
Oracle-Efficient Adversarial Reinforcement Learning
via Max-Following

Sikata Bela Sengupta∗
University of Pennsylvania
sikata@seas.upenn.edu

Zakaria Mhammedi∗
Google Research

mhammedi@google.com

Teodor V. Marinov∗
Google Research

tvmarinov@google.com

Abstract

Learning the optimal policy in reinforcement learning (RL) with large state and
action spaces remains a notoriously difficult problem from both computational and
statistical perspectives. A recent line of work addresses this challenge by aiming
to compete with, or improve upon, a given base class of policies. One approach,
known as max-following, selects at each state the policy from the base class whose
estimated value function is highest. In this paper, we extend the max-following
framework to the setting of regret minimization under adversarial initial states and
limited feedback. Our algorithm is oracle-efficient, achieves no-regret guarantees
with respect to the base class (and to the worst approximate max-following policy),
and avoids any dependence on the size of the state or action space. It also attains
the optimal rate in terms of the number of episodes. Additionally, we establish a
lower bound on the regret of any max-following algorithm as a function of β, a
parameter that quantifies the approximation slack in the benchmark policy class.
Finally, we empirically validate our theoretical findings on the Linear Quadratic
Regulator (LQR) problem.

1 Introduction

In many practical reinforcement learning applications, handling large or continuous state and action
spaces is essential. However, beyond the tabular MDP setting, designing algorithms that are both
computationally and statistically efficient remains a major challenge Kane et al. [2022]. To address
these difficulties, several lines of work have explored imposing additional structural assumptions
on the MDP in order to avoid dependence on the size of the state space. For example, Jin et al.
[2020] provide an algorithm (LSVI-UCB) with a polynomial run-time and sample complexity with
regret independent of the size of the state or action space for Linear MDPs (with linear dynamics
and rewards). An assumption that subsumes linear MDPs is that of finite coverability Xie et al.
[2023] which includes classes of MDPs like Low-Rank MDPs and Block MDPs as well. Coverability
asks for the existence of a distribution with good concentrability which loosely asks that the data
distribution (say from an offline dataset) uniformly covers all the possible induced state distributions
from some policy in the class. Mhammedi et al. [2024] recently showed that given local-simulator
access, if the optimal policy’s state-action value function is realizable (Q∗-realizable), then low-
coverability MDPs can be learned in a sample-efficient manner. Moreover, Xie et al. [2023] provide
the complexity measure known as the Sequential Extrapolation Coefficient (SEC) which subsumes
coverability, and measures that make various representational assumptions on the Bellman residuals
like Bellman-Eluder Jin et al. [2021] and Bellman/Bilinear Rank Jiang et al. [2017], Du et al. [2021]
for sample-efficient online RL.

Due to the difficulty of exploration from scratch in large state spaces without these structural
assumptions, there has been growing interest in leveraging prior knowledge to guide exploration
∗Equal Contribution

Preprint. Under review.

more effectively. Several works have also explored ensembling techniques in RL to better scale
to large state spaces Lee et al. [2021]. Some of these methods aim to compete with the optimal
policy using boosting-style approaches Brukhim et al. [2022], but they often rely on strong weak
learnability assumptions. When a base class of sub-optimal policies is available, recent work has
focused on competing with weaker benchmarks rather than the optimal policy itself Cheng et al.
[2020], Liu et al. [2023], Hussing et al. [2024]. One such approach is max-following, where at
each state, the learner selects the policy from the base class with the highest estimated value. The
MaxIteration algorithm proposed by Hussing et al. [2024] provide theoretical guarantees for this
strategy in settings where the initial state distribution is fixed. That is, their algorithm returns a policy
that is competitive with the base class of policies and they provide examples where the max-following
policy is able to significantly outperform any policy in the base class. However, in many practical
scenarios, the learner may not encounter states from the same distribution across episodes. Instead,
initial states may be drawn from arbitrary distributions—potentially selected by “Nature” or an
adversary—requiring the learner to behave competitively without the ability to resample from a
consistent starting distribution. In particular, certain safety or robotics applications may require
exploration in settings with adversarially generated start states to consider worst-case guarantees.
There are a variety of ways in which one could model the behavior of the adversary. In this work, we
focus on initial start states because we view it as important in improving the robustness of the learner
by possibly exposing it to challenging initial states or configurations.

2 Related Work

Due to the challenges of reinforcement learning in large state spaces, a growing body of work
has focused on competing against weaker objectives than the optimal policy. In particular, several
approaches provide performance guarantees relative to a weaker baseline in the batch or stochastic
setting, where initial states are drawn from a fixed distribution. Cheng et al. [2020] introduce the
max-aggregation benchmark, which performs a one-step look ahead and selects the action with the
largest advantage relative to the best policy in the base class. Unlike max-following, which commits
to a single policy from the base class at each state, max-aggregation allows state-dependent action
selection, potentially offering more flexibility but requiring more fine-grained information. The
authors note that max-following and max-aggregation are generally incomparable in terms of their
guarantees. For details of the incompatibility we refer to Appendix A in Cheng et al. [2020]. They
ultimately propose the MAMBA algorithm, which provably competes with the best policy in the base
class for states drawn from a given initial distribution. Liu et al. [2023] build upon the work of Cheng
et al. [2020] with an active state exploration criterion. It is worth noting that policy-gradient methods
generally may face challenges from higher variance Wu et al. [2018], and both Cheng et al. [2020]
and Liu et al. [2023] have benchmarks that depend on the bias and variance of their policy gradients.

Marinov et al. [2024] also consider a similar benchmark based on the state-wise maximum over a base
class of policies in the stochastic setting, using behavioral cloning under sparse feedback. Barreto
et al. [2020] study a form of generalized policy improvement in the context of transfer learning
across tasks that share a common representation structure. Their benchmark selects the best action
at each state according to the Q-values of the base class of policies. Hussing et al. [2024] propose
an oracle-efficient algorithm, MaxIteration, for the stochastic setting, which allows the learner to
compete with an approximate max-following policy class using access to a regression oracle. Hussing
et al. [2024] show that any policy in this approximate max-following policy class is ϵ-competitive
with the base class of policies.

Several lines of work have investigated no-regret algorithms in adversarial reinforcement learning
settings. Liu et al. [2024] study regret minimization with respect to the best policy in a given class for
low-rank MDPs with adversarial (i.e., arbitrary) losses and fixed transitions. They propose oracle-
efficient, model-free algorithms under bandit feedback, improving upon existing regret bounds for the
full-information setting. Sekhari et al. [2023] examine online imitation learning with multiple noisy
experts, using selective sampling, preference-based feedback, and an online regression oracle to guide
learning. They make an assumption on the realizability of the preference model, which in this context
could be reduced to referring to the max-following policy. However, as shown in Hussing et al. [2024]
in Observation 4.7, the parametric class of the value functions of the max-following policy can be
more complex than simply the parametric class of the base class of policies. Therefore, they make a
stronger assumption than we will need to make in this paper. We extend the max-following approach

2

to these adversarial RL settings and are able to compete with the approximate max-following policy
benchmark class from Hussing et al. [2024].

Broadly, our work builds upon these results in a couple of different ways. First, our algorithm is able
to handle the adversary selecting arbitrary initial start states. Second, we utilize value-based methods
rather than policy-gradient based methods and so we avoid some of the associated policy-gradient bias
and variance dependencies. Third, our algorithm competes against the slightly stronger benchmark of
the approximate-max-following policy class. Fourth, we provide lower bounds with respect to this
benchmark class (as will be specified below). Finally, we only require online learnability of the base
class of policy’s value functions.

3 Background

We consider a horizon H MDPM = (X ,A,H,{Ph}h∈[H],{rh}h∈[H]), where Ph ∶ X ×A→∆(X)
from h to h+ 1, X is the (potentially large) state space, A is the action space, H is the horizon length
of each episode, and rH ∶ X ×A → [0,1] . A (non-stationary) policy π is a mapping of the form
π ∶ [H] × X → ∆(A). Throughout, we will use the notation {πh}h∈[H] to denote such a policy.
When a policy {πh}h∈[H] is executed, it generates the trajectory (x1,a1,x2,a2, . . . ,xH ,aH) via
the process ah ∼ πh(xh), xh+1 ∼ Ph(⋅ ∣ xh,ah), initialized from x1 = x1. We let Pπ[⋅ ∣ x1 = x1]
and Eπ[⋅ ∣ x1 = x1] denote the law and expectation under this process. Similar to Liu et al. [2024],
π ○h π′ will denote a policy that follows πk(⋅ ∣ ⋅) for k < h, and then π′k(⋅ ∣ ⋅) for k ≥ h.

We define a value function for policy π, time step h, and transitions set by P , to be of the form

V π
h (x) = Eπ [

H

∑
s=h

rs(xs, πs(xs)) ∣ xh = x] .

Definition 3.1 (Argmax). Consider a function f ∶D → R. We define the argmax operator argmax ∶
{(f,D) ∣ f ∶D →R}→ 2D to be

argmax
x∈D

f(x) ∶= {x ∈D ∣ f(x) = sup
y∈D

f(y)} .

Building on Hussing et al. [2024], we are interested in studying the following setting. Consider a
base class of policies ΠBase, where K = ∣ΠBase∣. This collection of policies could be gathered by any
means and are not necessarily heuristic. They consider a max-following policy of the form

πmax(x) = πx(x), where πx ∈ argmax
π∈ΠBase

V π(x)

That is, this is the policy that at every state follows the action of the policy from the base class with
the maximum value function at that state. More formally, due to the presence of tie-breaking they
provide the following definitions.
Definition 3.2. (Max-following policy class Hussing et al. [2024]) Let ΠBase be a finite set of policies.
The class of max-following policies Πmax is defined

Πmax = {π1∶H ∣ ∀h ∈ [H],∀x ∈ X ,∃πx ∈ argmax
π̃∈ΠBase

V π̃
h (x) ∶ πh(x) = πx(x)} .

In practice, it can be challenging to compete against policies in Πmax without further assumptions
on the MDP. To make the RL task more tractable, Hussing et al. [2024] introduce the class of
approximate max-following policies.
Definition 3.3. (Approximate max-following policies Hussing et al. [2024]). Let ΠBase be a finite
base policy class and let β > 0 be given. The class of β-approximate max-following policies relative
to ΠBase is defined as

ΠBench(β) = {π ∣ ∀h ∈ [H],∀x ∈ X ,∃πx ∈ Πβ,h(x) ∶ πh(x) = πx(x)} ,
where for x ∈ X and h ∈ [H]:

Πβ,h(x) = {π ∈ ΠBase ∣ V π
h (x) ≥ max

π̃∈ΠBase

V π̃
h (x) − β} .

3

Online RL framework. Our goal in this paper is to design an algorithm that produces policies that
compete against the best policy in the β-approximate policy class in Definition 3.3. Unlike previous
works, we allow the initial state x(t)1 to be chosen by an adversary at the beginning of each episode t.
After this initial state is revealed, the learner (or algorithm) interacts with the MDPM and generates
a trajectory by executing some policy.

The learner receives feedback on the value functions of the base class of policies at every time
step in the form of a loss ℓ(t)h (V), for an h ∈ [h] and π ∈ ΠBase (for all other (h,π) the loss is
set to 0) which provides feedback on how well every value function V ∈ V fits the actual return
provided from the given trajectory. Ultimately, the learner is hoping to minimize the regret with
respect to the worst-approximate max-following policy. Note that Hussing et al. [2024] show that the
worst-approximate max-following policy is ϵ-competitive with the performance of the base class of
policies themselves.

RegT (π̃) =
T

∑
t=1
(inf
π∈ΠBench(β)

V π(x(t)1) − V π̃(t)(x(t)1)) .

The learner provides this loss feedback to an online learning oracle which provides estimated value
functions, which are used to construct a policy that is ultimately competitive with an approximate
max-following policy.

Definition 3.4 (η-mixability, see Korotin et al. [2021], Cesa-Bianchi and Lugosi [2006]). . For all
q ∈∆([N]), there exists a prediction p̂ such that for all y ∈ Y and forecasts ŷi ∈ Y,∀i ∈ [N],

ℓ(p̂(t), y(t)) ≤ −C
η
log

N

∑
i=1

qi exp (−ηℓ(ŷi(t), y(t))).

Note that square-loss functions are an example of 1
2

-mixable loss functions.

Online learning guarantee. Vovk [1990] There exists an online learning oracle O over V such
that for all (h,π) ∈ [H] × ΠBase the outputs V̂ (1)

h,π, . . . , V̂
(T)

h,π of O in response to any sequence of

η-mixable losses ℓ̂(1)h,π, . . . , ℓ̂
(T)

h,π over V:

T

∑
t=1

ℓ̂(t)h,π(V̂
(t)

h,π) −
T

∑
t=1

ℓ̂(t)h,π(V
π
h) ≤

H2 log ∣V ∣
η

. (1)

4 Algorithm: Behavior Cloning

At each round, our algorithm either performs an exploration step (with probability εexp) or an
‘exploitation’ step. On exploration rounds, our algorithm gathers trajectory data losses (on cumulative
returns vs. value function estimates) for a uniformly sampled policy and time step within an episode.
It then feeds these losses to an online learning oracle which is able to provide value function
estimates for these policies over different time steps. These value-function estimates are then used to
follow an estimated or approximate max-following policy. On an exploitation round, this estimated
max-following policy is followed for the duration of the episode.

4

Algorithm 1 AdversarialMaxIteration (AMI).
input: Base policy class ΠBase, value function class V , and number of rounds T ≥ 1, β > 0.
initialize: Set K ← ∣ΠBase∣, π̂(1)h ≡ πunif,∀h, and εexp ← β−1T −1/4 (probability of exploration).

1: for t = 1, . . . , T do
2: Observe initial state x(t)1 .
3: Sample b(t) ∼ Ber(εexp).
4: if b(t) = 1 then
5: Sample h(t) ∼ unif([H]) and π(t) ∼ unif(ΠBase).
6: For (h,π) = (h(t),π(t)), sample (x(t)1 ,a(t)1 ,r(t)1 , . . . ,x(t)H ,a(t)H ,r(t)H) ∼ Pπ̂(t)○hπ[⋅ ∣ x1 =

x(t)1].
7: For (h,π) ∈ [H] ×ΠBase, define ℓ̂(t)h,π ∶ V → R such that

ℓ̂(t)h,π(V)← I{h = h(t), π = π(t)} ⋅ (V (x(t)h) −
H

∑
ℓ=h

r(t)ℓ)
2

. (2)

8: else
9: Execute π̂(t) and observe (x(t)1 ,a(t)1 ,r(t)1 , . . . ,x(t)H ,a(t)H ,r(t)H) ∼ Pπ̂(t)[⋅ ∣ x1 = x(t)1].

10: Set ℓ̂(t)h,π ≡ 0, for all (h,π) ∈ [H] ×ΠBase.

11: for h = 1, . . . ,H and π ∈ ΠBase do
12: Get V̂ (t+1)

h,π ∈ V from online learning oracle O(ℓ̂(1)h,π, . . . , ℓ̂
(t)

h,π;V).
13: For x ∈ X and h ∈ [H], define π̂(t+1)h (⋅ ∣ x) = π̂h,x(⋅ ∣ x), where π̂h,x ∈

argmaxπ∈ΠBase
V̂ (t+1)

h,π (x).

5 Theoretical Results

Theorem 5.1 (AMI No-Regret). Let εexp be an exploration probability parameter and β correspond
to the approximate-max following policy class parameter. For any sequence of initial states {x(t)1 }Tt=1
chosen by the adversary, Algorithm 1 obtains regret bounded by:

RegT =
T

∑
t=1
(inf
π∈ΠBench(β)

V π(x(t)1) − V π̃(t)(x(t)1)) ≤HTεexp +
1

η

H5K2

β2εexp
log ∣V ∣

Tuning εexp gives us regret that is O(
√
T /β) or more specifically O(H

3K
√

T log ∣V ∣
β

).

Proof. See the proof in Appendix A.

Recall once again that Hussing et al. [2024] in Lemma 4.1 show that the worst-approximate max-
following policy is ϵ-competitive with the base class of policies.

5.1 Lower bound

We now present a lower bound of the order Ω̃(1/β2). We note that there is a gap between the
regret upper bound that we present of Õ(

√
T /β) and this lower bound. The intuition behind the

lower bound is that there exists a hard instance that requires learning the value function of each
of the K baseline policies to reach a state with high reward. In particular, we create an instance
where K − 1 policies have value functions with expected rewards in { 1

2
+ β, . . . 1

2
+Kβ} and one

policy has value 3
4
≫ 1

2
+ Kβ in a state in the last layer of the MDP which is only reachable

by playing the correct sequence of the K − 1 policies in each layer of the MDP. Information
theoretically, we need to play each of the K − 1 policies for Ω̃(1/β2) episodes before it is possible
to distinguish between them and thus determine the correct order of play. The above intuition
is realized by a tree-structured MDP with H layers where each non-leaf state has K children.
Only leaf nodes have nonzero rewards and to reach the leaf with expected reward 3

4
the player

needs to distinguish policy πk from πk+1 at layer k. An MDP instance can be found in Figure 1.

5

Figure 1: Hard instance

Theorem 5.2. Any algorithm competing against any policy
ΠBench(β) has regret of at least Ω(K log(K)

β2) for β ≤ 1
8H
∧ 1

10
,

K ≤H .

The proof provided in Appendix B.3 together with further discussion
on the tightness of the lower bound.

6 Experiments

To test our algorithm in a continuous state-space setting, we em-
pirically test our algorithm for the case of the Discrete Time Finite
Horizon Linear Quadratic Regulator (LQR, Recht [2019]). Our base
policy class consists of policies that only act along one dimension of
the state space. In our example, our adversary is simulating playing
distributions according to a specified normal distribution D. By
using our method in the stochastic setting, we are able to compare
this method with that of the MaxIteration algorithm presented in Hussing et al. [2024].

min
{uh}H−1h=0

E[xT
HQxH +

H−1
∑
h=0
(xT

hQxh + uT
hRuh)]

subject to xh+1 = Axh +Buh, x0 ∼D

Note that for controllers specified of the form u = −Kx, the objective functions for the corresponding
policy are quadratic functions of the state. For our experiments, we run with d = 4,K = d,H =

5, T = 20000, ϵ = 0.1, η = 0.01. We also use A =

⎡⎢⎢⎢⎢⎢⎢⎣

0.9 0.1 0.0 0.0
0.0 0.9 0.1 0.0
0.0 0.0 0.9 0.1
0.0 0.0 0.0 0.9

⎤⎥⎥⎥⎥⎥⎥⎦

, B = Q = I(d), and

R = 0.1∗I(d). Also we denote πi(x) = −Kix, where Ki[i, i] = 0.5, and 0 everywhere else. Rewards
will correspond to negative costs, so r(x,u) = −(xTQx + uTRu). For this synthetic experiment, we
are able to precisely construct V to contain the value function of each base policy for every time
step. Of course, in larger scale applications this would be replaced by a broader value function class
which would require us making broader learnability assumptions about our value functions and more
generally parametrizing our value function class, thereby increasing its cardinality. For the following
experiments, we consider the following quantities. Over the course of states sampled across episodes,
we measure the cumulative regret of the optimal LQR policy, the AdversarialMaxIteration policy, the
MaxIteration policy, and any fixed base class policies against the best of the base class of policies for
each state provided at the start of the episode. See Appendix C for more details on the experiment.

(a) Cumulative Regret of Algorithm
vs. Base Experts

(b) Weight Evolution of Value
Function for h = 0, π0 (c) Bar Chart of Cumulative

Rewards

Figure 2: Linear Quadratic Regulator Experiments for β = 1
5

6

(a) Cumulative Regret of Algorithm
vs. Base Experts

(b) Weight Evolution of Value
Function for h = 0, π0

(c) Bar Chart of Cumulative
Rewards

Figure 3: Linear Quadratic Regulator Experiments for β = 1
5

with 100 times longer T than Figure 2

(a) Cumulative Regret of Algorithm
vs. Base Experts

(b) Weight Evolution of Value
Function for h = 0, π0 (c) Bar Chart of Cumulative

Rewards

Figure 4: Linear Quadratic Regulator Experiments for β = 4
25

We can see from Figure 2 that the cumulative regret of the algorithm is larger than the cumulative
regret of the optimal LQR policy (which max-following is unable to compete with here) and slightly
higher than that of the MaxIteration algorithm, but lower than the base class of policies, which seem
to scale linearly in T . We can also see that the weight evolution of the value function corresponding
to h = 0, π0 increases significantly over time, which indicates that the correct value function is being
learned for that given (h,π) pair over time. Finally, we compare the total cumulative rewards of
the different policies collected over all episodes. One can broadly see through Figures 2,3,4,and
5 that MaxIteration and AdversarialMaxIteration are broadly comparable in performance, but the
relative difference in which algorithm outperforms the other is affected by the length of the number
of episodes AdversarialMaxIteration is run for (with shorter lengths making MaxIteration somewhat
stronger and longer lengths making AdversarialMaxIteration stronger).

7 Conclusion and Future Work

Ultimately, we provide an algorithm AMI (1) against adversarial start states with access to a base
class of policies, which is oracle-efficient and provably achieves no-regret with respect to the worst
approximate-max-following policy and therefore the base class of policies itself. We provide a lower
bound on β and experimentally validate our results. In future work, we would hope to remove
the enumeration based approach to our current online-learning assumption and instead focus on
broader value function classes. Moreover, it would be interested in considering other active/adaptive
exploration-based algorithms. Finally, if we restricted ourselves to the setting of Smoothed Online
Learning Block et al. [2022], it would be interesting to further explore implementations of no-regret
learning algorithms like Follow the Perturbed Leader (FTPL), which make use of a regression oracle.

7

Acknowledgments and Disclosure of Funding

Omitted for blind review.

References
André Barreto, Shaobo Hou, Diana Borsa, David Silver, and Doina Precup. Fast reinforcement

learning with generalized policy updates. Proceedings of the National Academy of Sciences, 117
(48):30079–30087, 2020.

Adam Block, Yuval Dagan, Noah Golowich, and Alexander Rakhlin. Smoothed online learning is as
easy as statistical learning. In Conference on Learning Theory, pages 1716–1786. PMLR, 2022.

Nataly Brukhim, Elad Hazan, and Karan Singh. A boosting approach to reinforcement learning.
Advances in Neural Information Processing Systems, 35:33806–33817, 2022.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university
press, 2006.

Ching-An Cheng, Andrey Kolobov, and Alekh Agarwal. Policy improvement from multiple experts.
arXiv preprint arXiv:2007.00795, 2020.

Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
Wang. Bilinear classes: A structural framework for provable generalization in RL. International
Conference on Machine Learning, 2021.

Marcel Hussing, Michael Kearns, Aaron Roth, Sikata B Sengupta, and Jessica Sorrell. Oracle-efficient
reinforcement learning for max value ensembles. Advances in Neural Information Processing
Systems, 37:117657–117681, 2024.

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John Langford, and Robert E Schapire. Contex-
tual decision processes with low Bellman rank are PAC-learnable. In International Conference on
Machine Learning, pages 1704–1713, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement
learning with linear function approximation. In Conference on Learning Theory, pages 2137–2143,
2020.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of RL
problems, and sample-efficient algorithms. Neural Information Processing Systems, 2021.

Daniel Kane, Sihan Liu, Shachar Lovett, and Gaurav Mahajan. Computational-statistical gap in
reinforcement learning. In Conference on Learning Theory, pages 1282–1302. PMLR, 2022.

Alexander Korotin, Vladimir V’yugin, and Evgeny Burnaev. Mixability of integral losses: A key to
efficient online aggregation of functional and probabilistic forecasts. Pattern Recognition, 120:
108175, 2021.

Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Sunrise: A simple unified
framework for ensemble learning in deep reinforcement learning. In International Conference on
Machine Learning, pages 6131–6141. PMLR, 2021.

Haolin Liu, Zak Mhammedi, Chen-Yu Wei, and Julian Zimmert. Beating adversarial low-rank mdps
with unknown transition and bandit feedback. Advances in Neural Information Processing Systems,
37:134645–134700, 2024.

Xuefeng Liu, Takuma Yoneda, Chaoqi Wang, Matthew Walter, and Yuxin Chen. Active policy
improvement from multiple black-box oracles. In International Conference on Machine Learning,
pages 22320–22337. PMLR, 2023.

Teodor V Marinov, Alekh Agarwal, and Mircea Trofin. Offline imitation learning from multiple
baselines with applications to compiler optimization. arXiv preprint arXiv:2403.19462, 2024.

8

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. The power of resets in online reinforce-
ment learning. arXiv preprint arXiv:2404.15417, 2024.

Benjamin Recht. A tour of reinforcement learning: The view from continuous control. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1):253–279, 2019.

Ayush Sekhari, Karthik Sridharan, Wen Sun, and Runzhe Wu. Contextual bandits and imitation
learning with preference-based active queries. Advances in Neural Information Processing Systems,
36:11261–11295, 2023.

Vladimir Vovk. Aggregating strategies. Proc. of Computational Learning Theory, 1990, 1990.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. In International Conference on Learning Representations, 2018.

Tengyang Xie, Dylan J Foster, Yu Bai, Nan Jiang, and Sham M Kakade. The role of coverage in online
reinforcement learning. In The Eleventh International Conference on Learning Representations,
2023.

9

A Upper Bound Proof

Theorem A.1 (AMI No-Regret). Let εexp be an exploration probability parameter and β correspond
to the approximate-max following policy class parameter. For any sequence of initial states {x(t)1 }Tt=1
chosen by the adversary, Algorithm 1 obtains regret bounded by:

RegT =
T

∑
t=1
(inf
π∈ΠBench(β)

V π(x(t)1) − V π̃(t)(x(t)1)) ≤HTεexp +
1

η

H5K2

β2εexp
log ∣V ∣

Tuning εexp gives us regret that is O(
√
T /β) or more specifically O(H

3K
√

T log ∣V ∣
β

).

Proof. Now, for (h,π) ∈ [H] ×ΠBase, let’s define ℓ(t)h,π ∶ V → R as

ℓ(t)h,π(V) ∶= E
π̂(t)○hπ

⎡⎢⎢⎢⎢⎣
(V (xh) −

H

∑
ℓ=h

rℓ)
2

∣ x1 = x(t)1
⎤⎥⎥⎥⎥⎦
,

and note for the random losses defined ℓ̂(t)h,π in Algorithm 1 (see (2) and Line 10), we have for all
(h,π) ∈ [H] ×ΠBase and V ∈ V:

E[ℓ̂(t)h,π(V) ∣ x1 = x(t)1 ,Gt−1] =
εexp
KH

⋅ ℓ(t)h,π(V), (3)

where Gt−1 is the σ-algebra induced by all the random variables in Algorithm 1 in iterations 1 to t− 1.
Thus, using (3) (with V = V̂ (t)

h,π), instantiating the online regret bound in (1) with ℓ̂(t)h,π = ℓ̂
(t)

h,π, and
applying Freedman’s inequality, we get that with high probability

H4K2 log ∣V ∣
ηεexp

≥
T

∑
t=1

H

∑
h=1

∑
π∈ΠBase

Eπ̂(t)○hπ
⎡⎢⎢⎢⎢⎣
(V̂ (t)

h,π(xh) −
H

∑
ℓ=h

rℓ)
2

− (
H

∑
ℓ=h

rℓ − V π
h (xh))

2

∣ x1 = x(t)1
⎤⎥⎥⎥⎥⎦
,

=
T

∑
t=1

H

∑
h=1

∑
π∈ΠBase

Eπ̂(t) [(V̂ (t)

h,π(xh) − V π
h (xh))

2
∣ x1 = x(t)1] . (4)

where εexp is the probability of exploration as in Algorithm 1.

The performance difference lemma. Fix β > 0 and define π(t)h,⋆ to be the policy satisfying for all
x ∈ X :

π(t)h,⋆(⋅ ∣ x) ∶= π
(t)

h,x(⋅ ∣ x),

where

π(t)h,x = {
argmaxπ∈ΠBase

V̂ (t)

h,π(x), if maxπ∈ΠBase ∣V̂ (t)

h,π(x) − V π
h (x)∣ ≤ β;

πh,⋆(⋅ ∣ x), otherwise,

where π⋆ is the max-following policy. We note that π(t)h,⋆ is in ΠBench(β) (this is the same benchmark
policy class as in the max-following paper).

Let π̃(t) = (1 − εexp) ⋅ π̂(t) + εexp
H ∑

H
h=1 π̂

(t) ○h π(t) denote the policy mixture executed at iteration t of
Algorithm 1. By the performance difference lemma, we have that for all t ∈ [T]:

V π
(t)
h,⋆(x(t)1) − V π̃(t)(x(t)1) ≤ (V

π
(t)
h,⋆(x(t)1) − V π̂(t)(x(t)1)) +Hεexp,

≤Hεexp +
H

∑
h=1

Eπ̂(t) [Qπ
(t)
⋆

h (xh, π
(t)

h,⋆(xh)) −Qπ
(t)
⋆

h (xh, π̂
(t)

h (xh)) ∣ x1 = x(t)1] ,

≤Hεexp +H
H

∑
h=1

Pπ̂(t) [max
π∈ΠBase

∣V̂ (t)

h,π(xh) − V π
h (xh)∣ > β ∣ x1 = x(t)1] ,

10

≤Hεexp +
H

β2

H

∑
h=1

∑
π∈ΠBase

Eπ̂(t) [(V̂ (t)

h,π(xh) − V π
h (xh))

2
∣ x1 = x(t)1] .

Summing this over t = 1, . . . , T , and using (4), we get

T

∑
t=1
(inf
π∈ΠBench(β)

V π(x(t)1) − V π̃(t)(x(t)1)) ≤
T

∑
t=1
(V π

(t)
h,⋆(x(t)1) − V π̃(t)(x(t)1)) ≤HTεexp +

1

η

H3K2

β2εexp
H2 log ∣V ∣.

Tuning εexp ∝ β−1T −1/2, gives us a O(T 1/2/β) regret bound.

B Lower Bound Proofs

B.1 The tree construction

Consider the following family of MDPs with H layers. Each MDP is a tree where each node of the
tree has K children. The transition from each state x(t)h,i to its children x(t)h+1,j is deterministic and each
of the K policies in ΠBase plays an action that transitions to a different state. We are going to assume
that the K + 1-st baseline policy always transitions to an absorbing state for all layers h <H with 0
reward. We now define a single MDP instance from the family of instances. We always assume that
at each x(t)h,i it holds that for all i, j ∈ [K] with i ≠ j πi(x(t)h,s) ≠ πj(x(t)h,s),∀h, s. Further, as stated
above, we have that if P(x(t)h+i,s′ ∣πi(x(t)h,s), x

(t)

h,s) = 1 then P(x(t)h+i,s′ ∣πj(x(t)h,s), x
(t)

h,s) = 0 and further
there exists a single x(t)h+i,s′ for each πi, x

(t)

h,s pair for which it holds P(x(t)h+i,s′ ∣πi(x(t)h,s), x
(t)

h,s) = 1.

We define an instance of the class of MDPs as follows. By definition of the MDP class each πi

follows a single trajectory throughout the tree. Let ρ(t) ∶ [K] × X → KH be the function which
maps policy πi to the index of the leaf that is the end of the trajectory for πi starting from state x.
That is xH,ρ(πi,x) is the state to which πi transitions after starting at x. The instance construction
begins by sampling a policy π(t)1 is chosen uniformly at random from the [K] baseline policies. The
reward of r(x(t)

H,ρ(π(t)1 ,x
(t)
1,1)

, π(t)1 (x
(t)

H,ρ(π(t)1 ,x
(t)
1,1)
)) is then sampled from a Bernoulli r.v. with mean

1
2
+ β and the remaining rewards on the trajectory of π(t)1 are set to 0 so that V π

(t)
1 (x(t)1,1) = 1

2
+ β.

WLOG assume that π(t)1 transitions to state x(t)2,1 at the second layer. Sample a policy π(t)2 uniformly
at random from [K] ∖ {π(t)1 } and sample the reward of r(x(t)

H,ρ(π(t)2 ,x
(t)
2,1)

, π(t)2 (x
(t)

H,ρ(π(t)2 ,x
(t)
2,1)
)) from

a Bernoulli r.v. with mean 1
2
+ 2β, the remaining rewards on the trajectory are set to 0 so that

V π
(t)
2 (x(t)2,1) = 1

2
+ 2β. The construction continues in a similar way where at layer h we have

V π
(t)
h (x(t)h,1) =

1
2
+ hβ for π(t)h sampled uniformly at random from [K] ∖ {π(t)h−1}. Note that this

construction allows for π(t)1 = π(t)h , h ≠ 2. Finally, at state x(t)H,1 we set the reward of πK+1 to be
Ber(3/4), that is r(π(t)H (x

(t)

H,1), x
(t)

H,1) ∼ Ber(34). In summary, with the indexing that we have adopted
above

r(x(t)
H,ρ(π(t)

h
,x
(t)
h,1
)
, π(t)h (x

(t)

H,ρ(π(t)
h

,x
(t)
h,1
)
)) ∼ Ber(1

2
+ hβ)

r(π(t)H (x
(t)

H,1), x
(t)

H,1) ∼ Ber(
3

4
).

The rewards of all other leaves are sampled from Ber(1
2
), that is, r(a, xH,i) ∼ Ber(12) for all other

actions a. Finally, all other rewards are set to 0.

To receive the maximum reward, a max-following policy has to learn to distinguish the value function
of π(t)h at x(t)h,1 at all h ∈H from that of π(t)h−1 which roughly requires Θ̃(1/β2) samples. Furthermore,
depending unless the player observes a reward from one of the Ber(1

2
+ hβ) distributions or a reward

of 1 from playing πK+1 at x(t)H,1, the player receives no information to distinguish from an MDP with
the same transition dynamics but with all leaf rewards sampled from Ber(1

2
). Observing a reward

11

from Ber(1
2
+hβ), roughly reveals information about the value of all policies π(t)1 , . . . , π(t)h , however,

unless the player has already learned the value functions of π(t)1 , . . . , π(t)h−j for some j = O(1), then it
is highly unlikely that the player can play according to policies π(t)h−j , . . . , π

(t)

h . In particular, because
the player has no information about the value functions, they can not distinguish from the MDP with
uniform rewards and the best they can do is play uniformly at random for j layers. This in turn
implies that they only guess the correct path up to π(t)h w.p. at most (1

K−1)
j
.

To make the above formal we proceed with a standard information-theoretic argument. Let E denote
the environment of the sampled MDP above and let E ′ be the environment with all leaf rewards
sampled according to Ber(1

2
). Let PE and PE ′ be the induced measures of composing the environment

with the agent’s algorithm for T rounds.

B.2 KL Upper Bound

Lemma B.1. For any game with T rounds and agent’s strategy it holds that

KL(PE ′ ∣∣PE) ≤
10Tβ2

(K − 1) log(K − 1) .

Proof. Let πh,t be the base policy selected by algorithm at layer h of the MDP during the t-th round
of the game. We have

PE (rH,t, πH,t, x
(t)

H , . . . , π1,t, x
(t)

1 , rH,t−1, πH,t−1, x
(t−1)

H , . . . , π1,1, x
(1)

1)
=Πt

s=1PE (rH,t∣πH,t, x
(t)

H , . . . , π1,t, x
(t)

1)PE (πH,t, x
(t)

H , . . . , π1,t, x
(t)

1 ∣rH,t−1, πH,t−1, x
(t−1)

H , . . . , π1,1, x
(1)

1) .

We unpack PE (rH,t∣πH,t, x
(t)

H , . . . , π1,t, x
(t)

1) which is a Bernoulli r.v. First, because transitions
are deterministic we have PE (rH,t∣πH,t, x

(t)

H , . . . , π1,t, x
(t)

1) = PE (rH,t∣πH,t, πH−1,t, . . . , π1,t, x
(t)

1).
Next, let xh,t be the first layer at which it holds that πh,t ≠ π(t)h , that is the agent does not play the
max-value policy. If it also holds that πh,t ≠ π(t)h−1 we have PE (rH,t∣πH,t, πH−1,t, . . . , π1,t, x

(t)

1) =
Ber(1

2
). If at all remaining states in the trajectory it holds that πh′,t = π(t)h−1, h

′ ≥ h − 1,
then PE (rH,t∣πH,t, πH−1,t, . . . , π1,t, x

(t)

1) = Ber(1
2
+ (h − 1)β), otherwise again it holds that

PE (rH,t∣πH,t, πH−1,t, . . . , π1,t, x
(t)

1) = Ber(12). Finally, if the agent plays π(t)h , h ≤H − 1 and πK+1
at x(t)H then the reward is just equal to 1. We denote the event πh′,t = π(t)h′ , h

′ ≤ h,πh′,t = π(t)h , h′ > h
by A(t)h and let A(t)0 = (⋃H

h=1A(t)h)
∁

, A(t)H+1 = {πh,t = π(t)h , h ≤ H − 1, πH,t = πK+1}. The above
decomposition of PE (rH,t∣πH,t, x

(t)

H , . . . , π1,t, x
(t)

1) can be summarized as

PE (rH,t∣πH,t, x
(t)

H , . . . , π1,t, x
(t)

1) =
H

∑
h=0

I(A(t)h)Ber(
1

2
+ hβ) + I(A(t)H+1)Ber(

3

4
) . (5)

Further, we have the following identity under E ′, since π(t)h is chosen uniformly at random from K −1
policies at every layer, independently of previous rounds

PE ′(A(t)h ∣rH,t−1, πH,t−1, x
(t−1)

H , . . . , π1,1, x
(1)

1) ≤ (
1

K − 1)
h

. (6)

Equation 5 and Equation 6 allow us to bound the KL-divergence between PE and PE ′ as

KL(PE ′ ∣∣PE) ≤
T

∑
t=1

EE ′
⎡⎢⎢⎢⎢⎣

H

∑
h=0

I(A(t)h)KL(Ber(1
2
) ∣∣Ber(1

2
+ hβ))

+ I(A(t)H+1)KL(Ber(1
2
) ∣∣Ber(3

4
))
⎤⎥⎥⎥⎥⎦

≤
T

∑
t=1

H

∑
h=1

3h2β2

(K − 1)h +
1

(K − 1)H ≤
T

∑
t=1

10β2

(K − 1) log(K − 1) .

12

B.3 β Lower Bound

Theorem B.1. Any algorithm competing against any policy ΠBench(β) has expected minimum regret
of at least Ω(K log(K)

β2) for β ≤ 1
8H
∧ 1

10
.

Proof. Under the event (A(t)H+1)∁ the agent incurs regret at least 1
4
−Hβ. We consider the following

modified game in which the agent incurs 0 regret for any round T ′ ≥ (K−1) log(K−1)
20β2 . The regret

of the agent in this game is no larger compared to the original game for any strategy of the player.
Pinsker’s inequality implies that

PE(A(t)H+1) ≤ PE ′(A
(t)

H+1) +
¿
ÁÁÀ 5T ′β2

(K − 1) log(K − 1) ≤
1

(K − 1)H +
1

2
≤ 3

4
.

And so for the first T ′ rounds the expected regret incurred by the agent strategy is at least

T ′

∑
t=1

EE ′[I ((A(t)H+1)∁)]
8

≥ T ′

32
≥ Ω(K log(K)

β2
) .

We note that the above lower bound can be tightened to Ω(HK log(K)/β2) by slightly extending
the construction to replace each leaf of the MDP by length H paths with a single state and transition
with a Bernoulli reward corresponding to the reward of the leaf in the current construction. This will
increase the variance of the value functions from O(1) to Ω(H) and decrease the KL-divergence in
Lemma B.1 by H . Further, we note that the above construction does not really use the adversarial
nature of the setting and applies to the stochastic setting as long as we allow MDPs with Ω(KH+1)
states and in particular will apply to the setting of Hussing et al. [2024]. There is, however, still a gap
between the sample complexity implied by the lower bound, i.e., Ω̃(K/β2) and that achieved by the
max-following algorithm in Hussing et al. [2024] which (ignoring all other terms) is Õ(K/β3).

C Experiments

Notice that the MaxIteration algorithm learns an approximate-max-following policy using O(HK)
oracle calls, so during the evaluation over T episodes, we are utilizing the learned approximate
max-following policy. In contrast, for AMI, the learner is updating its policy over episodes, which
is tracked with index t. We track the weight evolution of the time step h = 0 and π0 policy because
we want to ensure over time that it learns V π0

0 . Finally, we provide a chart plotting the cumulative
returns across all episodes for all of the policies. This plot provides similar information to that of the
cumulative regret plots, but we provide it for additional visual clarity on the relative performance of
the policies. We will denote the error parameter ϵ in Hussing et al. [2024] as ξ to avoid confusion with
our exploration parameter. ξ is the parameter governing the competitiveness of the policy outputted
from MaxIteration to the approximate max-following policy class and base class of policies. That
is, the regret is shown to be within ξ of the worst approximate max-following policy and within
ξ of the best policy from the base class. α is the regression oracle accuracy governing how the
tolerance of squared error we have from the oracle outputting estimated value-functions of the base
class. Since MaxIteration is an oracle-efficient algorithm making O(HK) oracle queries, their
sample complexity translates into the number of samples needed per oracle call (which depends on
the α chosen) multiplied by HK for each oracle call. Then, if we were to select all the optimized
quantities for (β and α are set from Hussing et al. [2024]) our parameters we would have β ∈ Θ(ξ

H
)

and α ∈ Θ(ξ3

KH4) and Ntraj ∝ 1
α

to simulate the regression oracle assumption in the algorithm
MaxIteration. As one form of comparison, we might evaluate AMI for T ∝HKNtraj based upon

Hussing et al. [2024] and then set our ϵexp = H2K
√

log(∣V ∣)
β
√
ηT

. Note that if we were to run our algorithm
for significantly longer, i.e. if we choose to set our target average regret to be say O(ξ), our algorithm
may outperform MaxIteration (compare Figure 2 and Figure 3 or Figure 4 and Figure 5) , however
our number of episodes T also would become large very quickly making it more time-consuming
in practice. Therefore, we choose to compare performance over a range of values of β between
AdversarialMaxIteration and MaxIteration and try to compare with a slightly longer number of
episodes for that same β.

13

(a) Cumulative Regret of Algorithm
vs. Base Experts

(b) Weight Evolution of Value
Function for h = 0, π0

(c) Bar Chart of Cumulative
Rewards

Figure 5: Linear Quadratic Regulator Experiments for β = 4
25

with 100 times longer T than Figure 4

14

	Introduction
	Related Work
	Background
	Algorithm: Behavior Cloning
	Theoretical Results
	Lower bound

	Experiments
	Conclusion and Future Work
	Upper Bound Proof
	Lower Bound Proofs
	The tree construction
	KL Upper Bound
	 Lower Bound

	Experiments

