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ABSTRACT

Playing text-based games requires language understanding and sequential deci-
sion making. The objective of a reinforcement learning agent is to behave so as
to maximise the sum of a suitable scalar reward function. In contrast to current
RL methods, humans are able to learn new skills with little or no reward by using
various forms of intrinsic motivation. We propose a goal randomization method
that leverages human intelligence to use random basic goals to train a policy in
the absence of the reward of environments. Specifically, through simple but ef-
fective goal generation, our method learns to continuously propose challenging –
yet temporal and achievable – goals that allow the agent to learn general skills for
acting in a new environment, independent of the task to be solved. In a variety of
text-based games, we show that this simple method results in competitive perfor-
mance for agents. We also show that our method can learn policies that generalize
across different text-based games. In further, we demonstrate an interesting result
that our method works better than one of state-of-the-art agents GATA, which uses
environment rewards for some text-based games.

1 INTRODUCTION

Text-based games are complex, interactive simulations in which the game state is described with
text and players act using simple text commands (e.g., take sandwich from table, eat sandwich, open
door, etc.) (Côté et al., 2018). They serve as a proxy for studying how agents can exploit language
to comprehend and interact with the environment. Text-based games are a useful challenge in the
pursuit of intelligent agents that communicate with humans (e.g., in customer service systems).
Inspired by this, one of the long term goals in AI is to build agents that can learn to accomplish
tasks with language. In the domain of text-based games, the key challenge is to decipher the long
textual observations, extract reward cues from them, and generate semantically rich representations
such that the policy learned on top of it is well informed. Most of the existing works learn to model
text representations during the RL training (Hausknecht et al., 2020; Ammanabrolu & Hausknecht,
2020). Some works also study generalizability of games with different difficulty levels or layouts
(Ammanabrolu & Riedl, 2019a; Adolphs & Hofmann, 2020). Deep reinforcement learning (RL) has
been demonstrated to effectively learn to solve reward-driven problems in various tasks (Mnih et al.,
2013; Silver et al., 2016; Schulman et al., 2017). In contrast, humans are able to learn new skills
with little or no reward by using various forms of intrinsic motivation.

Playing text-based games without a reward function is an exceedingly challenging problem. We
consider the setting where reward functions are unknown, so we want to learn an agent that can
drive itself without environmental rewards. Learning agents without reward has several practical
applications (Eysenbach et al., 2018). Environments with sparse rewards effectively have no reward
until the agent randomly reaches a goal state. Learning intelligent agents without supervision may
help address challenges in exploration in these environments (Gupta et al., 2018; Sharma et al.,
2019). In many practical settings, interacting with the environment is essentially free, but evaluating
the reward requires human feedback (Christiano et al., 2017). However, there is no work on playing
text-based games without reward functions. Solving such kinds of non-reward tasks can encourage
agents to explore, experiment, and invent. Sometimes, as in many games and fantasies, without any
direct link to reality or to any source of extrinsic reward, it is crucial to enable learning in real-world
environments, even for humans (Schulz, 2012).
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In this paper, we take a step towards agents that can learn from text-based games without reward
functions. The environments are designed to mimic some real-world scenarios where there are no
reward cues for guiding agents. The goal is for an agent to be able to learn one policy that is able
to solve both tasks it was trained on as well as a variety of unseen tasks which contain similar tasks
as the training tasks. To do this, we propose a new method for learning an agent with deep RL
in the absence of any rewards. We use a set of available goals characterized by natural language
via common-sense rules, and select one of them according to the current knowledge graph based
observation. Then, we learn policies for goal-conditioned reinforcement learning. Specifically, our
method works as follows. Whenever an agent builds a knowledge graph of the textural world, our
method gives a goal in natural language to the agent based on the knowledge graph. The agent takes
the goal to form a new experience with a corresponding intrinsic reward, alleviating the no reward
problem. For example, our method can describe what the agent has achieved in the episode, and the
agent can use goals as advice to obtain intrinsic rewards. In addition, our method also provides a
time limit for a goal. If the agent can not accomplish the goal in the time limit, it can use a new goal
replacing the old one. The agent can have the opportunity to get out of the difficult goals. We show
many benefits brought by language goal representation when combined with goal advice. The agent
can efficiently solve reinforcement learning problems in challenging text-based environments; it can
generalize to unseen instructions, and even generalize to instruction with unseen lexicons.

Our method can be viewed as the intrinsic motivation of any agent trained with policy gradient-
based methods (Oudeyer & Kaplan, 2009; Barto, 2013). Most intrinsic methods design intrinsic
motivations to assist environmental rewards to make agents learn efficiently. However, our method
is to use the intrinsic motivation to play text-based games without environmental rewards. Under
this view, we also need to encode the intrinsic motivation into the policy. That is, the original policy
network becomes a goal-conditional policy; the goal advice can then be seen as a “bolt-on” to the
original policy network. Because we use natural language for self-advice. It is flexible and can be
used on a variety of RL training model architectures and training settings by encoding the intrinsic
motivation.

In summary, we make the following contributions: (i) we first study the problem of playing text-
based games without any reward functions and propose a new goal randomization method for solv-
ing the problem;1 (ii) we show, through common-sense knowledge, that agents trained with goal
randomization gradually learn to interact with the environment and solve tasks which are difficult
for state-of-the-art methods; (iii) we perform an extensive qualitative analysis and ablation study,
and we also find an interesting result that our method works better than one of state-of-the-art agents
GATA (Adhikari et al., 2020), which uses environment rewards, for some text-based games.

2 RELATED WORK

Reinforcement learning for text-based games. Existing agents either perform based on predefined
rules or learn to make responses by interacting with the environment. Rule-based agents (Atkin-
son et al., 2019; Fulda et al., 2017; Hausknecht et al., 2019; Kostka et al., 2017) attempt to solve
text-based games by injecting heuristics. They are thus not flexible since a huge amount of prior
knowledge is required to design rules (Hausknecht et al., 2020). Learning-based agents (Adolphs
& Hofmann, 2020; Hausknecht et al., 2020; He et al., 2016; Jain et al., 2020; Narasimhan et al.,
2015; Yin & May, 2019; Yuan et al., 2018; Zahavy et al., 2018) usually employ deep reinforce-
ment learning algorithms to deliver adaptive game solving strategies. KG-based agents have been
developed to enhance the performance of learning-based agents with the assistance of KGs. KGs
can be constructed by simple rules so that it substantially reduces the amount of prior knowledge
required by rule-based agents. While KGs have been leveraged to handle partial observability (Am-
manabrolu & Hausknecht, 2020; Ammanabrolu & Riedl, 2019a; Zelinka et al., 2019), reduce action
space (Ammanabrolu & Hausknecht, 2020; Ammanabrolu & Riedl, 2019a), and improve generaliz-
ability (Adhikari et al., 2020; Ammanabrolu & Riedl, 2019b). Recently, Murugesan et al. (2020)
tried to introduce commonsense reasoning for playing synthetic games. While these works all fol-
low the standard setting with reward functions, our work is the first work that trains an agent without
reward functions.

1Code can be found here: https://anonymous.4open.science/r/goalrand-E167/
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Intrinsic motivation for reinforcement learning. Intrinsic motivation has been widely used in
reinforcement learning (Oudeyer et al., 2007; Oudeyer & Kaplan, 2009; Barto, 2013). It has been
proven effective for solving various hard-exploration tasks (Bellemare et al., 2016; Pathak et al.,
2017; Burda et al., 2018b). One prominent formulation is the use of novelty, which in its simplest
form can be estimated with state visitation counts (Strehl & Littman, 2008) and has been extended to
high-dimensional state spaces (Bellemare et al., 2016; Burda et al., 2018b; Ostrovski et al., 2017).
Other sophisticated versions of curiosity (Schmidhuber, 1991) guide the agent to learn about en-
vironment dynamics by encouraging it to take actions that reduce the agent’s uncertainty (Stadie
et al., 2015; Burda et al., 2018b), have unpredictable consequences (Pathak et al., 2017; Burda
et al., 2018a), or a large impact on the environment (Raileanu & Rocktäschel, 2020). Other forms
of intrinsic motivation include empowerment (Klyubin et al., 2005) which encourages control of
the environment by the agent, and goal diversity (Pong et al., 2019) which encourages maximizing
the entropy of the goal distribution. Intrinsic goals are discovered from language supervision (Lair
et al., 2019). Except for exploration, intrinsic motivation is also used for other problems, such as
evolutionary (Singh et al., 2009; Sorg et al., 2010; Zheng et al., 2018). Most works use intrinsic
motivation as additive rewards for environmental rewards. Our work differs from those works by
formulating intrinsic motivation to train an agent directly for text-based games.

Generalization in text-based games. Generalization is a challenging problem for reinforcement
learning (Tobin et al., 2017; Agarwal et al., 2019). In text-based games, it is difficult to study gen-
eralization in games initially designed for human players (Hausknecht et al., 2020), as they are so
challenging that existing RL agents are still far from being able to solve a large proportion of them
even under the single game setting (Yao et al., 2020). Furthermore, these games usually have dif-
ferent themes, vocabularies and logics, making it hard to determine the domain gap (Ammanabrolu
& Riedl, 2019b). Compared with these man-made games, the synthetic games (Côté et al., 2018;
Urbanek et al., 2019) provide a more natural way to study generalization by generating multiple
similar games with customizable domain gaps (e.g., by varying game layouts). Generally, the train-
ing and testing game sets in previous works have either the same difficulty level (Ammanabrolu &
Riedl, 2019a; Murugesan et al., 2021), or a mixture of multiple levels (Adolphs & Hofmann, 2020;
Yin et al., 2020), or both (Adhikari et al., 2020). Our works can be used for generalization in games.
Moreover, our work does not use the reward functions of environments to train an agent.

3 PRELIMINARIES

Text-based games as POMDPs. Text-based games can be formally described as Partially
Observable Markov Decision Processes (POMDPs). POMDPs can be defined as a tuple
〈S,A,T ,R,Ω,O,γ〉: the state set S, the action set A, the state transition probabilities T , the re-
ward functionR, the observation set Ω, the conditional observation probabilitiesO and the discount
factor γ ∈ (0, 1]. At each time step, the agent will receive a textual observation ot ∈ Ω, depending
on the current state and previous action via the conditional observation probability O(ot|st,at−1).
By executing an action at ∈ A, the environment will transit into a new state based on the state tran-
sition probability T (st+1|st,at), and the agent will receive the reward rt+1 = R(st,at). Same as
Markov Decision Process (MDPs), the goal of the agent is to learn an optimal policy π∗ to maximize
the expected future discounted sum of rewards from each time step: Rt = E[

∑∞
k=0 γ

krt+k+1].

Knowledge graph for text-based games. Graph-based representations are effective for text-based
games because the state in these games adheres to a graph-like structure. The content in most
observations of the environment corresponds either to entity attributes or to relational information
about entities in the environment. Knowledge graph (KG) for a text-based game can be built from a
set of triplets 〈Subject , Relation , Object〉, denoting that the Subject has Relation with the Object .
For example, 〈Kitchen , Has , Food〉. The KG is denoted as G = (V,E), where V and E are the
node set and the edge set, respectively. Both Subject and Object belong to the node set V . Relation ,
which corresponds to the edge connecting them, belongs to E.

4 METHODOLOGY

4.1 PROBLEM STATEMENT

We aim to design an RL-based agent that is able to solve text-based games without reward func-
tions. We focus on man-made text-based games, which are initially designed for human play-
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ers (Hausknecht et al., 2020). These games are devised with more complex logic and much larger
action space than synthetic games (Côté et al., 2018). Most of them share similar themes and vocab-
ularies. There are no obvious goals for accomplishing games. There are also no rewards provided
by the text-based games or environments. At every step we construct an input st as the combi-
nation of three components: a textual observation ot,text and a KG ot,KG (note that here st should
not be regarded as a true game state as the games are not fully observable). ot,text further includes
the current state ot,desc (describing the environment), inventory ot,inv (describing items collected by
a player), game feedback ot,feed, and previous action taken at−1. While ot,text mainly reflects the
current observation, ot,KG records the game history. Therefore, the KG can help the agent to handle
partial observability. At each time step, the triples extracted from the current textual observation
ot,text are used to update the KG as ot,KG = GraphUpdate(ot−1,KG,ot,text).

We consider two scenarios for text-based games: seen levels, where the training and testing games
have the same levels, but different layouts, and unseen levels, where the training and testing games
are different in levels and layouts. Many games share similar themes and vocabularies, but vary
in their layouts and / or difficulty levels. For example, games of the cooking theme (Côté et al.,
2018) share the same overall objective: prepare the meal. The layout of a game contains the room
connectivity and the preparing steps (e.g., the type / location of ingredients). The difficulty of a game
depends on the complexity of the map (e.g., the number of rooms) and the recipe (e.g., the number of
ingredients), such that two games with different levels are naturally different in their layouts. More
examples are provided in Appendix A.

4.2 GOAL RANDOMIZATION

Text-based games use texts for describing what the player or agent needs to do to win the game. The
goal of the agent in the game is to complete some objective. Such textual information hints about
the objective/purpose of the game, what dangers are present, and provides clues that might become
handy later in the game for solving puzzles. However, without rewards, it becomes difficult for the
agent to learn to win a game and generalize to other environments. The agent must create intrinsic
motivation by itself to learn new skills in the textual world.

The purpose of goal randomization is to provide enough motivation variability at training time such
that at test time the agent is able to generalize to other environments. Goal randomization provides
a way to guide the agent to learn essential skills. With goal randomization, the agent can obtain
experiences and skills by accomplishing tasks with random goals. While a whole game may be dif-
ficult to accomplish due to long-term temporal dependency, decomposing it into a sketch of essential
skills or subtasks will make the game easier to be solved (Sohn et al., 2018; Shiarlis et al., 2018). If
we consider the solving strategy for a subtask as a skill, the generalizability for an unseen game will
also be improved by recomposing the learnt skills. We can characterize a subtask by a very basic
goal. In text-based games, we make the goal to be instruction-like textual descriptions (e.g., “find
purple potato”), yielding better flexibility and interpretability than using a state as the goal (Schaul
et al., 2015; Andrychowicz et al., 2017; Plappert et al., 2018).

Figure 1 shows the overview of our method, which consists of a goal set generator and a goal-
conditional policy. We denote the set containing all required goals for solving a game as G. Inspired
by (Jiang et al., 2019), the goal set generator can be implemented by different approaches, including
supervised language models and non-learning-based methods such as human supervisors and func-
tional programs. In our work, simply we use common-sense rules to obtain Gt, defined as follows:

• (I) if an ingredient i is not collected in the knowledge graph, then the goal is “find i”;

• (II) if an ingredient i is collected and has a requirement q in the knowledge graph, then the
goal is “q i”.

In the real world, the goal of some task can be complex and depend on other goals. However, these
generated goals are simple and basic for text-based games. On one hand, these goals are common
and shareable for different tasks and environments. On the other hand, these goals can be easily
described using a simple phrase or sentence. For example, “find an object”, “prepare something” or
“eat something”. The agent can learn some essential skills for finishing these tasks with basic and
simple goals. Common-sense rules or human instruction can provide a lot of such basic and simple
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... ...

Goal set generator

... ...

Goal set generator

...

find purple potato

slice red hot pepper

...

find red potato

Figure 1: The overview of our method. The observation ot is represented as a knowledge graph.
g shows an example of the set of available goals. At each time step t, the policy π receives the
observation ot, a goal gi, and selects an action at from the set of action candidates At. We also
consider the goal time limit ∆t, that the agent will be forced to re-sample a new goal if it fails to
accomplish the goal in ξ steps.

fundamental goals and make goals human-interpretable and consistent with existing games: e.g.,
food items can be combined, cooked, and eaten. More details are in Appendix B.

We train the agent by generating random goals during games. We randomize the following aspects
of the goals for the agent used during training: different types of goals and different objects. Lan-
guage can provide an abstract representation for a goal. This motivates our proposal to use natural
language for representing the goal space. Since we use language to represent goals, we can use nat-
ural language to represent different goals easily. Concretely, we can define a lot of goals according
to common-sense rules and knowledge. They are natural language descriptions of the goals. Then
we have a goal set G. With the goal set, we introduce a new objective for the agents:

θ∗ = arg min
θ
L(πθ; g), g ∼ G. (1)

We assume that the goal is also time-awareness. A goal is bounded by a time limit [0, ξ]. Thus there
is a time limit to reach a goal. If a goal is not finished in its time limit, we sample a new goal to
replace the old goal. It means during an episode, there may be more than one goal. One desirable
property is goal diversity (Pong et al., 2019; Raileanu & Rocktäschel, 2020; Campero et al., 2020).
In our implementation, we use uniform sampling that encourages such diversity. This sampling
strategy, along with the time limits of the goals, helps the agent avoid getting stuck in local minima.

Without any reward functions of environments, we design the following pseudo-reward:

r(st, at; gi) = fgi(st+1),where fgi : S → {0, 1}. (2)

The pseudo-reward is general for different tasks and environments because it just involves essential
goals. During goal randomization, we sequentially sample goals for each episode. Each goal is
delivered as a subtask for the agent to act throughout the episode. In each subtask that is time-
limited, the learning objective is to optimize the expectation of the return Gt:t+∆t.

4.3 MODEL ARCHITECTURE AND TRAINING

We use the goal-oriented reinforcement learning framework following (Schaul et al., 2015). We
augment the previously defined infinite-horizon, discounted POMDPs with a goal space G. A goal
g is chosen from G. The difference of our model is that g varies for each episode. The goal induces
a reward function rg : S × A → R, that assigns reward to a state conditioned on a given goal.
The policy π follows the goal-conditioned RL setting (Kaelbling, 1993), where at is selected by
considering both oKG

t and g. Figure 1 shows the architecture of π, which is constructed based on
both oKG

t and g. π has the graph encoder and text encoder to process game information.
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Algorithm 1 Goal Randomization (GoalRand)

Require: RL algorithm π, goal set G, replay buffer B
1: Initialize π
2: for episode = 1, 2, · · · ,M do
3: Sample an initial goal g from G
4: Set the time limit of g: ∆t = 0
5: for t = 0, · · · , T − 1 do
6: if ∆t = ξ or g is done then
7: Sample a new goal g from G
8: Set the time limit of g: ∆t = 0
9: end if

10: Sample action at ∼ π
11: Execute the action at and observe a new state st+1

12: Set the pseudo-reward reward rt according to (2)
13: Store the translation to B
14: ∆t = ∆t+ 1
15: end for
16: for t = 1, · · · , N do
17: Sample a minibatch B from the replay buffer B
18: Optimize π using the minibatch B
19: end for
20: end for

To integrate language representation of goals into the model, we design the architecture as follows.
The architecture consists of three modules. Similar to previous works (Adhikari et al., 2020), we
use a graph encoder to encode oKG

t as state representation st, and a text encoder to encode Gt as a
stack of goal representations. Arbitrary graph encoders and text encoders can be applied. We use
the graph encoder based on the Relational Graph Convolutional Networks (R-GCNs) (Schlichtkrull
et al., 2018) to take both nodes and edges into consideration. For the text encoder, a simple single-
block transformer (Vaswani et al., 2017) is sufficient as the goal candidates are short texts. As this
work does not aim at handling the combinatorial action space, we consider the admissible action set
At ⊆ A for each time step (He et al., 2016). We denote an action as “admissible” if it does not
lead to meaningless feedback (e.g., “Nothing happens”). The action scorer will pair st with each
candidate ai ∈ At, followed by linear layers to compute the action scores.

We name our method as GoalRand and detailed procedures are given in Algorithm 1. The goal
set updates during an episode. Experiences (or transitions) from the agent are collected at every
time step. In an episode, each goal g is randomly drawn and updated if the time limit of the goal
terminates. For the agent, at every time step, an action is drawn based on π with a goal. The model
parameters θ are periodically updated by drawing experiences from replay memories.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

We conduct experiments on multiple levels of cooking games (Côté et al., 2018). We consider two
scenarios for the experiments: (1) seen levels, where the training and testing games have the same
levels, but different layouts. (2) unseen levels, where the training and testing games are different in
levels and layouts. While previous work (Adhikari et al., 2020) considered either a single level, or
a mixture of 4 levels, we extend their setting to 8 levels. Based on the rl.0.1 game set2, we build a
training game set Dtrain with 4 levels, including 100 games per level. We build a validating game set
Dval with the same 4 levels ofDtrain, where each level contains 20 games. We build two testing game
sets: Dseen

test , and Dunseen
test , both of which contain 4 levels and 20 games per level. The levels within

Dseen
test have been seen inDtrain andDval, while there is no overlapping game. The levels withinDunseen

test
are unseen during training. Table 1 shows the game statistics averaged over each level, where “S#”
denotes a seen level and “US#” denotes an unseen level. We set the step limit of an episode as 50 for

2https://aka.ms/twkg/rl.0.1.zip
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Table 1: Game statistics. “#Ings” denotes the number of ingredients, “#Reqs” denotes the require-
ments, and “#Acts” denotes the admissible actions per time step.

Level #Triplets #Rooms #Objs #Ings #Reqs #Acts MaxScore
S1 21.44 1 17.09 1 1 11.54 4
S2 21.50 1 17.49 1 2 11.81 5
S3 46.09 9 34.15 1 0 7.25 3
S4 54.54 6 33.41 3 2 28.38 11

US1 19.85 1 16.01 1 0 7.98 3
US2 20.74 1 16.69 1 1 8.87 4
US3 33.04 6 24.81 1 0 7.61 3
US4 47.31 6 31.09 3 0 13.90 5

Table 2: The testing performance of models at the end of training.

Model S1 S2 S3 S4 Avg Seen
GoalRand (ours) 0.79±0.12 0.74±0.16 0.42±0.06 0.47±0.24 0.61±0.14
BeBold 0.25±0.01 0.32±0.02 0.13±0.01 0.13±0.05 0.21±0.01
Random 0.27±0.02 0.27±0.01 0.25±0.02 0.19±0.02 0.24±0.01
Model US1 US2 US3 US4 Avg Unseen
GoalRand (ours) 0.94±0.06 0.89±0.08 0.72±0.03 0.34±0.03 0.72±0.05
BeBold 0.33±0.00 0.42±0.02 0.12±0.01 0.18±0.04 0.26±0.02
Random 0.44±0.06 0.38±0.04 0.31±0.06 0.29±0.02 0.35±0.03

training and 100 for validation / testing. We train the models for 60,000 episodes. For every 1,000
episodes, we validate the model on Dval, and report the testing performance on Dseen

test and Dunseen
test .

5.2 BASELINES

As far as we know, there is no prior work on playing text-based games without reward functions. To
evaluate the performance of our algorithm, we consider constructing two baselines. One baseline is
a random agent and takes actions randomly. The other baseline is a reward-free version of BeBold
(Zhang et al., 2020). The intrinsic rewards are often used as additive rewards for environmental
rewards. For a fair comparison, all methods do not use environmental rewards. We evaluated the
following methods:

• Random: this is an agent that takes actions randomly. At each time step, the action to be
executed is uniformly sampled from available.

• BeBold (Zhang et al., 2020): it is one of the state-of-the-art methods using intrinsic re-
wards. It provides count-based reward rcount

t as intrinsic reward. It counts the visitation
of observations within an episode, and the accumulated visitation throughout the training
process, defined as:

rcount
t+1 = max(

1

Nacc(o
KG
t )
− 1

Nacc(o
KG
t+1)

, 0) · I{Nepi(o
KG
t+1) = 1}, (3)

where Nacc and Nepi denote the accumulated and episodic visitation count, respectively. The
I operation returns 1 if oKG

t+1 is visited for the first time in the current episode, otherwise 0.
• GoalRand (ours): this is our method that performs training with random basic goals. We

use ξ = 5 as the goal time limit. Without receiving true reward signals from environments,
we generate pseudo-reward for training agents to solve different tasks.

5.3 MAIN RESULTS

Table 2 shows the testing performance at the end of training, and Figure 2 shows testing performance
with respect to the training episodes. We use the normalized score, which is defined as the collected
score normalized by the maximum available score for this game (“MaxScore” in Table 1), to measure
the performance. The proposed GoalRand outperforms the baselines in both seen and unseen levels.
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Figure 2: The testing results on the games of seen and unseen levels with respect to the training
episodes. The dashed line denotes the random agent, which is non-learnable. The first row shows
the results on games in the seen levels. The second row shows the results on games in the unseen
levels. The third row shows the summary results for different methods. Our GoalRand significantly
outperforms the BeBold method and the random baseline.

Table 3: The testing performance of models at the end of training.

Model S1 S2 S3 S4 Avg Seen
GoalRand (ours) 0.79±0.12 0.74±0.16 0.42±0.06 0.47±0.24 0.61±0.14
GoalRand w/o Threshold 0.62±0.14 0.85±0.09 0.39±0.09 0.30±0.15 0.54±0.10
GATA 0.60±0.22 0.42±0.09 0.48±0.03 0.23±0.02 0.43±0.07
Model US1 US2 US3 US4 Avg Unseen
GoalRand (ours) 0.94±0.06 0.89±0.08 0.72±0.03 0.34±0.03 0.72±0.05
GoalRand w/o Threshold 0.93±0.06 0.89±0.06 0.59±0.10 0.38±0.11 0.69±0.07
GATA 0.64±0.19 0.47±0.09 0.62±0.10 0.30±0.05 0.51±0.07

It solves most of the simple levels (“S1”, “S2”) and completes 50% of the hard levels (“S3”, “S4”).
In the unseen levels, where both the layouts and complexities are different from those training games,
our method also achieves good performance. We also observed that only encouraging exploration is
not sufficient when the environment reward is not available: the BeBold baseline learns very slow,
and performs even worse than the non-learnable random agent.

5.4 ABLATION STUDY

We then conduct ablation studies to further investigate the contributions of GoalRand’s components.
We consider following variants:

• GoalRand w/o Threshold: our agent without the goal time limit. That is, the agent will
keep being conditioned a same goal until this goal is not available.
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Figure 3: The ablation results on the games of seen and unseen levels with respect to the training
episodes. The first row shows the results on games in the seen levels. The second row shows
the results on games in the unseen levels. The third row shows the summary results for different
methods. For most of the games, the results show that the goal time limit can contribute to the
performance and our method works better than GATA.

• GATA (Adhikari et al., 2020): we adopt the GATA agent, which utilizes the environment
reward for learning.

Table 3 shows the testing performance at the end of training, and Figure 3 shows testing perfor-
mance with respect to the training episodes. The results show that the goal time limit can contribute
to the performance, especially in more difficult levels such as “S4” and “US4” (“GoalRand” v.s.,
“GoalRand w/o Threshold”). In these levels, there are more available goals at each time step, the
agent will end up failing a game if it selects a too difficult goal and gets stuck in solving it. Setting a
time limit for the goal helps the agent to prevent such condition, as it can choose another goal if the
current goal is too hard to solve. In the simpler levels such as “S1” and “S2”, there may be fewer
available goals, therefore re-sampling a new goal might be less effective. Although the GATA agent
is provided with the environment reward, it shows worse performance in comparison to our agent.
One possible reason is that the agent may have difficulties in solving a whole game, which is with
long term dependency. Our goal randomization method helps the agent to effectively explore the
environment, and simplify a complex task as a set of easier-to-solve sub-goals.

6 CONCLUSION

In this paper, we present goal randomization, a method for playing text-based games without a
reward function. We show that the proposed goal randomization method via common-sense rules
can learn skills for complex tasks, often solving benchmark tasks with the learned skills without
actually receiving any environment rewards. The experiments demonstrate that our proposed method
can improve the generalization of the agent and works well for the games of the seen and unseen
levels. Interestingly, for some text-based games, the experiments show that the proposed method is
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better than one of state-of-the-art method GATA, which uses environment rewards, demonstrating
the superiority of our method.
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Nicolas Lair, Cédric Colas, Rémy Portelas, Jean-Michel Dussoux, Peter Ford Dominey, and Pierre-
Yves Oudeyer. Language grounding through social interactions and curiosity-driven multi-goal
learning. arXiv preprint arXiv:1911.03219, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing atari with deep reinforcement learning. In NIPS Deep Learn-
ing Workshop, 2013.

Keerthiram Murugesan, Mattia Atzeni, Pushkar Shukla, Mrinmaya Sachan, Pavan Kapanipathi, and
Kartik Talamadupula. Enhancing text-based reinforcement learning agents with commonsense
knowledge. arXiv preprint arXiv:2005.00811, 2020.

Keerthiram Murugesan, Mattia Atzeni, Pavan Kapanipathi, Pushkar Shukla, Sadhana Kumaravel,
Gerald Tesauro, Kartik Talamadupula, Mrinmaya Sachan, and Murray Campbell. Text-based rl
agents with commonsense knowledge: New challenges, environments and baselines. In Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI), volume 35, pp. 9018–9027, 2021.

Karthik Narasimhan, Tejas D Kulkarni, and Regina Barzilay. Language understanding for text-based
games using deep reinforcement learning. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pp. 1–11, 2015. doi: 10.18653/v1/D15-1001.
URL https://aclanthology.org/D15-1001.

11

https://doi.org/10.24963/ijcai.2017/144
https://aclanthology.org/P16-1153
https://aclanthology.org/D15-1001


Under review as a conference paper at ICLR 2022
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A EXAMPLES OF TEXT-BASED GAMES

Figure 4 visualizes the initial observation oKG
0 for four games, where “S1 Game1” and “S1 Game2”

belong to level “S1”, “S2 Game1” and “S2 Game2” belong to level “S2”. Figure 5 visualizes the
initial observation of two games belonging to level “S3”. Figure 6 visualizes the initial observation
of one game belonging to level “S4”. Games within the same level have the same complexity, but
are different in their layouts. For example, “S2 Game1” and “S2 Game2” have the same number
of rooms, number of ingredients and number of requirements, but the ingredient and requirement
are different. Similarly, “S3 Game1” and “S3 Game2” have the same number of rooms, but are
with different room connectivity. Games within different levels have different complexities, and
their layouts are naturally different (e.g., “S1 Game1” v.s., “S2 Game1” v.s., “S3 Game1” v.s., “S4
Game1”). The TextWorld also provides other game themes, such as the default House theme, the
Coin Collector theme and the Treasure Hunter theme. In these themes, the agent needs to go through
the rooms to find either the coin, or an object specified at the beginning of an episode. We believe
that the Cooking theme we use in this work is able to cover these themes, as it requires the agent to
navigate through different numbers of rooms, collect different numbers of ingredients, and prepare
them in different ways.

S1 Game1 S1 Game2

S2 Game1 S2 Game2

Figure 4: The initial observation of four games, where “S1 Game1” and “S1 Game2” belong to level
“S1”, “S2 Game1” and “S2 Game2” belong to level “S2”.
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S3 Game1

S3 Game2

Figure 5: The initial observation of two games belonging to level “S3”.

B GOAL SET GENERATOR

We design a simple non-learning-based goal set generator by exploiting the KG-based observation
in the cooking theme. Algorithm 2 shows the pipeline for obtaining the goal set Gt. We first obtain
the ingredient set I. For each ingredient i ∈ I, we first check whether it has been collected, then
obtain its status set Si and requirement set Ri. We consider three types of goals: 1) “find” requires
the agent to find and collect an uncollected ingredient, 2) “prepare” requires the agent to prepare
an ingredient to satisfy a requirement, and 3) “eat”, that the agent is required to prepare and eat
the final meal. Algorithm 3 shows the pipeline for assigning the goal-conditioned reward rgoal

t . We
first obtain the type of a goal g, then check whether this goal has been accomplished given at and
oKG
t+1. Some functions in Algorithm 2 can be reused here. rgoal

t is a binary reward that we will assign
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S4 Game1

Figure 6: The initial observation of one game belonging to level “S4”.

rgoal
t = rmax if g is accomplished successfully, otherwise rmin (still not finished, or failed). Algorithm

2 and Algorithm 3 can also be implemented via learning-based methods. For example, the functions
can be achieved by a QA model by answering specific questions.
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Algorithm 2 Goal set generation
Input: Knowledge graph oKG

t

Initialize: Goal set Gt ← ∅
1: Get ingredient set I ← GetIng(oKG

t )
2: for each ingredient i ∈ I do
3: if CheckCollection(i, oKG

t ) = False then
4: Add goal “find i” to Gt
5: else
6: Get status set Si ← GetStatus(i, oKG

t )
7: Get requirement setRi ← GetReq(i, oKG

t )
8: for each requirement ri ∈ Ri do
9: if ri /∈ Si then

10: Add goal “ri i” to Gt
11: end if
12: end for
13: end if
14: end for
15: if Gt = ∅ then
16: Add goal “prepare and eat meal” to Gt
17: end if
18: return Gt.

Algorithm 3 Goal-conditioned reward acquisition
Input: Knowledge graph oKG

t+1, goal g, rewards {rmin, rmax}
Initialize: FLAG← False
1: Obtain goal type gtype ← GetGoalType(g)
2: if gtype = “find” then
3: Get ingredient i from g
4: if CheckCollection(i, oKG

t+1) = True then
5: FLAG← True
6: end if
7: else if gtype = “prepare” then
8: Get ingredient i, requirement r from g
9: Get status set Si ← GetStatus(i, oKG

t+1)
10: if r ∈ Si then
11: FLAG← True
12: end if
13: else
14: if CheckExistance(“meal”, oKG

t+1) = True then
15: FLAG← True
16: end if
17: end if
18: if FLAG = True then
19: return rmax.
20: else
21: return rmin.
22: end if
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