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ABSTRACT

The growing ubiquity of relational data structured as graphs has underscored the
need for graph learning models with exceptional generalization capabilities. How-
ever, current approaches often struggle to effectively extract generalizable insights,
frequently requiring extensive fine-tuning and limiting their versatility. Graph
foundation models offer a transformative solution, with the potential to learn ro-
bust, generalizable representations from graph data. This enables more effective
and adaptable applications across a wide spectrum of tasks and domains. In this
work, we investigate a unified graph model, AnyGraph, designed to handle key
challenges: i) Structure Heterogenity. Addressing distribution shift in graph
structural information; ii) Feature Heterogenity. Handling diverse feature repre-
sentation spaces across graph datasets; iii) Fast Adaptation. Efficiently adapting
the model to new graph domains; iv) Scaling Law Emergence. Enabling the
model to exhibit scaling law behavior, where its performance scales favorably
with the amount of data and parameter sizes. To tackle these critical challenges,
we build the AnyGraph upon a Graph Mixture-of-Experts (MoE) architecture.
This approach empowers the model to effectively manage both the in-domain and
cross-domain distribution shift concerning structure-level and feature-level hetero-
geneity. Furthermore, a lightweight graph expert routing mechanism is proposed
to facilitate AnyGraph’s fast adaptability to new data and domains. Our extensive
experiments on diverse 38 graph datasets have demonstrated the strong zero-shot
learning performance of AnyGraph across diverse graph domains with significant
distribution shift. Furthermore, we have validated the model’s fast adaptation
ability and scaling law emergence, showcasing its versatility. We have anony-
mously released our open-sourced AnyGraph implementation at the following link:
https://anonymous.4open.science/r/AnyGraph-FECD.

1 INTRODUCTION

The growing ubiquity of relational data in the form of graphs has underscored the pressing need
for advanced graph learning models that excel at generalization (Fey et al., 2024; Jin et al., 2020).
As real-world applications of graph-structured data continue to proliferate across diverse domains,
including social networks, academic networks, transportation systems, and biological networks, the
ability of graph learning models to effectively handle distribution shifts and adapt to new graph
domains has become increasingly crucial (Zhang et al., 2023; Zhao et al., 2024; Mao et al., 2024).
Developing models with robust zero-shot learning performance and fast adaptation capabilities can
unlock transformative opportunities for leveraging the rich insights encoded within graph data.

The field of graph learning has seen significant advancements in recent years, largely driven by
the power of Graph Neural Networks (GNNs) (Liu et al., 2022; Xiao et al., 2021; Li et al., 2021).
However, the state-of-the-art models often fall short when it comes to truly generalizable performance.
Existing approaches are heavily reliant on arduous fine-tuning processes, making them ill-equipped to
handle the diverse array of graph structures and distributions encountered in real-world applications.
This inability to adapt swiftly and seamlessly to novel graph domains poses a critical barrier to the
widespread adoption of graph learning technologies. Therefore, addressing this challenge is of high
importance if we are to fully harness the transformative potential of graph-based insights.

Inspired by the principles that have driven the development of successful foundation models in
understanding vision and language data (Wang et al., 2022; 2023), the concept of a versatile graph
foundation model holds immense potential to unlock new frontiers in graph learning. By learning
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rich, transferable representations from diverse graph-structured data, such a model can be efficiently
adapted to a wide array of graph domains and tasks. However, building an effective and adaptive
graph foundation model is not a trivial endeavor. Several key challenges must be overcome, including:

(i) Structure Heterogeneity. The development of versatile graph models faces the challenge of
accommodating diverse structural properties and data distributions in various graph datasets. For
instance, graphs can exhibit substantial heterogeneity in node degree distributions, ranging from
homogeneous to highly skewed patterns. Similarly, graph structures can vary greatly in complexity,
from simple topologies to intricate, hierarchical arrangements. These structural variations can
significantly impact the performance and generalization of graph models. Effectively addressing this
heterogeneity is critical for developing unified models that can thrive across diverse graph data.

(ii) Feature Heterogeneity. Graphs exhibit substantial heterogeneity in their node and edge features,
which can span categorical attributes, continuous numerical data, and multi-modal content. Further-
more, the dimensionality and semantics of these features often vary dramatically across different
graph domains. For instance, a social interaction graph may include textual content and demographic
information associated with its nodes, while a molecular graph may feature atomic compositions and
bond types. Effectively handling this feature heterogeneity is crucial for building a versatile graph
model capable of generalizing across diverse graph domains.

(iii) Fast Adaptation for Broad Applicability. A key capability for graph foundation models is
the ability to efficiently adapt to new graph dataset and domains. Rather than requiring extensive
retraining or fine-tuning, the ideal model should be able to quickly adjust its parameters and learning
strategies to handle the structural and distributional characteristics of previously unseen graph datasets.
By seamlessly generalizing and performing well across a diverse range of real-world scenarios – from
user behavior graphs to transportation networks and biological systems – these adaptable models can
unlock transformative insights across an ever-expanding universe of graph-structured data.

(iv) Scaling Laws for Transformative Graph Capabilities. A key characteristic of successful
foundation models in domains like CV (Cherti et al., 2023) and NLP (Muennighoff et al., 2024) is
their ability to exhibit scaling laws - where performance systematically improves as the model size
or training dataset increases. By harnessing this emergent scaling phenomenon, graph foundation
models can unlock unprecedented levels of capability and generalization, far surpassing the limitations
of fixed-capacity architectures. As the size of graph datasets and model complexity grow, these
scaling-aware designs can continue delivering transformative performance gains.
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Figure 1: The zero-shot generalizability (left)
and scaling law (right) of AnyGraph model.

The Presented Work. To tackle the above chal-
lenges, our AnyGraph model is built upon a
Mixture-of-Experts (MoE) architecture, which al-
lows for effective handling of both the in-domain
and cross-domain distribution shift in structure-
level and feature-level. The proposed graph MoE
paradigm empowers AnyGraph to learn a diverse
ensemble of graph experts, each tailored to specific
structural characteristics. This enables the model
to effectively manage the distribution shift in graph
topologies.Furthermore, the MoE architecture facil-
itates fast adaptation of AnyGraph. Rather than relying on a single, fixed-capacity model, the Graph
MoE can efficiently tailor some of its expert networks to capture distinct characteristics of new graph
data. A lightweight graph expert routing mechanism also allows AnyGraph to quickly identify and
activate the most relevant experts for a given input graph, without requiring extensive retraining or
fine-tuning across the entire model. The key findings of this work can be summarized as follows:

• Methodology Design Motivations of AnyGraph. Current large graph models (Chen et al., 2024;
Liu et al., 2024; Li et al., 2024) often struggle when faced with the substantial heterogeneity
found in real-world graph data. This is especially challenging when it comes to feature-level
heterogeneity. These fixed-capacity models may encounter interference between different types of
graph datasets, and can sometimes overfit to new data, leading to catastrophic forgetting. To address
these challenges, the proposed graph MoE architecture was designed with a focus on adaptability.
This new paradigm empowers the model to flexibly adjust to the nuances of diverse graph datasets,
dynamically selecting the most appropriate experts to learn distinct patterns.
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• Stronger Gernealiation Capacities of AnyGraph. Through extensive experiments, AnyGraph
has demonstrated strong generalization capacities across a wide range of graph tasks and domains.
The experimental results showcase the AnyGraph’s ability to outperform existing graph models in
terms of both predictive performance and robustness to distribution shift.

• Fast Adapability of AnyGraph. Our innovative dynamic expert selection mechanism enhances
AnyGraph’s ability to swiftly adapt to new graph domains. By dynamically routing inputs through
relevant experts, AnyGraph can quickly activate the specialized networks best suited for the task.
This strong adaptation sets AnyGraph apart from baselines. Evaluation shows its superiority through
rapid convergence and exceptional performance, further justifying its cross-domain versatility.

• The Scaling Law of AnyGraph. Our experiments reveal that AnyGraph’s performance follows
the scaling law, where the model continues to improve as model size and training data increase.
Additionally, AnyGraph exhibits emergent abilities, where its generalization capabilities see sudden
significant improvements with further scaling. This critical scaling law property has been largely
overlooked in prior investigations, but it underscores the immense value that AnyGraph derives
from its scaling-driven enhancements to generalization performance.

2 PRELIMINARIES

Graph-Structured Data. A graph G consists of a set of nodes V = {vi} and a set of edges
E = {(vi, vj)}. In many cases, each node vi is associated with a feature vector fi ∈ Rd0 . To
efficiently utilize such graph-structured data, the link information is typically recorded using an
adjacency matrix A ∈ R|V|×|V|. Each element ai,j of A is either 1 or 0, inddicating whether there is
an edge from node vi to vj . Additionally, the feature vectors of the nodes are usually represented by
a feature matrix F ∈ R|V|×d0 , where each row corresponds to a node’s feature vector.

Graph Foundation Models (GFMs). The essence of GFMs lies in their strong generalization
capabilities. Specifically, a graph foundation model should be able to handle unseen graph data
that exhibits significant discrepancies from its training graph datasets. These discrepancies may
include differences in feature spaces, as well as variations in node and edge semantics across datasets.
Formally, let’s denote the training graphs as S = {Gs}, where each graph Gs is associated with a label
set Ys. Similarly, the set of test graphs is denoted as T = {Gt}, with labels Yt. With a differentiable
training objective L and an evaluation criterion C to measure the prediction accuracy of downstream
tasks, building a graph foundation model fΘ with trainable parameters Θ can be formalized as:

argmax
f,L

∑
Gt

C (fΘ(Gt),Yt) , Θ = argmin
Θ

∑
Gs

L (fΘ(Gs),Ys) (1)

The above formulation reveals that the key to building GFMs are: i) the model architecture design
(f ), which must have the capacity to encode diverse feature spaces and structural patterns, and ii)
the model training process (L), which must effectively traverse such diverse data to find an optimal
solution Θ for the model f . In light of this, our AnyGraph employs a mixture-of-experts architecture
with an automated expert routing method, to seamlessly integrate powerful prediction models for
highly diverse graph data. AnyGraph is extensively trained on graphs from various applications using
multiple featuring methods, with a graph augmentation technique to further enhance data diversity.

3 METHODOLOGY

AnyGraph aims to address graph heterogeneity in both structures and node features, while enabling
fast adaptation to new data. The proposed graph MoE paradigm enables AnyGraph to learn a diverse
ensemble of graph experts, each tailored to specific characteristics. The lightweight expert routing
mechanism allows AnyGraph to quickly identify and activate the most relevant experts for a given
input graph, without extensive retraining or fine-tuning. Its overall framework is depicted in Fig. 2.

3.1 MOE ARCHITECTURE OF ANYGRAPH

Addressing Cross-domain Graph Heterogeneity. To model heterogeneous graph patterns across
domains, AnyGraph employs a MoE architecture consisting of multiple graph expert models, each
responsible for handling graphs with specific characteristics. An automated routing algorithm is

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Ecom.Acad. Othrs.

… …

Expert Expert Expert

Routing     Mechanism

? ? ?

… …

MoE Architecture of AnyGraph

Structure & Feature Heterogeneity

Graph Expert Model Design

ℝ𝑁×𝑁

ℝ𝑁×𝑑

ℝ𝑁×𝑑0
Unify

ℝ𝑁×𝑑

1

𝑑𝑖𝑑𝑗

∑

𝑙 = 1
𝑙 = 2

High-order Feat. Encoder

①

② ③

Graph Experts Routing

Sample Edges

𝒢1 𝒢2

+ -
Positive

Negative
-

Expert1

2183 stps

Expert2

567 stps

Expert3

1860 stps

Frequency Regularization

… …

Cross-domain Training

𝒢1
′

𝒢1
′′

Augment

Edges
Initial
Embs

Training Steps

𝒢1

𝒢′8 𝒢′3 𝒢′6…

𝒢2
′

𝒢2
′′

Augment

Edges
Initial
Embs

𝒢2

Expert1 Expert2

Routed Experts

Figure 2: The overall model architecture of the proposed AnyGraph framework.

designed to assign input graph data to the most competent expert model for training and prediction.
Specifically, the AnyGraph framework can be denoted as M = (fΘ1 , fΘ2 , · · · , fΘK

, ψ), where K
denotes the number of experts. For an input graph G, the routing algorithm ψ firstly identifies the
most competent expert model, which is then used for predicting the graph data, as follows:

ŷi,j = ê⊤i êj , Ê = fΘk
(G), k = ψ(G) (2)

where each expert model fΘk
can be viewed as a projection from the graph space to a node embedding

space with uniquely trained parameters Θk. And ŷi,j represents the dot-product-based prediction of
whether the entity vi should be related to the entity vj . Here, vi and vj could be vanilla graph nodes,
class labels, or graph labels, enabling link prediction, and node/graph classification tasks.

Graph Expert Routing Mechanism. Inspired by the effectiveness of graph self-supervised learning
tasks Jin et al. (2022), we propose measuring the competence of expert models on specific graph
datasets using the models’ self-supervised learning loss values. Specifically, for an input graph
G = (V, E), the routing mechanism ψ calculates the dot-product-based relatedness scores for some
positive edges (vc1 , vp1), · · · , (vcS , vpS

) ∈ E and analogously calculates the relatedness scores for
some sampled negative node pairs (vc1 , vn1), · · · , (vcS , vnS

) /∈ E . The following score difference is
then calculated as the competence indicator φk for the k-th expert model regarding the input graph G:

φk =
1

S
·

S∑
s=1

σ(ê⊤cs êps
− ê⊤cs êns

) (3)

where σ(·) represents the sigmoid activation function, which constrains the competence score to
the range of (0, 1). This prevents the few outlier cases where the non-activated score difference is
excessively large or small, which could otherwise distort the results.

Training Frequency Regularization. Though being empirically accurate in measuring models’
competence using the above competence score, this method tends to result in a winner-takes-all
sub-optimal situation. In this scenario, a single model, or very few models, is predominantly selected
as the most competent expert and is used to handle almost all input graphs. These models generally
receive more or better training samples in the early training stages, giving them an advantage over
other experts. Consequently, subsequent training samples are also mostly assigned to them due to
their performance advantages, ultimately causing other experts to remain largely untrained.

This situation contradicts our motivation of using different expert models to learn different subsets of
graph modeling knowledge. To address this, we propose a training frequency regularization approach
that recalibrates the competence score as follows:

φ′
k = φk ·

(
(1− mk∑

k′ mk′
) · ρ+ 1.0− ρ

2

)
(4)

where φ′k represents the recalibrated routing score for the k-th expert model fΘk, based on the
number of previously assigned training steps mk for k = 1, · · · ,K. The notation ρ refers to a
hyperparameter for the recalibration scale. A larger ρ results in a greater adjustment to the competence
score φk. With this additional step, the expert routing mechanism will assign more training instances
to the less trained expert models, thereby preventing the aforementioned winner-takes-all situation.

Fast Adaptation Capabilities of AnyGraph. With the MoE architecture and routing mechanism,
the training and inference process of AnyGraph is conducted by only one expert model. This
approach consumes only 1/K of the computational and memory resources required for predictions
and optimization, compared to other non-MoE graph foundation models based on complex networks
like transformers. This enables fast adaptation for AnyGraph when encountering new data.
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3.2 ADAPTIVE AND EFFICIENT GRAPH EXPERTS

Addressing In-domain Graph Heterogeneity. To handle graph data with different adjacency
and feature dimensionalities, the expert models of our AnyGraph employ a structure and feature
unification process. Adjacency matrices and node features of varying sizes are both mapped into
initial node embeddings of fixed dimensionality using a unified mapping function. Inspired by the
effectiveness of singular value decomposition (SVD) in extracting important latent features Cai et al.
(2023), we utilize SVD for this unified mapping process as follows:

UA,ΛA,VA = SVD(Ã) UF,ΛF,VF = SVD(F)

E0 =LayerNorm
(

UA
√

ΛA + VA
√

ΛA + Flip(UF
√
ΛF)

)
(5)

Here, UA,UA ∈ R|V|×d and UF ∈ R|V|×d,VF ∈ Rd0×d refer to the d-dimensional features obtained
through SVD of the Laplacian-normalized adjacency matrix Ã and the node feature matrix F,
respectively. If the dimensionality of Ã or F is less than d, SVD uses a smaller rank d′ equal to the
smallest dimensionality of Ã/F, and the remaining dimensions are padded with zeros up to d.

Due to the nature of SVD, the dimensions of these features (U∗,V∗) are ranked from the most
important to the least important, corresponding to the descending eigenvalues in the diagonal matrices
ΛA and ΛF. In light of this characteristic, we propose to better preserve the most important feature
dimensions for both Ã and F. In particular, the function Flip(·) reverses the d dimensions of each row
for the SVD features of F, such that the important features of Ã are aligned with the less important
features of F, and vice versa.

High-order Connectivity Injection. A non-trainable layer normalization LayerNorm(·) is applied
for numerical stability. The initialized embeddings, denoted as E0 ∈ R|V|×d, have consistent
representation dimensionality and relatively stable semantics across datasets. To better preserve the
multi-hop connection information into the initial embeddings, AnyGraph adopts a simplified GCN
without parameters Wu et al. (2019) for E0 as follows:

E1 =

L∑
l=1

E(l)
0 , E(l)

0 = Ã · E(l−1)
0 , E(0)

0 = E0 (6)

Efficient and Strong Feature Encoder. To achieve efficiency while retaining the capacity to encode
graph features, our graph experts are configured by deep multi-layer perceptron (MLP) networks.
Specifically, the final node embeddings given by an expert model is calculated iteratively as follows:

Ē(l+1)
= LayerNorm

(
Dropout

(
ReLU(Ē(l)W + b)

)
+ Ē(l)

)
(7)

The final embeddings are denoted as Ê = Ē(L′) ∈ R|V|×d, where L′ represents the number of
fully-connected layers. And Ē(0) is initialized by the aforementioned embeddings E1. Each layer
of our MLP module comprises a linear transformation W ∈ Rd×d and bias b ∈ Rd, followed by a
ReLU non-linear activation, a dropout layer, a residual connection, and layer normalization.

Multiple Simple Experts as Strong Encoder. It is worth noting that each graph expert in AnyGraph
adopts a very simple learnable network, foregoing the capacity to mine complex hidden relations
like those in heavy graph neural networks such as GATs Veličković et al. (2018) and GraphTrans-
formers Hu et al. (2020). This is because AnyGraph employs a MoE architecture, where each expert
is expected to handle only a sub-domain of all graph data through simple feature transformations.
Therefore, no complex models are needed to accommodate different types of graphs within a single
network. Compared to other graph foundation models that rely on a single heavy network, this
approach further accelerates the training and inference processes.

3.3 EFFICIENT CROSS-DOMAIN MODEL TRAINING

To maximize the cross-graph generalization capabilities of AnyGraph, the training samples from
different datasets are mixed together and randomly shuffled during the model training process. Each
batch of training samples is composed of the following information:

S =
(
{(vcb , vpb

)|b ∈ B} ⊂ EGs
, E1 = InitialEmbed(Gs), fΘk

where k = ψ(Gs)
)

(8)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Inspired by the effectiveness of link-wise graph pre-training tasks Jin et al. (2022), we utilize link
prediction as the training task. Here, (vcb , vpb

) denotes the positive edges for link prediction, and
B denotes the batch size. To facilitate batch training, each training batch involves only one training
graph Gs. The initial node embeddings E1 and the most competent expert model fΘk

are preprocessed
in advance to accelerate the training. Specifically, the loss function for AnyGraph is as follows:

L =
∑
S

∑
b∈B

− 1

B
log

exp(ŷcb,pb
− ŷmax)∑

vn∈VGs
exp(ŷcb,n − ŷmax)

(9)

This training objective maximizes the prediction scores for positive samples (vcb , vpb
) and minimizes

the predictions for all possible node pairs between vcb and all nodes vn. To avoid numerical instability,
we substract the batch-specific maximum score, ŷmax, from all prediction scores.

Feature and Structure Augmentation. To enrich training data and enhance input diversity, the
training of AnyGraph includes periodic reprocessing of initial graph embeddings E1 and graph
routing results. This reprocessing augments both features and structures, improving AnyGraph’s
generalizability. • For initial embeddings, SVD and simplified GCN processes are periodically reap-
plied after |E|/(10B) training steps for each dataset, creating varied embedding spaces and boosting
representation heterogeneity. This frequency is adaptive to dataset size to manage computational
efficiency. • For graph routing, competence scores are recalculated periodically using randomly
sampled positive (vcs , vps

) and negative vns
pairs. This structural augmentation evaluates graph

experts using a random subset, increasing the model’s robustness against structural variations.

Complexity Analysis. The training and inference process of our AnyGraph involve only a single
expert model, yielding a time complexity of O(B×d2×L′) per batch. Preprocessing of initial embed-
dings and expert routing does not add to this batch-wise complexity, making AnyGraph significantly
more efficient than typical graph foundation models that use complex GNN models such graph trans-
formers. Additionally, expert routing requires O

(∑
Gs

|Es| × d×K +
∑

Gs
|Vs| × d2 × L′ ×K

)
computations, with the latter term generally larger and comparable to a simple GCN network. Thus,
AnyGraph demonstrates greater efficiency in training and inference compared to existing methods,
with the additional routing complexity akin to that of simple GNNs.

4 EVALUATION

Our experiments aim to answer the following Research Questions:
• RQ1: How does the zero-shot predictionperformance of AnyGraph compare to baseline methods?
• RQ2: How do AnyGraph’s various modules influence its overall performance?
• RQ3: How does the model size and the amount of training data impact AnyGraph’s performance?
• RQ4: How interpretable is the expert routing mechanism within AnyGraph?
• RQ5: How is the scalability and efficiency of AnyGraph compared to fine-tuning methods?

4.1 EXPERIMENTAL SETTINGS

Experimental Datasets. For a comprehensive evaluation of the cross-domain graph generalizability,
we employ a total of 38 datasets. These datasets span a wide range of domains, including e-commerce
(e.g. user interactions and product-wise relations), academic graphs (e.g. citation and collaboration
networks), biological information networks (e.g. relations among drugs and proteins), and other
domains like email networks, website networks, trust networks, and road networks.

Dataset Groups. We set up different dataset groups and conduct cross-dataset evaluations on these
groups. Specifically, all datasets are divided into two cross-domain groups, Link1 and Link2, which
have a similar number of total edges and a similar number of domain-specific edges. Additionally,
we have three domain-specific groups: Ecommerce, Academic, and Others. The Others group
is primarily composed of biological networks, combined with other small domains that have fewer
datasets. See Appendix A.1 for more information of our experimental datasets.

Experimental Settings. We follow previous works (He et al., 2020; Kipf & Welling, 2017) for
dataset splitting and evaluation metrics. Our AnyGraph model and the graph foundation models are
evaluated on a cross-graph zero-shot prediction task. For baselines that cannot handle cross-dataset
transfer, we evaluate their few-shot performance. Details of the evaluation protocols are provided in

6
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Table 1: Comparing AnyGraph (in zero-shot setting) with baseline models (with 5% and 10% training
data) on link prediction (Recall@20, NDCG@20), node classification (Accuracy, Macro F1).

Data GIN GAT GPF GraphPrompt GraphCL AnyGraph
Train 5% Train 10% Train 5% Train 10% Tune 5% Tune 10% Tune 5% Tune 10% Tune 5% Tune 10% 0-shot

Metric R N R N R N R N R N R N R N R N R N R N R N
Link1 6.46 3.06 11.80 5.45 13.52 6.65 13.45 6.78 6.04 2.92 6.80 3.27 4.33 2.24 5.42 3.11 17.23 9.00 20.55 10.76 23.94 12.68
Link2 6.72 4.50 21.62 13.41 9.83 5.91 15.30 8.84 7.44 4.25 16.58 9.84 6.06 3.36 6.10 3.62 29.18 17.62 31.42 19.91 46.42 27.21
Ecom. 3.36 2.58 13.41 8.06 3.79 2.94 9.64 5.78 7.25 3.84 18.72 10.94 4.90 2.59 6.06 3.36 22.13 13.19 26.05 14.59 26.92 15.05
Acad. 10.82 4.70 20.61 9.04 14.95 6.29 11.17 4.67 13.22 5.80 14.83 6.41 6.73 3.05 7.72 3.40 24.86 12.50 28.69 14.31 32.74 15.31
Othrs. 6.92 4.46 18.43 11.85 16.34 9.22 16.17 20.88 2.40 2.12 4.51 3.44 2.93 2.36 3.42 2.72 24.54 14.93 24.62 15.90 46.83 28.97
Metric Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Node 20.79 19.46 36.04 30.60 53.76 40.14 54.83 41.61 12.77 11.45 16.29 16.00 18.01 20.59 23.15 22.89 43.70 33.72 48.75 36.15 64.31 43.24

Appendix A.2. The Hyperparameter Settings of AnyGraph are provided in Appendix A.3. The
compared Baseline Methods are introduced in Appendix A.4.

4.2 ANYGRAPH’S ZERO-SHOT PREDICTION (RQ1)

Table 2: Comparing AnyGraph to existing graph
foundation models in zero-shot prediction.
Method GraphGPT OpenGraph
Data Pubmed Cora Ecom. w/o GR
Metric Acc MacF1 Acc MacF1 Recall NDCG
Baseline 0.1813 0.1272 0.7011 0.6491 0.1444 0.1099
AnyGraph-F 0.5852 0.5325 0.7134 0.6003 0.2281 0.1600
AnyGraph 0.6088 0.5492 0.7809 0.7591 0.2382 0.1552

To assess the zero-shot performance of AnyGraph,
we conducted an extensive evaluation across 38
graph datasets from various domains. We inde-
pendently trained two versions of the AnyGraph
model - one on the Link1 dataset and the other on
the Link2 dataset. Each trained model was then
used to make zero-shot predictions on the dataset
it was not originally trained with. It is important
to note that the Link1 and Link2 datasets do not share the same feature spaces or sources of data
collection, which adds to the complexity and challenges of the zero-shot evaluation. The outcomes of
this evaluation are detailed in Table 1 and Table 2, and our key observations are as follows:

i) Superior Generalizability across Diverse Datasets. • Superior Prediction Accuracy. Compared
to the few-shot capabilities of existing GNN models, pre-training techniques, and foundation models,
AnyGraph demonstrates exceptional zero-shot prediction accuracy across various domains. This
superior performance spans both link prediction and node classification tasks. • Effectively Handling
Heterogeneity. The enhanced generalizability can be attributed to the effective handling of structure-
level and feature-level data heterogeneity through unified structure and feature representations in
the expert models. This approach enables AnyGraph to develop comprehensive modeling functions
that are universally applicable across different graph data scenarios. • Comprehensive Training.
Additionally, the extensive training regimen, which incorporates a variety of large-scale datasets,
equips AnyGraph with a deep and broad expertise in graph learning.

ii) Limitation of existing pre-training GNNs. • Challenges of Cross-Domain Transfer. Existing
pre-training and tuning methods, like GPF, GraphPrompt, and GraphCL, employ self-supervised
learning and are pre-trained on half the datasets, then fine-tuned on the remaining datasets using few-
shot data. However, this pre-training often fails to yield significant improvements due to substantial
distribution disparities across data domains. For instance, datasets may exhibit vastly different
link densities or utilize distinct node features, which significantly challenges the transfer of useful
knowledge from divergent pre-training datasets during fine-tuning and prediction. • AnyGraph’s
Robust Adaptability To address this challenge, the AnyGraph model incorporates multiple graph
expert models tailored to various sub-domains of graph data. This MoE architecture effectively
manages datasets from distinctly different domains, such as e-commerce user behaviors, academic
networks, and road networks, demonstrating its robust adaptability.

4.3 SCALING LAW OF ANYGRAPH FRAMEWORK (RQ2)

In this section, we explore the applicability of the scaling law to AnyGraph. We conduct experiments
using 18 different versions of AnyGraph, each differing in model size and quantity of training data.
Specific configurations of these variants are discussed in Appendix A.5. The evaluation results are
depicted in Figure 3, which includes overall and domain-specific performance, as well as zero-shot
and full-shot outcomes. Our key findings are as follows:

i) Generalizability of AnyGraph Follows the Scaling Law. As the model size and the volume of
training data increase, we notice a saturation point in AnyGraph’s full-shot performance. In contrast,
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(b) Performance on academic data.
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(c) Performance on ecommerce data.
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Figure 3: Zero-shot and full-shot performance w.r.t. the amount of parameters and training samples.

the zero-shot prediction accuracy continues to improve. This pattern supports the scaling law of
graph foundation models, illustrating that scaling up can significantly enhance the capabilities of
graph models. Two key factors contribute to this phenomenon:

• Task Difficulty. The saturation in full-shot performance is partly because the evaluation tasks
might not be challenging enough. In-domain generalization can be more straightforward, leading to
a plateau in performance improvements. This insight into the scaling law for graph data encourages
further exploration of larger models on more complex graph learning tasks.

• MoE Architecture. The integration of the Mixture of Experts (MoE) architecture allows AnyGraph
to effectively manage and utilize a broader spectrum of knowledge, particularly in this zero-shot
scenario characterized by significant distribution disparities.

ii) Emergent Abilities of AnyGraph. The overall zero-shot performance curve illustrates that as
the model size increases, the performance sometimes experiences periodic stagnation. With further
increments in parameters, AnyGraph’s performance undergoes a sudden significant improvement.
This phenomenon indicates the emergent abilities of AnyGraph, demonstrating the effectiveness of
scaling up in enhancing its generalization capabilities.

iii) Insufficient training data may bring bias. In the initial stages of increasing the training data, the
introduction of new datasets might negatively impact performance due to their differences from the
test graphs. However, this issue can be mitigated by further expanding the training data. By providing
the model with a more comprehensive set of training samples, it helps prevent overfitting and reduces
bias stemming from dataset disparities.

4.4 ABLATION STUDY (RQ3)

This section evaluates the effectiveness of AnyGraph’s sub-modules by comparing ablated variants in
terms of their zero-shot and full-shot performance across both cross-domain datasets and domain-
specific datasets. The results are in Figure 4. We make the following observations:

• MoE Significantly Enhances Zero-Shot Performance. The -MoE variant, which employs a single
expert model without the MoE architecture, demonstrates decent performance on datasets on which
it was trained, as shown in parts (b) and (c). However, this variant exhibits a substantial decline
in zero-shot prediction capabilities. This underscores the critical role of the MoE architecture in
enhancing AnyGraph’s generalization abilities. The use of multiple expert models significantly
expands AnyGraph’s modeling capacity, effectively managing the large disparities between various
domains using multiple seperated models.

• Feature Modeling is Crucial in AnyGraph. In the -Feat variant, node features are omitted,
leading to the most significant degradation in both zero-shot and full-shot performance. This
underscores the effectiveness of AnyGraph’s unified structure and feature representation method
in successfully learning features. This component is crucial for tackling in-domain graph data
heterogeneity. Additionally, this outcome highlights the feasibility of unifying different feature
spaces created by various methods into a single model for general use.
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Figure 4: Impact of AnyGraph’s sub-modules on zero-shot and full-shot prediction capabilities.
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• Effectiveness of Frequency Regularization and Graph Augmentation. In the -FreqReg and
-Aug variants, the routing adjustment based on the training frequency of experts and the feature and
structure augmentation are individually removed. The outcomes from these modifications affirm
the beneficial impact of these two components within AnyGraph. Omitting them can lead to biased
model training, which undermines the robustness of AnyGraphin handling diverse datasets.

4.5 INVESTIGATION ON EXPERT ROUTING (RQ4)

This section delves into the expert routing mechanism of AnyGraph. Figure 5 displays the compe-
tence scores of various expert models for the input datasets, as determined by AnyGraph’s routing
algorithm based on self-supervised loss. The figure illustrates that datasets sharing common charac-
teristics—such as source of collection or feature construction method—are often routed to the same
expert models by AnyGraph. For instance, datasets like arxiv-ta, Photo, GoodReads, and Fitness,
which utilize a common text-embedding-based feature space, are assigned to highly similar experts.
Additionally, ML1M and ML10M, both sourced from the movie-rating platform Movielens, are
predominantly associated with expert 1. It is also notable that this routing pattern extends to zero-shot
datasets, as shown on the right part of Figure 5. Here, YelpT, SteamT, and AmazonT, which share the
same feature space, are assigned to very similar models. This outcome highlights the effectiveness
and the explainability of AnyGraph’s routing mechanism.

4.6 EFFICIENCY STUDY (RQ5)

Tuning Curve Comparison. To evaluate the efficiency of AnyGraph, we compare its fine-tuning
process with that of GraphCL and the training from scratch process of a GCN model. As depicted
in Figure 6, when fine-tuned on a new dataset, the pre-trained AnyGraph rapidly achieves a high
performance saturation point. In some instances, such as with the PPA dataset, GraphCL and the
end-to-end trained GCN struggle to attain comparable performance levels. This advantage is based
on i) the strong cross-domain generalization capabilities of AnyGraph, which bring a high starting
point for the new dataset, and ii) the efficiency of AnyGraph’s MoE architecture, which requires only
one MLP network for efficient but effective modeling and parameter tuning.

In addition, it is observed that pre-training GraphCL does not always benefit its fine-tuning on new
datasets, as evidenced by GraphCL’s underperformance relative to GCN in Figure 6 (right). This is
due to the large distribution gap between the pre-training data Link2 and the test data PPA.

Training Time Comparison. To evaluate the efficiency of the models under consideration, we
compared the training times of the three models. As indicated in Table 3, AnyGraph, despite having
significantly more parameters, has training times that are comparable to, or even less than, the other
two models. This underscores the efficiency of our model design.
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Table 3: Training time for each 100 steps.
Dataset CS ML1M Yelp Email Cite19 roadNet PPA
GCN 1.5s 4.2s 6.0s 2.5s 19.2s 27.8s 101.1s

GraphCL 1.1s 4.9s 9.4s 2.8s 43.1s 57.1s 130.8s
Ours 1.5s 3.5s 6.1s 3.0s 31.6s 37.3s 41.1s

Specifically, AnyGraph avoids the cumbersome full-
graph propagation. Instead, it utilizes structure-
aware embeddings derived through a non-trainable pre-
processing method. This significantly reduces both the
time and memory requirements. Furthermore, the MoE
architecture equips AnyGraph with the capability to use only 1/K of the computational resources for
most prediction and optimization processes, thereby greatly reducing overall computational costs.

5 RELATED WORKS

Graph Neural Models. Graph learning has garnered significant interest for its broad applicability
across various fields such as user behavior modeling and biology/chemistry applications (Chang
et al., 2021; Hao et al., 2020). Graph neural networks (GNNs) learn node representation vectors
for downstream tasks like node classification and link prediction. The core mechanism involves
iterative message passing, refining node embeddings to capture both node-specific information and
higher-order topological structures. This process ensures that the final node embeddings effectively
encapsulate both node-specific information and higher-order topological structures. Notable tech-
niques include Graph Convolutional Networks (GCNs) (Jin et al., 2021), Graph Attention Networks
(GATs) (Brody et al., 2022), Graph Isomorphism Network (GIN) (Xu et al., 2018), and Graph Trans-
former (Hu et al., 2020), which improves the graph modeling abilities. Despite the advancements,
these methods remain reliable on high-quality training data and often struggle with generalization.

Self-Supervised Graph Learning. Given the challenges with the generalizability of GNNs, consid-
erable research efforts (Xie et al., 2022) have focused on enhancing GNNs through self-supervised
learning objectives, aiming to capture invariant graph features. Specifically, GraphCL (You et al.,
2020) introduced a contrastive pre-training approach for graph data, designed to learn authentic graph
characteristics that are robust to structural and feature perturbations. Building on this, JOAO (You
et al., 2021) and GCA (Zhu et al., 2021) have developed adaptive augmentation strategies for self-
supervised tasks, effectively mitigating the adverse effects of random augmentations. Subsequent
works have sought to quickly adapt these pre-trained models to downstream tasks and evolving graph
data, as demonstrated by GPF (Fang et al., 2023) and GraphPrompt (Liu et al., 2023). Despite the
success, the generalizability of these methods remains confined to graph data with similar structural
and feature patterns, overlooking the cross-domain generalization challenge highlighted in our paper.

Large-scale Graph Pre-training. Recent advances in graph modeling have seen efforts to pre-
train large-scale graph models across multiple datasets to improve their generalizability, drawing
inspiration from the strong generalization capabilities of large language models (LLMs). For instance,
OFA (Liu et al., 2024) and ZeroG (Li et al., 2024) utilize text embeddings to standardize the feature
spaces across various graph datasets and tasks, facilitating cross-dataset training of graph models.
Models like InstructGLM (Ye et al., 2024) GraphGPT (Tang et al., 2024a) and LLaGA (Chen et al.,
2024) synchronize graph representation spaces with the hidden spaces of LLMs, thus enabling the
application of general language models for graph prediction tasks. Furthermore, HiGPT (Tang et al.,
2024b) expands the capabilities of LLMs to accommodate heterogeneous graph data.

Despite these advancements, most generalized graph models require substantial access to and inte-
gration of text features, which confines their use primarily to text-abundant environments such as
academic networks. Additionally, these methods are typically trained within specific application
realms, failing to address the significant variances between datasets from diverse domains.

6 CONCLUSION

In this work, we present the AnyGraph framework, an effective and efficient graph foundation model
designed to address the multifaceted challenges of structure and feature heterogeneity across diverse
graph datasets. AnyGraph’s innovative Mixture-of-Experts (MoE) architecture, coupled with its
dynamic expert routing mechanism, positions it at the state-of-the-art of cross-domain generalization
capabilities. Extensive experiments on 38 varied graph datasets have not only underscored Any-
Graph’s superior zero-shot learning performance but also its robustness to distribution shifts and its
adherence to scaling laws, thereby enhancing its predictive accuracy with increased model size and
data volume. The model’s efficiency in training and inference, validated through comparison with
existing methods, further cements its practical applicability.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In ICLR,
2022.

Xuheng Cai, Chao Huang, Lianghao Xia, and Xubin Ren. Lightgcl: Simple yet effective graph
contrastive learning for recommendation. ICLR, 2023.

Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song, Depeng Jin, and Yong Li.
Sequential recommendation with graph neural networks. In SIGIR, pp. 378–387, 2021.

Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, and Yang Zhang.
Graph unlearning. In SIGSAC, pp. 499–513, 2022.

Runjin Chen, Tong Zhao, Ajay Jaiswal, Neil Shah, and Zhangyang Wang. Llaga: Large language and
graph assistant. In ICML, 2024.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade
Gordon, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In CVPR, pp. 2818–2829, 2023.

Taoran Fang, Yunchao Zhang, Yang Yang, Chunping Wang, and Lei Chen. Universal prompt tuning
for graph neural networks. NeurIPS, 2023.

Matthias Fey, Weihua Hu, Kexin Huang, Jan Eric Lenssen, Rishabh Ranjan, Joshua Robinson, Rex
Ying, Jiaxuan You, and Jure Leskovec. Position: Relational deep learning-graph representation
learning on relational databases. In ICML, 2024.

Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen, and
Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular property
prediction. In KDD, pp. 731–752, 2020.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, pp. 639–648,
2020.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. Heterogeneous graph transformer. In
WWW, pp. 2704–2710, 2020.

Di Jin, Zhizhi Yu, Cuiying Huo, Rui Wang, Xiao Wang, Dongxiao He, and Jiawei Han. Universal
graph convolutional networks. In NeurIPS, pp. 10654–10664, 2021.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In KDD, pp. 66–74, 2020.

Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, and Jiliang Tang. Automated self-supervised
learning for graphs. In ICLR, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Guohao Li, Matthias Müller, Bernard Ghanem, and Vladlen Koltun. Training graph neural networks
with 1000 layers. In ICML, pp. 6437–6449, 2021.

Yuhan Li, Peisong Wang, Zhixun Li, Jeffrey Xu Yu, and Jia Li. Zerog: Investigating cross-dataset
zero-shot transferability in graphs. In KDD, 2024.

Hao Liu, Jiarui Feng, Lecheng Kong, Ningyue Liang, Dacheng Tao, Yixin Chen, and Muhan Zhang.
One for all: Towards training one graph model for all classification tasks. In ICLR, 2024.

Yixin Liu, Ming Jin, Shirui Pan, Chuan Zhou, Yu Zheng, Feng Xia, and S Yu Philip. Graph
self-supervised learning: A survey. TKDE, pp. 5879–5900, 2022.

Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
downstream tasks for graph neural networks. In WWW, pp. 417–428, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? In NeurIPS,
volume 36, 2024.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. In NeurIPS, volume 36, 2024.

Mingchen Sun, Kaixiong Zhou, Xin He, Ying Wang, and Xin Wang. Gppt: Graph pre-training and
prompt tuning to generalize graph neural networks. In KDD, pp. 1717–1727, 2022.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Lixin Su, Suqi Cheng, Dawei Yin, and Chao Huang.
Graphgpt: Graph instruction tuning for large language models. In SIGIR, pp. 491–500, 2024a.

Jiabin Tang, Yuhao Yang, Wei Wei, Lei Shi, Long Xia, Dawei Yin, and Chao Huang. Higpt:
Heterogeneous graph language model. In KDD, 2024b.
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A APPENDIX

A.1 EXPERIMENTAL DATASETS

We utilize a total of 38 graph datasets across various domains. The entire experimental data contains
14,437,372 nodes, and 199,265,688 edges. The dataset specifics are detailed below:

E-commerce Datasets. This category includes 15 datasets from various e-commerce contexts such
as user rating platforms and online retail services. These datasets vary in terms of the presence and
type of node features. For instance, datasets such as Amazon-book, Yelp2018, Gowalla, Yelp-text,
Amazon-text, Steam-text, Goodreads, Amazon-Fitness, Amazon-Photo, Movielens-1M, Movielens-
10M, Products-home, Products-tech, Home-node, Tech-node are included. Notably, Amazon-text,
Steam-text, and Yelp-text utilize the same method for feature generation, while Fitness, Photo, and
Goodreads employ a different consistent method.

Academic Network Datasets. We use 13 datasets focused on academic networks, which include
citation and collaboration relations among scholars and papers. These datasets represent various
research fields and employ diverse feature generation methods, such as NLP embeddings, bag-of-
words, and different versions of large language models. The specific datasets are Cora, Pubmed,
Arxiv, Cora-link, Pubmed-link, Citeseer, CS, Arxiv-link, Arxiv-t (with features derived using an
alternative method), Cite-2019, Cite-20Cent, OGB-Collab.

Biological Information Networks. Our experimental data includes 6 datasets related to biological
entities like proteins, drugs, and diseases. This category features networks such as OGB-DDI,
OGB-PPA, which record drug-drug and protein-protein relations, respectively, and four other protein
relation networks for different species, denoted as Proteins-0, Proteins-1, Proteins-2, Proteins-3.

Other Datasets. In addition to the categories mentioned above, we include 5 datasets from various
other fields: an email network Enron, a website network Stanford, a road network dataset Road-PA, a
P2P web network dataset Gnutella, and a trust network dataset Epinions.

Dataset Groups. For conveinience of performance evaluation, we split the many datasets using
different grouping methods. Firstly, two big data groups Link1 and Link2 are made using all the
link prediction datasets. Notably, datasets from the same source of collection, such as ML-1M and
ML-10M, or uses the same method to generate features, such as Fitness, and Photo, are put into the
same group, to avoid information leakage when evaluating zero-shot performance on the other group.
Apart from these two datasets, we also conduct evaluations on domain-specific groups, including
E-commerce, Acadmic, and Others. Specifically, these data groups contain the following datasets:

• Link1: Products-tech, Yelp2018, Yelp-text, Products-home, Steam-text, Amazon-text, Amazon-
book, Cite-2019, Cite-20Cent, Pubmed-link, Citeseer, OGB-PPA, Gnutella, Epinions, Enron.

• Link2: Photo, Goodreads, Fitness, Movielens-1M, Movielens10M, Gowalla, Arxiv, Arxiv-t, Cora,
CS, OGB-Collab, Proteins-0, Proteins-1, Proteins-2, Proteins-3, OGB-DDI, Stanford, Road-PA.

• Ecommerce and Academic: These groups contain all domain-specific datasets mentioned above.

• Others: This group contains all the biological datasets mentioned above, and datasets from other
minor domains, including email network data Enron, website network data Stanford, road network
data RroadNet-PA, P2P network data Gnutella, and trust network data Epinions.

A.2 EVALUATION PROTOCOLS

All datasets used in this study are sourced from previous research as referenced (Tang et al., 2024a;
Li et al., 2024). We adhere to the original data splits from these sources to delineate our training
and testing sets. Given that many baseline methods are not equipped to manage zero-shot prediction
across datasets, we instead assess their few-shot capabilities. This allows for a comparative analysis
against the zero-shot performance of AnyGraph. We employ specific evaluation settings tailored to
each method, detailed as follows:

• Zero-shot Setting for AnyGraph, GraphGPT, and OpenGraph. In our study, AnyGraph and
two comparative graph foundation models, GraphGPT and OpenGraph, undergo evaluations for
zero-shot prediction capabilities. We pre-train two instances of AnyGraph using Link1 and Link2
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Table 4: Statistics of the experimental datasets.
Dataset DDI Collab ML1m ML10m Amazon-book PPA Yelp2018 Gowalla Cora Pubmed Citeseer
# Nodes 4,267 235,868 9,746 80,555 144,242 576,289 69,716 70,839 2,708 19,717 3,327
# Edges 1,334,889 1,285,465 920,193 9,200,050 2,984,108 45,495,642 1,561,406 1,027,370 10,556 88,648 9,104
d Feats 0 128 0 0 0 58 0 0 1433 500 3703
Datasets Proteins-0 Proteins-1 Proteins-2 Proteins-3 Products-home Products-tech Yelp-t Amazon-t Steam-t Goodreads Fitness
# Nodes 25,449 6,568 18,108 13,015 9,790 47,428 22,101 20,332 28,547 676,084 173,055
# Edges 11,660,646 1,845,960 7,418,688 3,962,930 131,843 2,077,241 277,535 200,860 525,922 8,582,306 1,773,500
d Feats 0 0 0 0 100 100 1536 1536 1536 768 768
Datasets Epinions Enron Stanford Road-PA Gnutella Cite-2019 Cite-20Cent Arxiv Arxiv-t Photo CS
# Nodes 75,879 36,692 281,903 1,088,092 8,717 765,658 1,016,241 169,343 169343 48,362 18,333
# Edges 508,837 183,831 2,312,497 1,541,898 31,525 1,917,381 5,565,798 1,166,243 1,166,243 500,939 163,788
d Fets 0 0 0 0 128 128 128 128 768 768 6805

datasets. The model pre-trained on Link1 is then tested for zero-shot performance on the Link2
group datasets, and vice versa. Results labeled as "zero-shot" for AnyGraph are derived using this
cross-evaluation method. Conversely, results marked as "full-shot" pertain to supervised learning
outcomes, where, for example, the model trained on Link1 is tested on the test sets of Link1 group
datasets. For GraphGPT and OpenGraph, we utilize the models as released in their respective
original studies, which were pre-trained on specified datasets.

• Zero-shot Node Classification for AnyGraph. Inspired by prior research (Sun et al., 2022), we
approach zero-shot node classification by representing node classes as distinct nodes. We then
connect existing nodes that have training labels directly to these new class nodes. This technique
eliminates the need for learning specific parameters for each class within the zero-shot learning
framework, streamlining the process. We have integrated this innovative approach into baseline
methods as well, enhancing their capability to handle unseen node labels effectively.

• Few-shot Training for GIN and GAT. The GIN and GAT models, employed as end-to-end
training baselines, undergo training from scratch on few-shot subsets of the evaluation datasets.
This approach is necessary because these models are not well-suited for cross-dataset transfer,
particularly when dealing with datasets that have varying feature dimensionalities.

• Pre-training and Few-shot Tuning for GraphCL, GPF and GraphPrompt. These category
of baselien methods follow the pre-training-and-fine-tuning mode. In our evaluations, they are
firstly pre-trained using the same pre-training datasets as our AnyGraph. Then, they experience an
additional fine-tuning process using the few-shot subsets of the evaluation datasets.

Evaluation Metrics. For link prediction, we follow previous works (He et al., 2020) and utilize
Recall@20 and NDCG@20 as the evaluation metrics. Note that we typically use the summary results
of the evaluation results across multiple datasets. Results for fifferent datasets are averaged according
to their number of test samples. For the node classification task, we employ the widely-used Accuracy
and Macro-F1 score as our metrics (Chen et al., 2022; Tang et al., 2024a).

A.3 HYPERPARAMETER SETTINGS

Optimization. Our model, AnyGraph, is implemented using PyTorch. The optimization process
employs the Adam optimizer with a learning rate of 1 × 10−4 and a training batch size of 4096.
We use cross-entropy loss with a sampled negative set (Wu et al., 2021). The learnable parameters
of AnyGraph are initialized using the Xavier uniform initializer. Network Configurations. The
standard configuration of our AnyGraph includes 512 hidden units and 8 graph expert models. Each
expert model comprises 8 fully-connected layers. These layers utilize a ReLU activation function and
incorporate a dropout layer with a dropout probability of 0.1. Algorithm Hyperparameters. The
frequency regularization of our routing mechanism is set with an adjustment range of ρ = 0.2. The
SVD decomposition is performed using 2 iterations. For structural and feature augmentation, each
dataset is reprojected after using 1/10 of its samples for optimization. A minimum of 100 training
steps should be executed for each dataset before its initial representations are reprojected. The
reassignment of experts occurs after all training datasets have undergone one cycle of re-projection.

The baseline methods are evaluated using theeir original code or released model. We closely follow
the original code to adapt to our experiments. Grid search is conducted to search for the best
hyperparameter settings for each baseline method.
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A.4 BASELINE METHODS

This section provides detailed descriptions of the baseline models used in our analysis. We employ
seven different baseline models across four distinct categories.
Training-from-scratch Graph Neural Networks.

• GAT (Veličković et al., 2018). Graph Attention Networks (GAT) leverage an attention mechanism
to dynamically weight node-to-node connections, enhancing the model’s ability to adaptively
propagate and aggregate information across the graph.

• GIN (Xu et al., 2018). The Graph Isomorphism Network (GIN) significantly boosts the expressive
power of Graph Neural Networks by introducing a unique graph encoding technique aimed at
effectively distinguishing between non-isomorphic graphs.

Graph Pre-training Models.

• GraphCL (Zhu et al., 2021). It enhances the pre-training of graph models via self-discriminative
contrastive learning, which is applied to learned node embeddings. The method employs various
graph augmentation techniques such as node dropping, edge permutation, random walks, and
feature masking to improve robustness.

Graph Prompt Tuning Methods.

• GraphPrompt (Liu et al., 2023). It proposes a unified approach that integrates pre-training and
prompt tuning for graph models. It features a learnable prompt layer designed to automatically
extract crucial information from the pre-trained model to enhance downstream performance.

• GPF (Fang et al., 2023). The Graph Prompt Framework (GPF) is a versatile graph prompt tuning
framework compatible with various graph pre-training methods. It offers two variants of a learnable
graph prompt layer, tailored to different application needs.

Graph Foundation Models.

• GraphGPT (Tang et al., 2024a). This approach proposes representation alignment and instruction
tuning techniques to align graph representation spaces with text encoding spaces, empowring large
language models with the capabilities of zero-shot graph encoding and inference.

• OpenGraph (Xia et al., 2024). This method introduces a unified graph tokenizer, a scalable graph
transformer to improve the model’s performance and generalization ability. An LLM-enhanced
data augmentation mechanism is proposed to address domain-specific data scarcity.

A.5 DETAILS OF THE SCALING LAW EXPERIMENT

For the scaling law experiment (RQ2), we elaborate the configurations of the developed instances
of AnyGraph. For AnyGraph with different model sizes, we begin with the smallest model which
has 64 hidden units, 1 fully-connected layer, and 1 expert model. The subsequent 3 model instances
increases in their hidden dimensionality, from 64 to 128, 256, and 512. Then 3 larger models with
more fully-connected layers are utilized, respectively containing 2, 4, and 8 MLP layers. Then we
have MoE versions of AnyGraph, with 2, 4, and 8 experts, respectively. The final largest instance of
AnyGraph has a larger latent dimensionality of 1024.

For the increase of training data, we begin with a subset of Link2 data including Cora and CS. The
next version additionally includes Photo. The thir one includes ML1M. The fourth one includes
Gowalla. The fifth one additionally include Arxiv and Arxiv-t. The sixth one adds the following
datasets: collab, ddi, Yelp2018, Fitness, proteins-spec1, web-Stanford, proteins-spec3. The seventh
one is trained with proteins-2, roadNet-PA, and Fitness additionally. And the final one is trained with
all datasets from Link2. In this manner, we gradually increase the amount of training data.

A.6 SUPPLEMENTARY EXPERIMENTAL RESULTS

Model Performance Curves. We monitored the training loss and test performance of AnyGraph
across each training epoch to understand its training dynamics. This included evaluating AnyGraph’s
performance on the test sets of its training datasets (full-shot performance) as well as its performance
on unseen datasets (zero-shot performance), as depicted in Figure 7.
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(a) Two instances of AnyGraph independently trained on Link1.

(b) Two instances of AnyGraph independently trained on Link2.

Figure 7: Training loss, test NDCG of full-shot and zero-shot prediction, v.s. the number of training
epochs. Two curves in each plot correspond to two independently-trained instances of AnyGraph.

The analysis reveals that training loss and full-shot test performance stop to decrease/increase
significantly after approximately 40 epochs. In contrast, zero-shot test performance continues to
improve significantly, even up to 100 epochs. This trend underscores a steady enhancement in
the model’s generalization abilities, highlighting the potential to further explore and enhance the
generalizability of graph models in challenging zero-shot inference tasks.

Table 5: Performance on industrial data.

Method History 10% 20% 30% 40% 50%

Base Method 0.7% 2.0% 5.6% 10.6% 17.3% 19.9%
AnyGraph 6.3% 3.4% 7.5% 14.0% 19.3% 21.7%

Performance on Industrial Data. We further as-
sessed the performance of AnyGraph using a real-
world dataset from a popular user reading platform,
comprising over 1 million user and item nodes. We
trained a base graph neural model on historical user
behavior data, and evaluated both the base model and
AnyGraph using varying amounts of new interaction data to construct the input graph. The results,
summarized in Table 5, show that “History” indicates the base model was trained on data from
previous days, while “10%”, “20%”, etc. represent the percentages of new data used to construct the
input graph. Importantly, the new data was used only as input features, not for tuning, reflecting a
real-world scenario where models cannot be promptly fine-tuned on new data. Our key observations
are: i) AnyGraph demonstrated superior zero-shot predictive capabilities, outperforming the base
model trained on historical data. ii) This underscores the importance of robust zero-shot prediction,
as new data may not align with historical patterns in real-world settings.
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Figure 8: Recall results of ablation study, on
cross-domain (left) and academic (right) data.

Recall@20 for Full-shot Performance in Ablation
Study. We have expanded our analysis to include
full-shot prediction performance, as assessed in our
ablation studies. Figure 8 displays the performance of
various ablated versions of our AnyGraph alongside
the complete model, using Recall@20 as the metric.
A notable finding, absent from the original results,
is that removing the augmentation actually results in
a significant advantage for our AnyGraph in cross-
domain evaluations. This phenomenon can be attributed to the fact that data augmentations interfere
with the optimization of AnyGraph on the training dataset, thereby impairing the full-shot performance
on seen datasets. However, as the zero-shot performance test results indicate, this augmentation
technique substantially enhances the generalization capability of AnyGraph. This is because the
disturbances prevent the model parameters from overfitting to the training data.
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