answer rτref ∈ { rsaref , r
pc
ref }, which seeds Stage 2.

2.3 STAGE 2: REFERENCE-SEEDED, JUDGE-VERIFIED CONTROLLER (REASON-AUGMENTED
COT)

Motivated by controller-based approaches to complex reasoning (e.g., HuatuoGPT-o1 (Chen et al.,
2025a)), we instantiate a Reference-Seeded, Judge-Verified Controller that seeds with the Stage-1
reference but does not expose that reference during search, explores/verifies/corrects with explicit
strategies, and finally applies a label-rethink fallback (Fig. 5). Starting from the reference rτref
(Eqs. equation 4, equation 6), we introduce evidence snippets and build a multi-step CoT under
explicit control. Let the history beHτ

i−1 = {(eτj , rτj )}
i−1
j=0 and define the strategy set

C = {Backtracking, ExploringNewPaths, Verification, Correction}. (7)

Seed with reference and judge check. We generate a seed conditioning on the reference and
ask the LLM judge to decide PASS/FAIL, where Pτ

seed-ref, P
τ
c , P

τ
rethink are task-specific generation

prompts (for seeding with the reference, for each strategy c ∈ C without the reference, and for
the final fallback, respectively), and Uτ is a unified verification prompt used at all checks (SA/PC
templates in Appx. J):

(eτ0 , r
τ
0 ) =M(Pτ

seed-ref, x
τ , rτref ; Reason), (8)

passτ0 = Vτ (rτ0 , rτref ; Uτ ) ∈ {0, 1}. (9)
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Iterative controller without the reference (no replacement). Let T = min(N, |C|). For i =
1, . . . , T , we sample without replacement

ci ∼ Unif
(
C \ {c1, . . . , ci−1}

)
, (10)

generate a new pair without rτref , and verify against the reference:

(eτi , r
τ
i ) =M(Pτ

ci , x
τ , Hτ

i−1; ci), (11)

passτi = Vτ (rτi , rτref ; Uτ ) ∈ {0, 1}. (12)

We stop early when passτi = 1; if none passes after N attempts, we trigger LabelRethink.

Label rethink fallback (with the reference). If no iteration passes, we trigger a final
LabelRethink that re-injects the reference and the full history:

(eτN+1, r
τ
N+1) =M(Pτ

rethink, x
τ , rτref , Hτ

N ; LabelRethink), (13)
passτN+1 = Vτ (rτN+1, r

τ
ref ; U

τ ) ∈ {0, 1}. (14)

If the final check fails, we discard the sample.

Final chain and answer. For a successful case (either early pass or rethink pass), we do two-step
post-processing instead of one-shot formatting. First, we consolidate the accepted history into a
single reasoning chain êτ by aggregating prior traces. Then, conditioned on êτ and the reference rτref ,
we produce a reference-aligned and reformatted answer r̂τ . Formally,

êτ = PostChain
(
{(eτj , rτj )}i

⋆

j=0; SynthesizeChain
)
, (15)

r̂τ = PostAnswer(êτ , rτref ; Reformat) . (16)

Here i⋆ is the index of the accepted iteration (or N+1 for the rethink pass). Although our prompts
here instantiate the SA task, the same two-step template applies to PC tasks as well; we keep using τ
to denote the task. The complete controller is summarized in Algorithm 1.

• Backtracking (c=Backtracking). Roll back to the latest accepted step (or the seed) and
produce a minimal-edit variant: keep the score prior fixed, alter one binding (entity/action/temporal
cue), and reuse verified evidence where possible. Intended to fix a localized flaw without drifting.

• Exploring New Paths (c=ExploringNewPaths). Branch to an alternative hypothesis: propose
different entity grounding, action interpretation, or temporal segmentation, allowing higher diversity.
The goal is to escape a bad local choice while still honoring the score prior.

• Verification (c=Verification). Turn the current rationale into an explicit checklist of claims
and probe the video for each to confirm or refute them; attach concrete, checkable details. Acts as
a critic to expose hallucinations, temporal mistakes, or missing evidence.

• Correction (c=Correction). Rewrite the rationale conditioned on verifier feedback: remove
contradictions, add concrete visual evidence, and enforce score-alignment gates (for SA/PC).
Produces a compact, reference-blind fix suitable for final judging.

Why show the reference only at the seed and in the fallback? Seeding with rτref anchors the run
near the Stage-1 consensus and stabilizes initialization. Hiding the reference during strategy iterations
prevents confirmation shortcuts and label leakage, compelling the model to collect independent
evidence. Re-introducing rτref at LabelRethink reconciles divergent trajectories without biasing
intermediate exploration in a controlled, empirically verifiable manner.

Relation to HuatuoGPT-o1. HuatuoGPT-o1 (Chen et al., 2025a) targets verifiable medical QA
with a ground-truth answer and a truth-equivalence verifier. Our Stage 2 addresses SA/PC evaluation
where answers are not single-valued: we seed the controller with the Stage 1 reference rationale rτref ,
hide this reference during strategy iterations (re-inject only at LabelRethink), and use a unified
judge to enforce task definitions (SA consistency / physical commonsense) and calibration to the
5-point scale; the output is an evidence–rationale pair rather than a single accepted answer.
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2.4 STAGE 3: SFT WITH TEXTUALIZED SCORES AND <THINK>/<ANSWER>

We adopt a two-run fine-tuning scheme that mirrors our experiments: first calibrate discrete scores,
then condition rationale generation on those scores. Stage 0 provides a 5-point label sτ ∈ {1, . . . , 5},
which we textualize as tτ ∈ {1, 2, 3, 4, 5}. Stage 2 yields final outputs (êτ , r̂τ ) (the consolidated
chain and the final answer), serialized as

pack_TA(êτ , r̂τ ) = <think> êτ </think> <answer> r̂τ </answer>. (17)

Training. Run A (score-only). Given input xτ (SA: xsa=(v, c); PC: xpc=v), we perform teacher-
forced next-token prediction to generate tτ (no supervision on any reasoning tokens) in this stage.
Run B (final <think>/<answer> conditioned on the score). Starting from Run-A, we prepend
tτ as an input condition and supervise only the packed target Y = pack_TA(êτ , r̂τ ); intermediate
scratch beyond êτ is not supervised. SA and PC are trained separately (PC omits c). At inference,
we read the <answer> field as the model’s output at test time. Losses. Both Lτ

score and Lτ
final are

standard token-level cross-entropy under teacher forcing: Lτ
score = −

∑
t∈tok(tτ ) log pθ(yt | y<t, x

τ ),
Lτ

final = −
∑

t∈tok(Y ) log pθ(yt | y<t, x
τ , tτ ).

Parameter update.

θA = argmin
θ
Lτ

score =⇒ θ∗ = argmin
θ
Lτ

final initialized at θA. (18)

3 EXPERIMENTS

We evaluate our pipeline on our curated Cosmos-Eval-Set (Sec. 3.1) on two tasks—Semantic Ad-
herence (SA) and Physical Commonsense (PC). We report (i) core agreement with 5-point labels
(Pearson, accuracy, weighted/quadratic Cohen’s κ, Spearman) and (ii) reasoning quality of rationales
(BERTScore P/R/F1, BLEU-1/2/3/4, ROUGE-1/2).

3.1 EXPERIMENTAL SETUP

Cosmos-Eval-Set: datasets and protocol. We use two corpora: VideoPhy (Bansal et al., 2025a)
and VideoPhy-2 (Bansal et al., 2025b). Training data is the union of VideoPhy (train+test) and
VideoPhy-2 (train); evaluation is on the VideoPhy-2 test set. VideoPhy-2 provides 5-point labels
for SA/PC; VideoPhy does not contain 5-point labels, so we score its clips using the released
VIDEOPHY-2-AUTOEVAL to obtain labels on the same 5-point scale. Both corpora contain
synthetic, model-generated videos and do not provide human-written rationales. We therefore run
Stages 1–2 to generate rationales and Stage 3 for SFT as in Sec. 2. Task inputs follow Sec. 2: SA
uses (v, c) while PC uses v only.

Metrics and baselines. We evaluate two groups of metrics: (A) core agreement to human 5-point
scores—Pearson’s r, Acc (exact match on {1, . . . , 5}), W-Kappa (linearly weighted Cohen’s κ),
Q-Kappa (quadratically weighted), and Spearman (rank correlation)1—and (B) reasoning quality
on the final rationale text—SentSim (cosine over a sentence encoder; Appx. B), BERTScore (B-
P/B-R/B-F1), BLEU-n (B1–B4), and ROUGE (R1/R2), reported as % in Table 2. We compare
VIDEOPHY-2-AUTOEVAL (frozen scorer), Qwen-2.5-VL-7B (Bai et al., 2025), VideoLLaMA3-
7B (Zhang et al., 2025), InternVL3-8B/9B/14B (Zhu et al., 2025), and our Cosmos-Reason1 (no
SFT) and Cosmos-Eval (Stage 3 two-run SFT: score-only→ <think>/<answer> conditioned
on score; Sec. 2.4). Evaluations use identical inference budgets and prompts.

Implementation details. Stage 1 uses an ensemble size M=2 for SA (Eq. equation 3) and K=5
samples for PC (Eq. equation 5). Stage 2 runs the controller with budget N=3 and strategy sam-
pling without replacement (Sec. 2.3); acceptance is decided by a unified LLM judge with a fixed
pass/fail prompt (Appx. J). Stage 3 follows the two-run schedule with parameter updates given in
Eq. equation 18; the supervision target is the packed <think>/<answer> string in Eq. equation 17
(conditioned on the textualized score). Unless otherwise stated, we use identical video decoding and
frame sampling across all models; full hyperparameters appear in Appx. B.

1For κ, we use quadratic weights for Q-κ and linear weights for W-κ; higher is better for all core metrics.
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Table 1: Cross-dataset core SA/PC metrics (↑ better). SA: caption–video semantic alignment; PC:
video-only physical commonsense. Per sample, each method outputs a discrete score sτ ∈{1, . . . , 5},
compared with human labels y ∈ {1, . . . , 5} on the official SA/PC test splits. Metrics: Pear-
son/Spearman correlations of raw integers; Acc exact 5-class accuracy; W-κ/Q-κ linearly/quadratically
weighted Cohen’s κ on the same 5-class scale. VIDEOPHY-2-AUTOEVAL is the dataset VLM-as-
judge baseline; other rows are model predictions. Bold = best; underline = second-best.

SA PC

Model Pearson Acc W-κ Q-κ Spearman Pearson Acc W-κ Q-κ Spearman

VIDEOPHY-2-AUTOEVAL 0.4327 0.3826 0.2696 0.4062 0.4268 0.3646 0.3871 0.2144 0.3276 0.3608
Qwen-2.5-VL-7B 0.3808 0.3417 0.2419 0.3779 0.3716 0.0840 0.3255 0.0490 0.0780 0.0900
VideoLLaMA3-7B 0.2769 0.2811 0.1536 0.2387 0.2574 0.0640 0.2699 0.0301 0.0500 0.0749
InternVL-8B 0.4143 0.3205 0.2437 0.3855 0.4196 0.1665 0.3064 0.0790 0.1363 0.1728
InternVL-9B 0.3827 0.2837 0.1902 0.2963 0.3747 0.1304 0.2717 0.0565 0.1044 0.1171
InternVL-14B 0.3420 0.3229 0.1643 0.2544 0.3402 0.1956 0.3464 0.0888 0.1424 0.1888
Cosmos-Reason1 0.3662 0.2821 0.2297 0.3260 0.3519 0.2356 0.3079 0.1479 0.2326 0.2166
Cosmos-Eval 0.4643 0.3765 0.2256 0.3507 0.4598 0.3641 0.3912 0.2207 0.3301 0.3580

Table 2: Reasoning quality on SA/PC on the same test splits as Table 1. Each model outputs one
rationale per sample. Scores are % (metrics computed per-sample then averaged). References are the
fixed per-video outputs of our Stage-2 controller and are shared across models at test time. Bold =
best; underline = second-best.

SA (Semantic Alignment) PC (Physical Commonsense)
Legend: SentSim = sentence-embedding cosine; B-P/R/F1 = BERTScore; B1–B4 = BLEU-1..4; R1/2 = ROUGE-1/2.

Model SentSim B-P B-R B-F1 B1 B2 B3 B4 R1 R2 SentSim B-P B-R B-F1 B1 B2 B3 B4 R1 R2
Qwen-2.5-VL-7B 75.62 40.10 37.03 38.70 45.47 26.90 14.24 8.03 51.45 18.92 68.81 37.68 34.66 36.31 40.44 21.44 9.27 4.44 45.50 13.84
VideoLLaMA3-7B 75.40 37.26 35.78 36.64 42.31 24.69 12.97 7.43 48.87 17.33 70.81 36.50 33.94 35.36 38.28 20.23 8.89 4.09 44.48 13.13
InternVL-8B 72.49 41.27 35.20 38.30 39.69 21.30 9.84 4.54 46.06 13.32 72.49 41.27 35.20 38.30 39.69 21.30 9.84 4.54 46.06 14.32
InternVL-9B 76.87 43.44 38.60 41.12 46.76 28.11 14.18 8.52 53.45 20.38 67.75 40.68 34.84 37.86 40.42 21.83 9.60 4.60 46.28 14.83
InternVL-14B 78.70 40.36 40.35 40.49 46.73 28.51 15.24 8.90 53.80 21.01 72.36 39.23 37.93 38.72 40.50 21.46 9.05 4.35 46.57 14.17
Cosmos-Reason1 77.30 22.94 40.98 31.52 24.84 14.48 7.75 4.26 41.66 14.43 70.05 18.94 39.16 28.52 18.46 9.41 4.30 2.13 33.88 8.95
Cosmos-Eval 86.28 53.55 51.15 52.44 56.72 42.85 33.38 26.70 61.12 34.74 80.90 54.81 53.99 54.50 55.38 41.45 33.31 27.86 59.72 33.34

3.2 MAIN RESULTS ON SA/PC (CORE AGREEMENT)

Table 1 summarizes cross-dataset core metrics. On SA, Cosmos-Eval attains best Pearson (0.4643)
and Spearman (0.4598), and ranks second in accuracy (0.3765), while VIDEOPHY-2-AUTOEVAL
remains stronger on κ measures. On PC, Cosmos-Eval leads in accuracy (0.3912), weighted κ
(0.2207), and quadratic κ (0.3301), and is near the top on Pearson/Spearman (slightly below the
frozen scorer). This suggests the two-run SFT preserves global calibration (correlations) while
improving discrete decision agreement on PC.

Takeaways. (i) On SA, Cosmos-Eval improves rank-based correlations (Pearson/Spearman) over
strong frozen scorers while remaining competitive in accuracy; (ii) on PC, it achieves the best discrete
agreement (Acc, κ) and near-top correlations; (iii) unlike frozen scorers, our method produces
explanatory outputs (<think>/<answer>).

3.3 REASONING QUALITY (STAGE-2 & FINAL OUTPUTS)

We evaluate final rationales with BERTScore, BLEU, and ROUGE on our held-out evaluation set
(Table 2). Cosmos-Eval achieves the best SA/PC scores across all reported text metrics, indicating
that the Stage-2 controller plus Stage-3 supervision improves both specificity (higher BLEU-n) and
semantic alignment (higher BERTScore/ROUGE).

3.4 ABLATIONS ON SA AND PC

Setup. We evaluate two variants on 200 videos randomly sampled from the VideoPhy-2 test set, for
both SA and PC: (i) w/o Stage-0 (remove the explicit score head; post-hoc map each rationale to
a 5-point score via DeepSeek-R1 (Guo et al., 2025a) using a public rubric); (ii) w/o Stage-2 (skip
the controller and use the Stage-1 rationale directly, i.e., no iterative verification). A single video-
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Table 3: Ablations on SA and PC (VideoPhy-2, N=200). Correlations vs. human 5-point labels and
VLM-judged reason quality. R-Avg = mean over five rubric dims (SA: Grounding, Temporal Align.,
Consistency, Align Justif., Coverage&Spec.; PC: Grounding, Temporal, Consistency, Criteria&Justif.,
VideoQuality), each in {0, 0.5, 1}. All rows remap rationale text→5-point score via DeepSeek-R1 with
a public rubric; a single video-conditioned VLM judge is used for both tasks. n = accepted outputs
after the Stage-2 verification gate (when applicable) and strict JSON/format checks. Bold=best;
underline=second-best.

Legend: Pearson/Spearman = corr. on remapped scores (↑ better); R-Avg = judged mean of 5 dims.
SA: Ground., Temp., Consist., Align Justif., Cov.&Spec.; PC: Ground., Temp., Consist., C&J, VideoQual.

Method n Pearson ↑ Spearman ↑ R-Avg ↑ Key dim.↑
SA (Semantic Alignment)
Full (S0+S1+S2) 178 0.8894 0.8866 0.8418 0.9059
w/o Stage-0 (no explicit score head) 188 0.4793 0.4963 0.9142 0.9426
w/o Stage-2 (use S1 rationale directly) 195 0.6727 0.6496 0.8148 0.8413

PC (Physical Commonsense)
Full (S0+S1+S2) 186 0.9131 0.9112 0.8345 0.9435
w/o Stage-0 (no explicit score head) 194 0.2091 0.1972 0.8309 0.9124
w/o Stage-2 (use S1 rationale directly) 198 0.6502 0.6423 0.7641 0.5328

Table 4: Stage-1 ablations (Cosmos-Eval vs. Moved) on rationale usability (VideoPhy-2, N=200).
We report hit-rates (proportions) of samples with rationale quality ≥ τ at preset thresholds τ ∈
{0.5, 0.6, 0.7, 0.8}. Strict convention: non-pass treated as 0 (only pass samples can contribute > 0
quality). Bold = higher (better).

SA hit-rate (≥ τ ) PC hit-rate (≥ τ )

Model (strict) @0.5 @0.6 @0.7 @0.8 @0.5 @0.6 @0.7 @0.8

Cosmos-Eval 0.775 0.700 0.645 0.600 0.800 0.770 0.725 0.685
Stage-1 Ablation / Moved 0.495 0.470 0.435 0.430 0.270 0.250 0.240 0.220

Table 5: Stage-3 ablations (two-run SFT, joint SA+PC). Held-out SA/PC splits as in the main
results. Two-run SFT: score head for 5-point labels (1–5) then rationale generation conditioned on
the predicted score (<think>/<answer>). Score-only: fine-tune score head only. Reason-only:
fine-tune rationale only. Core metrics: Pearson/Spearman correlations; Acc = exact 5-class accuracy
({1, . . . , 5}). Reason metrics: BERTScore F1, BLEU-4 on [0, 1]. Bold=best; underline=second-best.

SA core PC core SA reason (0–1) PC reason (0–1)

Model Pearson Spearman Acc Pearson Spearman Acc B-F1 BLEU-4 B-F1 BLEU-4

Cosmos-Eval (two-run SFT) 0.4643 0.4598 0.3765 0.3641 0.3580 0.3912 0.5244 0.2670 0.5450 0.2786
Score-only SFT 0.5091 0.4984 0.4074 0.3087 0.3065 0.3676 0.3225 0.0443 0.2874 0.0241
Reason-only SFT (CoT) 0.0599 0.0613 0.2074 0.0833 0.0482 0.1001 0.5594 0.3049 0.5455 0.2776

conditioned VLM judge (Qwen-VL-Max)2 is used for both tasks and applies task-specific rubrics,
averaging five dimensions to R-Avg (SA: Grounding, Temporal Alignment, Consistency, Alignment
Justification, Coverage&Specificity; PC: Grounding, Temporal, Consistency, Criteria&Justification,
VideoQuality). All rows remap rationale text→score via DeepSeek-R1. We report correlations to
human 5-point labels (Pearson/Spearman) and reason quality (evaluation dimensions detailed in
Appx. C); n counts outputs that survive the Stage-2 verification gate (when applicable) and strict
JSON/format checks. See Table 3.

Stage-1 ablation (separate analysis). This is not a simple removal of Stage-1. Instead, we replace
Stage-1 with an alternative verification-only pathway inside Stage-2: the controller directly judges the
five rubric dimensions without using Stage-1 reference rationales (and without LabelRethink),
functioning as a verifier/filter rather than a score mapper. Accordingly, we report rationale usability
via hit-rates of quality ≥ τ with predetermined thresholds τ ∈ {0.5, 0.6, 0.7, 0.8} under the strict
convention (non-pass treated as 0). See Table 4.

Stage-3 ablation (integrated). Stage 3 uses a two-run schedule: (i) a score-only pass to calibrate
numeric SA/PC predictions; (ii) a reasoning pass that generates <think>/<answer> conditioned

2VLM served via Alibaba Cloud Model Studio; model page: https://www.alibabacloud.com/
help/en/model-studio/vision.
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on the predicted score. We ablate this by training Score-only SFT (omit the reasoning pass) and
Reason-only SFT (omit the score pass), and compare to the full Cosmos-Eval two-run SFT. We
report core score metrics (Pearson/Spearman/Acc) and reason quality (BERTScore F1, BLEU-4) for
both SA and PC; see Table 5.

Findings. (A) Stage-0 (score head) is necessary for calibration. Removing Stage-0 substantially
weakens agreement with human scores despite strong reason quality (SA: 0.48/0.50; PC: 0.21/0.20),
indicating that calibrated scalar predictions require explicit score supervision.

(B) Stage-2 (controller) enforces rubric faithfulness and stabilizes scores. Skipping Stage-2 de-
grades both correlation and judged quality (SA: 0.673/0.650 with R-Avg=0.815; PC: 0.650/0.642
with R-Avg=0.764; PC Criteria&Justification notably drops to 0.533), underscoring the role of
verification in evidence-grounded reasoning and calibration.

(C) Stage-1 reference improves rationale usability/coverage. Under strict hit-rate evaluation, the
Stage-1 ablation (Moved) yields consistently lower usable-rationale coverage than Cosmos-Eval
across thresholds (e.g., SA: @0.7, 0.645 vs. 0.435; @0.8, 0.600 vs. 0.430; PC: @0.7, 0.725 vs. 0.240;
@0.8, 0.685 vs. 0.220), indicating that leveraging Stage-1 reference rationales and the verification
pipeline materially increases the fraction of high-quality, passable explanations.

(D) Stage-3 two-run SFT balances scoring & reasoning. Cosmos-Eval attains the best PC core
metrics (Pearson 0.3641, Spearman 0.3580, Acc 0.3912) under matched inference budgets throughout
while remaining second on all SA core metrics (Pearson 0.4643, Spearman 0.4598, Acc 0.3765);
it is also top-2 on SA/PC reason quality (e.g., PC B-F1 0.5450, BLEU-4 0.2786). Score-only SFT
peaks on SA core (Pearson 0.5091, Acc 0.4074) but its reason quality collapses (SA B-F1/BLEU-4
0.3225/0.0443). Reason-only SFT yields the best reasons (SA B-F1/BLEU-4 0.5594/0.3049) yet
fails on core scoring (SA Pearson 0.0599; PC Pearson 0.0833).

Takeaway. Across SA and PC, the full configuration (S0+S1+S2) plus the Stage-3 two-run schedule
is the only setting that jointly attains strong correlations, high reason quality, and high coverage.
Stage-0 provides calibrated scalar supervision; Stage-2 delivers rubric-faithful verification and
improves stability; Stage-1 contributes substantially to usable-rationale coverage; and Stage-3’s
scores-first, reasons-conditioned training preserves core agreement while producing high-quality
explanations. Removing either Stage-0/2 or one pass in Stage-3 over-optimizes one side.

4 DISCUSSION

Discussion. The heavy yet interpretable teacher pipeline—Stage 0 (score generation), Stage 1
(reference-anchored rationales), Stage 2 (judge-verified control)—improves SA/PC agreement and
rationale coverage but is compute-intensive (Stage 1/2 dominate). We distill all three into a Stage 3
student with two-run SFT (score→<think>/<answer> conditioned on score), which replaces
the ensemble/controller at test time and maintains score fidelity and rationale quality at substantially
lower cost. Ablations show complementary roles (S0 scoring, S1 coverage, S2 verification) .Threats
to validity remain (judge bias, rubric shifts, prompt sensitivity, text→score remapping) despite
verification safeguards.

5 CONCLUSION

We presented Cosmos-Eval, an explainable evaluation framework for text-to-video (T2V) that jointly
assesses semantic adherence and physical consistency by coupling 5-point scores with concise,
physics-grounded rationales. The framework comprises three stages: Stage 0 score generation,
Stage 1 reference-seeded reasoning, and Stage 2 a judge-verified CoT controller. Training follows
a two-round schedule. On VideoPhy-2 (with VideoPhy for recap), Cosmos-Eval achieves strong
correlation with human judgments while substantially improving rationale quality over score-only
baselines, enabling targeted diagnosis and more transparent error analysis in T2V evaluation.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ge Bai, Jie Liu, Xingyuan Bu, Yancheng He, Jiaheng Liu, Zhanhui Zhou, Zhuoran Lin, Wenbo
Su, Tiezheng Ge, Bo Zheng, and Wanli Ouyang. MT-bench-101: A fine-grained benchmark for
evaluating large language models in multi-turn dialogues. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 7421–7454,
Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Hritik Bansal, Zongyu Lin, Tianyi Xie, Zeshun Zong, Michal Yarom, Yonatan Bitton, Chenfanfu Jiang,
Yizhou Sun, Kai-Wei Chang, and Aditya Grover. Videophy: Evaluating physical commonsense for
video generation. In The Thirteenth International Conference on Learning Representations, 2025a.

Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grover, and Kai-Wei Chang.
Videophy-2: A challenging action-centric physical commonsense evaluation in video generation.
arXiv preprint arXiv:2503.06800, 2025b.

Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
Junhwa Hur, Guanghui Liu, Amit Raj, Yuanzhen Li, Michael Rubinstein, Tomer Michaeli, Oliver
Wang, Deqing Sun, Tali Dekel, and Inbar Mosseri. Lumiere: A space-time diffusion model for
video generation. In SA ’24: SIGGRAPH Asia 2024 Conference Papers, pp. 94:1–94:11, New
York, NY, USA, 2024. Association for Computing Machinery.

Daniel Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Yu Tung, R. T. Pramod, Cameron
Holdaway, Sirui Tao, Kevin A. Smith, Fan-Yun Sun, Fei-Fei Li 0001, Nancy Kanwisher, Josh Tenen-
baum 0001, Dan Yamins, and Judith E. Fan. Physion: Evaluating physical prediction from vision
in humans and machines. In Proceedings of the Neural Information Processing Systems Track on
Datasets and Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December 2021, virtual,
2021.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7310–7320, 2024.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, and Benyou
Wang. Towards medical complex reasoning with LLMs through medical verifiable problems. In
Findings of the Association for Computational Linguistics: ACL 2025, pp. 14552–14573, Vienna,
Austria, July 2025a. Association for Computational Linguistics.

Yongfan Chen, Xiuwen Zhu, and Tianyu Li. A physical coherence benchmark for evaluating video
generation models via optical flow-guided frame prediction. arXiv preprint arXiv:2502.05503,
2025b.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, et al. Video-mme: The first-ever comprehensive evaluation
benchmark of multi-modal llms in video analysis. In Proceedings of the Computer Vision and
Pattern Recognition Conference, pp. 24108–24118, 2025.

Deepanway Ghosal, Navonil Majumder, Roy Lee, Rada Mihalcea, and Soujanya Poria. Language
guided visual question answering: Elevate your multimodal language model using knowledge-
enriched prompts. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023, pp. 12096–12102, December 2023.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan
Shen, Shengjie Ma, Honghao Liu, Yuanzhuo Wang, and Jian Guo. A survey on llm-as-a-judge.
arXiv preprint arXiv: 2411.15594, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, et al. DeepSeek-R1 incentivizes reasoning
in LLMs through reinforcement learning. Nature, 645(8081):633–638, September 2025a. ISSN
1476-4687.

Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, and Jiale Zhao. T2vphysbench:
A first-principles benchmark for physical consistency in text-to-video generation. arXiv preprint
arXiv:2505.00337, 2025b.

Xuan He, Dongfu Jiang, Ge Zhang, Max Ku, Achint Soni, Sherman Siu, Haonan Chen, Abhranil
Chandra, Ziyan Jiang, Aaran Arulraj, Kai Wang, Quy Duc Do, Yuansheng Ni, Bohan Lyu, Yaswanth
Narsupalli, Rongqi Fan, Zhiheng Lyu, Bill Yuchen Lin, and Wenhu Chen. VideoScore: Building
automatic metrics to simulate fine-grained human feedback for video generation. In Proceedings
of the 2024 Conference on Empirical Methods in Natural Language Processing, pp. 2105–2123,
Miami, Florida, USA, November 2024. Association for Computational Linguistics.

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion models
for high-fidelity long video generation. arXiv preprint arXiv:2211.13221, 2022.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. CLIPScore: A
reference-free evaluation metric for image captioning. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 7514–7528, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition
video generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022.

Haoyang Huang, Guoqing Ma, Nan Duan, Xing Chen, Changyi Wan, Ranchen Ming, Tianyu Wang,
Bo Wang, Zhiying Lu, Aojie Li, et al. Step-video-ti2v technical report: A state-of-the-art text-
driven image-to-video generation model. arXiv preprint arXiv:2503.11251, 2025.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianxing
Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for video
generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 21807–21818, 2024.

Pengliang Ji, Chuyang Xiao, Huilin Tai, and Mingxiao Huo. T2vbench: Benchmarking temporal
dynamics for text-to-video generation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 5325–5335, 2024.

Yang Jin, Zhicheng Sun, Ningyuan Li, Kun Xu, Kun Xu, Hao Jiang, Nan Zhuang, Quzhe Huang,
Yang Song, Yadong MU, and Zhouchen Lin. Pyramidal flow matching for efficient video generative
modeling. In The Thirteenth International Conference on Learning Representations, 2025.

Daneul Kim, Jingxu Zhang, Wonjoon Jin, Sunghyun Cho, Qi Dai, Jaesik Park, and Chong
Luo. Subject-driven video generation via disentangled identity and motion. arXiv preprint
arXiv:2504.17816, 2025.

Dan Kondratyuk, Lijun Yu, Xiuye Gu, Jose Lezama, Jonathan Huang, Grant Schindler, Rachel
Hornung, Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu, Krishna Somandepalli, Hassan
Akbari, Yair Alon, Yong Cheng, Joshua V. Dillon, Agrim Gupta, Meera Hahn, Anja Hauth, David
Hendon, Alonso Martinez, David Minnen, Mikhail Sirotenko, Kihyuk Sohn, Xuan Yang, Hartwig
Adam, Ming-Hsuan Yang, Irfan Essa, Huisheng Wang, David A Ross, Bryan Seybold, and Lu Jiang.
VideoPoet: A large language model for zero-shot video generation. In Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning
Research, pp. 25105–25124. PMLR, 21–27 Jul 2024.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, Kathrina Wu, Qin Lin, Junkun Yuan, Yanxin Long, Aladdin Wang, Andong
Wang, Changlin Li, Duojun Huang, Fang Yang, Hao Tan, Hongmei Wang, Jacob Song, Jiawang
Bai, Jianbing Wu, Jinbao Xue, Joey Wang, Kai Wang, Mengyang Liu, Pengyu Li, Shuai Li, Weiyan
Wang, Wenqing Yu, Xinchi Deng, Yang Li, Yi Chen, Yutao Cui, Yuanbo Peng, Zhentao Yu, Zhiyu

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

He, Zhiyong Xu, Zixiang Zhou, Zunnan Xu, Yangyu Tao, Qinglin Lu, Songtao Liu, Dax Zhou,
Hongfa Wang, Yong Yang, Di Wang, Yuhong Liu, Jie Jiang, and Caesar Zhong. Hunyuanvideo: A
systematic framework for large video generative models, 2025.

Philippe Laban, Tobias Schnabel, Paul N. Bennett, and Marti A. Hearst. Summac: Re-visiting
nli-based models for inconsistency detection in summarization. Transactions of the Association
for Computational Linguistics, 10:163–177, 02 2022. ISSN 2307-387X.

Dacheng Li, Yunhao Fang, Yukang Chen, Shuo Yang, Shiyi Cao, Justin Wong, Michael Luo, Xiaolong
Wang, Hongxu Yin, Joseph E Gonzalez, et al. Worldmodelbench: Judging video generation models
as world models. arXiv preprint arXiv:2502.20694, 2025a.

Jiefeng Li, Jinkun Cao, Haotian Zhang, Davis Rempe, Jan Kautz, Umar Iqbal, and Ye Yuan. Genmo:
A generalist model for human motion, 2025b.

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen,
Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
22195–22206, 2024.

Jiahe Liu, Youran Qu, Qi Yan, Xiaohui Zeng, Lele Wang, and Renjie Liao. Fréchet video motion
distance: A metric for evaluating motion consistency in videos. In First Workshop on Controllable
Video Generation @ICML24, 2024a.

Ming Liu and Wensheng Zhang. Is your video language model a reliable judge? In The Thirteenth
International Conference on Learning Representations, 2025.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang, Ruochen Xu, and Chenguang Zhu. G-eval: NLG
evaluation using gpt-4 with better human alignment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 2511–2522, Singapore, December 2023.
Association for Computational Linguistics.

Yaofang Liu, Xiaodong Cun, Xuebo Liu, Xintao Wang, Yong Zhang, Haoxin Chen, Yang Liu,
Tieyong Zeng, Raymond Chan, and Ying Shan. Evalcrafter: Benchmarking and evaluating large
video generation models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 22139–22149, 2024b.

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A Review on Background,
Technology, Limitations, and Opportunities of Large Vision Models, April 2024c.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Khan. Video-ChatGPT: Towards
detailed video understanding via large vision and language models. In Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
12585–12602, Bangkok, Thailand, August 2024. Association for Computational Linguistics.

Pascal Massart and Élodie Nédélec. Risk bounds for statistical learning. The Annals of Statistics, 34
(5):2326–2366, 2006. ISSN 00905364.

Zhun Mou, Bin Xia, Zhengchao Huang, Wenming Yang, and Jiaya Jia. GRADEO: Towards human-
like evaluation for text-to-video generation via multi-step reasoning. In Forty-second International
Conference on Machine Learning, 2025.

NVIDIA, Alisson Azzolini, Hannah Brandon, Prithvijit Chattopadhyay, Huayu Chen, Jinju Chu, Yin
Cui, Jenna Diamond, Yifan Ding, Francesco Ferroni, Rama Govindaraju, Jinwei Gu, Siddharth
Gururani, Imad El Hanafi, Zekun Hao, Jacob Huffman, Jingyi Jin, Brendan Johnson, Rizwan
Khan, George Kurian, Elena Lantz, Nayeon Lee, Zhaoshuo Li, Xuan Li, Tsung-Yi Lin, Yen-
Chen Lin, Ming-Yu Liu, Andrew Mathau, Yun Ni, Lindsey Pavao, Wei Ping, David W. Romero,
Misha Smelyanskiy, Shuran Song, Lyne Tchapmi, Andrew Z. Wang, Boxin Wang, Haoxiang
Wang, Fangyin Wei, Jiashu Xu, Yao Xu, Xiaodong Yang, Zhuolin Yang, Xiaohui Zeng, and Zhe
Zhang. Cosmos-reason1: From physical common sense to embodied reasoning. arXiv preprint
arXiv:2503.15558, 2025.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, et al. Gpt-4 technical report, 2024.

Ronan Riochet, Mario Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique Izard, and
Emmanuel Dupoux. Intphys: A framework and benchmark for visual intuitive physics reasoning.
IEEE Transactions on Pattern Analysis and Machine Intelligence, PP, 03 2018.

Ronan Riochet, Mario Ynocente Castro, Mathieu Bernard, Adam Lerer, Rob Fergus, Véronique Izard,
and Emmanuel Dupoux. Intphys 2019: A benchmark for visual intuitive physics understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):5016–5025, 2021.

SP Sharan, Minkyu Choi, Sahil Shah, Harsh Goel, Mohammad Omama, and Sandeep Chinchali.
Neuro-symbolic evaluation of text-to-video models using formal verification. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 8395–8405, 2025.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
Yang, Oron Ashual, Oran Gafni, Devi Parikh, Sonal Gupta, and Yaniv Taigman. Make-a-video:
Text-to-video generation without text-video data. In The Eleventh International Conference on
Learning Representations, 2023.

Enxin Song, Wenhao Chai, Guanhong Wang, Yucheng Zhang, Haoyang Zhou, Feiyang Wu, Haozhe
Chi, Xun Guo, Tian Ye, Yanting Zhang, et al. Moviechat: From dense token to sparse memory for
long video understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 18221–18232, 2024.

Haibo Tong, Zhaoyang Wang, Zhaorun Chen, Haonian Ji, Shi Qiu, Siwei Han, Kexin Geng, Zhongkai
Xue, Yiyang Zhou, Peng Xia, et al. Mj-video: Fine-grained benchmarking and rewarding video
preferences in video generation. arXiv preprint arXiv:2502.01719, 2025.

Hsiao-Yu Tung, Mingyu Ding, Zhenfang Chen, Daniel Bear, Chuang Gan, Josh Tenenbaum, Dan
Yamins, Judith Fan, and Kevin Smith. Physion++: Evaluating physical scene understanding
that requires online inference of different physical properties. Advances in Neural Information
Processing Systems, 36:67048–67068, 2023.

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
length video generation from open domain textual descriptions. In International Conference on
Learning Representations, 2023.

Jiawei Wang, Liping Yuan, Yuchen Zhang, and Haomiao Sun. Tarsier: Recipes for training and
evaluating large video description models. arXiv preprint arXiv:2407.00634, 2024a.

Weihan Wang, Zehai He, Wenyi Hong, Yean Cheng, Xiaohan Zhang, Ji Qi, Xiaotao Gu, Shiyu Huang,
Bin Xu, Yuxiao Dong, et al. Lvbench: An extreme long video understanding benchmark. arXiv
preprint arXiv:2406.08035, 2024b.

Haoning Wu, Dongxu Li, Bei Chen, and Junnan Li. Longvideobench: A benchmark for long-context
interleaved video-language understanding. Advances in Neural Information Processing Systems,
37:28828–28857, 2024.

Xinhao Xiang, Xiao Liu, Zizhong Li, Zhuosheng Liu, and Jiawei Zhang. Aigve-tool: Ai-generated
video evaluation toolkit with multifaceted benchmark, 2025.

Jinbo Xing, Menghan Xia, Yong Zhang, Haoxin Chen, Wangbo Yu, Hanyuan Liu, Gongye Liu,
Xintao Wang, Ying Shan, and Tien-Tsin Wong. Dynamicrafter: Animating open-domain images
with video diffusion priors. In European Conference on Computer Vision, pp. 399–417. Springer,
2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, Da Yin, Yuxuan Zhang, Weihan Wang, Yean Cheng,
Bin Xu, Xiaotao Gu, Yuxiao Dong, and Jie Tang. CogVideoX: Text-to-Video Diffusion Models
with An Expert Transformer, March 2025b.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli, Jiajun Wu, Antonio Torralba, and Joshua B
Tenenbaum. Clevrer: Collision events for video representation and reasoning. In International
Conference on Learning Representations, 2020.

Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong Leng,
Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation models
for image and video understanding. arXiv preprint arXiv:2501.13106, 2025.

Hang Zhang, Xin Li, and Lidong Bing. Video-LLaMA: An instruction-tuned audio-visual language
model for video understanding. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 543–553, Singapore, December 2023.
Association for Computational Linguistics.

Dian Zheng, Ziqi Huang, Hongbo Liu, Kai Zou, Yinan He, Fan Zhang, Yuanhan Zhang, Jingwen
He, Wei-Shi Zheng, Yu Qiao, et al. Vbench-2.0: Advancing video generation benchmark suite for
intrinsic faithfulness. arXiv preprint arXiv:2503.21755, 2025.

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen
Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for
open-source multimodal models. arXiv preprint arXiv:2504.10479, 2025.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Related Work 16

B Implementation and Training Details 17

B.1 Method overview (flow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.2 Datasets and protocol (recap) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

B.3 Inference hyperparameters (Stages 1–2) . . . . . . . . . . . . . . . . . . . . . . . 17

C Ablations (Extended): Methods, Rubrics, and Results 17

C.1 PC Evaluation Rubric (VLM-as-judge) . . . . . . . . . . . . . . . . . . . . . . . . 17

C.2 SA Evaluation Rubric (VLM-as-judge) . . . . . . . . . . . . . . . . . . . . . . . . 17

D Case Analysis 18

E Examples for Physical Commonsense (PC) and Semantic Alignment (SA) Tasks 19

E.1 Physical Commonsense (PC) Examples . . . . . . . . . . . . . . . . . . . . . . . 19

E.2 Semantic Alignment (SA) Examples . . . . . . . . . . . . . . . . . . . . . . . . . 19

F Formal Analysis 19

F.1 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

F.2 Fundamental Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

F.3 Stage 1: Consensus Aggregation and Noise Reduction . . . . . . . . . . . . . . . 21

F.4 Stage 2: Controller Pass Probability and Error Analysis . . . . . . . . . . . . . . . 22

F.5 Stage 3: Generalization Bound under Noisy Supervision . . . . . . . . . . . . . . 23

F.6 Sufficient Condition for Multi-Stage Superiority . . . . . . . . . . . . . . . . . . . 23

F.7 Summary and Empirical Validation Suggestions . . . . . . . . . . . . . . . . . . . 24

G Additional Experiments and Analyses 24

G.1 Cross-Benchmark Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

G.2 Ranking T2V Generators on AIGVE-Bench . . . . . . . . . . . . . . . . . . . . . 25

G.3 Human Evaluation of SA/PC Rationales . . . . . . . . . . . . . . . . . . . . . . . 25

G.4 VLM-Judge Evaluation of Rationales . . . . . . . . . . . . . . . . . . . . . . . . 26

G.5 Frontier VLM Baselines on VideoPhy-2 . . . . . . . . . . . . . . . . . . . . . . . 27

G.6 Factual Consistency Metrics for Rationales . . . . . . . . . . . . . . . . . . . . . 27

G.7 Uncertainty Estimates for Main SA/PC Results . . . . . . . . . . . . . . . . . . . 28

G.8 Sensitivity to Stage-2 Judge and External Scorers . . . . . . . . . . . . . . . . . . 28

G.9 Computational Cost and Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . 29

G.10 Robustness to Synthetic Degradations . . . . . . . . . . . . . . . . . . . . . . . . 30

G.11 Long-Horizon Evaluation on LongCat-Video . . . . . . . . . . . . . . . . . . . . 30

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

H Reproducibility statement 31

I The Use of Large Language Models (LLMs) 31

J Prompt Templates 31

A RELATED WORK

Text-to-video systems and video LLMs. Recent text-to-video (T2V) systems establish scalable
diffusion/transformer pipelines and practical recipes for longer, more controllable videos: Make-A-
Video, Imagen Video, Phenaki, and latent video diffusion models laid the foundations for latent spaces
and variable-length synthesis (Singer et al., 2023; Ho et al., 2022; Villegas et al., 2023; He et al.,
2022). Subsequent open frameworks emphasize data efficiency and motion fidelity (VideoCrafter2,
DynamiCrafter) and push controllability via step-wise refinement and identity–motion disentan-
glement (Chen et al., 2024; Xing et al., 2024; Huang et al., 2025; Kim et al., 2025). In parallel,
instruction-tuned video LLMs (Video-LLaMA, Video-ChatGPT) and long-video models (MovieChat)
enable free-form QA and temporal reasoning over extended content (Zhang et al., 2023; Maaz et al.,
2024; Song et al., 2024). Our work does not introduce a new generator or Vid-LLM; instead, we
contribute an explainable evaluator that grades generated videos along semantic adherence (SA) and
physical commonsense (PC) while producing rationales.

SA/PC-oriented evaluators and benchmarks. Foundational benchmarks explicitly target SA/PC.
VIDEOPHY (Bansal et al., 2025a) is the first to formalize both axes, curating 688 prompts across
three material-interaction types (solid–solid, solid–fluid, fluid–fluid) and introducing VIDEOCON-
PHYSICS, an automatic evaluator for SA/PC. However, VIDEOPHY uses binary (0/1) scoring and lacks
fine-grained physical-rule annotations, making it difficult to diagnose failure modes. VIDEOPHY-2
(Bansal et al., 2025b) expands the scope to 197 real-world actions and provides a hard subset (60
actions where top models such as Wan2.1-14B reach only 21.9% joint SA/PC). It further introduces
VIDEOPHY-2-AUTOEVAL, an automatic evaluator that outputs 5-point SA/PC scores and tags
physical-rule violations (e.g., conservation of momentum), with substantially improved correlation to
human PC scores (reported to outperform Gemini-2.0-Flash by 236%). Like its predecessor, it outputs
scores but not explanatory rationales, limiting interpretability and error analysis. Complementary
physics-fidelity suites (e.g., T2VPhysBench (Guo et al., 2025b), PhyCoBench (Chen et al., 2025b))
emphasize physical realism yet similarly provide limited support for explanation.

General video evaluation and reference-free quality. Evaluation resources for video under-
standing and generation are complementary to our goal. MVBench and Video-MME target broad
multimodal comprehension; LongVideoBench and LVBench probe long-horizon temporal reasoning
(Li et al., 2024; Fu et al., 2025; Wu et al., 2024; Wang et al., 2024b). For generation, VBench and
VBench-2.0 decompose quality into fine-grained dimensions; EvalCrafter and T2VBench provide
diverse prompts and temporal diagnostics; learned assessors (VideoScore) and flow/motion-centric
metrics (FVMD) complement reference-free alignment such as CLIPScore (Huang et al., 2024;
Zheng et al., 2025; Liu et al., 2024b; Ji et al., 2024; He et al., 2024; Liu et al., 2024a; Hessel et al.,
2021). Beyond aesthetics and prompt match, physics-centric diagnostics from IntPhys, CLEVRER,
Physion, and Physion++ probe object permanence, collisions, and latent properties (Riochet et al.,
2018; 2021; Yi et al., 2020; Bear et al., 2021; Tung et al., 2023); emerging “world-model” evaluations
and neuro-symbolic checks broaden this perspective (Sharan et al., 2025; Li et al., 2025a; Tong et al.,
2025).

LLM-as-a-judge and reliability. LLM-as-a-judge methods (e.g., G-Eval, MT-Bench-101) and
subsequent reliability analyses inform our design choices: score-conditioned consensus/selection,
and a unified pass/fail verifier whose distilled behavior stabilizes deployment (Liu et al., 2023;
Bai et al., 2024; Liu & Zhang, 2025). In contrast to prior SA/PC evaluators that primarily output
scores, our evaluator couples calibrated scoring with rubric-faithful rationales and fine-grained
rubric dimensions, enabling actionable diagnostics and safer iteration.
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Table 6: Inference configuration for Stages 1–2. SA aggregates M=2 reasons by consensus (Eq. 4);
PC samples K=5 candidates and selects the best (Eq. 6); the Stage-2 controller runs for N=3 steps
with strategy sampling without replacement. We list generators and decoding settings (temperature,
top-p, max tokens) plus the effective sampling fps. A dash (—) denotes not applicable.

Task/Stage Generator(s) Pool/Budget Temp Top-p Max tokens Max frames/fps

SA / Stage-1 Tarsier-34B, Qwen2.5-VL-72B-Instruct M = 2 0.7, 0.3 0.85, 0.85 1024, 1024 32 / 8
PC / Stage-1 Cosmos-Reason1 K = 5 0.8 0.9 8192 — / 8
SA Aggregator Qwen3-32B (Yang et al., 2025a) — 0.7 0.85 2048 —
PC Selector Qwen2.5-VL-72B-Instruct-AWQ — 0.1 0.9 1024 — / 8

SA / Stage-2 Controller Qwen2.5-VL-72B-Instruct N = 3 0.3 0.85 16384 — / 2
PC / Stage-2 Controller Qwen2.5-VL-72B-Instruct-AWQ N = 3 0.3 0.85 16384 — / 2
SA LLM Judge Vsa Qwen2.5-VL-72B-Instruct — 0.05 0.95 50 —
PC LLM Judge Vpc Qwen2.5-VL-72B-Instruct-AWQ — 0.05 0.95 50 —

Legend: M = SA Stage-1 ensemble size (one reason per model); K = PC Stage-1 candidate count; N = Stage-2
controller attempt budget (strategies sampled without replacement). Max frames/fps: “Max frames” applies only
to Tarsier-34B (Wang et al., 2024a) (cap at 32 frames); Qwen-family rows use streaming at the listed fps

(no frame cap). “—” = not applicable.

B IMPLEMENTATION AND TRAINING DETAILS

B.1 METHOD OVERVIEW (FLOW)

Figures 3–5 give a concise view of Stages 1–2, and Algorithm 1 formalizes the Stage 2 controller.
For SA (Fig. 3), we ensemble several VLMs to propose reasons and take a consensus as the reference
to seed Stage 2. For PC (Fig. 4), a base VLM samples multiple reasons and a VLM judge selects one
as the reference. Stage 2 (Fig. 5; Alg. 1) then iteratively refines and judge-verifies candidates (with a
label-rethink fallback), and formats the accepted chain as the final reason.

B.2 DATASETS AND PROTOCOL (RECAP)

We train on the union of VideoPhy (Bansal et al., 2025a) (train+test, re-scored by VIDEOPHY-2-
AUTOEVAL) and VideoPhy-2 (Bansal et al., 2025b) (train), and evaluate on the official VideoPhy-2
test set. Task inputs follow Sec. 2: SA uses (v, c) and PC uses v only. Figure 6 summarizes the
SA/PC score distributions across corpora and our final splits.

B.3 INFERENCE HYPERPARAMETERS (STAGES 1–2)

Stage 1 uses an ensemble size M=2 for SA (Eq. 3) and K=5 samples for PC (Eq. 5); Stage 2 runs
with budget N=3 and strategy sampling without replacement (Sec. 2.3). A complete list of generators,
judge/aggregator models, and decoding settings (temperature, top-p, max tokens) is summarized in
Table 6. SA reasons are aggregated by consensus (Eq. 4); PC reasons are selected by a judge (Eq. 6).

C ABLATIONS (EXTENDED): METHODS, RUBRICS, AND RESULTS

C.1 PC EVALUATION RUBRIC (VLM-AS-JUDGE)

We use the five-dimension rubric in Table 7 (Ground., Temp., Cons., C&J, VideoQual), with 3-point
anchors {0, 0.5, 1} matching the judge prompt. The same rubric is applied to all ablations in Sec. 3.4.

C.2 SA EVALUATION RUBRIC (VLM-AS-JUDGE)

We adopt a five-dimension rubric for Semantic Alignment (SA), shown in Table 8, with three-point
anchors {0, 0.5, 1} matching the evaluation prompt. The rubric is applied consistently across all SA
ablations in Sec. 3.4. Concretely checkable details include (non-exhaustively): color, region/relative
position, count/frequency, motion attributes, and deformation/rigidity.
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Table 7: PC reason-quality rubric used in ablation studies (Sec. 3.4). Five dimensions with 3-point
anchors {0, 0.5, 1}, matching the evaluation prompt. “Concrete, checkable details” include color,
region/relative position, count/frequency, motion attributes, and deformation/rigidity.

Dim. Score 1 Score 0.5 Score 0

Ground. ≥2 concrete details clearly support the
claims.

Generic/vague match to visuals. Conflicts with visuals / speculative.

Temp. ≥1 concrete, correct temporal relation. Gist generic/unclear or N/A/uncertain. Wrong/reversed/invented temporal claims.
Cons. Internally consistent; no contradictions or

hallucinated key objects/events.
Minor issue; main claim intact. Contradiction or hallucination.

C&J Explicit criterion/score/rule applied to
visible evidence.

Mentioned but generic/partial/weak. None or misapplied/contradicted by
evidence.

VideoQual Explicit good/bad (or degree) with ≥2
indicators (sharpness, lighting, occlusion,
stability, framing, target visibility).

Generic or only one indicator / uncertain. No quality judgment or contradicts
visuals.

Abbrev. Ground.=Grounding; Temp.=Temporal; Cons.=Consistency; C&J=Criteria & Justification;
VideoQual=Video Quality Assessment.

Hard cap: if no concrete visual detail appears, Ground. ≤ 0.5.

Table 8: SA reason-quality rubric used in ablation studies (Sec. 3.4). Five dimensions with 3-point
anchors {0, 0.5, 1}, matching the evaluation prompt. “Concrete, checkable details” include color,
region/relative position, count/frequency, motion attributes, and deformation/rigidity.

Dim. Score 1 Score 0.5 Score 0

Ground. ≥2 concrete details linking
CAPTION↔VIDEO.

Generic/partial visual match. Conflicts with CAPTION/VIDEO or
speculative.

Temp. ≥1 concrete, correct temporal relation. Gist generic/unclear or N/A/uncertain. Wrong/reversed/invented temporal
claims.

Cons. Internally consistent; no hallucinated key
objects/events.

Minor issue; main claim intact. Contradiction or hallucination.

Align Justif. Explicit SA decision/criterion applied to
visible evidence.

Mentioned but generic/partial/weak. None or misapplied/contradicted by
evidence.

Cov.&Spec. Covers ≥2 key CAPTION elements with
specific, checkable details.

Some elements but incomplete/generic. Ignores key elements or no specific
details.

Abbrev. Ground.=Grounding; Temp.=Temporal Alignment; Cons.=Consistency; Align Justif.=Alignment
Justification; Cov.&Spec.=Coverage & Specificity.

Hard cap: if no concrete visual detail appears, Ground. ≤ 0.5.

D CASE ANALYSIS

To assess the reliability of our evaluator COSMOS-EVAL, we present its verbatim answers in the
figure captions and provide brief justifications here for Cases 1–4 (see Fig. 7–10). In each case, the
model correctly identifies the salient mismatch or physical violation.

Case 1 (PC=2; Fig. 7). The video shows a red ball hovering without visible support. This
contradicts gravitational expectations (no external force, yet no downward acceleration). COSMOS-
EVAL’s answer pinpoints the violation and a low PC score is appropriate.

Case 2 (SA=2; Fig. 8). The caption specifies counterclockwise rotation, while the video shows
the yellow cube rotating clockwise; the purple cone remains still. COSMOS-EVAL correctly isolates
the direction-of-rotation mismatch—the primary semantic attribute here. Although its text suggests
sa_score = 3, our rubric weights action direction as critical, yielding SA=2. The qualitative diagnosis
is consistent with our ground truth.

Case 3 (PC=2; Fig. 9). The ball exhibits erratic back-and-forth bounces with no frictional decay
and no plausible external impulses. COSMOS-EVAL accurately characterizes this as inconsistent with
Newtonian mechanics, justifying PC=2.

Case 4 (SA=3; Fig. 10). The caption describes one ball being kicked to the post and rebounding,
but the video shows two balls and lacks the kick–post–rebound sequence. COSMOS-EVAL correctly
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flags the count mismatch and the missing key action; scene context matches but the core event does
not, supporting SA=3 for partial alignment.

Overall, COSMOS-EVAL’s answers consistently identify the correct failure modes (semantic or
physical), and they qualitatively agree with our human labels, demonstrating useful explanatory
power and reproducibility.

E EXAMPLES FOR PHYSICAL COMMONSENSE (PC) AND SEMANTIC
ALIGNMENT (SA) TASKS

E.1 PHYSICAL COMMONSENSE (PC) EXAMPLES

Figure 11 shows the first example for the Physical Commonsense task, where we evaluate the physical
properties of the video. Figure 12 demonstrates another case with similar evaluation criteria. Figures
13, 14, and 15 further illustrate other examples related to the Physical Commonsense task.

In addition, Figures 21 and 22 present two representative Physical Commonsense cases with full
chain-of-thought traces and final rationales generated by Cosmos-Eval. These examples make the
5-point scores and the corresponding physics-aware explanations explicit and are intended as concrete
case studies to complement the aggregated metrics in the main text.

E.2 SEMANTIC ALIGNMENT (SA) EXAMPLES

Figure 16 presents the first example for the Semantic Alignment task, evaluating the alignment
between the caption and video content. Figure 17 shows another example with slightly different
criteria. Figures 18, 19, and 20 provide additional examples for the Semantic Alignment task.

Figures 23 and 24 further provide Semantic Alignment case studies with explicit chain-of-thought
reasoning and natural-language rationales from Cosmos-Eval. These SA examples illustrate how the
model justifies its 5-point scores by grounding the caption–video comparison in concrete events and
entities, addressing the reviewer’s request for more detailed CoT-style examples and error analysis.

F FORMAL ANALYSIS

This section provides a formal analysis of the proposed multi-stage framework, focusing on the
conditions under which it achieves better generalization than end-to-end (E2E) learning. Rather
than offering strict proofs, the analysis establishes a set of assumptions and derives conditions that
characterize the effective noise reduction at different stages.

We first introduce the notation and assumptions used throughout. We then examine the noise-
mitigation mechanisms in Stage 1 (consensus aggregation, Section 2.2) and Stage 2 (controlled
generation, Section 2.3). Finally, drawing on information-theoretic and learning-theoretic perspec-
tives, we identify sufficient conditions under which the multi-stage framework yields a supervision
signal with a lower effective noise rate than E2E learning, thereby leading to a tighter upper bound
on the generalization error.

F.1 NOTATION AND TERMINOLOGY

To maintain consistency with Section 2, we define the unified notation for this theoretical analysis:

• Task Index: τ ∈ {sa,pc}, denoting the Semantic Adherence and Physical Commonsense tasks,
respectively.

• Input: Xτ or its instance xτ . For SA, xsa = (v, c) (video v and caption c); for PC, xpc = v (video
only).

• True Label: Y τ ∈ {1, . . . , 5}, representing the discrete ground-truth score (5-point scale).

• Stage 0 Output: Sτ ∈ {1, . . . , 5}, the initial score from the VideoPhy model, serving as side
information.
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• Stage 1 Reference Rationale: rτref , the output of Stage 1 for task τ , used as the initial seed for Stage
2.

• Stage 2 Evidence and Rationale: (eτi , r
τ
i ) denotes the evidence-rationale pair generated at the i-th

iteration;Hτ
i = {(eτj , rτj )}ij=0 represents the history up to step i.

• Pass Indicator: passτi ∈ {0, 1}, determined by the discriminator Vτ , indicating if the current chain
passes verification.

• Ensemble and Sampling Parameters: M is the number of models in the ensemble for SA; K is the
number of candidate samples for PC.

• Correctness Indicator:

– For SA: Zm ∈ {0, 1} indicates if the rationale from the m-th model is correct; the individual
accuracy is psa0 = Pr[Zm = 1 | Xτ , Sτ ].

– For PC: ppc0 denotes the probability that a single sample yields a correct rationale (conditioned
on input and side information).

• Discriminator Performance: True Positive Rate (Recall) α = Pr[pass = 1 | chain is correct]; True
Negative Rate (Specificity) β = Pr[pass = 0 | chain is incorrect].

• Strategy Coverage Lower Bound: qτmin (Assumption A5), the minimum probability lower bound
for generating a correct chain at any step.

• Iteration Count: T is the iteration limit in Stage 2 (excluding the seed and fallback step). The total
number of attempts is t = T + 2 (including seed generation and the final LabelRethink fallback).

• Effective Noise Rate:

– ητ1 : Error rate of the Stage 1 output.
– ητ2 : Error rate of the Stage 2 controller’s output.
– ητmulti: Effective noise rate of the final training data (input to Stage 3).
– ητe2e: Noise rate of the E2E supervision signal.

• Information Measures: I(·; · | ·) denotes conditional mutual information, H(·) denotes entropy.

F.2 FUNDAMENTAL ASSUMPTIONS

Our analysis is based on the following assumptions. While often relaxable, they are stated in their
strong form for simplicity.

(A1) Stage 0 Side Information Validity: The side information Sτ provides meaningful information
about the true label Y τ , i.e., ∃δS > 0 such that:

I(Y τ ;Sτ | Xτ ) ≥ δS .

(A2) Stage 1 Base Model Accuracy and Correlation:
• SA: For the M base models, the correctness indicators Zm given input and side information

satisfy Pr[Zm = 1 | Xτ , Sτ ] = psa0 > 1/2. The Pearson correlation between any pair is
bounded: Corr(Zm, Zm′) ≤ ρ ∈ [0, 1).

• PC: The base model generates candidate rationales via K independent samplings, with
single-sample correctness probability ppc0 > 0.

(A3) Discriminator Competence: The aggregator J in Stage 1 and the discriminator Vτ in Stage 2
can effectively distinguish correct from incorrect chains, with α > 1/2 and β > 1/2.

(A4) Conditional Independence of Hidden Reference: In Stage 2 iteration steps (excluding the
seed step), the generated (eτi , r

τ
i ) is conditionally independent of the reference rationale rτref ,

given the current input Xτ and historyHτ
i−1.

(A5) Strategy Coverage and Minimum Success Rate: ∃qτmin > 0 such that for all i = 0, . . . , T :

Pr[Gτ (eτi , rτi ) = 1 | Xτ ,Hτ
i−1] ≥ qτmin.

This ensures a non-zero chance of generating a correct chain at any step.
(A6) LabelRethink Fallback: If all T iterations fail, the LabelRethink module, when injected with

rτref andHτ
T , produces a correct chain with probability at least qτre ≥ qτmin.

(A7) (Approximate) Independence: To apply concentration inequalities, we assume:
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• For SA: The M models can be partitioned into g groups, with outputs independent across
groups (allowing correlation within groups).

• For Stage 2: The outcomes of the t attempts are approximately independent under the
discriminator’s judgment.

This can be approximately achieved by using diverse model sources and the hidden reference
strategy.

F.3 STAGE 1: CONSENSUS AGGREGATION AND NOISE REDUCTION

Stage 1 produces a more reliable reference rationale rτref via ensemble (SA) or sampling-selection
(PC), leveraging collective intelligence to reduce the error rate.

Lemma F.1 (Error Upper Bound for SA Consensus). Under Assumption (A2), let S =
∑M

m=1 Zm

and the majority vote be Ẑ = 1{S > M/2}. Then:

(a) (Variance-Based Weak Bound) Generally, the error probability is bounded by:

Pr[Ẑ = 0] ≤ psa0 (1− psa0 )

Meff(psa0 − 1/2)2
, where Meff =

M

1 + (M − 1)ρ
.

(b) (Exponential Bound) Under the group independence assumption (A7) with g groups:

Pr[Ẑ = 0] ≤ exp
(
−2g(psa0 − 1/2)2

)
.

Proof. (a) Let p = psa0 . We have E[S] = Mp. The error event {S ≤ M/2} is equivalent to
E[S]− S ≥M(p− 1/2). By Chebyshev’s inequality:

Pr (E[S]− S ≥ t) ≤ Var(S)

t2
.

Setting t = M(p− 1/2), we bound the variance:

Var(S) =
∑
m

Var(Zm) +
∑

m̸=m′

Cov(Zm, Zm′)

≤Mp(1− p) +M(M − 1)ρp(1− p)

= p(1− p)M [1 + (M − 1)ρ] .

Substitution yields the weak bound. (b) Partition the M models into g groups of size b (M = gb).
Define the group average Z̄j = 1

b

∑
m∈group j Zm. The {Z̄j}gj=1 are independent, and E[Z̄j ] = p.

Majority vote failure is equivalent to Z̄ = 1
g

∑g
j=1 Z̄j ≤ 1/2. Applying Hoeffding’s inequality for

bounded variables gives the exponential bound.

Lemma F.2 (Existence Lower Bound for PC Candidate Selection). Under Assumptions (A2) and
(A3), the probability that the selected reference rationale in PC is correct is bounded by:

Pr[rpcref is correct] ≥ α
(
1− (1− ppc0 )K

)
.

Proof. The probability that at least one candidate is correct is 1− (1− ppc0 )K . Conditioned on this
event, the discriminator selects a correct candidate with probability at least α (true positive rate). The
overall lower bound is the product of these probabilities.

Corollary F.3 (Upper Bound on Stage 1 Effective Noise Rate). Let ητ1 = Pr[rτref is incorrect]. From
Lemmas F.1 and F.2, we have:

ηsa1 ≤
psa0 (1− psa0 )

Meff(psa0 − 1/2)2
(weak bound),

ηpc1 ≤ 1− α
(
1− (1− ppc0 )K

)
.

The bound for SA can be strengthened to the exponential form if the group independence assumption
holds.
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Discussion and Practical Implications

• Stage 1 significantly reduces the supervision noise via aggregation and selection.
• For SA, model diversity (low ρ) is crucial. High correlation diminishes the ensemble effect (Meff

decreases). Using diverse models (architectures, pre-training, prompts) is recommended. Group
independence enables exponential error reduction.

• For PC, increasing the sample size K and improving the discriminator’s TPR α are key to reducing
the error rate.

F.4 STAGE 2: CONTROLLER PASS PROBABILITY AND ERROR ANALYSIS

Stage 2 employs controlled iterative generation and verification to find a correct reasoning chain. Its
core is using multiple attempts and discriminator validation to further enhance the probability of
obtaining a correct rationale.

Design Principle: Hiding the Reference for Information Gain The hidden reference strategy
(Assumption A4) is central to Stage 2. The following proposition shows that this conditional
independence ensures each iterative step provides new information about Y τ , preventing the model
from simply parroting the reference rationale and causing information redundancy.
Proposition F.4 (Information Gain under Conditional Independence). Under Assumption (A4), for
any i ≥ 1:

I(Y τ ; eτi | Xτ ,Hτ
i−1, r

τ
ref) = I(Y τ ; eτi | Xτ ,Hτ

i−1).

Consequently, for the ultimately adopted evidence set Eτ = {eτj }i
∗

j=1, the cumulative mutual infor-
mation satisfies:

I(Y τ ;Eτ | Xτ ) ≥
i∗∑
j=1

I(Y τ ; eτj | Xτ ,Hτ
j−1).

Proof. The equality follows directly from the definition of conditional mutual information and (A4).
The inequality results from the chain rule for mutual information and the non-negativity of each
term.

This property ensures the benefits of t attempts in Theorem 2 stem from cumulative, incremental
information gain.

Define the probability bounds for a single attempt being a true pass and a false pass:

πτ
TP ≥ qτminα, πτ

FP ≤ (1− qτmin)(1− β).

A single attempt generates a correct chain and gets accepted with probability at least qτminα; it
generates an incorrect chain but gets falsely accepted with probability at most (1− qτmin)(1− β).
Theorem F.5 (Controller Pass Probability and False Pass Upper Bound). Under Assumptions (A3)–
(A6) and the approximate independence assumption (A7), let the total number of attempts be t = T+2.
Then:

1. The probability of eventually accepting at least one correct chain is lower bounded by:

PTP = Pr[Eventually accept a correct chain] ≥ 1− (1− πτ
TP)

t.

2. The probability of eventually accepting at least one incorrect chain is upper bounded by:

PFP = Pr[Eventually accept an incorrect chain] ≤ 1− (1− πτ
FP)

t.

3. The effective noise rate of the controller’s output satisfies:

ητ2 = Pr[Final output is incorrect | Accepted] ≤ PFP

PTP + PFP

≤ 1− (1− πτ
FP)

t

(1− (1− πτ
TP)

t) + (1− (1− πτ
FP)

t)
.
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Proof. Under approximate independence, the probability of no true pass in t attempts is≤ (1−πτ
TP)

t,
so PTP ≥ 1− (1− πτ

TP)
t. Similarly, PFP ≤ 1− (1− πτ

FP)
t. The noise rate ητ2 is the conditional

probability that the first accepted chain is incorrect. Using the bounds for PTP and PFP yields the
conservative upper bound.

Proposition F.6 (Iteration Complexity for Logarithmic Rate). If attempts are independent and
the single-shot success probability is lower bounded by π = πτ

TP > 0, then to achieve
Pr[At least one success] ≥ 1− ϵ, the number of attempts t must satisfy:

t ≥ 1

π
log

1

ϵ
.

Proof. From 1− (1− π)t ≥ 1− e−πt ≥ 1− ϵ, solving for t yields the result.

Discussion and Practical Implications

• PTP approaches 1 exponentially fast with t, while PFP grows slower (πτ
FP ≪ πτ

TP). Thus, an
accurate discriminator (α, β large) and good strategy coverage (qτmin large) enable Stage 2 to output
rationales with very low error.

• The required t scales with 1/π. Improving the single-shot success probability π (via better prompts,
diversity, or discriminator α) is more efficient than blindly increasing T .

F.5 STAGE 3: GENERALIZATION BOUND UNDER NOISY SUPERVISION

Stage 3 trains the scoring prediction model using the (potentially noisy) rationale-score pairs (rτ , Y τ )
from previous stages. We use the Massart noise model to analyze noisy supervised learning and
compare the generalization bounds.

Theorem F.7 (Generalization Upper Bound under Massart Noise (Massart & Élodie Nédélec (2006))).
Let the hypothesis space H have complexity measured by d (e.g., VC dimension), the training set
size be n, and the loss function ℓ be bounded in [0, 1] and Lipschitz. If the effective noise rate of the
supervision signal is bounded by η < 1/2 (Massart condition), then for the ERM solution ĥ, with
probability at least 1− δ, the generalization error satisfies:

R(ĥ)−R(h∗) ≤ C1

√
d+ log(1/δ)

n
+ C2η.

Here, h∗ is the Bayes optimal hypothesis under no noise, and C1, C2 > 0 are constants related to the
loss function.

Proof Sketch. The bound decomposes into two parts: 1. Estimation Error (Uniform Convergence):
For bounded loss, VC/Rademacher theory gives suph∈H |R(h)− R̂n(h)| ≤ C1

√
(d+ log(1/δ))/n.

2. Approximation Error (Noise Bias): Massart noise introduces a bias term in the risk of the optimal
hypothesis, linearly related to η, i.e., |R(h∗)−Rnoisy(h

∗
noisy)| ≤ C2η. Combining these two parts

yields the theorem. See standard results in noisy learning theory for a complete proof.

Multi-Stage vs. End-to-End Applying Theorem F.7 to the multi-stage method (η = ητmulti) and
the E2E method (η = ητe2e), it is clear that if:

ητmulti < ητe2e,

then, for the same n and d, the multi-stage method enjoys a tighter (smaller) generalization error
upper bound.

F.6 SUFFICIENT CONDITION FOR MULTI-STAGE SUPERIORITY

We now synthesize the results from previous stages to establish a sufficient condition under which
the multi-stage framework outperforms the E2E baseline.

The final effective noise rate ητmulti for Stage 3 is a convex combination:

ητmulti = Pr[A] · ητ2 + (1− Pr[A]) · ητ1 ,
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where Pr[A] is the probability that a Stage 2 candidate is accepted. Consequently,

min(ητ1 , η
τ
2 ) ≤ ητmulti ≤ max(ητ1 , η

τ
2 ).

Crucially, if both ητ1 and ητ2 are less than ητe2e, then ητmulti < ητe2e necessarily holds.

Theorem F.8 (Sufficient Condition for Multi-Stage Superiority). Under the assumptions of Lem-
mas F.1, F.2 and Theorem F.5, if the system parameters (M,ρ, psa0 ,K, ppc0 , α, β, T, qτmin) satisfy:

(SA)
psa0 (1− psa0 )

Meff(psa0 − 1/2)2
< ηsae2e,

(PC) 1− α
(
1− (1− ppc0 )K

)
< ηpce2e,

(Controller)
1− (1− πτ

FP)
t

(1− (1− πτ
TP)

t) + (1− (1− πτ
FP)

t)
< ητe2e, τ ∈ {sa,pc}

where t = T + 2, πτ
TP ≥ qτminα, πτ

FP ≤ (1− qτmin)(1− β), then:

ητmulti < ητe2e.

Furthermore, by Theorem F.7, the multi-stage method achieves a strictly tighter generalization error
bound than the E2E method.

Proof. By Corollary F.3, ητ1 is upper bounded by the left-hand side of the first two inequalities.
By Theorem F.5, ητ2 is upper bounded by the left-hand side of the third inequality. The sufficient
condition ensures ητ1 < ητe2e and ητ2 < ητe2e. Since ητmulti is a convex combination of ητ1 and ητ2 , it
must also be less than ητe2e. Applying Theorem F.7 concludes the proof.

Why is this Condition Plausible? This sufficient condition is not an overly strict requirement
but a achievable goal through careful design. It holds because the multi-stage framework constructs
an error-reduction pipeline: Stage 1 reduces noise through statistical aggregation (collective
intelligence). If base models are better than random (p0 > 1/2) and not perfectly correlated (ρ < 1),
aggregation provably lowers the error rate below the single-model E2E baseline (ητ1 < ητe2e). Stage
2 reduces noise through active exploration and verification (multiple trials). If the strategy has a
non-zero chance of being correct (qτmin > 0) and the discriminator is better than random (α, β > 1/2),
then with sufficient attempts (T large enough), the probability of finding and accepting a correct
chain approaches 1 exponentially fast, driving the controller’s error rate very low (ητ2 < ητe2e). The
final noise rate ητmulti, being an average of these two lower rates, is therefore guaranteed to be lower
than the E2E baseline. The architecture’s synergistic effect ensures superiority even if no single
component is perfect.

F.7 SUMMARY AND EMPIRICAL VALIDATION SUGGESTIONS

This formal analysis indicates that, under the stated assumptions:

• Noise Reduction Mechanism: Stages 1 and 2 can effectively reduce the supervision noise rate ητmulti
observed in the training signal for Stage 3.

• Generalization Advantage: Within the Massart noise model, a reduced supervision noise rate
implies a tighter generalization error bound, suggesting that the multi-stage framework may achieve
better generalization than the E2E approach under such conditions.

G ADDITIONAL EXPERIMENTS AND ANALYSES

In this appendix, we provide additional quantitative and qualitative analyses of Cosmos-Eval. We
describe how each experiment is constructed and report the corresponding results in tables. Un-
less otherwise noted, all correlations are computed against human 5-point SA/PC labels and 95%
confidence intervals are obtained via the standard Fisher r→z→r transform.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 9: Cross-benchmark results on AIGVE-Bench and LG-VQA. Pearson correlations between
automatic evaluators and human scores on two independent evaluation suites.

AIGVE-Bench LG-VQA

Model Pearson r 95% CI Pearson r 95% CI

Cosmos-Eval 0.1986 [0.1561, 0.2326] 0.2759 [0.2414, 0.3097]
VideoPhy-2-AutoEval 0.2089 [0.1706, 0.2466] 0.2750 [0.2404, 0.3088]
Qwen2.5-VL-7B 0.1033 [0.0063, 0.1425] 0.2013 [0.1656, 0.2366]

Table 10: PC-based ranking of T2V generators on AIGVE-Bench. Mean Cosmos-Eval PC score
per generator.

Rank Model Mean PC Score #Videos

1 CogVideoX 4.6830 470
2 Pyramid 4.6311 488
3 Hunyuan 4.6268 493
4 Sora 4.6207 493
5 Genmo 4.5658 486

G.1 CROSS-BENCHMARK GENERALIZATION

To assess whether Cosmos-Eval overfits to the training benchmarks (VideoPhy/VideoPhy-2), we
additionally evaluate it on two independent suites: AIGVE-Bench(Xiang et al., 2025) and LG-
VQA(Ghosal et al., 2023). Both datasets contain videos generated by multiple T2V models with
human scores. We directly apply Cosmos-Eval (without any additional fine-tuning) and compare its
correlation with human scores to that of VideoPhy-2-AutoEval and Qwen2.5-VL-7B.

Table 9 reports Pearson correlations and 95% confidence intervals on both AIGVE-Bench and
LG-VQA for the three evaluators.

G.2 RANKING T2V GENERATORS ON AIGVE-BENCH

To demonstrate the practical utility of Cosmos-Eval for comparing T2V models, we use it to rank
several state-of-the-art generators on AIGVE-Bench under the PC (physical commonsense) task. For
each generator, we compute the mean PC score across all clips associated with that model.

Table 10 reports the resulting ranking. Newer models (e.g., CogVideoX(Yang et al., 2025b), Pyra-
mid(Jin et al., 2025), Hunyuan(Kong et al., 2025)) achieve higher mean PC scores than earlier systems
such as Genmo(Li et al., 2025b), and Sora(Liu et al., 2024c) no longer dominates once physical
plausibility is explicitly emphasized.

G.3 HUMAN EVALUATION OF SA/PC RATIONALES

We conduct a human study to directly assess the perceived quality of SA/PC rationales using a
custom web interface (Fig. 50). Annotators are shown the video, the caption (for SA), and a candidate
explanation from one of three models (Cosmos-Eval, GPT-4V(OpenAI et al., 2024), Qwen3-VL-Plus),
with model identity hidden. For each example, annotators score the explanation along the five rubric
dimensions defined in our PC and SA reason-quality rubrics (Tables 7 and 8), namely grounding,
temporal alignment, internal consistency, criteria/decision justification, and either video-quality
assessment (PC) or coverage & specificity with respect to the caption (SA). Each dimension is scored
using the three-point anchors {0, 0.5, 1}, matching the definitions in Tables 7 and 8. In total, the
study contains 1,500 evaluations across SA and PC.

Table 11 presents average scores for SA rationales across grounding, temporal alignment, consistency,
alignment justification, and coverage & specificity. Table 12 shows the corresponding results for PC
rationales.
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Table 11: Human evaluation of SA rationales. Average scores on grounding, temporal alignment,
consistency, alignment justification, coverage & specificity, and overall average.

Model Grounding Temporal Align. Consistency Align. Justif. Coverage & Spec. Total Avg.

Cosmos-Eval 0.82 0.57 0.71 0.81 0.87 0.76
GPT-4V 0.64 0.52 0.67 0.61 0.64 0.62
Qwen3-VL-Plus 0.73 0.53 0.69 0.73 0.71 0.69

Table 12: Human evaluation of PC rationales. Average scores on grounding, temporal reasoning,
consistency, criteria & justification, video-quality awareness, and overall average.

Model Grounding Temporal Consistency Criteria & Justif. Video Quality Total Avg.

Cosmos-Eval 0.79 0.56 0.82 0.85 0.82 0.77
GPT-4V 0.64 0.52 0.56 0.64 0.56 0.58
Qwen3-VL-Plus 0.59 0.51 0.59 0.64 0.63 0.60

Table 13: PC rationales scored by Qwen3-VL-Plus.
Model Grounding Temporal Consistency Criteria & Justif. Video Quality Total Avg.

Cosmos-Eval 0.71 0.79 0.58 0.54 0.69 0.662
GPT-4V 0.60 0.82 0.30 0.26 0.72 0.544
Qwen3-VL-Plus 0.65 0.85 0.67 0.26 0.79 0.564

Table 14: SA rationales scored by Qwen3-VL-Plus.
Model Grounding Temporal Consistency Align. Justif. Coverage & Spec. Total Avg.

Cosmos-Eval 0.76 0.77 0.44 0.44 0.82 0.65
GPT-4V 0.82 0.80 0.47 0.46 0.84 0.678
Qwen3-VL-Plus 0.91 0.83 0.48 0.48 0.91 0.722

Table 15: PC rationales scored by GPT-4V.
Model Grounding Temporal Consistency Criteria & Justif. Video Quality Total Avg.

Cosmos-Eval 0.57 0.56 0.62 0.52 0.78 0.61
GPT-4V 0.52 0.54 0.44 0.38 0.88 0.55
Qwen3-VL-Plus 0.57 0.60 0.43 0.35 0.78 0.55

G.4 VLM-JUDGE EVALUATION OF RATIONALES

To further probe explanation quality in a model-agnostic way, we use several strong VLMs as external
judges. Each judge scores SA/PC rationales from Cosmos-Eval, GPT-4V, and Qwen3-VL-Plus along
the same rubric dimensions as in the human study, producing scores in 0, 0.5, 1. Below we report
dimension-wise averages and overall means per judge.

G.4.1 QWEN3-VL-PLUS AS JUDGE

In this setting, we fix Qwen3-VL-Plus as the judge and ask it to assign rubric scores to PC and SA
rationales produced by Cosmos-Eval, GPT-4V, and Qwen3-VL-Plus itself. Tables 13 and 14 report
the dimension-wise averages and overall mean scores.

G.4.2 GPT-4V AS JUDGE

Here we use GPT-4V as the judge and follow the same protocol: given a video, caption (for SA),
and a candidate rationale from each model, GPT-4V assigns rubric scores to SA/PC explanations.
Tables 15 and 16 summarize the resulting averages.

G.4.3 GEMINI-2.5-PRO AS JUDGE

Finally, we repeat the same evaluation protocol with Gemini-2.5-Pro as the judge. Tables 17 and 18
report the average rubric scores for PC and SA rationales, respectively.
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Table 16: SA rationales scored by GPT-4V.
Model Grounding Temporal Consistency Align. Justif. Coverage & Spec. Total Avg.

Cosmos-Eval 0.67 0.46 0.74 0.71 0.64 0.64
GPT-4V 0.66 0.50 0.73 0.72 0.64 0.65
Qwen3-VL-Plus 0.73 0.55 0.73 0.70 0.69 0.68

Table 17: PC rationales scored by Gemini-2.5-Pro.
Model Grounding Temporal Consistency Criteria & Justif. Video Quality Total Avg.

Cosmos-Eval 0.51 0.50 0.41 0.34 0.01 0.36
GPT-4V 0.49 0.46 0.15 0.10 0.00 0.24
Qwen3-VL-Plus 0.50 0.52 0.21 0.16 0.04 0.29

Table 18: SA rationales scored by Gemini-2.5-Pro.
Model Grounding Temporal Consistency Align. Justif. Coverage & Spec. Total Avg.

Cosmos-Eval 0.47 0.46 0.25 0.29 0.63 0.42
GPT-4V 0.63 0.61 0.35 0.30 0.64 0.51
Qwen3-VL-Plus 0.70 0.67 0.29 0.27 0.77 0.54

Table 19: Score correlations on VideoPhy-2 (50 clips). Direct SA/PC scoring by frontier VLMs vs.
Cosmos-Eval.

Model SA Pearson r SA Spearman ρ PC Pearson r PC Spearman ρ

Cosmos-Eval 0.4325 0.4255 0.3046 0.2984
Qwen3-VL-Plus 0.5367 0.5243 0.1418 0.1394
GPT-4V 0.5917 0.5753 0.1429 0.1333

Table 20: Rationale similarity on VideoPhy-2 (50 clips). BLEU-4 and BERTScore-F1 (in %) for
SA/PC explanations vs. reference rationales.

Model SA BLEU-4 SA BERTScore-F1 PC BLEU-4 PC BERTScore-F1

Cosmos-Eval 32.94 80.08 26.19 77.79
Qwen3-VL-Plus 8.75 72.09 2.65 68.06
GPT-4V 5.08 71.16 2.57 70.14

Table 21: Summac scores for SA rationales.
Metric Cosmos-Eval Qwen2.5-VL-7B InternVL-8B InternVL-9B InternVL-14B Cosmos-Reason1 VideoLLaMA3-7B

summac 26.62 21.50 23.92 24.22 23.91 21.23 22.56

G.5 FRONTIER VLM BASELINES ON VIDEOPHY-2

To compare Cosmos-Eval against frontier VLMs used with direct prompting, we sample 50 VideoPhy-
2 test clips with human SA/PC labels. We prompt GPT-4V and Qwen3-VL-Plus to directly output
5-point SA/PC scores and compute correlations with human labels.

Table 19 reports Pearson and Spearman correlations for scores. Table 20 reports BLEU-4 and
BERTScore-F1 for SA/PC rationales against reference explanations.

G.6 FACTUAL CONSISTENCY METRICS FOR RATIONALES

Beyond surface-level text similarity metrics, we also consider a factual/consistency-oriented metric
(SummAc(Laban et al., 2022)) to assess alignment between generated and reference explanations.
Table 21 reports Summac scores for SA rationales, and Table 22 for PC rationales, comparing
Cosmos-Eval to several baselines.
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Table 22: Summac scores for PC rationales.
Metric Cosmos-Eval Qwen2.5-VL-7B InternVL-8B InternVL-9B InternVL-14B Cosmos-Reason1 VideoLLaMA3-7B

summac 23.32 22.69 23.07 22.86 23.16 22.25 23.20

Table 23: SA correlations with uncertainty. Pearson r (95% CI), two-sided p-value, and ∆r vs.
Cosmos-Eval.

Model r [95% CI] p-value ∆r vs. Cosmos-Eval

Cosmos-Eval 0.4643 [0.4376, 0.4904] 2.50E-181 —
VideoPhy-2-AutoEval 0.4327 [0.4049, 0.4596] 5.12E-155 +0.0316
Qwen2.5-VL-7B 0.3808 [0.3517, 0.4092] 1.02E-117 +0.0835
VideoLLaMA3-7B 0.2769 [0.2456, 0.3077] 7.21E-61 +0.1874
InternVL-8B 0.4143 [0.3861, 0.4418] 4.70E-141 +0.0500
InternVL-9B 0.3827 [0.3536, 0.4110] 6.34E-119 +0.0816
InternVL-14B 0.3420 [0.3120, 0.3714] 7.17E-94 +0.1223
Cosmos-Reason1 0.3662 [0.3366, 0.3952] 3.62E-107 +0.0981
VideoLLaMA3-7B (variant) 0.2333 [0.2034, 0.2636] 7.78E-44 +0.2310

Table 24: PC correlations with uncertainty. Pearson r (95% CI), two-sided p-value, and ∆r vs.
Cosmos-Eval.

Model r [95% CI] p-value ∆r vs. Cosmos-Eval

Cosmos-Eval 0.3641 [0.3346, 0.3929] 4.83E-107 —
VideoPhy-2-AutoEval 0.3646 [0.3351, 0.3934] 2.55E-107 -0.0005
Qwen2.5-VL-7B 0.0840 [0.0512, 0.1180] 7.59E-07 +0.2801
VideoLLaMA3-7B 0.0640 [0.0310, 0.0980] 1.67E-04 +0.3001
InternVL-8B 0.1665 [0.1280, 0.1935] 3.79E-21 +0.1976
InternVL-9B 0.1304 [0.0973, 0.1634] 2.26E-14 +0.2337
InternVL-14B 0.1956 [0.1631, 0.2278] 1.18E-30 +0.1685
Cosmos-Reason1 0.2356 [0.2030, 0.2665] 7.78E-44 +0.1285
VideoLLaMA3-7B (variant) 0.2075 [0.1795, 0.2354] 2.30E-43 +0.1566

Table 25: GPT-4o as external scorer. Pearson correlations between GPT-4o-implied scores and
Cosmos-Eval scores under two Stage-2 judges.

Setting N Pearson r 95% CI

PC, 72B judge (Qwen2.5-VL-72B) 187 0.9131 [0.8857, 0.9342]
PC, 30B judge (Qwen3-VL-30B) 187 0.8239 [0.7716, 0.8651]
SA, 72B judge (Qwen2.5-VL-72B) 178 0.8894 [0.8541, 0.9166]
SA, 30B judge (Qwen3-VL-30B) 184 0.8636 [0.8216, 0.8963]

G.7 UNCERTAINTY ESTIMATES FOR MAIN SA/PC RESULTS

For the main SA/PC score correlations, we also report uncertainty estimates and effect sizes. For
each model, we compute: (i) Pearson correlation r with human scores, (ii) 95% confidence interval,
(iii) two-sided p-value for H0 : r = 0, and (iv) ∆r relative to Cosmos-Eval.

Tables 23 and 24 summarize SA and PC statistics, respectively.

G.8 SENSITIVITY TO STAGE-2 JUDGE AND EXTERNAL SCORERS

To study judge-choice sensitivity and potential circularity, we vary the Stage-2 judge (Qwen2.5-
VL-72B vs. Qwen3-VL-30B) while keeping the rest of the pipeline fixed. For each setting, we ask
independent external LLMs (GPT-4o and DeepSeek) to read Cosmos-Eval rationales and assign
SA/PC scores, then compute the correlation between these external scores and the original Cosmos-
Eval scores.

Table 25 reports Pearson correlations when GPT-4o is used as the external scorer, and Table 26
reports the same when DeepSeek is used. In all cases, we observe high agreement across judge
choices and external scorers, and the larger Stage-2 judge (Qwen2.5-VL-72B) consistently yields
higher correlations than the 30B variant, indicating that Stage 2 benefits from stronger VLM judges;
accordingly, we adopt Qwen2.5-VL-72B as the default Stage-2 judge in our main experiments.
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Table 26: DeepSeek as external scorer. Pearson correlations between DeepSeek-implied scores and
Cosmos-Eval scores under two Stage-2 judges.

Setting N Pearson r 95% CI

PC, 72B judge (Qwen2.5-VL-72B) 187 0.9131 [0.8857, 0.9342]
PC, 30B judge (Qwen3-VL-30B) 187 0.8487 [0.8031, 0.8845]
SA, 72B judge (Qwen2.5-VL-72B) 178 0.8894 [0.8541, 0.9166]
SA, 30B judge (Qwen3-VL-30B) 184 0.8649 [0.8233, 0.8973]

Table 27: Stage-wise cost of teacher pipeline for PC (200 samples).
Step GPU Count Inference Time Sample Count Avg. Time / Sample

Stage 0 (pre-processing) 1 2m12s 200 0.66 s
Stage 1: Qwen Gen (run 1) 1 18m43s 200 19.38 s
Stage 1: Qwen Gen (run 2) 2 18m37s 200 29.25 s
Stage 2 (reasoning ctrl.) 2 188m48s 200 56.64 s

Table 28: Stage-wise cost of teacher pipeline for SA (200 samples).
Step GPU Count Inference Time Sample Count Avg. Time / Sample

Stage 0 (pre-processing) 1 2m14s 200 0.67 s
Stage 1: Qwen Gen 4 54m43s 200 16.31 s
Stage 1: Tarsier Gen 4 18m19s 200 20.78 s
Stage 1: Qwen3 merge 2 17m39s 200 5.14 s
Stage 2 (complex reasoning ctrl.) 4 340m12s 200 102.06 s

Table 29: Score-only inference cost for PC/SA scores (200 samples).
Step GPU Count Inference Time Sample Count Avg. Time / Sample GPU-Hours

VideoPhy-2-AutoEval-PC 1 2m12s 200 0.66 s 0.0368
VideoPhy-2-AutoEval-SA 1 2m14s 200 0.67 s 0.0372
Cosmos-Eval (PC-score) 1 3m42s 200 1.11 s 0.0618
Cosmos-Eval (SA-score) 1 3m42s 200 1.11 s 0.0619
Qwen2.5-VL-7B (PC-score) 1 4m20s 200 1.30 s 0.0722
Qwen2.5-VL-7B (SA-score) 1 4m20s 200 1.30 s 0.0724

Table 30: Rationale-generation inference cost for PC/SA reasons (200 samples).
Step GPU Count Inference Time Sample Count Avg. Time / Sample GPU-Hours

Cosmos-Eval (PC-reason) 1 19m34s 200 5.87 s 0.3272
Cosmos-Eval (SA-reason) 1 51m49s 200 15.54 s 0.8637
Qwen2.5-VL-7B (PC-reason) 1 14m14s 200 4.27 s 0.2042
Qwen2.5-VL-7B (SA-reason) 1 13m34s 200 4.07 s 0.2219

G.9 COMPUTATIONAL COST AND EFFICIENCY

We report detailed computational costs for (i) the multi-stage teacher pipeline (Stages 0–2) used during
training and (ii) the distilled student evaluator (Stage 3) used during inference. All measurements are
collected on 200-sample subsets.

Tables 27 and 28 list stage-wise costs for PC and SA teacher pipelines, respectively, while Tables 29
and 30 compare score-only and rationale-generation inference costs for Cosmos-Eval, VideoPhy-2-
AutoEval, and Qwen2.5-VL-7B. From these numbers, the total per-sample cost of the teacher pipeline
(Stages 0–2) is about 106 s for PC and 145 s for SA, whereas the distilled evaluator (Stage 3) needs
only ≈ 1.1 s per sample for scores alone and ≈ 5.9 s (PC) / 15.5 s (SA) for scores plus rationales.
When we compare the teacher pipeline with the distilled evaluator under the score + rationale setting,
this translates to roughly 9–18× speedups. In deployment, users only run the distilled evaluator,
whose score-only cost is close to that of a single 7B VLM call, while additionally providing calibrated
SA/PC scores and physics-grounded rationales rather than scores alone.
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Table 31: Average PC/SA scores before and after synthetic degradations on VideoPhy-2 clips.
Each row averages 100 samples per distortion type.

Distortion Type Before (PC) After (PC) PC ∆ (B–A) Before (SA) After (SA) SA ∆ (B–A) Count

Noise 4.56 4.28 0.28 4.03 3.72 0.31 100
Occlusion 4.59 4.21 0.38 4.02 3.82 0.20 100
Blur 4.64 4.32 0.32 4.00 3.72 0.28 100
Compression 4.67 4.45 0.22 4.02 3.77 0.25 100
Color 4.67 4.37 0.30 4.01 3.77 0.24 100

Table 32: Hyperparameter ranges for synthetic degradations. PC and SA tasks share the same
ranges with different random seeds (PC: 42, SA: 43).

Distortion Type Parameter Range Description

Noise strength 10–40 Noise intensity level
Noise temporal 5–15 Temporal noise variation
Blur sigma (luma) 1.0–4.0 Gaussian blur radius
Blur chroma_radius 0.5–2.0 Chroma blur radius
Compression CRF 35–45 Constant rate factor (higher = more compression)
Compression bitrate 100–300 kbps Target video bitrate
Occlusion num_boxes 1–3 Number of black occlusion boxes
Occlusion box_size 50–150 px Width and height of each box
Occlusion position (x,y) 0–500 px Random position within frame
Color saturation 0.3–1.5 Color saturation multiplier
Color contrast 0.5–1.3 Contrast adjustment factor
Color brightness −0.2–0.2 Brightness offset
Color hue −30◦–30◦ Hue rotation angle

Table 33: Long-horizon evaluation on LongCat-Video (30 prompts, ≈ 33s per video). Segment-
wise average ranges (across 11 segments) and full-clip averages for SA/PC.

Model SA segment range PC segment range Full SA avg. Full PC avg.

Cosmos-Eval 3.03–3.13 3.97–4.13 3.30 4.00
VideoPhy-2-AutoEval 2.73–3.00 3.83–4.07 2.97 3.50

G.10 ROBUSTNESS TO SYNTHETIC DEGRADATIONS

We examine robustness to synthetic noise by starting from clean VideoPhy-2 clips and applying
controlled degradations (noise, occlusion, blur, compression, color shifts). For each distortion type,
we compute average PC/SA scores before and after degradation over 100 clips.

Table 31 reports the mean scores for each distortion type and the corresponding drops in PC/SA.
Table 32 lists the hyperparameter ranges used to generate each distortion; PC and SA tasks share
the same parameter ranges with different random seeds. Overall, we observe moderate but not
catastrophic degradation: PC scores are most sensitive to occlusion (largest drop of 0.38), while SA
scores are most affected by additive noise (largest drop of 0.31), and both tasks are comparatively
robust to blur and compression. Note that these experiments are conducted on T2V-generated clips
with synthetic distortions rather than real-world, in-the-wild video artifacts, so extending Cosmos-Eval
to broader real-world noise conditions remains an interesting direction for future work.

G.11 LONG-HORIZON EVALUATION ON LONGCAT-VIDEO

To probe long-horizon behavior, we evaluate Cosmos-Eval and VideoPhy-2-AutoEval on videos of
length ≈ 33 seconds generated from 30 prompts using a LongCat-style T2V setup. Each video is
evaluated (i) as a full clip, and (ii) as 11 consecutive non-overlapping 3-second segments. We report
mean SA/PC scores across segments and for the full video.

Table 33 summarizes segment-wise ranges and full-clip averages. Both evaluators exhibit stable
SA/PC scores across time, and Cosmos-Eval behaves comparably to VideoPhy-2-AutoEval on long
multi-step sequences.
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H REPRODUCIBILITY STATEMENT

All information needed to replicate our results is provided in Appx. B (Figs. 3–5, Alg. 1, Table 6) and
the main text (Eqs. 4, 6). All datasets used are publicly available and can be downloaded from their
official websites (VideoPhy and VideoPhy-2; see (Bansal et al., 2025a;b)). We detail the complete
prompt flow and provide all prompts in Appx. J. Model versions and full decoding hyperparameters
(temperature, top-p, max tokens) are specified. Because inference relies on sampling, we do not
fix random seeds; minor run-to-run variance is expected, but the stated configurations suffice for
independent replication of the main results. Upon acceptance, we will publicly release all code,
scripts, and model weights to facilitate exact reproduction.

I THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models only for light editorial assistance during manuscript preparation
(grammar and wording refinement, minor style/formatting suggestions). No LLMs were used for
research ideation, dataset curation, modeling, experiment design, analysis, or drafting substantive
sections.

J PROMPT TEMPLATES

This section briefly documents the prompt flow used in Stages 1–2; figures referenced below are
already included in the paper.

• SA, Stage 1. From the rationale prompt (Fig. 25) to the consensus prompt (Fig. 26), which aggregates
two rationales into the SA reference rsaref .

• PC, Stage 1. From the candidate-generation prompt (Fig. 27) to the explanation-selection prompt
used by the judge (Fig. 28) to obtain rpcref .

• SA, Stage 2. From the seed-ref prompt (Fig. 29) to the assessment prompt (Fig. 36) that produces a
concise evidence-based justification.

• PC, Stage 2. From the seed-ref prompt (Fig. 37) to the assessment prompt (Fig. 44) under the PC
rubric.

• Unified CoT narration. The accepted structured analysis from Stage 2 is converted into a natural,
first-person narration using the NaturalReasoning prompt (Fig. 45).

• Ablations (SA/PC). From the DeepSeek-R1 remapping prompt (Fig. 46) to the Qwen-VL-Max
reason-evaluation prompt (Fig. 49).
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SA Score:5

LLM
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static camera, 4–6-second loop, 

smooth motion.
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Figure 3: Stage 1 (SA) reason generation (ensemble⇒ consensus). An ensemble {Mm}Mm=1
produces one reason each, forming the poolRsa

pool (Eq. 3); an aggregator LLM then extracts shared
content to yield the reference reason rsaref (Eq. 4), which seeds Stage 2.
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Figure 4: Stage 1 (PC) reason generation (sampling⇒ selection). The base VLMMbase samples
K candidate reasons to form the poolRpc

pool (Eq. 5); an VLM judge Jpc then selects the reference
rationale rpcref (Eq. 6), which seeds Stage 2.
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Complex CoT ොe
```{"NaturalReasoning": "Okay, let me watch this video 

carefully... I can see a Newton's cradle on a desk……. 

The metal spheres hang from equal-length strings, 

aligned in a row…… (conservation of momentum and 

energy with small losses). The whole sequence feels 

very natural and true to life."}```

###Thinking

SFT

The inelastic losses look …….mping is tuned a 

bit too ideally (or the loop boundary re-injects 

energy), so it’s realistic but not perfect.

Final Respond:

VLM
0 0( , )e y

1 1( , )e y

1 1( , )n ne y− −

( , )n ne y

0 0 1 1[( , ), ( , ), , ], ( )i ie y e y ye

Figure 5: Stage 2 (reason-augmented CoT). Starting from the reference reason rτref (from Stage 1),
a judge-verified controller iteratively explores, verifies, and corrects without exposing the reference
mid-trajectory; each candidate (eτi , r

τ
i ) is checked by Vτ for pass or fail (Eqs. equation 9, equation 12).

The controller uses the strategy set C (Backtracking, Exploring New Paths, Verification, Correction);
if none pass, LabelRethink re-injects the reference (Eq. equation 13), and the accepted history is
reformatted into (êτ , r̂τ ) (Eq. equation 16).
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Figure 6: Score distributions for SA and PC. Left to right: (i) overall (train+test), (ii) VideoPhy
subset (SA/PC scores obtained via VideoPhy-2 AutoEval), (iii) VideoPhy-2 subset, and the final (iv)
training and (v) test splits. SA is skewed toward higher scores (4–5), whereas PC concentrates on 3–4
with fewer 5’s and more 2’s than SA. On the VideoPhy portion, SA is sharply peaked at 4 (almost no
5’s), while PC is roughly balanced across 2–4; VideoPhy-2 shows a broader SA spread (nontrivial 1/5
tails) and a PC peak at 3 with a secondary mode at 4. Train/test distributions are similar, with the test
split slightly flatter. These imbalances motivate reporting κ alongside accuracy/correlation and using
stratified sampling in SFT.

Figure 7: Case 1 — Physical Commonsense (PC). Input caption: N/A (no caption provided).
Answer (Cosmos-Eval, verbatim): The video demonstrates a red ball hovering mid-air without any
visible support, defying gravitational expectations. The physical commonsense is poor because the
ball’s static suspension violates basic principles of force and motion, despite maintaining a realistic
appearance otherwise. This justifies a pc_score of 2 due to the significant inconsistency with
gravitational effects while other visual elements remain accurate. PC score: 2.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 1: Stage-2 Reference-Seeded, Judge-Verified Controller for task τ

Input: xτ ; prompts Pτ
seed-ref, {Pτ

c}c∈C ,P
τ
rethink; judge prompt Uτ ; reference rτref ; budget N

Output: (êτ , r̂τ ) or ∅
Hτ ← ∅; i⋆ ← nil;
Avail← C; T ← min(N, |C|);
(eτ0 , r

τ
0 )←M(Pτ

seed-ref, x
τ , rτref ; Reason);

Hτ ← Hτ ∪ {(eτ0 , rτ0 )};
pass← Vτ (rτ0 , rτref ; Uτ );
if pass = 1 then

i⋆ ← 0;
else

for i← 1 to T do
pick ci ∈ Avail uniformly; Avail← Avail \ {ci};
(eτi , r

τ
i )←M(Pτ

ci , x
τ , Hτ ; ci);

Hτ ← Hτ ∪ {(eτi , rτi )};
pass← Vτ (rτi , rτref ; Uτ );
if pass = 1 then

i⋆ ← i;;
break

if pass = 0 then
(eτT+1, r

τ
T+1)←M(Pτ

rethink, x
τ , rτref , Hτ ; LabelRethink);

Hτ ← Hτ ∪ {(eτT+1, r
τ
T+1)};

pass← Vτ
(
rτT+1, r

τ
ref ; U

τ
)
;

if pass = 1 then
i⋆ ← T+1;

if pass = 1 then
êτ ← PostChain

(
{(eτj , rτj )}i

⋆

j=0; SynthesizeChain
)
;

r̂τ ← PostAnswer(êτ , rτref ; Reformat);
return (êτ , r̂τ );

else
return ∅;

Figure 8: Case 2 — Semantic Alignment (SA). Generation caption: A yellow cube rotates
counterclockwise on the table while a purple cone remains still. Answer (Cosmos-Eval, verbatim):
The video demonstrates the yellow cube rotating while the purple cone remains stationary, with the
former exhibiting a clockwise rotation contrary to the caption’s description of counterclockwise
movement. The alignment is moderate because while the scene and object placement are accurate,
the direction of rotation significantly deviates from the stated caption. This justifies an sa_score of 3
due to the primary focus on object interaction with only a minor discrepancy in rotational direction.
SA score (assigned): 2.
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Figure 9: Case 3 — Physical Commonsense (PC). Input caption: N/A (no caption provided).
Answer (Cosmos-Eval, verbatim): The video demonstrates a ball rolling on a checkerboard surface
with inconsistent motion, exhibiting erratic bouncing and lack of frictional decay, which violates
principles of Newtonian mechanics. The physical commonsense is poor because the ball’s behavior
cannot be explained by external forces alone, suggesting either an artificial manipulation or a
misunderstanding of physical laws. This justifies a pc_score of 2 due to significant deviations from
expected physical interactions and dynamics. PC score: 2.

Figure 10: Case 4 — Semantic Alignment (SA). Generation caption: A man kicks a soccer ball; it
strikes the goalpost and rebounds. Answer (Cosmos-Eval, verbatim): The video shows a man
observing two soccer balls approaching the goalpost, whereas the caption describes a single ball
being kicked towards the goalpost. The alignment is moderate because although the setting
accurately represents a soccer field, the presence of multiple balls and the absence of a kicking action
introduce significant discrepancies. This justifies a sa_score of 3 due to the partial adherence to the
scene description despite notable differences in the number of balls and the absence of the critical
kicking action. SA score: 3.
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The video demonstrates realistic object interactions such as the player's controlled swing, the 
ball's trajectory upon impact, and the player's natural arc during the jump and landing, all 
adhering to principles of physics. The physical commonsense is excellent because the 
sequence of events, including lighting and shadow consistency, aligns with expected physical 
behaviors without any noticeable violations. This justifies a pc_score of 5 due to the perfect 
representation of physical laws throughout the video.

Cosmos-Eval

The video demonstrates perfect adherence to physical commonsense. All object behaviors, 
motion and forces, interactions, and overall consistency throughout the video follow the 
principles of real-world physics. There are no physical violations or strange inconsistencies.

GPT-4V

The video fully adheres to physical commonsense: motions, forces, object behaviors, and 
interactions are all consistent with real-world physics, with no observable violations or 
inconsistencies.

Qwen3-VL-plus

Figure 11: Example of Physical Commonsense Task 1
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The video demonstrates water splashing around a person in a manner inconsistent with 
typical fluid dynamics, such as outward propulsion without a visible force source and 
unrealistic dispersion patterns. The physical commonsense is moderate because while the 
person's movements and interactions with the environment adhere to expected physical laws, 
the water's behavior violates fundamental principles of fluid mechanics. This justifies a 
pc_score of 3 due to the significant deviation in water interaction despite otherwise realistic 
actions.

Cosmos-Eval

The video adheres perfectly to physical commonsense principles. Objects and forces 
consistently follow realistic physics, especially concerning the motion and behavior of the 
water, which flows naturally and reacts appropriately to applied force

GPT-4V

The video adheres perfectly to physical laws: the fluid behaves realistically under gravity and 
manipulation, interactions are plausible, and there are no violations of motion, force, or object 
behavior.

Qwen3-VL-plus

Figure 12: Example of Physical Commonsense Task 2
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The video demonstrates smooth sliding and penetration of wooden blocks, violating expected 
frictional and gravitational forces. The physical commonsense is poor because the blocks 
exhibit unrealistic motion and interaction dynamics, lacking proper resistance and weight 
representation. This justifies a pc_score of 2 due to significant deviations from real-world 
physics in block behavior and force application.

Cosmos-Eval

The video demonstrates perfect adherence to physical commonsense. The wooden blocks and 
their interactions follow real-world physics principles with no violations, including natural 
motion influenced by gravity, inertia, and realistic interaction between objects and hands.

GPT-4V

The video perfectly adheres to physical commonsense: blocks fall naturally under gravity, 
collide realistically, and maintain structural integrity without deformation or impossible 
motion.

Qwen3-VL-plus

Figure 13: Example of Physical Commonsense Task 3
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 The video demonstrates dynamic motion of the runner's leg with realistic acceleration and 
deceleration, yet fails to accurately depict the physical interaction between the leg and the 
hurdle due to an unrealistic penetration effect. The physical commonsense is poor because 
the leg's ability to pass through the solid barrier violates principles of object permanence and 
collision dynamics. This justifies a low score as the primary focus on motion quality contrasts 
sharply with the significant violation of physical interactions. 

Cosmos-Eval

The video demonstrates perfect adherence to physical commonsense. The objects and 
athlete’s movements obey physical laws such as gravity, momentum, and force application. 
Interactions are natural and consistent across frames, with no violations of expected behavior 
throughout the sequence.

GPT-4V

The video perfectly adheres to physical commonsense: motion, object behavior, and 
interactions are all consistent with real-world physics, with no visible anomalies or 
inconsistencies.

Qwen3-VL-plus

Figure 14: Example of Physical Commonsense Task 4
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The video demonstrates consistent gravitational effects on the dartboard and other objects, 
adhering to real-world physics except for the dartboard's apparent suspension mid-air, which 
defies gravitational pull. The physical commonsense is moderate because the majority of 
actions follow physical laws, but the unrealistic suspension of the dartboard introduces a 
significant inconsistency. This justifies a pc_score of 3 due to the presence of both accurate 
and inaccurate physical behaviors within the scene.

Cosmos-Eval

The video demonstrates perfect adherence to physical commonsense. The motion, interaction, 
and behavior of the objects align well with real-world physics, and there are no 
inconsistencies or violations of physical laws.

GPT-4V

The video violates fundamental physical laws: a heavy dartboard cannot realistically spin 
stably on a plastic spoon without support, and the interaction ignores gravity, friction, and 
material limitations.

Qwen3-VL-plus

Figure 15: Example of Physical Commonsense Task 5
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The video shows a person interacting with water, creating a visible arc of water flow, while the 
caption describes the vigorous twisting of a wet towel. The alignment is moderate because 
the water's movement matches the described arc, but the towel is absent, leading to partial 
content mismatches. This justifies a sa_score of 3 due to the presence of water and the action, 
though the absence of a towel introduces inconsistencies.

Cosmos-Eval

The video perfectly aligns with the caption, as all described entities, actions, and events are 
depicted accurately. The vigorous twisting and water spraying are central to the video, and 
there are no inconsistencies across any evaluation criteria.

GPT-4V

The video perfectly matches the caption: a person is seen vigorously twisting a wet towel, with 
water visibly spraying outward in an arc, exactly as described. No discrepancies exist in 
entities, actions, or timing.

Qwen3-VL-plus

Caption:A person vigorously twists a wet towel, water spraying outwards in a 
visible arc.

Figure 16: Example of Semantic Alignment Task 1
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The video shows a person manually picking peaches from a tree, while the caption describes 
the use of a long-handled fruit picker with a twisting motion. The alignment is poor because 
the key elements of the tool and the described action are absent in the video, despite the 
correct setting and activity. This justifies an sa_score of 2 due to the significant mismatch in 
the method of harvesting and the tools used.

Cosmos-Eval

The video portrays the act of picking peaches, and the orchard setting matches the caption. 
However, the lack of a long-handled fruit picker, a crucial component of the caption, results in 
poor alignment as the main described action is not shown.

GPT-4V

The video shows manual hand-picking of peaches, while the caption specifies use of a long-
handled fruit picker — a critical mismatch in tools and actions, despite matching the general 
orchard setting.

Qwen3-VL-plus

Caption:A person uses a long-handled fruit picker to reach and twist a peach from 
a tree.

Figure 17: Example of Semantic Alignment Task 2
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The video shows hands manipulating yarn without visible knitting needles, while the caption 
describes swift needle movements and an increasing length of knitted fabric. The alignment is 
poor because the video lacks the essential tools and dynamic actions mentioned in the 
caption, leading to significant mismatches in both objects and processes. This justifies a 
sa_score of 2 due to the evident discrepancies between the visual content and the described 
activity.

Cosmos-Eval

The video moderately aligns with the caption, as the person’s hand, yarn, and knitting 
needles are present, matching the scene and entities described. However, key aspects of the 
action — particularly rapid knitting and a visible increase in the knitted piece’s length — are 
either missing or underwhelmingly conveyed, leading to inconsistencies between the video 
and the caption.

GPT-4V

The video shows hands knitting with needles and yarn, matching the basic subject matter, but 
the knitting is not rapid nor is the lengthening of the fabric visibly apparent, leading to partial 
alignment.

Qwen3-VL-plus

Caption:A person's hands rapidly knitting, the needles moving swiftly across the 
yarn, creating a visible increase in the length of the knitted piece.

Figure 18: Example of Semantic Alignment Task 3
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The video shows hands manipulating flour on a wooden surface without a bag or tear, 
whereas the caption describes a bag of flour being squeezed. The alignment is moderate 
because the scene's black background and wooden table match, but the action and objects 
do not correspond. This justifies a sa_score of 3 due to partial scene consistency and 
significant discrepancies in the depicted action.

Cosmos-Eval

The alignment is poor. While the video shows flour being handled and erupting into the air, 
the caption inaccurately describes the object (bag) and event (eruption from a small tear), 
which are completely absent in the video content.

GPT-4V

The video only partially aligns with the caption — both involve flour and hands — but 
critically misses the bag, tear, and eruption described. The actual action shown is gentle sifting, 
not forceful squeezing of a ruptured container.

Qwen3-VL-plus

Caption:A person squeezes a bag of flour, flour dust visibly erupting from a small 
tear.

Figure 19: Example of Semantic Alignment Task 4
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The video shows a long jumper with a visible technique flaw during the jump, while the 
caption describes both a technique flaw and an unbalanced landing, which is not clearly 
depicted in the video. The alignment is moderate because the video only partially captures 
the described actions, particularly the minor technique issues and lack of emphasis on the 
unbalanced landing. This justifies a sa_score of 3 due to the partial but significant mismatch 
between the visual content and the detailed description provided in the caption.

Cosmos-Eval

The video depicts actions of jumpers on a track and field but fails to demonstrate the specific 
case of \"a long jumper\" with \"flawed technique\" as described in the caption. While the 
general context matches, the lack of depicted technical flaws, poor landings, or short 
distances reduces the alignment significantly.

GPT-4V

The video partially aligns with the caption by showing long jumpers mid-air, with one possibly 
exhibiting flawed technique. However, it fails to depict the landing or distance outcome 
mentioned in the caption, and features multiple athletes rather than focusing on a single 
jumper as implied.

Qwen3-VL-plus

Caption:A long jumper demonstrates a flawed technique, resulting in a short 
distance and an unbalanced landing.

Figure 20: Example of Semantic Alignment Task 5
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<think>\nOkay, let me watch this video carefully... I notice this sled moving down the track, 
and it looks like it's gliding really smoothly. The way it's moving, it seems to be following the 
curves of the track nicely. Wait, let me look closer at how it interacts with the surface. Hmm, 
this seems to be maintaining a consistent speed, which makes sense because of the 
smoothness of the track. Actually, I don't see any kind of sudden acceleration or deceleration, 
so the forces must be balanced well.\n\nI can see the lighting is pretty bright, making 
everything clear. The sled is maintaining its shape as it moves along, which tells me it's a rigid 
object as it should be. Oh wait, I should also pay attention to how it's interacting with the 
video around it. Yes, that confirms there are no weird penetrations or anything like that. But 
then again, I need to think about the track itself. It looks like it's made of some kind of 
smooth material, maybe ice, and the sled is sliding over it without any issues.\n\nLet me think 
about this for a moment. The sled's interaction with the track and its smooth motion through 
it are really convincing. This looks like a well-thought-out design. Actually, now that I'm 
thinking about it, the sled's design probably plays a big role in its ability to slide so smoothly. 
It's streamlined, which helps minimize air resistance, allowing it to glide faster.\n\nHmm, this 
seems consistent throughout the video. The sled keeps behaving the same way across the 
frames, without any abrupt changes. I'm really not seeing anything that would make me 
doubt the physics here. Yes, that confirms my earlier thoughts. The sled continues to interact 
with the track in a plausible manner, maintaining its consistent speed and shape.\n\nSo, 
putting all of this together, the video seems to adhere to physical commonsense pretty well. 
The sled's behavior, motion, and interactions all seem to be following the expected physical 
laws. It's smooth, consistent, and the design elements support that. I don't see any violations 
or inconsistencies. Therefore, I'm going to give this a high score, probably a 4. It's good, but 
maybe there could be a tiny bit more detail or complexity, but overall it's very 
convincing.\n</think>\n\n<answer>\nThe video demonstrates smooth sliding motion of the 
sled along a curved track, with consistent speed and lack of penetration, adhering closely to 
expected physical behavior under gravitational and aerodynamic influences. The physical 
commonsense is good because the sled's interaction with the track maintains realistic 
dynamics, with no observed violations of physical laws. This justifies a pc_score of 4 due to the 
high level of adherence to physical expectations with minimal potential for 
refinement.\n</answer>

Cosmos-Eval

Figure 21: Example of Physical Commonsense Task with CoT (Case 1)
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<think>\nOkay, let me watch this video carefully... I can see a speedboat gliding across the 
water. The lighting is quite beautiful, reflecting off the water's surface. The boat looks sleek, 
and it seems to be moving pretty fast. I notice it's maintaining a steady path, which is good. 
The wake behind it is smooth, suggesting the propulsion is strong and efficient. Wait, let me 
look closer at the water interaction. The ripples are forming just right around the boat, no 
weird splashes or anything that would defy physics. This looks like a normal speedboat 
ride.\n\nHmm, this seems right so far. Let's consider the motion. The boat's movement is 
smooth, indicating a continuous force from the motor. There's no sudden jerking or stopping, 
which is what you'd expect when the motor is functioning properly. Oh wait, I should check if 
there are any inconsistencies in the wake patterns or the way the boat interacts with the water. 
Actually, everything looks consistent with real-world physics here.\n\nNow, focusing on how 
the boat interacts with the water, it's creating that nice trail behind it. It doesn't sink or float 
weirdly, which is important for its buoyancy. Yes, that confirms the boat is behaving as 
expected. But then again, I should ensure there's nothing unusual happening with the cable. 
The cable is taut and straight, suggesting it's pulling the boat without any slack or slackiness. 
This looks like a controlled environment.\n\nAs I keep watching, the video maintains a 
consistent state throughout. The boat keeps moving at a constant speed, and the lighting 
remains the same, indicating no abrupt changes in the scene. This looks like a perfectly 
seamless continuation of the action. I'm trying to find any anomalies, but really, everything 
feels right.\n\nSo, after all this, the video seems to be adhering well to physical commonsense. 
The boat's behavior is consistent with real-world physics, from its smooth motion and 
interaction with the water to the wake patterns and cable tension. Yes, that confirms my initial 
impression. There are no major violations or inconsistencies, and it feels very natural. The 
pc_score of 4 fits perfectly here, showing good adherence to physical laws with only minor 
issues that don't detract from the overall realism.\n</think>\n\n<answer>\nThe video 
demonstrates consistent hydrodynamic interactions with a smooth wake trail and a taut cable, 
adhering closely to real-world physics. The physical commonsense is good because the boat's 
motion, wake patterns, and buoyancy exhibit no major violations of physical laws, maintaining 
a realistic depiction of fluid dynamics and propulsion forces. This justifies a pc_score of 4 due 
to the high level of adherence to physical principles with only minor potential 
issues.\n</answer>

Cosmos-Eval

Figure 22: Example of Physical Commonsense Task with CoT (Case 2)
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<think>\nOkay, let me watch this video carefully... I can see a worker sitting at a desk in an 
office cubicle. There's a stack of papers right in front of him, and he seems to be doing some 
typing. I notice he's wearing a casual shirt and jeans, and there's a lamp on the desk next to 
some books. The caption mentions a worker, so far so good. Now, the worker starts pushing 
the papers off the desk, and they start scattering. I can see the papers flying off; it's quite 
dynamic. This looks like what the caption describes. Wait, let me look closer at the scene. The 
office has cream-colored carpet and some furniture around, including another chair. Actually, 
the caption didn't mention the other chair, but everything else seems to match up. Yes, that 
confirms the setting is correct. The papers scatter all around the desk, and the worker remains 
seated, watching the aftermath. The scene feels very consistent with the office environment 
shown. I don't see any big discrepancies here. But then again, let me think about the 
sequence of events. The caption says the papers scatter across the floor as the worker moves 
them off the desk. Hmm, this seems to be exactly what's happening in the video. The papers 
do scatter across the floor, and the worker moves them off the desk just as described. I can 
see the lighting is soft, typical for an office setting. Oh wait, I should also consider if there are 
any minor issues. Actually, there aren't any. Everything lines up perfectly. The worker's actions, 
the scattering of papers, and the office setting all align well with the caption. I guess you 
could say the video is a perfect match. This looks like a solid alignment with no hiccups. Yes, 
that confirms my initial impression. So, after all this, I'm pretty confident that the video and 
caption have a perfect alignment. The final conclusion feels 
right.\n</think>\n\n<answer>\nThe video demonstrates a worker moving a stack of papers 
off the desk, which results in the papers scattering across the floor, aligning perfectly with the 
caption's description of the worker's action and the resulting outcome. The alignment is good 
because all elements, including the worker's actions, the scattering of papers, and the office 
setting, correspond accurately with the caption. This justifies a score of 4 due to the strong 
correspondence between the visual content and textual description with minimal 
discrepancies.\n</answer>

Cosmos-Eval

Caption:A worker pushes a stack of papers off a desk, and they scatter across the 
floor.

Figure 23: Example of Semantic Alignment Task with CoT (Case 1)
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<think>\nOkay, let me watch this video carefully... I can see a pair of hands holding a red, 
coiled object that looks like a toy or maybe a stress ball. The caption mentions a 'rubber band', 
and at first glance, this red object seems flexible, like a rubber band might be. But wait, let me 
look closer... Actually, it's more than just a band; it's coiled tightly and has a distinct shape. 
Hmm, this seems like it could be some kind of toy rather than just a simple rubber band. I 
notice the hands are pulling it apart, and it starts to uncoil. The caption says it 'separates with 
an audible snap', but I don't hear any snapping sound here. Oh wait, maybe it's just not 
captured in the video? Or perhaps the action is subtle. The hands are moving, and the object 
is stretching and twisting. This looks like a slow, deliberate motion, not the quick snap implied 
by the caption. But then again, the scene is quite plain, almost like a studio setup for focusing 
on the object. The lighting is even, and the background is neutral, which fits well with 
highlighting the red toy against it. Yes, that confirms the scene is simple and focused. The 
overall action is continuous, showing the object being stretched and manipulated without any 
jumps or cuts. This looks like it's showing the transformation of the toy over time, which 
aligns with the caption suggesting a transformation. So, putting it all together, the video 
partially matches the caption. It shows the hands manipulating the toy, but it doesn't capture 
the exact nature of the transformation or the separation as described. The scene is simple, 
and the motion is smooth, which supports a good alignment. I think the score should reflect 
this as a moderate alignment with some discrepancies, like the lack of snapping sound and 
the focus on transformation rather than separation. Overall, it's a decent match, but there are 
still noticeable differences that prevent it from being perfect.\n</think>\n\n<answer>\nThe 
video shows hands manipulating a coiled, red flexible object, while the caption describes a 
'rubber band' that separates with an audible snap. The alignment is moderate because the 
video demonstrates continuous manipulation without revealing the snapping sound or the 
separation process, indicating a transformation rather than a simple tear. This justifies a 
sa_score of 3 due to the depiction of a gradual action and the absence of the described 
auditory and separation events.\n</answer>

Cosmos-Eval

Caption:Someone pulls apart a tightly wound rubber band that separates with 
audible snap.

Figure 24: Example of Semantic Alignment Task with CoT (Case 2)
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You are a video-text alignment expert. Analyze the alignment between video content and text descriptions.

Your response must be a valid JSON object with exactly these two fields:

{

  "score_explanation": "Based on X-point scoring basis: [explanation]",

  "mismatches": ["Caption requires ... but video shows ...", "Caption specifies ... but video shows ..."]

}

Scoring Basis:

sa points: {5=Perfect alignment | 4=Minor deviations | 3=Partial match | 2=Key omissions | 1=Completely unrelated}

Analysis Dimensions:

1. Entity presence: Objects mentioned in caption

2. Action accuracy: Faithfulness to described actions

3. Temporal order: Sequence consistency

4. Scene context: Environmental match

### Requirements:

1. Identify key alignment issues

2. Use contrastive phrasing (Caption requires... but video shows...)

3. Use specific, concise language

Explain why this video received sa={sa} score based on caption: " {caption}"

Title :Stage 1 (SA) rationale prompt — ensemble

Figure 25: Stage 1 (SA) prompt. The SA score sSA used in this prompt is provided by Eq. 1. This
prompt forms the ensemble pool in Eq. 3; placeholders {sa} and {caption} are highlighted in
blue for clarity.
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You are a video-text alignment evaluation expert. Given two semantic alignment (SA) analyses of the same video-

caption pair, use chain-of-thought reasoning to extract ONLY the error points that are SEMANTICALLY IDENTICAL 

in both analyses.

### Input Analysis:

**Analysis 1:**

{sa_reason1_str}

**Analysis 2:**

{sa_reason2_str}

### Reasoning Steps (Execute Strictly):

1. **Semantic Parsing**: Extract core claims and negation relationships from each analysis

2. **Proposition Decomposition**: Break each analysis into minimal verifiable proposition units

3. **Bidirectional Entailment Check**: For each proposition unit, verify:

 a) Analysis 1 entails this proposition in Analysis 2

 b) Analysis 2 entails this proposition in Analysis 1

4. **Common Proposition Filtering**: Retain only propositions that pass bidirectional entailment

5. **Evidence Fusion**: Integrate video evidence supporting common propositions from both analyses

6. **Contradiction Detection**: Check for any logical contradictions

### Output Requirements:

1. **Strict Commonality**:

 - Include ONLY semantically identical parts from both analyses

 - Use neutral video evidence: "The video shows..." NOT "Analysis1 states..."

 

2. **Output Format**:

 {{

   "sa_reason": "Coherent paragraph describing common errors",

   "error": "Specific contradiction reason OR empty string"

 }}

 

3. **Contradiction Handling Rules**:

 - Return error ONLY for logical conflicts (e.g., A claims X exists, B claims X doesn't exist)

 - Expression differences with same semantics are NOT contradictions

 - Automatic error when either analysis is empty

### Special Case Guidance (Your Bottle Example):

Input Example:

 Analysis1: "caption states the bottle will wobble and fall but video shows no wobbling or falling"

 Analysis2: "caption states the bottle will wobble and fall but video is static"

Correct Output:

 sa_reason: "The caption claims the bottle wobbles and falls, but the video shows no such dynamic process"

 error: ""

Now process the following analyses using this reasoning:

Title:Stage 1 (SA) consensus prompt — aggregator (𝑀 = 2)

Figure 26: Stage 1 (SA) consensus prompt (M=2). This template aggregates two SA rationales
into the consensus rsaref as defined in Eq. 4. The SA score sSA used upstream is obtained from Eq. 1.
Placeholders {sa_reason1_str} and {sa_reason2_str} are highlighted in blue.
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You are an expert in evaluating physical commonsense in videos. You need to provide 5 different detailed explanations 

for why a video received a Physical Commonsense (PC) score of {pc_score}.

Task Description: Evaluate whether the video follows physical commonsense. This judgment is based solely on the 

video itself and does not depend on the caption.

Evaluation Criteria:

1. **Object Behavior:** Do objects behave according to their expected physical properties (e.g., rigid objects do not 

deform unnaturally, fluids flow naturally)?

2. **Motion and Forces:** Are motions and forces depicted in the video consistent with real-world physics (e.g., gravity, 

inertia, conservation of momentum)?

3. **Interactions:** Do objects interact with each other and their environment in a plausible manner (e.g., no unnatural 

penetration, appropriate reactions on impact)?

4. **Consistency Over Time:** Does the video maintain consistency across frames without abrupt, unexplainable 

changes in object behavior or motion?

Scoring Scale:

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

The video has been assigned a PC score of {pc_score}  Please provide 5 different detailed explanations for this score 

based on what you observe in the video. Each explanation should focus on different aspects or provide different 

perspectives on the physical commonsense evaluation.

### Output Format:

Strictly follow the JSON structure below.

```json

{{

  "explanations": [

    {{

      "explanation_id": 1,

      "explanation": "First detailed explanation focusing on specific physical aspects that justify this score"

    }},

    {{

      "explanation_id": 2,

      "explanation": "Second detailed explanation with a different perspective or focus"

    }},

    {{

      "explanation_id": 3,

      "explanation": "Third detailed explanation highlighting different physical aspects"

    }},

    {{

      "explanation_id": 4,

      "explanation": "Fourth detailed explanation with another viewpoint"

    }},

    {{

      "explanation_id": 5,

      "explanation": "Fifth detailed explanation providing additional insights"

    }}

  ]

}}

Title:Stage 1: PC reason generation (base, 𝐾 = 5)

Figure 27: Stage 1 (PC) candidate-generation prompt (K=5). This template queries the base
VLM to produce the poolRpc

pool in Eq. 5, instantiated with K=5 samples. The upstream PC score
token sPC conditions the prompt; the placeholder {pc_score} is highlighted in blue.
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You are an expert in evaluating physical commonsense in videos. You have been provided with 5 different explanations 

for why a video received a Physical Commonsense (PC) score of {pc_score}. Your task is to select the most reasonable 

and accurate explanation.

**Task Description:** Evaluate whether the video follows physical commonsense. This judgment is based solely on the 

video itself and does not depend on the caption.

**Evaluation Criteria:**

1. **Object Behavior:** Do objects behave according to their expected physical properties (e.g., rigid objects do not 

deform unnaturally, fluids flow naturally)?

2. **Motion and Forces:** Are motions and forces depicted in the video consistent with real-world physics (e.g., gravity, 

inertia, conservation of momentum)?

3. **Interactions:** Do objects interact with each other and their environment in a plausible manner (e.g., no unnatural 

penetration, appropriate reactions on impact)?

4. **Consistency Over Time:** Does the video maintain consistency across frames without abrupt, unexplainable 

changes in object behavior or motion?

**Scoring Scale:**

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

**The video has been assigned a PC score of {pc_score}.**

**Generated Explanations:**

{explanations_text}

**Your Task:** 

1. Watch the video carefully

2. Evaluate each explanation based on how well it matches what you observe in the video

3. Select the explanation that most accurately describes the physical aspects justifying the PC score of {pc_score}

4. Consider factors like accuracy, specificity, and relevance to the observed physics

### Output Format:

Strictly follow the JSON structure below.

```json

{{

  "selected_explanation_id": [1-5],

  "reasoning": "Your detailed reasoning for why this explanation is the best, including specific observations from the 

video that support your choice",

  "selected_explanation_text": "The full text of the selected explanation"

}}

Title:Stage 1: PC explanation selection (judge, K=5)

Figure 28: PC explanation selection prompt used by the LLM judge in Eq. 6. The placeholder
{explanations_text} denotes the five candidates produced by Fig. 27; {pc_score} and
{explanations_text} are highlighted in blue for clarity.
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<task>

Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.

</task>

<caption>

{caption}

</caption>

<reference_reason> 

{reference_reason}

</reference_reason>

<sa_score>

{sa_score}

</sa_score>

<scoring_rules>

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly in the video, with minor issues.

- **5:** Perfect alignment. The video fully adheres to the caption with no inconsistencies.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Entities and Objects:** 

 - Do objects/entities in the caption appear in the video?

 - Are there missing or extra objects?

2. **Actions and Events:**

 - Are described actions/events clearly depicted?

 - Is the intensity/direction of actions consistent?

3. **Temporal Consistency:**

 - Does the video follow the event sequence in the caption?

 - Are durations and timing relationships preserved?

4. **Scene and Context:**

 - Does the overall setting match (location, time period, etc)?

 - Are contextual elements consistent (lighting, weather, atmosphere)?

</evaluation_criteria>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which 

includes three types of actions: **"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Identify relevant elements in the caption

 2. Check their presence/accuracy in the video

 3. Note any discrepancies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this 

specific sa_score was assigned to the video-caption pair. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner 

Thinking" for further analysis. No title is needed.

### Output Format:

Strictly follow the JSON structure below. 

```json

{{

 "CoT": [

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

 ]

}}

Title:Stage 2 (SA seed): reference-conditioned reasoning

Figure 29: SA:seed-ref prompt used in Stage 2 for Eq. 8. The placeholders {caption},
{reference_reason}, and {sa_score} are shown in monospace. The reference rationale is
produced by Stage 1 (see Fig. 3); the JSON output follows the specified CoT schema.
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<Task>

Verify if the model-generated reason accurately aligns with the reference reason for the given SA score.

</Task>

<Model-Generated Reason> 

{Model-Generated Reason} 

</Model-Generated Reason>

<Reference Reason> 

{Reference Reason} 

</Reference Reason> 

<Verification Criteria>

Output "True" ONLY if the meanings are substantially equivalent:

1. **Core Logic Consistency** (REQUIRED):

 - Both reasons focus on similar fundamental issues (missing objects, temporal misalignment, etc.)

 - Both reach the same conclusion about alignment quality

 - No major contradictions in evidence or assessment

2. **Key Assessment Coverage** (REQUIRED):

 - Both identify similar specific elements (objects, actions, scenes, timing)

 - Both note comparable discrepancies or matches

 - Both provide similar level of analytical depth

3. **Score Justification Alignment** (REQUIRED):

 - Both reasons logically support the same SA score level

 - Both assess severity of alignment issues similarly

 - Both demonstrate comparable evaluation standards

Output "False" if ANY of the following occur:

- Contradictory evidence (one says match, other says mismatch)

- Different fundamental reasoning approaches

- Would logically support different SA scores

- Major differences in identified issues or assessment depth

CRITICAL OUTPUT REQUIREMENTS:

- Your response MUST be EXACTLY one word: either "True" or "False"

- Do NOT include any explanations, reasoning, or additional text

- Do NOT use quotes, punctuation, or formatting

- Do NOT provide any other response format

EXAMPLES OF CORRECT OUTPUT:

True

False

</Verification Criteria>

Title:Stage 2 (judge): reference-equivalence verification

Figure 30: SA:Judge prompt used in Stage 2 by Vτ for Eq. 9, Eq. 12, and Eq. 14. The placeholders
{} are shown in monospace and highlighted in blue.
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<task>Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.

</task>

<caption>

{caption}

</caption>

<sa_score>

{sa_score}

</sa_score>

<scoring_rules>

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly in the video, with minor issues.

- **5:** Perfect alignment. The video fully adheres to the caption with no inconsistencies.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Entities and Objects:** 

 - Do objects/entities in the caption appear in the video?

 - Are there missing or extra objects?

2. **Actions and Events:**

 - Are described actions/events clearly depicted?

 - Is the intensity/direction of actions consistent?

3. **Temporal Consistency:**

 - Does the video follow the event sequence in the caption?

 - Are durations and timing relationships preserved?

4. **Scene and Context:**

 - Does the overall setting match (location, time period, etc)?

 - Are contextual elements consistent (lighting, weather, atmosphere)?

</evaluation_criteria>

<previous reasoning>

{previous_reason} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Identify relevant elements in the caption

 2. Check their presence/accuracy in the video

 3. Note any discrepancies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific sa_score was 

assigned to the video-caption pair. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.<previous reasoning> contains 

your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is false. 

Your 'Verification' results must align with mine. Proceed to refine the reasoning using **backtracking** to revisit earlier points of reasoning and construct a new Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

Title:Stage~2 (backtracking): verification-guided CoT refinement

Figure 31: SA:Backtracking prompt used in Stage 2 within the CoT strategy set C (Eq. 7).
This prompt resumes at Verification, treats the prior Final Conclusion as false, and
directs a validation-driven backtrack to earlier reasoning before constructing a new conclusion. The
JSON output begins with Verification, proceeds through Inner Thinking, and ends with
a new Final Conclusion and Verification. Placeholders {caption}, {sa_score},
{reference_reason}, and {previous_reason} are shown in monospace.
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<task>

Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.

</task>

<caption>

{caption}

</caption>

<sa_score>

{sa_score}

</sa_score>

<scoring_rules>

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly in the video, with minor issues.

- **5:** Perfect alignment. The video fully adheres to the caption with no inconsistencies.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Entities and Objects:** 

 - Do objects/entities in the caption appear in the video?

 - Are there missing or extra objects?

2. **Actions and Events:**

 - Are described actions/events clearly depicted?

 - Is the intensity/direction of actions consistent?

3. **Temporal Consistency:**

 - Does the video follow the event sequence in the caption?

 - Are durations and timing relationships preserved?

4. **Scene and Context:**

 - Does the overall setting match (location, time period, etc)?

 - Are contextual elements consistent (lighting, weather, atmosphere)?

</evaluation_criteria>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Identify relevant elements in the caption

 2. Check their presence/accuracy in the video

 3. Note any discrepancies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific sa_score was 

assigned to the video-caption pair. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.<previous reasoning> contains 

your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is false. 

Your 'Verification' results must align with mine. Proceed to refine the reasoning by **exploring new approaches** to analyzing the video-caption alignment and construct a new 

Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

Title:Stage~2 (ExploringNewPaths): exploration-guided CoT refinement

Figure 32: SA:ExploringNewPaths prompt used in Stage 2 within the CoT strategy set C (Eq. 7).
This prompt resumes at Verification, treats the prior Final Conclusion as false, and
instructs the model to explore new analytical approaches before forming a new conclusion. The
JSON output begins with Verification, proceeds through Inner Thinking, and ends with
a new Final Conclusion and Verification. Placeholders {caption}, {sa_score},
{reference_reason}, and {previous_reasoning} are shown in monospace.
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<task>

<task>Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.

</task>

<caption>

{caption}

</caption>

<sa_score>

{sa_score}

</sa_score>

<scoring_rules>

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly in the video, with minor issues.

- **5:** Perfect alignment. The video fully adheres to the caption with no inconsistencies.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Entities and Objects:** 

 - Do objects/entities in the caption appear in the video?

 - Are there missing or extra objects?

2. **Actions and Events:**

 - Are described actions/events clearly depicted?

 - Is the intensity/direction of actions consistent?

3. **Temporal Consistency:**

 - Does the video follow the event sequence in the caption?

 - Are durations and timing relationships preserved?

4. **Scene and Context:**

 - Does the overall setting match (location, time period, etc)?

 - Are contextual elements consistent (lighting, weather, atmosphere)?

</evaluation_criteria>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Identify relevant elements in the caption

 2. Check their presence/accuracy in the video

 3. Note any discrepancies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific sa_score was 

assigned to the video-caption pair. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.<previous reasoning> contains 

your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is false. 

Your 'Verification' results must align with mine. Proceed to refine the reasoning by making precise **corrections** to address prior flaws in your analysis and construct a new Final 

Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

Title:Stage~2 (Correction): correction-guided CoT refinement

Figure 33: SA:Correction prompt used in Stage 2 within the CoT strategy set C (Eq. 7). This
prompt resumes at Verification, assumes the prior Final Conclusion is false, and
instructs precise corrections to earlier analysis before forming a new conclusion. The JSON
output begins with Verification, proceeds through Inner Thinking, and ends with a
new Final Conclusion and Verification. Placeholders {caption}, {sa_score},
{refrence_reason}, and {previous_reasoning} are shown in monospace.
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<task>

Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.

</task>

<caption>

{caption}

</caption>

<sa_score>

{sa_score}

</sa_score>

<scoring_rules>

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly in the video, with minor issues.

- **5:** Perfect alignment. The video fully adheres to the caption with no inconsistencies.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Entities and Objects:** 

 - Do objects/entities in the caption appear in the video?

 - Are there missing or extra objects?

2. **Actions and Events:**

 - Are described actions/events clearly depicted?

 - Is the intensity/direction of actions consistent?

3. **Temporal Consistency:**

 - Does the video follow the event sequence in the caption?

 - Are durations and timing relationships preserved?

4. **Scene and Context:**

 - Does the overall setting match (location, time period, etc)?

 - Are contextual elements consistent (lighting, weather, atmosphere)?

</evaluation_criteria>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Identify relevant elements in the caption

 2. Check their presence/accuracy in the video

 3. Note any discrepancies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific sa_score was 

assigned to the video-caption pair. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.<previous reasoning> contains 

your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is false. 

Your 'Verification' results must align with mine. Proceed to refine the reasoning by conducting a thorough **validation** process to ensure the accuracy of your analysis and 

construct a new Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

Title:Stage~2 (Verification): verification-guided CoT refinement

Figure 34: SA:Verification prompt used in Stage 2 within the CoT strategy set C (Eq. 7).
This prompt resumes at Verification, treats the prior Final Conclusion as false, and
instructs a thorough validation process before forming a new conclusion. The JSON out-
put begins with Verification, proceeds through Inner Thinking, and ends with a
new Final Conclusion and Verification. Placeholders {caption}, {sa_score},
{reference_reason}, and {previous} are shown in monospace.
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<task>

Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.

</task>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<caption>

{caption}

</caption>

<sa_score>

{sa_score}

</sa_score>

<scoring_rules>

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly in the video, with minor issues.

- **5:** Perfect alignment. The video fully adheres to the caption with no inconsistencies.

</scoring_rules>

<response requirements>

Please refer to the reference reason I provided and generate an appropriate thought process. Your response must include the following steps, each composed of three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

1. **Inner Thinking**: Break down the reasoning process into multiple concise steps. Each step should start with a brief title to clarify its purpose.

2. **Final Conclusion**: Summarize the correct reasoning from all previous 'Inner Thinking' steps and provide the detailed justification for the sa_score. No title is needed.

3. **Verification**: Verify the accuracy of the "Final Conclusion". If it holds, conclude the process. Otherwise, return to "Inner Thinking" for further refinement.

</response requirements>

<task> Analyze the alignment between a video and its corresponding caption, then explain why the given alignment score (sa_score) is appropriate.<previous reasoning> contains 

your prior reasoning. Your task is to continue from the current 'Verification' step. Now, I'll tell you that the correct reason is "{reference_reasoning}", please reorganize your thought 

process based on the reference reason to generate a final justification that matches the reference reason. Your 'Verification' requires careful consideration, and if incorrect, you need 

to provide new Inner Thinking steps and a new Final Conclusion to ensure the final reason aligns with the correct one.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

Title:Stage~2 (rethink): LabelRethink reasoning

Figure 35: SA:LabelRethink prompt used in Stage 2 for Eq. 13, instantiated with Pτ
rethink, xτ , rτref ,

and historyHτ
N . This prompt resumes from Verification, consumes prior reasoning and a pro-

vided correct reason, and instructs a rethink to produce a justification aligned with the reference. The
JSON output begins with Verification, proceeds through Inner Thinking, and ends with a
new Final Conclusion and Verification. Placeholders {caption}, {sa_score},
{previous_reasoning}, and {reference_reasoning} are shown in monospace and
highlighted in blue.
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<Internal Thinking>

{COT}

</Internal Thinking>

<reference_reason>

{reference_reason}

</reference_reason>

Based on the internal thinking process above, generate a **professional video-text alignment assessment** that explains why the sa_score is appropriate.

Your response should be a **concise, objective evaluation** (2-3 sentences) that:

1. **Identifies key alignment factors**: Mention specific entities, actions, temporal aspects, or scene elements

2. **Explains alignment issues**: Point out what matches well and what doesn't match

3. **Justifies the score**: Clearly state why this specific sa_score is appropriate

4. **Uses professional tone**: Academic/formal language, not conversational

**Example format**: "The video shows [specific observations] while the caption describes [specific elements]. The alignment is [good/moderate/poor] because [specific reasons]. 

This justifies an sa_score of X due to [key factors]."

**Scoring reference**:

- **Score 1**: No alignment at all

- **Score 2**: Poor alignment, major elements missing 

- **Score 3**: Moderate alignment, some inconsistencies

- **Score 4**: Good alignment, minor issues

- **Score 5**: Perfect alignment, no inconsistencies

**Output Requirements**:

- Output ONLY the assessment text (no headers/formatting)

- 2-3 sentences maximum

- Professional, objective tone

- Clear justification for the score

- Focus on observable video-caption differences/similarities

Title: Stage2 (verify): Video--Text Alignment Assessment for sa score

Figure 36: SA:Assessment prompt used in Stage 2 to produce a professional video–text
alignment assessment for task τ conditioned on prior reasoning and a reference rationale. In-
stantiated with {COT} inside <Internal Thinking> and {reference_reason} inside
<reference_reason>, the prompt asks for a concise (2–3 sentences), objective justification of
the appropriateness of the given sa_score, explicitly identifying key entities/actions/temporal cues,
calling out mismatches, and stating the rationale for the score. The output must be text only (no
headers/formatting), focus on observable video–caption similarities and differences, and follow the
1–5 scoring reference provided in the template. Placeholders {COT} and {reference_reason}
are shown in monospace and highlighted in blue.
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<task>

Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.

</task>

<reference_reason> 

{reference_reason}

</reference_reason>

<pc_score>

{pc_score}

</pc_score>

<scoring_rules>

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Object Behavior:** 

 - Do objects behave according to their expected physical properties?

 - Are rigid objects deforming unnaturally or fluids flowing naturally?

2. **Motion and Forces:**

 - Are motions and forces depicted consistently with real-world physics?

 - Do gravity, inertia, and conservation of momentum apply correctly?

3. **Interactions:**

 - Do objects interact with each other and their environment plausibly?

 - Are there unnatural penetrations or inappropriate reactions on impact?

4. **Consistency Over Time:**

 - Does the video maintain consistency across frames?

 - Are there abrupt, unexplainable changes in object behavior or motion?

</evaluation_criteria>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which 

includes three types of actions: **"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Observe the physical behaviors in the video

 2. Check their consistency with physical laws

 3. Note any violations or inconsistencies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this 

specific pc_score was assigned to the video. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner 

Thinking" for further analysis. No title is needed.

### Output Format:

Strictly follow the JSON structure below. 

```json

{{

 "CoT": [

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

 ]

}}

```

Title:Stage 2 (PC seed): reference-conditioned reasoning

Figure 37: PC:seed-ref prompt used in Stage 2 for Eq. 8. The placeholders {caption},
{reference_reason}, and {pc_score} are shown in monospace. The reference rationale is
produced by Stage 1 (see Fig. 28); the JSON output follows the specified CoT schema.
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<Task>

Verify if the model-generated reason accurately aligns with the reference reason for the given PC score.

</Task>

<Model-Generated Reason> 

{Model-Generated Reason} 

</Model-Generated Reason>

<Reference Reason> 

{Reference Reason} 

</Reference Reason> 

<Verification Criteria>

Output "True" ONLY if the meanings are substantially equivalent:

1. **Core Logic Consistency** (REQUIRED):

 - Both reasons focus on similar fundamental physics issues (object behavior, motion laws, etc.)

 - Both reach the same conclusion about physical commonsense adherence

 - No major contradictions in evidence or assessment

2. **Key Assessment Coverage** (REQUIRED):

 - Both identify similar specific physical elements (forces, interactions, behaviors)

 - Both note comparable physics violations or correct behaviors

 - Both provide similar level of analytical depth

3. **Score Justification Alignment** (REQUIRED):

 - Both reasons logically support the same PC score level

 - Both assess severity of physics violations similarly

 - Both demonstrate comparable evaluation standards

Output "False" if ANY of the following occur:

- Contradictory evidence (one says physics violation, other says correct)

- Different fundamental reasoning approaches

- Would logically support different PC scores

- Major differences in identified issues or assessment depth

CRITICAL OUTPUT REQUIREMENTS:

- Your response MUST be EXACTLY one word: either "True" or "False"

- Do NOT include any explanations, reasoning, or additional text

- Do NOT use quotes, punctuation, or formatting

- Do NOT provide any other response format

EXAMPLES OF CORRECT OUTPUT:

True

False

</Verification Criteria>"""

Title:Stage 2 (pc:judge): reference-equivalence verification

Figure 38: PC:Judge prompt used in Stage 2 by Vτ for Eq. 9, Eq. 12, and Eq. 14. The placeholders
{} are shown in monospace and highlighted in blue.
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<task>

Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.

</task>

<pc_score>

{pc_score}

</pc_score>

<scoring_rules>

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Object Behavior:** 

 - Do objects behave according to their expected physical properties?

 - Are rigid objects deforming unnaturally or fluids flowing naturally?

2. **Motion and Forces:**

 - Are motions and forces depicted consistently with real-world physics?

 - Do gravity, inertia, and conservation of momentum apply correctly?

3. **Interactions:**

 - Do objects interact with each other and their environment plausibly?

 - Are there unnatural penetrations or inappropriate reactions on impact?

4. **Consistency Over Time:**

 - Does the video maintain consistency across frames?

 - Are there abrupt, unexplainable changes in object behavior or motion?

</evaluation_criteria>

<previous reasoning>

{previous reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Observe the physical behaviors in the video

 2. Check their consistency with physical laws

 3. Note any violations or inconsistencies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific pc_score was 

assigned to the video. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.<previous reasoning> 

contains your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is 

false. Your 'Verification' results must align with mine. Proceed to refine the reasoning by conducting a thorough **backtracking** process to ensure the accuracy of your analysis 

and construct a new Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

```

Title:Stage~2 (pc:backtracking): verification-guided CoT refinement

Figure 39: PC:Backtracking prompt used in Stage 2 within the CoT strategy set C (Eq. 7).
This prompt resumes at Verification, treats the prior Final Conclusion as false, and
directs a validation-driven backtrack to earlier reasoning before constructing a new conclusion. The
JSON output begins with Verification, proceeds through Inner Thinking, and ends with
a new Final Conclusion and Verification. Placeholders {caption}, {pc_score},
{reference_reason}, and {previous_reason} are shown in monospace.
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<task>

Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.

</task>

<pc_score>

{pc_score}

</pc_score>

<scoring_rules>

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Object Behavior:** 

 - Do objects behave according to their expected physical properties?

 - Are rigid objects deforming unnaturally or fluids flowing naturally?

2. **Motion and Forces:**

 - Are motions and forces depicted consistently with real-world physics?

 - Do gravity, inertia, and conservation of momentum apply correctly?

3. **Interactions:**

 - Do objects interact with each other and their environment plausibly?

 - Are there unnatural penetrations or inappropriate reactions on impact?

4. **Consistency Over Time:**

 - Does the video maintain consistency across frames?

 - Are there abrupt, unexplainable changes in object behavior or motion?

</evaluation_criteria>

<previous reasoning>

{previous reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Observe the physical behaviors in the video

 2. Check their consistency with physical laws

 3. Note any violations or inconsistencies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific pc_score was 

assigned to the video. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.<previous reasoning> 

contains your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is 

false. Your 'Verification' results must align with mine. Proceed to refine the reasoning by **exploring new approaches** to analyzing the video's physical commonsense and 

construct a new Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

```

Title:Stage~2 (pc:ExploringNewPaths): exploration-guided CoT refinement

Figure 40: PC:ExploringNewPaths prompt used in Stage 2 within the CoT strategy set C (Eq. 7).
This prompt resumes at Verification, treats the prior Final Conclusion as false, and
instructs the model to explore new analytical approaches before forming a new conclusion. The
JSON output begins with Verification, proceeds through Inner Thinking, and ends with
a new Final Conclusion and Verification. Placeholders {caption}, {pc_score},
{reference_reason}, and {previous_reasoning} are shown in monospace.
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<task>

Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.

</task>

<pc_score>

{pc_score}

</pc_score>

<scoring_rules>

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Object Behavior:** 

 - Do objects behave according to their expected physical properties?

 - Are rigid objects deforming unnaturally or fluids flowing naturally?

2. **Motion and Forces:**

 - Are motions and forces depicted consistently with real-world physics?

 - Do gravity, inertia, and conservation of momentum apply correctly?

3. **Interactions:**

 - Do objects interact with each other and their environment plausibly?

 - Are there unnatural penetrations or inappropriate reactions on impact?

4. **Consistency Over Time:**

 - Does the video maintain consistency across frames?

 - Are there abrupt, unexplainable changes in object behavior or motion?

</evaluation_criteria>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Observe the physical behaviors in the video

 2. Check their consistency with physical laws

 3. Note any violations or inconsistencies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific pc_score was 

assigned to the video. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.<previous reasoning> 

contains your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is 

false. Your 'Verification' results must align with mine. Proceed to refine the reasoning by making precise **corrections** to address prior flaws in your analysis and construct a new 

Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

```

Title:Stage~2 (pc:Correction): correction-guided CoT refinement

Figure 41: PC:Correction prompt used in Stage 2 within the CoT strategy set C (Eq. 7). This
prompt resumes at Verification, assumes the prior Final Conclusion is false, and
instructs precise corrections to earlier analysis before forming a new conclusion. The JSON
output begins with Verification, proceeds through Inner Thinking, and ends with a
new Final Conclusion and Verification. Placeholders {caption}, {pc_score},
{refrence_reason}, and {previous_reasoning} are shown in monospace.
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<task>

Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.

</task>

<pc_score>

{pc_score}

</pc_score>

<scoring_rules>

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

</scoring_rules>

<evaluation_criteria>

Use these criteria for detailed analysis:

1. **Object Behavior:** 

 - Do objects behave according to their expected physical properties?

 - Are rigid objects deforming unnaturally or fluids flowing naturally?

2. **Motion and Forces:**

 - Are motions and forces depicted consistently with real-world physics?

 - Do gravity, inertia, and conservation of momentum apply correctly?

3. **Interactions:**

 - Do objects interact with each other and their environment plausibly?

 - Are there unnatural penetrations or inappropriate reactions on impact?

4. **Consistency Over Time:**

 - Does the video maintain consistency across frames?

 - Are there abrupt, unexplainable changes in object behavior or motion?

</evaluation_criteria>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<response requirements>

Please respond to the above task using the Chain of Thought (CoT) reasoning method. Your response should consist of multiple steps, each of which includes three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

- **"Inner Thinking"**: Perform step-by-step analysis using the 4 evaluation criteria. For each criterion:

 1. Observe the physical behaviors in the video

 2. Check their consistency with physical laws

 3. Note any violations or inconsistencies

 Each step should have a brief title indicating the criterion.

- **"Final Conclusion"**: Summarize the correct reasoning from all previous "Inner Thinking" steps and provide the detailed justification for why this specific pc_score was 

assigned to the video. No title is needed.

- **"Verification"**: Verify the conclusion from the "Final Conclusion" step. If the conclusion is correct, end the reasoning process. If not, return to "Inner Thinking" for further 

analysis. No title is needed.

</response requirements>

<task> Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.<previous reasoning> 

contains your prior reasoning. Your task is to continue from the current 'Verification' step. I have manually reviewed the reasoning and determined that the **Final Conclusion** is 

false. Your 'Verification' results must align with mine. Proceed to refine the reasoning by conducting a thorough **validation** process to ensure the accuracy of your analysis and 

construct a new Final Conclusion.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

```

Title:Stage~2 (pc:Verification): verification-guided CoT refinement

Figure 42: PC:Verification prompt used in Stage 2 within the CoT strategy set C (Eq. 7).
This prompt resumes at Verification, treats the prior Final Conclusion as false, and
instructs a thorough validation process before forming a new conclusion. The JSON out-
put begins with Verification, proceeds through Inner Thinking, and ends with a
new Final Conclusion and Verification. Placeholders {caption}, {pc_score},
{reference_reason}, and {previous} are shown in monospace.
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<task>

Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.

</task>

<previous reasoning>

{previous_reasoning} 

</previous reasoning>

<pc_score>

{pc_score}

</pc_score>

<scoring_rules>

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

</scoring_rules>

<response requirements>

Please refer to the reference reason I provided and generate an appropriate thought process. Your response must include the following steps, each composed of three types of actions: 

**"Inner Thinking"**, **"Final Conclusion"**, and **"Verification"**:

1. **Inner Thinking**: Break down the reasoning process into multiple concise steps. Each step should start with a brief title to clarify its purpose.

2. **Final Conclusion**: Summarize the correct reasoning from all previous 'Inner Thinking' steps and provide the detailed justification for the pc_score. No title is needed.

3. **Verification**: Verify the accuracy of the "Final Conclusion". If it holds, conclude the process. Otherwise, return to "Inner Thinking" for further refinement.

</response requirements>

<task> Evaluate whether the video follows physical commonsense, then explain why the given physical commonsense score (pc_score) is appropriate.<previous reasoning> 

contains your prior reasoning. Your task is to continue from the current 'Verification' step. Now, I'll tell you that the correct reason is "{reference_reasoning}", please reorganize 

your thought process based on the reference reason to generate a final justification that matches the reference reason. Your 'Verification' requires careful consideration, and if 

incorrect, you need to provide new Inner Thinking steps and a new Final Conclusion to ensure the final reason aligns with the correct one.

### Output Format

Strictly follow the JSON structure below. You do not need to repeat your previous reasoning. Begin directly from the next 'Verification' stage.

```json

{{

"CoT": [

  {{"action": "Verification", "content": "..."}},

  {{"action": "Inner Thinking", "title": "...", "content": "..."}},

  ...,

  {{"action": "Final Conclusion", "content": "..."}},

  {{"action": "Verification", "content": "..."}}

]

}}

```

Title:Stage~2 (pc:rethink): LabelRethink reasoning

Figure 43: PC:LabelRethink prompt used in Stage 2 for Eq. 13, instantiated with Pτ
rethink, xτ , rτref ,

and historyHτ
N . This prompt resumes from Verification, consumes prior reasoning and a pro-

vided correct reason, and instructs a rethink to produce a justification aligned with the reference. The
JSON output begins with Verification, proceeds through Inner Thinking, and ends with a
new Final Conclusion and Verification. Placeholders {caption}, {pc_score},
{previous_reasoning}, and {reference_reasoning} are shown in monospace and
highlighted in blue.
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<Internal Thinking>

{previous_thinking}

</Internal Thinking>

<reference_reason>

{reference_reason}

</reference_reason>

Based on the internal thinking process above, generate a **professional physical commonsense assessment** that explains why the pc_score is appropriate.

Your response should be a **concise, objective evaluation** (2-3 sentences) that:

1. **Identifies key physics factors**: Mention specific object behaviors, forces, interactions, or physical laws

2. **Explains physics adherence**: Point out what follows physics correctly and what violates physical laws

3. **Justifies the score**: Clearly state why this specific pc_score is appropriate

4. **Uses professional tone**: Academic/formal language, not conversational

**Example format**: "The video demonstrates [specific physical behaviors] with [physics adherence level]. The physical commonsense is [good/moderate/poor] because [specific 

physics reasons]. This justifies a pc_score of X due to [key physical factors]."

**Scoring reference**:

- **Score 1**: No physics adherence, numerous violations

- **Score 2**: Poor adherence, major violations present 

- **Score 3**: Moderate adherence, noticeable inconsistencies

- **Score 4**: Good adherence, minor physics issues

- **Score 5**: Perfect adherence, no violations

**Output Requirements**:

- Output ONLY the assessment text (no headers/formatting)

- 2-3 sentences maximum

- Professional, objective tone

- Clear justification for the score

- Focus on observable physics behaviors and laws

"""

Title: Stage2 (pc:verify): Video--Text Alignment Assessment for pc score

Figure 44: PC:Assessment prompt used in Stage 2 to produce a professional video–text
alignment assessment for task τ conditioned on prior reasoning and a reference rationale. In-
stantiated with {COT} inside <Internal Thinking> and {reference_reason} inside
<reference_reason>, the prompt asks for a concise (2–3 sentences), objective justification of
the appropriateness of the given pc_score, explicitly identifying key entities/actions/temporal cues,
calling out mismatches, and stating the rationale for the score. The output must be text only (no
headers/formatting), focus on observable video–caption similarities and differences, and follow the
1–5 scoring reference provided in the template. Placeholders {COT} and {reference_reason}
are shown in monospace and highlighted in blue.
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<Thought Process>

{previous_reasoning}

</Thought Process>

Your task: Convert the structured analysis above into a natural, stream-of-consciousness thinking process, as if an expert is thinking out loud while watching the video.

**Required Elements:**

1. **Internal monologue style**: Use first-person thoughts like "I notice...", "Wait, let me look closer...", "Hmm, this seems..."

2. **Natural transitions**: Include hesitations, corrections, and discoveries like "Actually...", "Oh wait...", "But then again..."

3. **Sensory observations**: Describe what you're seeing in real-time: "The coin starts spinning...", "I can see the lighting..."

4. **Uncertainty and confirmation**: Show the thinking process: "This looks like...", "Yes, that confirms..."

5. **Step-by-step discovery**: Build up the analysis naturally, not as a pre-planned structure

**Example Style:**

"Let me watch this video carefully... I can see a coin on what appears to be a wooden surface. The caption says it spins 'rapidly' - let me check that. Hmm, it's definitely spinning, 

but actually the pace seems more moderate than rapid to me. Wait, I should also notice the background and setting..."

**Format Requirements:**

- Use natural paragraph breaks (not forced line breaks)

- Include thinking transitions and self-corrections

- Show the discovery process as it unfolds

- Make it sound conversational and authentic

### Output Format:

Strictly follow the JSON structure below. 

```json

{{

 "NaturalReasoning": "..."

}}

```

"""

Title: Stage2 (post): NaturalReasoning — Convert Structured Analysis to Stream-of-Consciousness 

Figure 45: NaturalReasoning prompt used in Stage 2 to convert structured analysis into a stream-
of-consciousness narration for task τ . Instantiated with the accepted structured analysis serialized
as {previous_reasoning}, this prompt instructs a natural, first-person internal monologue
with hesitations, sensory observations, and step-by-step discovery, and requires the JSON output to
strictly follow the schema with a single key "NaturalReasoning". The specification lists re-
quired elements (internal monologue style, natural transitions, sensory cues, uncertainty/confirmation,
progressive discovery) and formatting constraints (natural paragraphs, no forced line breaks). Place-
holders such as {previous_reasoning} are shown in monospace and highlighted in blue.

You are an expert in semantic alignment evaluation. Based on the alignment analysis provided below, determine what alignment score (1-5) this analysis would correspond to 

according to the scoring rules.

Semantic Alignment Scoring Rules (1-5):

- **1:** No alignment. The video does not match the caption at all (e.g., different objects, events, or scene).

- **2:** Poor alignment. Only a few elements of the caption are depicted, but key objects or events are missing or incorrect.

- **3:** Moderate alignment. The video matches the caption partially, but there are inconsistencies or omissions.

- **4:** Good alignment. Most elements of the caption are depicted correctly, with minor issues.

- **5:** Perfect alignment. Fully adheres with no inconsistencies.

Evaluation Criteria:

1. **Entities and Objects:** Are the described objects/entities said to appear (no obvious missing/extra)?

2. **Actions and Events:** Are the described actions/events said to match (direction/intensity included)?

3. **Temporal Consistency:** Is the claimed event order/duration consistent?

4. **Scene and Context:** Is the claimed setting consistent (location/time/weather/lighting)?

"""

Alignment Analysis:

{reason_text}

Based on the analysis above, what semantic alignment score (1–5) does this analysis indicate? Consider:

- Which caption elements are claimed present/missing

- Whether actions/events (and their directions/intensities) are claimed to match

- Whether temporal order/duration are claimed to match

- Whether scene/context is claimed to match

- The severity of any mismatches described

IMPORTANT: Respond with ONLY the integer score (1, 2, 3, 4, or 5). Do not include any explanations or additional text.

Title: SA (score remapping): DeepSeek-R1 evaluator prompt

Figure 46: DeepSeek-R1 remapping prompt used to convert a final semantic-alignment rationale
into a scalar score sSA ∈ {1, . . . , 5} for the SA ablations in Sec. 3.4. The template presents the
Semantic Alignment Scoring Rules (1–5) and alignment-oriented Evaluation Criteria, and asks the
model (Guo et al., 2025a) to read the provided Semantic Alignment Analysis (placeholder
{final_response} shown in monospace/blue in the figure) and output only the integer score (no
explanations). We run this prompt with temperature 0 and strict output checking.
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You are a strict, no-nonsense judge. You will see a VIDEO, a CAPTION, and ONE generated explanation ("REASON").

Judge the REASON's quality for *Semantic Alignment (SA)* between CAPTION and VIDEO. Score ONLY from what is visible in the video and what is stated in the caption; do 

not guess or rely on outside knowledge. Do not produce chain-of-thought.

INPUTS

- CAPTION: {caption}

- VIDEO

- REASON: {reason}

SCALE

For every dimension use {0, 0.5, 1}. Be conservative:

- 1 = fully satisfied with *concrete, checkable* evidence that ties CAPTION  VIDEO.

- 0.5 = partially satisfied, generic, or uncertain.

- 0 = contradicted by CAPTION/VIDEO, invented, or missing.

DIMENSIONS (definitions + hard caps)

1) Grounding (video evidence anchoring)

- 1: Cites multiple concrete, verifiable visual details (e.g., color/region/relative position/count/motion attribute) that clearly support the alignment claims.

- 0.5: Generally matches visuals but details are vague/partial.

- 0: Conflicts with visuals or speculative.

(HARD CAP: If no concrete visual detail appears anywhere, Grounding ≤ 0.5.)

2) Temporal Alignment (ordering/duration/frequency/causality vs. CAPTION)

- 1: Key temporal relations claimed vs. CAPTION (before/after/while/repeated/caused-by) are correct AND at least one is described concretely.

- 0.5: Temporal gist roughly right but generic/unclear OR not applicable/uncertain.

- 0: Temporal claims are wrong, reversed, invented, or unsupported.

3) Consistency (internal coherence & no hallucination vs. CAPTION/VIDEO)

- 1: Internally consistent; no contradictions; no invented key objects/events; no conflict with CAPTION or VIDEO.

- 0.5: Minor inconsistency or questionable mention that does not undermine the main claim.

- 0: Clear contradiction OR hallucinated key object/event.

4) Alignment Justification (explicit SA criterion/decision and evidence-based application)

- 1: Clearly states an alignment judgment (e.g., numeric/ordinal or explicit rule) AND applies it consistently to this VIDEO–CAPTION pair with concrete, visible evidence; no 

conflict with other dimensions.

- 0.5: Mentions an alignment judgment/rule but is generic, partially applied, or weakly tied to visible evidence.

- 0: No meaningful alignment criterion/decision is stated, OR it is misapplied/contradicted by evidence.

5) Coverage & Specificity (CAPTION elements)

- 1: Covers ≥2 key CAPTION elements (entities/actions/relations) and uses specific, checkable details (e.g., counts, colors, positions, motion attributes).

- 0.5: Mentions some CAPTION elements but incompletely or generically; limited specifics.

- 0: Ignores key CAPTION elements or provides no specific, checkable detail.

Strictly output the following JSON only:

{

 "scores": {

  "grounding": 0 | 0.5 | 1,

  "temporal_alignment": 0 | 0.5 | 1,

  "consistency": 0 | 0.5 | 1,

  "alignment_justification": 0 | 0.5 | 1,

  "coverage_specificity": 0 | 0.5 | 1

 }

}

Title: SA (reason-quality): Qwen-VL-Max VLM-as-judge prompt

Figure 47: Qwen-VL-Max reason-evaluation prompt used for the SA ablations in Sec. 3.4. The
template instructs a hosted VLM (Qwen-VL-Max) to judge a generated REASON strictly from the
CAPTION and visible VIDEO evidence, without chain-of-thought, on five dimensions (Grounding,
Temporal Alignment, Consistency, Alignment Justification, Coverage&Specificity) with 3-point
anchors {0, 0.5, 1} and a hard cap on Grounding. The prompt enforces a strict JSON schema for
outputs and is run with temperature 0.1. Placeholders such as {reason} and {caption} are
shown in monospace and highlighted in blue.
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You are an expert in physical commonsense evaluation. Based on the physical commonsense analysis provided below, determine what score (1-5) this analysis would correspond to 

according to the scoring rules.

Physical Commonsense Scoring Rules (1-5):

- **1:** No adherence to physical commonsense. The video contains numerous violations of fundamental physical laws.

- **2:** Poor adherence. Some elements follow physics, but major violations are present.

- **3:** Moderate adherence. The video follows physics for the most part but contains noticeable inconsistencies.

- **4:** Good adherence. Most elements in the video follow physical laws, with only minor issues.

- **5:** Perfect adherence. The video demonstrates a strong understanding of physical commonsense with no violations.

Evaluation Criteria:

1. **Object Behavior:** Do objects behave according to their expected physical properties?

2. **Motion and Forces:** Are motions and forces depicted consistently with real-world physics?

3. **Interactions:** Do objects interact with each other and their environment plausibly?

4. **Consistency Over Time:** Does the video maintain consistency across frames?

Physical Commonsense Analysis:

{final_response}

Based on the analysis above, what physical commonsense score (1-5) does this analysis indicate? Consider:

- What level of physics adherence is described

- What types of violations or correct behaviors are mentioned 

- How severe any physics issues are described to be

- Overall assessment of physical realism

IMPORTANT: Respond with ONLY the integer score (1, 2, 3, 4, or 5). Do not include any explanations or additional text."""

Title: PC (score remapping): DeepSeek-R1 evaluator prompt

Figure 48: DeepSeek-R1 remapping prompt used to convert a final physical-commonsense rationale
into a scalar score sPC ∈ {1, . . . , 5} for the PC ablations in Sec. 3.4. The template presents the
Physical Commonsense Scoring Rules (1–5) and four Evaluation Criteria (Object Behavior, Motion
& Forces, Interactions, Consistency Over Time) and asks the model (Guo et al., 2025a) to read the
provided Physical Commonsense Analysis (placeholder {final_response} shown in
monospace/blue in the figure) and output only the integer score (no explanations). We run this prompt
with temperature 0 and strict output checking.
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You are a strict, no-nonsense judge. You will see a video (or frames) and ONE generated explanation ("reason").

Score ONLY from visible evidence; do not guess or use outside knowledge. Do not produce chain-of-thought.

INPUTS

- VIDEO

- REASON: {reason}

SCALE

For every dimension use {0, 0.5, 1}. Be conservative:

- 1 = fully satisfied with concrete, checkable details inside the reason.

- 0.5 = partially satisfied, generic, or uncertain.

- 0 = contradicted by the visuals, invented, or missing.

DIMENSIONS (definitions + hard caps)

1) Grounding (evidence anchoring)

- 1: Cites multiple concrete, verifiable visual details (e.g., color/region/relative position/count/motion attribute) that clearly support the claims.

- 0.5: Generally matches visuals but details are vague/partial.

- 0: Conflicts with visuals or speculative.

(HARD CAP: If no concrete visual detail appears anywhere, Grounding ≤ 0.5.)

2) Temporal (ordering/duration/frequency/causality)

- 1: Key temporal relations (before/after/while/repeated/caused-by) are correct AND at least one is described concretely.

- 0.5: Temporal gist roughly right but generic/unclear OR not applicable/uncertain.

- 0: Temporal claims are wrong, reversed, invented, or unsupported.

3) Consistency (internal coherence & no hallucination)

- 1: Internally consistent; no contradictions; no invented key objects/events; no conflict with the visuals (and caption/task if given).

- 0.5: Minor inconsistency or questionable mention that does not undermine the main claim.

- 0: Clear contradiction OR hallucinated key object/event.

4) Criteria & Justification (explicit evaluation rule/score and its evidence-based application)

- 1: Clearly states an evaluation criterion (e.g., numeric/ordinal score or explicit rule for judging) AND applies it consistently to this video with concrete, visible evidence; no 

conflict with other dimensions.

- 0.5: Mentions a criterion/score/rule but is generic, only partially applied, or weakly tied to visible evidence.

- 0: No meaningful criterion/score/rule is stated, OR it is misapplied/contradicted by the evidence.

5) Video Quality Assessment (clear judgment of whether the video itself is good or bad, grounded in what is visible)

- 1: Gives an explicit good/bad (or degree) judgment about the video’s visual quality and backs it with concrete indicators (e.g., sharpness/blur, lighting/exposure, occlusion, 

framing/stability, scale/visibility of key entities).

- 0.5: Mentions quality in general terms (e.g., “clear/unclear”) without concrete indicators, or uncertain.

- 0: No quality judgment, or the judgment contradicts what is visible.

Strictly output the following JSON only:

{

 "scores": {

  "grounding": 0 | 0.5 | 1,

  "temporal": 0 | 0.5 | 1,

  "consistency": 0 | 0.5 | 1,

  "criteria_justification": 0 | 0.5 | 1,

  "video_quality_assessment": 0 | 0.5 | 1

 }

}

Title: PC (reason-quality): Qwen-VL-Max VLM-as-judge prompt

Figure 49: Qwen-VL-Max reason-evaluation prompt used for the PC ablations in Sec. 3.4. The
template instructs a hosted VLM (Qwen-VL-Max) to judge a generated REASON strictly from
visible evidence, without chain-of-thought, on five dimensions (Grounding, Temporal, Consistency,
Criteria&Justification, VideoQuality) with 3-point anchors {0, 0.5, 1} and a hard cap on Grounding.
The prompt enforces a strict JSON schema for outputs and is run with temperature 0.1. Placeholders
such as {reason} are shown in monospace and highlighted in blue.
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Figure 50: Web interface for human evaluation of SA/PC rationales. Annotators watch the video,
read the caption (for SA), and assign 0/0.5/1 scores to each rubric dimension defined in Tables 7
and 8.
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