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Abstract

Pinyin input methods are essential for typing
Chinese characters, yet existing approaches
struggle to balance accuracy with computa-
tional efficiency when integrating large lan-
guage models (LLMs). This paper introduces
Attnlnput, a novel framework that enhances
pinyin input performance through lightweight
language model adaptation. By integrating
pinyin features directly into the model’s infer-
ence process via a parameter-efficient side net-
work, AttnInput eliminates the need for costly
full-model fine-tuning while significantly im-
proving prediction accuracy. The method em-
ploys constrained training and inference strate-
gies to enforce phonetic alignment, reducing
ambiguity in pinyin sequences. Experiments
demonstrate state-of-the-art results across vary-
ing context and pinyin lengths, with a 20-34%
accuracy improvement over existing methods
on long sequences. Attnlnput achieves these
gains while maintaining linear computational
complexity, enabling stable latency and low re-
source consumption even for extended contexts.
The framework reduces training costs by over
50% compared to conventional fine-tuning ap-
proaches, showcasing practical advantages for
edge-side deployment and scalable language
model integration.

1 Introduction

Pinyin Input Method Engine (IME) allows users
to input Chinese characters using a standard key-
board. Pinyin is the official romanization system
for Chinese, which represents the pronunciation of
Chinese characters using the Latin alphabet.
Pinyin input methods convert Romanized pho-
netic inputs into Chinese characters using pinyin.
The primary approaches include perfect pinyin,
which requires full syllable input (e.g., "zhong-
guo" for "H1[E"), and abbreviated pinyin, which
uses initial letters (e.g., "zg" for the same phrase).
While perfect pinyin reduces homophone ambigu-

ity by specifying complete pronunciation, abbrevi-
ated pinyin prioritizes typing speed at the risk of
increased character selection complexity.

The advent of GPT models has spurred re-
search into applying large language models to input
method engines. As illustrated in Figure 1(b), most
of the previous research that achieve state-of-the-
art performance like PinyinGPT-Concat (Tan et al.,
2022) and Genelnput (Ding et al., 2023) simply
concatenate the context and the pinyin sequence
to form the prompt for the language model. How-
ever, inserting pinyin sequences disrupts the se-
mantic flow between the prompt and target text,
and poses challenges for effectively leveraging pre-
trained large language models, as their training
objective primarily focuses on predicting the next
token. Furthermore, these models are trained in an
SFT manner, indicating that only a small number
of pinyin information in each training sample is
learned, leading to a need for extensive training re-
sources and difficulty in increasing context length.
Our work confirms that concat-based method dis-
rupts semantic consistency and leads to inefficient
training. As illustrated in Figure 1(c), PinyinGPT-
Embed (Tan et al., 2022) demonstrates superior
training efficiency, however, its performance re-
mains suboptimal due to its inability to fully utilize
the pinyin information in the input during inference.
Moreover, previous approaches have all relied on
transformer models exhibiting quadratic time com-
plexity, where both latency and GPU memory con-
sumption escalate with increasing context length,
resulting in limited context capacity. This inherent
contradiction with the essential requirements of in-
put methods - low latency, minimal resource usage,
and extended context processing - fundamentally
hinders further model scaling.

The Receptance Weighted Key Value (RWKYV)
model (Peng et al., 2023, 2024) represents a ground-
breaking large language architecture employing
linear self-attention mechanisms, which maintains
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Figure 1: Illustration of the inference and training process of pinyin IMEs. The abbreviated pinyin of the Chinese
characters "FIFAENZ IS E D (1 really want to eat an egg pancake) shown in the picture is "W HX CJID G B".

See Appendix B for detailed information.

constant latency and fixed resource allocation while
enabling "infinite"!-length context processing -
achieving performance parity with conventional
transformers, making it particularly well-suited for
input method applications.

We explored the direct use of pinyin-constrained
beam search outputs from RWKV6 model as candi-
date word lists at first, resulting in substantial per-
formance improvement. Nevertheless, this method
abandons pinyin information, which leads to a
higher probability of prematurely pruning the cor-
rect answer during the initial stages of beam search,
particularly when the target’s prefix tokens are in-
frequent. This presents opportunities for further
improvement.

Therefore, we propose a novel approach named
Attnlnput to leverage large language models for
input method engine. It addresses the semantic
discontinuity of previous methods by integrating
pinyin information directly into the RWKV6’s inter-
nal state through a lightweight side network. This
side network uses ladder side-tuning, attaching to
the main model without requiring backpropagation
through it, thus saving computational resources.
The model is pre-trained, unlike many previous
approaches using supervised fine-tuning, leading
to more efficient use of training data and lower
computational cost. During inference, the model

'The authors of RWKV6 claim that RWKV6 has "infinite"
context length on https://rwkv.com/ due to the observed
continuous decrease in loss as the context length extends
beyond the context length used during training. However,
this does not necessarily imply that RWKV6 outperforms
Transformer-based models in long-text understanding or re-
trieval tasks.

receives both the context and a sequence of pinyin,
processing them together to predict the correspond-
ing Chinese characters. The use of RWKYV allows
for efficient handling of long contexts and pinyin
sequences. Pinyin-constrained training and beam
search are employed to further improve accuracy
by restricting predictions to characters matching
the given pinyin. Notably, the principles of At-
tnlnput are generalizable to other non-Latin scripts,
presenting a promising solution for enhancing text
input systems globally. AttnInput offers the follow-
ing advantages:

* To the best of our knowledge, it achieves state-
of-the-art performance on abbreviated pinyin.

* In the training stage, it requires significantly
less computational resources and training data
compared to previous work.

* The model exhibits linear time complexity,
maintaining stable inference latency and con-
sistent resource consumption that remain unaf-
fected by increasing context lengths, thereby
presenting an optimal architecture for edge-
side deployment scenarios.

* The model demonstrates exceptional context
length generalization capability, maintaining
robust performance even when processing in-
put sequences that far exceed its original train-
ing scope, showcasing remarkable extrapola-
tion potential in long-context scenarios.


https://rwkv.com/

2 Task

The input of pinyin input method includes a se-
quence of Chinese characters W = {w1, ..., w,}
representing the context and a sequence of pinyin
P = {pi,...,pm}. The pinyin might be ab-
breviated pinyin or perfect pinyin. The out-
put is a sequence of Chinese characters O =
{wn+1, ..., Wn+m }. The output sequence follows
the input sequence semantically, and the pronunci-
ation corresponds to the pinyin.

3 Methods

In this section, we first introduce standard RWKV6
large language model. The vanilla RWKV6 model
exhibits competitive performance compared to ex-
isting state-of-the-art models in IME tasks, even
when ignoring pinyin information during inference.
Afterward, we will introduce the new model named
Attnlnput, which can leverage enriched pinyin in-
formation during inference while maintaining effi-
cient training and inference performance.

3.1 Enhancing HMM-Based Pinyin IME with
LLMs

Traditional HMM(Hidden Markov Model)-based
pinyin input methods (Chen and Lee, 2000) aim
to predict the most probable Chinese character se-
quence O given a context W and pinyin sequence
P. This is formulated using Bayes’ rule:

O* = arg max Pr(O| P, W)

1
= arg mOaXPr(P | O, W) -Pr(O| W) M

where Pr(O | W) is the language model probabil-
ity, and Pr(P | O, W) is the typing model.

In this section, we propose replacing the tradi-
tional N-gram language model with a large lan-
guage model (LLM) to estimate Pr(O | W), while
simplifying Pr(P | O, W) to a binary indicator
function that enforces pinyin constraints. Specifi-
cally:

Language Model The LLM computes the proba-
bility of the output sequence O conditioned on the
context W:

m

Pr(O | W) = HPr(wnH | W, Wnst1, oo, Wngio1)
i=1
()

Pinyin Constraint The typing model Pr(P |
O, W) is simplified to enforce exact pinyin match-
ing. The constraint is:

i=1

where [(-) is an indicator function (1 if true, O
otherwise) and V), is the set of all possible Chinese
characters matching the pinyin p;.

During inference, a constrained beam search is
employed to ensure all candidate characters at step
¢ match p;. The LLM generates probabilities for
valid candidates, and the beam retains only se-
quences that satisfy the pinyin constraints. This
approach leverages the LLM’s contextual under-
standing while strictly adhering to phonetic input,
mitigating ambiguity inherent in pinyin.

3.2 Attnlnput

While the aforementioned framework demonstrates
promising results, its over-simplified typing model
poses critical limitations. By reducing Pr(P |
O, W) to a binary indicator function, the model
ignores real-world complexities such as typing er-
rors, dialect variations, and ambiguous phonetic
matches. This simplification fails to capture prob-
abilistic relationships between pinyin sequences
and candidate characters, leading to suboptimal
robustness and accuracy in practical scenarios.

To address this, we propose Attnlnput, a novel
approach that replaces the rigid indicator func-
tion with a learnable side network to estimate
Pr(P | O,W). The key innovation lies in inte-
grating the LLM’s contextual predictions with a
dynamic pinyin-conditioned likelihood model.

3.2.1 Preliminaries

As illustrated in Figure 2(a), the RWKV6 back-
bone is composed of a stack of several residual-
connected blocks, with each block containing a
time-mixing and a channel-mixing sub-blocks. The
time-mixing aka RWKYV attention can be written
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Figure 2: Architecture of the RWKV6 and proposed model, AttnInput.

in a recurrent manner:

ddlerp(a,b) = a+ (b —a)o
LoRA(a + (b — a) o pun)
Dt = ddlerpD(wtawt—l)WD7 g € {7’71{3,"0,9}
wy = exp(— exp(LoRA (ddlerp,(r¢, 74-1))))
St = dlag(wt) - S¢—1 + k;—vt
o¢ = concat(SiLU(g¢) o LayerNorm(7(s;+
diag(u)k, ve))) W,

“4)
where u are learnable vectors, LORA(+) applies
low-rank adaptation to inject input-dependent ad-
justments, t is the time step, S represents the com-
pact internal state (analogous to Transformer’s KV
cache), r retrieves information, k and v store in-

formation, w is forget gate, u is content-dependent
bias.

3.2.2 Model Architecture

As illustrated in Figure 2(b), we use the RWKV6
model as the backbone model and attach a relatively
small side network to the backbone model to extract
the pinyin feature and integrate it with information
from the context.

We integrate pinyin feature with context informa-
tion by mapping the former to a fixed-size vector
through a linear layer and multiplying it with the
internal state of the RWKV6 model. The formula
is as follows:

poy; = LayerNorm(pxy¢) - Wiy - Sp 41
Wpo,l + px (5)
pxi+1, = MLP(LayerNorm(po; 1)) + poy ¢

where po is the pinyin-state mixed information, [ is
the layer index, ¢ is the time step, W),.; and W),



are linear layers, and S ;11 is the internal state of
the RWKV6 model at time step ¢ + 1.

The LLM generates contextual logits logit; | v
while the side network produces pinyin-specific
logits. The final prediction logits are computed as:

logitﬁnal = 10gitLLM + 10gitpinyin' (6)

This additive fusion in log-space is mathemati-
cally equivalent to multiplying probabilities in lin-
ear space, thereby achieving the combined effect
of Pr(O|W) - Pr(P | O, W).

3.2.3 Ladder Side-Tuning

As illustrated in Figure 2(b), we employ ladder side-
tuning (Sung et al., 2022) to attach side networks
for mixing pinyin and context information. This ap-
proach avoids backpropagating updated parameters
through the backbone network.

Due to the significantly fewer parameters in the
side network compared to the backbone network, it
can save a large amount of computation and mem-
ory usage for storing activation values, gradients
and optimizer states. See Appendix A for the de-
tailed cost analysis.

3.2.4 Encoding Pinyin Sequence

As illustrated in Figure 1(a), for a certain position &
in the pinyin sequence, we select this position and
subsequent pinyin P; = {p;, ..., p, } as the pinyin
information input to the model at this position.
Therefore, there is no information interaction be-
tween the pinyin information at different positions
in the input. The output O; at each position ¢ is only
related to the text context W; = {w1, ..., wp4i—1}
and the pinyin information F;. This ensures the
efficiency of training, as each character’s pinyin
information is trained, while also maintaining con-
sistency in the data input during both training and
inference.

To encode the pinyin sequence, we employ a
concatenation operation to combine all pinyin em-
bedding vectors into a unified representation. We
pad pinyin sequences with zeros to a fixed length,
which is 16 in our experiments. Sequences exceed-
ing this length are truncated. We tokenize pinyin
sequence by mapping each letter to its position in
the alphabet.

3.2.5 Efficient Training

As illustrated in Figure 1(d), the AttnIlnput model
is trained in a pre-training manner, which is similar
to the one used in the large language models. The

pinyin sequences at each position are independent,
with no information interaction between them, to
ensure consistency during training and inference.
This method potentially enables the model to lever-
age pinyin information from a greater proportion
of tokens within the training data.

However, for previous concat-based models like
PinyinGPT-Concat and Genelnput, the design that
connects pinyin to the context makes it necessary
to train them using the SFT method, as shown in
Figure 1(e). Assuming that the length of the context
in the training data is n and the length of the pinyin
is m, with n being much larger than m, only the
pinyin information of m tokens will be learned.
This suggests that AttnInput potentially exhibits a
-~ times improvement in training data utilization
compared to prior approaches.

3.2.6 Pinyin-Constrained Training and
Inference

The model is trained using the Pinyin-Constrained
Training (Tan et al., 2022) method. The probability
distribution for the next Chinese characters is calcu-
lated solely over Chinese characters that perfectly
match the pinyin. The formula is as follows:

exp(g(wilw<i, pi))

wevy, XP(g(wilw<i, pi))

(N
where g is the output of the model, p; is the pinyin
sequence at position ¢, and w.; is the context up to
position ¢.

Since pinyin can correspond to multiple Chi-
nese characters, for those models mentioned in
this paper including AttnInput, PinyinGPT-Concat,
vanilla RWKV6, and RWKV6-concat-lora, we
use beam search to generate possible character
sequences. Each token is generated in a auto-
regressive manner, and only those Chinese char-
acters that perfectly correspond to the pinyin are
considered, in order to improve accuracy.

P(wilwe, pi) = 5

4 Experiment

4.1 Settings

SkyPile-150B Dataset We use SkyPile-150B
(Wei et al., 2023) to generate training and evalua-
tion dataset, which is a large-scale and comprehen-
sive Chinese dataset including 150 billion tokens
and 620 gigabytes of text data. SkyPile-150B is
not included in the training datasets of the RWKV6



models. The corresponding abbreviated pinyin se-
quences are automatically generated using the pub-
lic Python library, pypinyin”. The evaluation data
is derived from SkyPile-150B, with pinyin lengths
ranging from 1 to 16 and context lengths of 64, 512
and 1536. Each evaluation set contains 500 context-
pinyin pairs, which are strictly separated from the
training data. For each training and evaluation case,
the input pinyin are all abbreviated pinyin.

PD Dataset PD dataset (Yang et al., 2012) is a
widely used benchmark dataset for the evaluation
of pinyin IMEs. We use 2000 segments of consecu-
tive Chinese characters from PD dataset to evaluate
the performance on perfect pinyin. For each case,
the input pinyin are all perfect pinyin and the con-
text is null.

Training We use RWKV6-1.6B, a pretrained
RWKV6 model with 1.6B parameters, as the back-
bone model, which is fixed during training. At-
tnlnput have a side network with 500M trainable
parameters. The loss function is cross-entropy loss.
The max learning rate is 3e-4. The learning rate
is decayed by cosine annealing with a warmup pe-
riod of 300 steps. The optimizer is AdamW with
a weight decay of 0.01. The batch size is 8. The
context length is 1024. The length of pinyin se-
quence at each position is randomly selected from
[0,16]. The model is trained for 40K steps on a
single RTX 4090D GPU. To ensure a fair com-
parison with previous concat-based methods, we
also trained a concat-based model with RWKV6-
1.6B, labeled as RWKV6-concat-lora. This model
was fine-tuned with LoRA (Hu et al., 2021) and
includes 500M trainable parameters. All training
data is derived from SkyPile-150B and the input
pinyin are all abbreviated pinyin.

Evaluation Metric We use the precision at top-
K as the evaluation metric, which measures if the
ground-truth Chinese character sequence is among
the top-K predicted sequences.

4.2 Results on Abbreviated Pinyin

We present the results of the proposed mod-
els for abbreviated pinyin on the SkyPile-150B
dataset. We compare Attnlnput with vanilla
RWKYV6, PinyinGPT-Concat and RWKV6-concat-
lora. Genelnput is not included as its source code
or datasets are not publicly released and it do not
show better performance than PinyinGPT-Concat

2https ://pypi.org/project/pypinyin

on abbreviated pinyin. All outputs are generated by
Pinyin-Constrained beam search, with a beam size
of 16. When testing PinyinGPT-Concat, we used
a context window of size 128, as it was trained on
text that does not exceed 128 tokens. The context
lengths of 64, 512, and 1536 represent cases of
short text, long text, and text exceeding the context
window, respectively.

Table 1 demonstrates that the proposed At-
tnlnput model consistently outperforms vanilla
RWKV6, PinyinGPT-Concat and RWKV6-concat-
lora across most pinyin and context lengths. Sev-
eral key findings emerge from the results.

* We can see that when the length of the pinyin
sequence increases, the performance advan-
tage of Attnlnput over vanilla RWKV6 be-
comes increasingly significant, as the pro-
posed model can leverage more information
from the pinyin sequence to generate more
accurate Chinese characters.

* All models exhibit decreasing accuracy with
increasing pinyin sequence length. This is
attributable to the exponential growth in pos-
sible character sequences matching a given
abbreviated pinyin sequence, increasing ambi-

guity.

* Leveraging longer contexts significantly ben-
efits both AttnInput and the vanilla RWKV6,
likely due to the richer information available
in such contexts, including names and loca-
tions challenging to infer from pinyin alone.
However, PinyinGPT-Concat, trained on con-
texts shorter than 128 tokens, struggles to ex-
ploit this additional information effectively.

* Attnlnput exhibits strong length extrapola-
tion capabilities, maintaining superior perfor-
mance compared to other models even when
the context length exceeds the context win-
dow.

* The observed inferior performance of
RWKV6-concat-lora relative to vanilla
RWKV6 provides compelling evidence in
support of our proposition that concat-based
method disrupts semantic consistency and
leads to inefficient training.

We noticed that Attnlnput performs slightly
worse than vanilla RWKV6 in Top-5 accuracy in
some cases. This phenomenon is also observed
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Context Pinyin Evaluation PinyinGPT- AttnInput Vanilla RWKYV6-
Length Length Metric Concat (ours) RWKV6 concat-lora
P@5 71.1 83.7 84.9 76.5
1-4 P@10 76.8 88.2 88.5 82.7
P@15 79.6 90.5 89.8 85.6
P@5 52.5 71.8 68.5 52.1
5-8 P@10 57.8 75.8 71.8 56.9
64 P@15 60.6 77.5 73.1 58.9
P@5 41.8 61.5 554 38.0
9-12 P@10 46.2 65.7 57.3 41.0
P@15 48.2 67.6 58.0 422
P@5 32.5 54.0 46.3 25.8
13-16 P@10 36.2 57.9 47.6 27.8
P@15 37.9 59.0 48.1 28.8
P@5 70.7 85.8 86.7 80.3
1-4 P@10 76.4 89.8 89.6 85.4
P@15 79.0 91.8 90.9 87.7
P@5 48.8 76.5 75.6 60.0
5-8 P@10 55.4 80.8 78.9 65.0
512 P@15 58.2 82.7 80.5 67.1
P@5 38.4 66.9 63.1 42.6
9-12 P@10 42.8 71.3 65.6 46.6
P@15 45.5 73.0 66.8 48.5
P@5 27.9 61.2 55.8 32.7
13-16 P@10 31.6 64.7 57.1 35.5
P@15 33.6 66.0 58.0 36.3
P@5 65.5 85.2 86.4 78.0
1-4 P@10 72.9 89.1 88.4 83.4
P@15 76.7 91.1 89.7 85.7
P@5 437 724 72.3 55.7
5-8 P@10 50.0 77.4 75.5 61.7
1536 P@l15 52.9 79.5 76.3 64.2
P@5 32.8 62.4 61.1 424
9-12 P@10 37.2 67.1 63.8 44.2
P@15 394 69.5 65.1 454
P@5 25.2 58.4 52.9 30.8
13-16 P@10 29.1 62.5 54.9 334
P@15 30.8 64.2 55.4 34.3

Table 1: Evaluation results of the proposed model. To keep the table concise, only the average scores across

consecutive sets of four lengths are shown.

in previous works (Tan et al., 2022). Our hypoth-
esis is that the training procedure led to a slight
degradation in the original model’s performance.
We analyzed instances where the vanilla RWKV6
model provided the correct answer, while Attnln-
put failed to prioritize the target. Our investiga-
tion revealed that in these specific instances, the
abbreviated pinyin corresponded to numerous con-
textually appropriate Chinese character sequences,
causing Attnlnput to encounter difficulties in ac-
curately ranking them based on probability. This
observation supports our initial hypothesis.

The performance gains observed in other metrics
are hypothesized to be a consequence of Attnlnput
boosting the scores of the initial target tokens based
on pinyin information. This mechanism effectively
prevents the early elimination of potential target
sequences during beam search, especially when the
initial tokens are relatively rare.

4.3 Results on Perfect Pinyin

We present the results of the proposed models for
perfect pinyin on the PD dataset in Table 2. We
compare with Google IME, On-OMWA (Zhang
et al., 2017), On-P2C (Zhang et al., 2019), Piny-
inGPT (Tan et al., 2022), and Genelnput (Ding
et al., 2023). Since Attnlnput is trained on abbrevi-
ated pinyin, we used the corresponding abbreviated
pinyin instead of the perfect pinyin as the input of
AttnInput during evaluation.

We can observe that AttnInput outperforms all
models except Genelnput, even though Attnln-
put was not trained on perfect pinyin. We be-
lieve the performance gap between Attnlnput and
Genelnput stems from the significant disparity in
their training resource allocation: Genelnput was
trained using 8 xNVIDIA A100-80G GPUs over
one week, while AttnInput employed only a single
RTX4090D GPU for 8 hours.



Model P@1 P@5 P@10
Google IME 709 783 823
On-OMWA 644 729 779
On-P2C 713 805 813
PinyinGPT 732 84.1 855
Genelnput 884 962 -
Attnlnput (ours) 74.6 86.8 88.8
Vanilla RWKV6 758 859 874

Table 2: Comparison with different methods over PD
dataset using perfect pinyin.

4.4 Ablation Study

Model P@5 P@10 P@15
Attnlnput 72.6  76.6 78.3
-pinyin information 71.1  73.7 74.8
-pinyin-constrained training  55.3  57.8 59.0

Table 3: Ablation study for using pinyin information and
pinyin-constrained training on SkyPile-150B dataset
with context length 512.

This section describes an ablation study designed
to confirm the importance of pinyin information
and pinyin-constrained training. Results are shown
in Table 3. The -pinyin information means that we
use the same model configuration, training setup,
and dataset as before, but replace the pinyin se-
quences with blank ones to ensure the model does
not learn from pinyin information, aiming to con-
firm whether the model learns the inherent relation-
ship between pinyin and text, as opposed to simply
improving its general Chinese language modeling
ability. The -pinyin-constrained training means
that we remove pinyin-constraint during training
but still keep it during inference.

As shown in Table 3, the model performance
decreases significantly when pinyin information or
pinyin-constrained training is removed, indicating
that pinyin-constrained training is essential and At-
tnlnput indeed learns and utilizes the information
from the pinyin.

5 Related Works

Pinyin Input Methods Pinyin Input Method En-
gines (IMEs) have been extensively studied for
decades, with a focus on improving accuracy and
efficiency. Early methods include N-gram models
(Chen and Lee, 2000; Chen, 2003), statistical ma-
chine translation (Hatori and Suzuki, 2011; Yang

et al., 2012), noisy channel model (Mori et al.,
2006), online discriminative training (Jiampoja-
marn et al., 2008), statistic model (Lin and Zhang,
2008), collocations and k-means clustering (Chen
et al., 2012), and Conditional Random Fields (Xia
and Cheung, 2016). These approaches heavily rely
on a predefined fixed vocabulary and lack the abil-
ity to capture long-range dependencies in language.
Recent years have witnessed the successful applica-
tion of neural networks to pinyin IMEs. Neural Net-
work Language Model (Chen et al., 2015), Long
Short-Term Memory (LSTM) networks (Zhang
et al., 2019; Huang and Zhao, 2018) and attention-
based neural networks (Huang et al., 2018) have
achieved promising results by modeling sequen-
tial data effectively. However, these models face
limitations in capturing long-term dependencies
and parallelization during training. The emergence
of large language models (LLMs) like GPT has
opened up new possibilities for pinyin IMEs. Re-
cent work has explored the use of LLMs for gen-
erating candidate characters based on pinyin input
(Tan et al., 2022; Ding et al., 2023). However, di-
rectly applying LLMs to pinyin IMEs presents chal-
lenges, including semantic discontinuity caused by
inserting pinyin sequences and the need for large
amounts of training data and computational re-
sources. Our work differs from previous works
in that we are the first one to fully leverage the
power of large language models and train the mod-
els to learn pinyin-context relationships efficiently
in a pre-training manner, achieving state-of-the-art
performance with minimal training data and com-
putational resources.

6 Conclusion

This paper introduces Attnlnput, a novel approach
for pinyin IME that effectively integrates pinyin in-
formation with a large language model, RWKY, for
accurate and efficient Chinese character prediction.
By addressing semantic discontinuity and reduc-
ing computational overhead, Attnlnput achieves
state-of-the-art performance on abbreviated pinyin
input, paving the way for even more accurate and
context-aware pinyin input methods.

7 Limitations

The model does not address common user errors
like typos, incorrect tones, or ambiguous phonetic
matches, which are critical for practical IMEs.
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A Computing Cost

Throught out this section, we denote by [V the total
number of parameters in the backbone RWKV6
model, M the total number of parameters in the
side network, L the number of layers, / the number
of heads and d the dimension of each head. All
models are trained with h = 32, L = 24, d = 64,
N =1.6B and M = 500M.

The inference FLOPs for each tokenis approxi-
mated as follows:

#(InferFLOPs) = 2(N + M) + 9d°hL  (8)

since each matrix requires one multiplication and
one addition operation and the RWKYV attention
requires 9d>h operations(see Equation 4, 5).

The training FLOPs for each token is approxi-
mated as inference FLOPs plus four times the total
number of trainable parameters plus the FLOPs for
backpropagating in RWKYV attention:

#(TrainFLOPs);, = 2N + 6M + 14d*hL (9)

In Full fine-tuning, all parameters are updated, so
the training FLOPs for each token is approximated
as follows:

#(TrainFLOPs)p = 6N 4 6M + 21d°hL (10)

#(TrainFLOPs)y, (11
#(TrainFLOPs)p

That is, ladder side-tuning saves 50.7% FLOPs
in training compared to full fine-tuning.

= 0.507
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B A Brief Introduction to Hanyu Pinyin
and Its Role in Chinese Text Input

Hanyu pinyin, or pinyin, is the standard roman-
ization system for Standard Mandarin Chinese. It
employs the Latin alphabet to represent the sounds
of Mandarin, aiding in pronunciation and language
learning. Importantly, pinyin is not a replacement
for Chinese characters, which are the core written
units conveying meaning in the language.

The relationship between pinyin and Chinese
characters can be summarized as:

* Characters as Semantic Units: Chinese char-
acters are primarily logographic, with each
character representing a morpheme or word
and carrying meaning.

* Pinyin as Phonetic Representation: Pinyin in-
dicates the pronunciation of characters but
does not convey meaning directly.

* Homophony and Context: A single pinyin
spelling can correspond to multiple charac-
ters with different meanings due to homo-
phones (same pronunciation, different mean-
ings). Context is crucial for disambigua-
tion. For example, the abbreviated pinyin
"JDGB" in Figure 1 can match multiple Chi-
nese phrases, such as "JSEED" (egg pan-
cake) and "L E|3d IE" (have you seen it be-
fore).

* Tones: Pinyin uses diacritical marks to denote
the four main tones in Mandarin, which are
essential for distinguishing meaning.

The advent of computers and mobile devices has
made pinyin indispensable for Chinese text input.
Pinyin input methods allow users to type pinyin on
a standard keyboard and then select the correspond-
ing Chinese characters from a list of suggestions.
This technology significantly bridges the gap be-
tween the phonetic representation of pinyin and the
character-based writing system.

C Latency Analysis

To apply the proposed model to real-world sce-
narios, we need to analyze its latency. Since the
context only expands at the end during the input
process, we cache the internal state to avoid re-
peated prefill operations. Therefore, the latency is
equal to the time it takes to generate one token mul-
tiplied by the length of the pinyin sequence. We
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tested the time it takes to generate a token under
different beam size settings on a single RTX 4090D
GPU, the results are summarized in Table 4.

Beam Size Time (ms)

4 19.06
8 19.00
16 19.53
24 24.06
32 29.08

Table 4: The time it takes to generate one token under
different beam size settings.

As we can see, with a beam size of 16, the la-
tency is approximately 20 ms. Assuming the user
inputs a pinyin sequence of length 4, the latency
would be 80 ms, which is practical for real-world
scenarios. The latency can be further optimized by
using a smaller model or a faster GPU.

D Case Study

We list three cases in Table 5 to compare outputs
produced by PinyinGPT-Concat, vanilla RWKV6,
and AttnInput. In case 1 and 2, the vanilla RWKV6
fails to generate the correct answer due to the pres-
ence of uncommon characters at the beginning,
whereas PinyinGPT-Concat and AttnInput succeed
by utilizing pinyin information. In case 1 and 3,
PinyinGPT-Concat fails as it lacks the necessary
common-sense knowledge. Notably, in all cases,
Attnlnput consistently produces the correct output.
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Case Predictions
PinyinGPT vanilla
-Concat RWKV6 AttnInput
Context: 1998F PUZE T JEEEITE D E T )
Target: VU525 70 HIEH o= 2] Iy g1t} 2 oy it
“AMERIES Rize Rize Rizz
Pinyin: HCJBDD (The 23rd (After (The 24th
ESSJAYH Olympic reconstruction Olympic
Translation: The 24th Games and getting Games
Olympic Games held in Seoul) the 24th held in Seoul)
held in Seoul Olympic Games)
in 1998
Context: 5%, [7][n] HEJAMK
2156 B RakE
T SSHARE: R g wuwmn FRER
L@%Hﬁ?ﬁ‘@ﬂi:&ﬁ Iﬂb& El\)_’l_ > ERNT Ex\ﬁ_ S
ol ) BT %45 T BEMT BT &AT
Tﬁé@%ﬁlﬁjﬂﬁbﬁﬁmﬂ‘h" AN A AN A N A
Tarset: H"?}?iﬁ#?ﬁ {Jj?&I:l {ﬂ?&l:l ,ﬁjj:l—i'l:l
el ZTom N ﬂf (KAIYUAN (A report can (KAIYUAN
S T iR Securities be published Securities
Pinyin: KYZQZJFBLYFBG publis
. ) recently within it) recently
Translation: Firstly, ask most
. . released released
investors in the current A-share a report) a report)
market: Do you choose to buy P P
stocks or funds? Reading the
following news may be helpful.
KATIYUAN Securities recently
released a report
Context: HAIEMEIEEMN S PRRAEIX e EREE PR EREE
Target: P1E EHAESBZERE  ARTEE SR SHEIRE
Pinyin: CLSDFDCCHD (Material depth, (Thickness of (Thickness of
Translation: Magnetic thickness  enlarged size, non-magnetic non-magnetic
measurement method: applicable thickness) layer on layer on
to the thickness of non-magnetic material) material)

layers on magnetic materials

Table 5: Case study on abbreviated pinyin.
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