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Abstract
Question-answering (QA) tasks often investi-001
gate specific question types, knowledge do-002
mains, or reasoning skills, leading to special-003
ized models catering to specific categories of004
QA tasks. While recent research has explored005
the idea of unified QA models, such models006
are usually explored for high-resource scenar-007
ios and require re-training to extend their ca-008
pabilities. To overcome these drawbacks, the009
paper explores the potential of two paradigms010
of tuning, model, and prompts, for unified QA011
under a low-resource setting. The paper pro-012
vides an exhaustive analysis of their applicabil-013
ity using 16 QA datasets, revealing that prompt014
tuning can perform as well as model tuning015
in a few-shot setting with a good initialization.016
The study also shows that parameter-sharing re-017
sults in superior few-shot performance, simple018
knowledge transfer techniques for prompt ini-019
tialization can be effective, and prompt tuning020
achieves a significant performance boost from021
pre-training in a low-resource regime. The re-022
search offers insights into the advantages and023
limitations of prompt tuning for unified QA in024
a few-shot setting, contributing to the devel-025
opment of effective and efficient systems in026
low-resource scenarios.027

1 Introduction028

Question answering (QA) is a pivotal area of re-029

search in NLP that evaluates the language under-030

standing and reasoning capabilities of language031

models. To this end, the NLP community has de-032

veloped numerous QA datasets that span various033

domains, question-answer formats, and reasoning034

skills (Rogers et al., 2022). Consequently, there is035

an increasing demand for a Unified QA system that036

can manage mixed batches of instances from differ-037

ent datasets and tasks during training and inference038

(Liu et al., 2022). Such a system would eliminate039

the need for manual tuning or per-task adjustments,040

enabling seamless integration of new datasets. This041

would contribute to the development of efficient042

Figure 1: Comparison of Multi-Task Model-Tuning,
Prompt-Tuning, and ATTEMPT (Asai et al., 2022) (a
complex prompt transfer learning approach) for Uni-
fied QA on 16 QA datasets in several few-shot sce-
narios using T5-Base as the backbone model. Init
refers to prompt initialization while MT stands for multi-
tasking. The results show that prompt-tuning with prior
is a promising alternative to multi-task full-model fine-
tuning, especially in limited data scenarios, and that
ATTEMPT does not provide any additional advantage.

QA models with minimal computational and stor- 043

age costs, enhanced generalization capabilities, and 044

greater practicality for real-world use cases. 045

The success of transformer-based models in text- 046

to-text generation has led to a growing interest 047

in Unified QA systems. Khashabi et al. (2020) 048

proposed Unified-QA, a single QA model pre- 049

trained on diverse datasets that outperforms format- 050

specialized models. While prompt-tuning methods 051

(Lester et al., 2021; Vu et al., 2022) have emerged 052

as a promising alternative to fine-tuning, (Zhong 053

et al., 2022a) proposed to model the commonal- 054

ities and distinguish task differences through a 055

structurally designed prompt-based input schema. 056

However, these approaches have limitations related 057

to scalability, expensive pre-training requirements, 058

and the need for tens of thousands of training ex- 059

amples for each task. Moreover, the performance 060

of pre-trained QA models significantly degrades 061
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when only a few question-answering examples are062

available (Ram et al., 2021). While Unified QA ap-063

proaches have shown success in high-data scenar-064

ios, their efficacy in more practical scenarios with065

limited training examples remains unexplored.066

This paper aims to explore the potential of two067

different paradigms of tuning, model, and prompts,068

for unified question answering under a low resource069

setting. Despite the importance of this problem,070

there have been no previous studies investigating071

the effectiveness of these paradigms for this task.072

In response, we conduct an exhaustive analysis of073

the applicability of these two paradigms to a unified074

question-answering system. To do so, we evaluate075

their promise, effectiveness, and trade-offs using076

a set of 16 QA datasets, covering diverse domains077

and a wide range of skills and formats.078

Our empirical study reveals several key findings,079

including (i) prompt tuning can perform just as080

well as model tuning under a low resource regime,081

given a good initialization, (ii) parameter-sharing082

results in superior few-shot performance, but the083

trends are reversed in the full-shot setting, (iii) sim-084

ple knowledge transfer techniques for prompt ini-085

tialization can be as effective as more complex086

methods in the few-shot setting, without introduc-087

ing additional parameters, and (iv) prompt tuning088

achieves a significant performance boost from pre-089

training in a low resource regime while increasing090

model size does not significantly affect prompt tun-091

ing with initialization. In addition, we perform a092

systematic quantitative and qualitative study to pro-093

vide insights into the advantages and limitations of094

prompt tuning for unified QA with an emphasis on095

the behaviors in the few-shot setting. Overall, our096

research aims to contribute to the development of097

effective and efficient unified question-answering098

systems in low-resource scenarios.099

2 Related Work100

Parameter-efficient tuning. Large-scale pre-101

trained language models fine-tuned on specific tar-102

get datasets have shown remarkable performance103

for several downstream tasks in NLP (Devlin et al.,104

2019; Liu et al., 2019; Raffel et al., 2022; Brown105

et al., 2020; He et al., 2021b; Lan et al., 2019;106

Yang et al., 2019). However, standard fine-tuning107

approaches update all the model parameters, which108

can often lead to deployment challenges. Recent109

research (Houlsby et al., 2019; He et al., 2021c;110

Lester et al., 2021; Li and Liang, 2021a) has111

shown that similar performance can be obtained 112

by updating or adding a few trainable parameters 113

while keeping pre-trained language model param- 114

eters frozen. Several approaches have been pro- 115

posed in this direction: Adapter-based methods 116

(Houlsby et al., 2019; mahabadi et al., 2021; Rücklé 117

et al., 2021) insert small trainable feed-forward 118

networks (modules) between layers of pre-trained 119

language models while BitFit (Ben Zaken et al., 120

2022) updates only the language model biases. An- 121

other computationally efficient approach is prompt- 122

tuning (Lester et al., 2021) and prefix-tuning (Li 123

and Liang, 2021a), which concatenate trainable 124

continuous embeddings to the input. These train- 125

able parameters, called soft prompts, can be used as 126

plug-ins with a frozen LM to capture task-specific, 127

domain-specific, or language-specific knowledge. 128

He et al. (2021a) presents a unified view of differ- 129

ent parameter-efficient training (PET) approaches. 130

Multi-task transfer learning. Efficient task 131

transferability in NLP has been extensively studied 132

(Wang et al., 2019; Liu et al., 2021a; Vu et al., 2020, 133

2021). With T5 (Raffel et al., 2022) demonstrat- 134

ing the capabilities of using existing downstream 135

task datasets to learn a new task, proposing effi- 136

cient methodologies for unifying NLP models has 137

become a promising research paradigm in the com- 138

munity. Following this, (Khashabi et al., 2020) pro- 139

posed UnifiedQA, a single QA model pre-trained 140

on datasets involving diverse formats and reason- 141

ing skills. Transfer learning has been demonstrated 142

to be effective from rich data sources (Phang et al., 143

2018), between similar target tasks (Vu et al., 2020), 144

and for tasks that require similar reasoning skills 145

(Pruksachatkun et al., 2020). However, this ap- 146

proach would require updating/retraining the model 147

on a new task or a different domain, which could 148

lead to catastrophic forgetting (Kirkpatrick et al., 149

2017). Moreover, Aghajanyan et al. (2021) showed 150

approaches towards unifying NLP models suffer 151

from negative interference to less represented tasks 152

and between dissimilar tasks. 153

Most recently, Liu et al. (2022) validates that 154

parameter-efficient tuning methods can perform 155

well with mixed task batches. Zhong et al. (2022b) 156

takes the first step towards building unified QA 157

models utilizing structural prompt tuning. Along 158

these lines, Vu et al. (2022); Asai et al. (2022) in- 159

tegrates both the paradigms of parameter-efficient 160

tuning and unifying NLP models to propose a sin- 161

gle pre-trained model for different downstream 162
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tasks by learning target task-specific prompts from163

the source task prompts. Asai et al. (2022) demon-164

strates transfer using the attention module, while165

Vu et al. (2022) facilitates prompt transfer by learn-166

ing the target prompt initialized from similar source167

prompts. These approaches require fewer than168

0.1% of trainable LM parameters with little trade-169

off in performance.170

Few-shot question answering. Ram et al. (2021)171

has identified a discrepancy between current pre-172

training objectives and QA, as standard models173

perform poorly when fine-tuned with few exam-174

ples. They propose recurring span selection as a175

pretraining scheme tailored for question answering.176

Chada and Natarajan (2021), on the other hand,177

proposes a fine-tuning framework aligned with the178

pretraining framework.179

However, there have been no studies focusing180

on the viability of prompt tuning for unified QA181

under low-resource settings. To address this gap,182

we follow prior works, (Liu et al., 2022; Asai et al.,183

2022; Khashabi et al., 2020), and extensively study184

the viability and trade-offs of prompt tuning and185

prompt-based transfer learning in comparison to186

approaches that involve full-model fine-tuning for187

few-shot unified QA. As a result of our comprehen-188

sive experiments, we offer essential guidelines in189

the form of valuable insights into the advantages190

and limitations of prompt tuning with respect to191

model tuning for unified QA in both full and few-192

shot scenarios.193

3 Candidates for universal QA approach194

Finetuning pre-trained language models (FT) on195

specific datasets yields specialized models that196

cater to individual tasks. However, a more effi-197

cient approach is to build a unified QA model that198

can perform multiple tasks without manual tun-199

ing or per-task adjustments. One of the signifi-200

cant advantages of such approaches is that they201

seamlessly support mixed-task batch inference (Liu202

et al., 2022), where a single model can handle di-203

verse tasks, reducing computation, storage, and204

maintenance costs.205

This study seeks to assess the suitability of206

two prevalent training paradigms for NLP, namely207

model-tuning and prompt-tuning, as potential208

approaches for developing a unified question-209

answering (QA) model. Our investigation centers210

around four essential criteria we look for in an ef-211

fective unified QA model: (1) the ability to utilize212

Approach Paradigm SM KT NT Ex
FT Model-tuning Limited High

FT-MT Model-tuning ✓ High Limited
PT-R Prompt-tuning ✓ Limited Limited ✓

PT-F/PT-C Prompt-tuning ✓ High Limited ✓
ATT-MT Prompt-tuning ✓ High High ✓

Table 1: Comparison of various model-tuning and
prompt-tuning approaches concerning their effective-
ness in fulfilling the desired properties of a unified QA
model, such as Single Model (SM), Knowledge Transfer
(KT), Minimal Negative Transfer (NT), and Extensibil-
ity (Ex). The table uses a checkmark symbol (✓) to
indicate "Yes" and "No" for each property, and the de-
gree of the property is indicated as "Limited" or "High"
where applicable.

a single model to address a range of different QA 213

tasks, (2) effective knowledge transfer from multi- 214

ple relevant tasks, (3) while minimizing the risk of 215

negative interference, and (4) extensibility to new 216

tasks without requiring expensive retraining. In 217

this study, our goal is to investigate the potential 218

of soft prompt-tuning extensively and to better un- 219

derstand its benefits and drawbacks in comparison 220

with model-tuning-based approaches for building 221

a unified QA system grounded on the aforemen- 222

tioned four principles. In particular, we further 223

center the study around understanding these trade- 224

offs in the few-shot learning scenarios, which is a 225

realistic and more practical challenge. 226

Model-tuning This paradigm involves the fine- 227

tuning of all the parameters of a language model 228

to cater to a specific task or a set of tasks. Al- 229

though fine-tuning (FT) on a particular dataset is 230

an effective strategy, it is not suitable for unified 231

QA because it requires specialized models for each 232

dataset during inference, which is counter-intuitive 233

to the concept of a unified QA model. 234

In contrast, multi-task learning via fine-tuning 235

(FT-MT) (Raffel et al., 2022; Aribandi et al., 2021) 236

involves the joint learning of a single model on mul- 237

tiple datasets by sharing all the trainable model pa- 238

rameters across different tasks. By training on mul- 239

tiple datasets, FT-MT allows for knowledge transfer 240

from relevant tasks during inference. However, 241

sharing all the parameters often leads to negative 242

transfer from unrelated tasks. Incorporating addi- 243

tional tasks into existing models requires retraining 244

the model with all previous tasks and the new ones, 245

making them computationally expensive to scale 246

and more prone to negative interference. 247
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Prompt-tuning This paradigm involves learning248

soft-prompt tokens added to the input while the249

backbone language model remains frozen. We fol-250

low the approach proposed by Lester et al. (2021)251

to train soft prompts for each task, where prompts252

are initialized from random words in the vocabu-253

lary (PT-R). This vanilla prompt-tuning approach254

is parameter-efficient and easy to scale. Since task-255

specific knowledge is captured in a different set of256

parameters (i.e., the prompts), this approach avoids257

negative interference to a great extent. With a sin-258

gle backbone model, we can use these prompts for259

different tasks. However, this approach does not260

leverage knowledge from other tasks not already261

captured in the backbone model.262

Prompt initialization is a technique that ad-263

dresses the issue of knowledge transfer from source264

tasks in vanilla prompt-tuning while retaining the265

benefits of a single model, minimal negative trans-266

fer, and extensibility. Previous studies (Li and267

Liang, 2021b; Liu et al., 2023; Vu et al., 2022)268

have shown that prompt-tuning methods are often269

sensitive to initialization, particularly in low data270

settings. However, the impact of different initial-271

ization methods on QA datasets has not been well272

studied. Inspired by (Vu et al., 2022), we initialize273

the target prompt by taking the average of the top-274

3 source task prompts most similar to the prompt275

trained on the target dataset. We employ two dis-276

tinct approaches to this initialization process: (i)277

selecting source task prompts with the same answer278

format as that of the target dataset (PT-F), and (ii)279

selecting source task prompts from the complete280

set of source prompts (PT-C).281

Apart from prompt initialization, another way to282

transfer knowledge from multiple tasks is through283

the composition of their corresponding prompts.284

To this end, Asai et al. (2022) proposes AT-285

TEMPT, a transfer learning method that learns286

new task-specific target prompts by computing287

weighted combinations of source prompts using288

a sub-network-based attention module trained on289

a single or set of tasks. We distinguish between290

two settings: ATT-MT, where attention modules are291

shared across tasks and trained in a multi-task man-292

ner, and ATT-ST, where attention module parame-293

ters are not shared. While ATT-MT provides a sin-294

gle model for transferring knowledge from source295

prompts and is easily scalable to new target tasks,296

sharing attention modules across tasks may result in297

some negative transfer, compared to more straight-298

forward prompt-tuning methods. 299

4 Datasets 300

In their recent study, Rogers et al. (2022) highlight 301

a significant increase in the number of question- 302

answering and reading comprehension datasets, 303

spanning various domains, formats, and reason- 304

ing abilities. This study aims to evaluate and fine- 305

tune a range of models, leveraging a collection of 306

datasets referred to as "source datasets" for pre- 307

training, and a distinct set of datasets known as 308

"target datasets" for evaluation. This paper in- 309

cludes datasets that cover a wide range of reason- 310

ing skills and complex linguistic phenomena, in- 311

cluding conversational, temporal, causal, and co- 312

reference reasoning, among others, enabling a more 313

comprehensive evaluation of training paradigms on 314

question-answering datasets and facilitating anal- 315

ysis of cross-skill transfer. This broader coverage 316

across reasoning skills not only enables a more 317

thorough evaluation of training paradigms on QA 318

datasets but also facilitates analysis of cross-skill 319

transfer. Table 2 presents an overview of the 320

datasets employed in our study, detailing their size, 321

domain, and associated primary reasoning skill. 322

Source Datasets. This study leverages source 323

datasets for two primary purposes: pre-training 324

models through model tuning and training source 325

prompts via prompt-tuning approaches. The source 326

datasets employed in our research comprise over 327

30,000 training instances. They aim to encompass 328

essential reasoning skills such as reading compre- 329

hension, conversational and commonsense reason- 330

ing, as well as discrete and numerical reasoning 331

necessary for question answering. Source datasets 332

cover a wide range of domains, including knowl- 333

edge bases, news, web documents, and Wikipedia. 334

Target Datasets. We employ target datasets to 335

fine-tune models using the model-tuning paradigm, 336

or to train target prompts for prompt-tuning ap- 337

proaches. Target datasets are typically small in size, 338

containing fewer than 30,000 training instances, 339

and are designed to cover complex and special- 340

ized reasoning skills like temporal commonsense, 341

causal reasoning, and logical and inferential rea- 342

soning, among others that are crucial for question 343

answering. This split includes various specific do- 344

mains like Twitter, TOEFL, law books, and per- 345

sonal narratives, which can leverage broader do- 346

mains covered in the source split. In some con- 347
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Source Split Target Split
Reasoning Skill Dataset Domain # train Reasoning Skill Dataset Domain # train
Reading Com-
prehension (RC)

SQuAD (Rajpurkar et al., 2016) Wikipedia 87K Reading Com-
prehension (RC)

TweetQA (Xiong et al., 2019) Twitter 10.6K

SearchQA (Dunn et al., 2017) J! Archive 140K IIRC (Ferguson et al., 2020) Wikipedia 13K
NewsQA (Trischler et al., 2017) news articles 76K MCTest (Richardson et al., 2013) stories 1.4K
TriviaQA (Joshi et al., 2017) web documents,

Wikipedia
96K RC (Inferential) BoolQ (Clark et al., 2019) Wikipedia 9K

Natural Questions (Kwiatkowski
et al., 2019)

Wikipedia 104K RC (logical) ReClor (Yu et al., 2020) Web ,book 5K

NQOpen (Lee et al., 2019) Wikipedia 79K Conversational DREAM (Sun et al., 2019) TOEFL 6K
RACE (Lai et al., 2017) Exams 87K ShARC (Saeidi et al., 2018) law rule books 4K
DuoRC (Saha et al., 2018) movie plots 130K Co-reference Quoref (Dasigi et al., 2019) Wikipedia 22K

RC (Scientific) PubMedQA (Jin et al., 2019) Pubmed 211K Commonsense
Reasoning

COSMOSQA (Huang et al.,
2019)

Spinn3r/ personal
narratives

25K

RC (Long com-
prehension)

NarrativeQA (Kočiský et al.,
2018)

books, movies 65K PIQA (Bisk et al., 2020) News, Encyclope-
dia

16.1K

RC (Multihop) HotpotQA (Yang et al., 2018) Wikipedia 90K CommonsenseQA (Talmor et al.,
2019)

Concept Net 9.7K

Conversational CoQA (Reddy et al., 2019) News, Wikipedia,
Books, etc.

120K Temporal Com-
monsense

McTACO (Zhou et al., 2019) multiple 13K

QuAC (Choi et al., 2018) Wikipedia 83K Causal Reason-
ing

ROPES (Lin et al., 2019) science text/
Wikipedia

10K

Commonsense ReCORD (Zhang et al., 2018) news 101K OBQA (Mihaylov et al., 2018) science books 6K
SIQA (Sap et al., 2019) Commonsense

knowledge base
33.4K QuaRel (Tafjord et al., 2018) science, eco-

nomics, etc.
2.2K

Discrete DROP (Dua et al., 2019) Wikipedia 77K COPA (Gordon et al., 2012) personal stories 400

Table 2: Question Answering (QA) datasets used as source and target datasets in this study. For each dataset, the
table provides details on associated reasoning skills, domain, and the number of training examples available.

texts, certain tasks require multiple types of reason-348

ing. For instance, the ShARC dataset necessitates349

a combination of conversational and causal reason-350

ing, while the COPA dataset entails the application351

of commonsense causal reasoning. Therefore, natu-352

ral language processing models may face additional353

challenges in performing these tasks due to the in-354

tegration of multiple reasoning skills. To assess the355

effectiveness of a unified QA system, we perform356

experiments on the test set of the target datasets.357

5 Experiments358

We employ the T5-base model for all our exper-359

iments, unless stated otherwise. Source prompts360

are trained independently for each task, while the361

pre-trained language model (PrLM) and attention362

modules for ATTEMPT are trained jointly on all363

the source tasks. For target datasets, we randomly364

select a small number of instances for few-shot365

training and evaluation. The hyperparameters for366

training are presented in section A.2. Table 6 de-367

tails the initialization used for different target tasks368

in both PT-F and PT-C. We select the best check-369

point based on the validation set performance, with370

FT-MT and ATT-MT using a single validation set371

comprising of all the target tasks, and PT-R, PT-F,372

and PT-C using a validation set for each target task373

individually. We evaluate the best checkpoint on374

the test set of each target dataset using F1 as the375

metric for extractive and abstractive QA datasets,376

and accuracy for MCQ and Yes/No QA datasets.377

In cases where a test set is unavailable, we use 378

the development set to report our model’s perfor- 379

mance and create a small subset from the training 380

set for hyperparameter tuning and checkpoint se- 381

lection. We report the aggregate results of three 382

seeds. Table 3 summarizes the experimental results 383

comparing the model-tuning and prompt-tuning 384

paradigms for a unified QA system. In the rest of 385

this section, we share our key findings and insights 386

that can hopefully help guide which paradigm to 387

prefer under which scenarios. 388

Pre-training improves performance in few-shot 389

scenarios, particularly in the lower range, with 390

significant benefits observed in prompt-tuning. 391

Following Unified-QA (Khashabi et al., 2020), we 392

observe that pre-training the T5-base model on 393

diverse source datasets with varying formats and 394

skill requirements (as shown in Table 2) can boost 395

the performance of the pre-trained language model 396

(PrLM) in both fine-tuning and prompt-tuning sce- 397

narios. Our analysis reveals that pre-training can 398

yield substantial performance gains through knowl- 399

edge transfer from source tasks, especially when 400

few training examples are available (refer to Fig- 401

ure 1). We further observe that prompt-tuning 402

with a pre-trained LM introduces inductive bias in 403

prompts, resulting in a much greater performance 404

boost than FT-MT, with the difference becoming 405

more pronounced as the number of instances in- 406

creases (potentially due to overfitting). Specifically, 407
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Backbone : T5-Base Backbone : PrLM
k-shot FT FT-MT PT-R PT-F PT-C ATT-ST ATT-MT FT FT-MT PT-R ATT-MT

16 45.12 45.62 38.92 44.61 45.55 45.70 45.23 58.06 58.00 53.12 57.47
32 46.36 47.00 42.76 45.75 46.88 47.68 47.40 59.05 58.70 53.37 57.63
64 48.08 49.12 44.34 49.33 48.85 48.56 49.08 60.00 59.21 55.54 58.24
128 50.14 52.27 44.41 50.31 50.83 48.76 50.31 61.02 60.69 56.24 58.31
256 52.96 55.39 45.77 53.15 52.31 50.21 52.68 62.23 62.17 57.09 59.94
512 56.60 59.54 47.03 54.91 55.34 51.20 54.70 64.07 63.68 57.70 61.29
1024 59.71 61.48 46.73 57.82 57.34 55.06 58.51 65.90 65.66 58.26 64.21
Full 70.56 67.70 65.03 63.33 65.97 66.88 65.65 72.96 70.74 69.35 69.45

Table 3: Comparison of Model-Tuning and Prompt-Tuning Paradigms with Different Backbone Models in Few-Shot
and Full-Shot Settings: Model-tuning approaches include FT and FT-MT, while PT-R represents vanilla prompt
tuning and PT-F and PT-C correspond to prompt tuning with initialization. ATT-ST and ATT-MT are single-task and
multi-task variants of ATTEMPT, a prompt transfer learning approach. Bold values indicate the best model with a
T5-base backbone for the k-shot scenario, while underline represents the second-best. PrLM represents a backbone
model pre-trained on all source tasks.

PT-R yields a change in improvement from 36% to408

24% as the number of training instances increases409

from 16 to 1024, while improvement in FT-MT dras-410

tically reduces from 27% to 7%. We note that411

ATT-MT follows a similar pattern to that of Model412

Tuning (MT). Moreover, our findings indicate that413

datasets such as COSMOSQA, OBQA, DREAM,414

MCTest, IIRC, and BoolQ exhibit substantial per-415

formance gains through pre-training, likely due to416

their similarity to some of the source datasets. On417

the other hand, datasets such as McTACO, QuaRel,418

ShARC, and PIQA, which are less closely related419

to the source datasets, do not exhibit significant420

improvements with pre-training.421

Parameter-sharing results in superior few-shot422

performance; however, the trends are reversed423

in the full-shot setting. Multi-task fine-tuning424

(FT-MT) that employs the parameter-sharing tech-425

nique yields superior few-shot learning perfor-426

mance than traditional finetuning (FT). The extent427

of improvement increases with the number of train-428

ing examples and starts decreasing at a threshold429

of approximately 512 examples on an aggregate430

level. However, this can vary across different target431

datasets. For instance, datasets such as TweetQA,432

PIQA, and ReClor exhibit this behavior beyond433

512 examples, while OBQA, MCTest, and Com-434

monsenseQA realize this at around 128. Increasing435

training examples from 16 to 512 leads to a boost436

from ∆ = 0.50 to ∆ = 2.94 due to transfer learn-437

ing from other tasks. However, raising the number438

of examples to 1024 results in a drop in improve-439

ment to ∆ = 1.77. In the full-shot setting with440

unbalanced training samples, employing parameter441

sharing among all tasks can lead to negative inter-442

ference, resulting in a reversal of the trend where443

Figure 2: Improvement (%) of pre-trained backbone
model (PrLM) over T5-base observed across different
training approaches in few-shot setting.

FT outperforms FT-MT. Similarly, sharing attention 444

modules across all target tasks in multi-task prompt 445

transfer learning approaches (ATT-MT) leads to a 446

comparable trend. 447

Format-based prompt initialization achieves 448

comparable performance to more complex 449

prompt-transfer approaches. The Prompt- 450

tuning paradigm has emerged as a highly effective 451

approach for fine-tuning pre-trained language 452

models for specific tasks. However, it has been 453

shown that the success of this paradigm can 454

be highly sensitive to initialization. To address 455

this issue, we drew inspiration from the work 456

of (Vu et al., 2022) and explored the use of two 457

different initialization techniques for the target 458

prompt (PT-F and PT-C). Our results demonstrated 459

that both initialization techniques outperformed 460

random initialization by 6% with 32 examples, 461

and this gap increased to approximately 20% with 462

1024 examples. Notably, we found that the simpler 463
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format-based heuristic initialization was just as464

effective as the more complex cosine-based search465

over the entire prompt pool. Furthermore, our466

results revealed that both prompt initialization467

approaches were competitive with the sophisticated468

attention-module-based prompt-transfer learning469

approach ATT-MT.470

Our analysis further revealed that the perfor-471

mance of PT-F and PT-C varied based on the skill472

or domain of the dataset (see Table 7). Evalu-473

ation on datasets from specific domains (Figure474

10) reveals that in low-regime scenarios, PT-F out-475

performed PT-C in the Web+Social and domain-476

specific book domains, while PT-C was more effec-477

tive for Knowledge graphs and Wikipedia domains.478

However, in high-range scenarios, all models per-479

formed similarly. Furthermore, our analysis from480

a skill perspective, as depicted in Figure 11, indi-481

cated that PT-F performed better in Dialog reason-482

ing in the low range and in commonsense reasoning483

in the high range. On the other hand, PT-C was bet-484

ter suited for causal reasoning in the low range.485

More detailed information on our findings can be486

found in the appendix in Table 7.487

Best Candidate for Unified QA FT-MT, PT-R,488

PT-F, PT-C, ATT-MT are potential candidates for the489

unified question answering task. In low-resource490

scenarios, all candidates perform similarly, but491

PT-F and PT-C stands out due to its low num-492

ber of trainable parameters and ease of scaling493

to new datasets. As the number of training in-494

stances increases, FT-MT outperforms other ap-495

proaches, while prompt-tuning approaches remain496

competitive. Our findings suggest that a simple497

approach like PT-F is on par with more sophis-498

ticated prompt-transfer learning approaches like499

ATT-MT. Our experiments showed that a pre-trained500

language model (PrLM) trained on various source501

tasks can consistently improve PT-R performance502

by 25%. Initializing a pre-trained backbone model503

with a soft prompt did not lead to any improvement.504

Additionally, our findings indicate that FT-MT per-505

forms well in the lower range, with an improvement506

of 25%, but experiences a sharp decrease in per-507

formance to only 6% in the higher range. These508

results suggest that using a PrLM can be an effec-509

tive approach to improving PT-R performance.510

6 Variation with model size511

Recent studies have shown that the performance512

gap between prompt-tuning and fine-tuning reduces513

k-shot size FT MT PT (R) PT (B) ATT
16 Examples Base 43.68 45.31 38.72 45.30 45.33

Large 52.19 53.74 46.34 50.21 50.96
∆ 8.50 8.44 7.63 4.92 5.63

32 Examples Base 45.94 47.11 42.04 47.47 46.81
Large 55.96 56.86 48.09 50.35 51.16
∆ 10.02 9.75 6.04 2.88 4.34

128 Examples Base 49.91 51.22 44.01 50.65 50.56
Large 60.25 61.94 50.01 52.07 51.76
∆ 10.34 10.72 6.00 1.42 1.20

1024 Examples Base 59.55 60.68 46.14 57.00 59.51
Large 69.71 69.87 52.37 58.06 57.15
∆ 10.16 9.19 6.23 1.06 -2.35

Table 4: Comparison between model-tuning and prompt-
tuning paradigms for different model sizes. Mean per-
formance over 16 target datasets is reported with T5 as
a pre-trained language model.

as the model size increases (Liu et al., 2021b). In 514

this work, we conduct experiments comparing the 515

performance of base vs large variants of T5 for a 516

range of different fine-tuning methods as shown 517

in Table 4. Unless otherwise specified, we use 518

the T5-base model for our experimentation. We 519

observe a consistent improvement in performance 520

with large language models. Specifically, model- 521

tuning approaches achieve a consistent improve- 522

ment of approximately 10 points across 32 to 1024 523

training instances, while prompt-tuning without ini- 524

tialization achieves an improvement of roughly 6 525

points. However, prompt-tuning with initialization 526

and ATTEMPT do not show significant improve- 527

ment in performance with large models, and this 528

improvement diminishes as the number of training 529

instances increases. The limited performance gain 530

from large models leads us to conclude that multi- 531

task model-tuning outperforms prompt-tuning and 532

ATTEMPT-MT in a few-shot setting. Nevertheless, 533

prompt-tuning with initialization remains compa- 534

rable to ATTEMPT-MT, and both methods signif- 535

icantly outperform prompt-tuning without initial- 536

ization. Overall, these findings suggest that the 537

effectiveness of different candidates for unified QA 538

may depend on the size of the model and the num- 539

ber of training instances available. 540

7 Qualitative Analysis 541

Do different models agree on their answers? Fig 542

3 shows the average agreement of different models 543

on all the tasks across different few-shot scenarios. 544

We find that PT-C and PT-F have the highest agree- 545

ment scores. We partly attribute this to the high 546

overlap of initialization prompts of format and log- 547

ically similar tasks (PT-C, PT-C). However, as the 548

7



Figure 3: Heatmaps showing agreement matrix of different modes under different few shot settings: (a) 16 shot (b)
64 shot (c) 256 shot

Figure 4: The effect of prior and training data size on certain target tasks: (a) OBQA (b) Dream (c) ShaRC.

number of shots increases the overall agreement549

decreases across different modes. Furthermore, we550

investigate if different modes can be complemen-551

tary to each other by evaluating the union of their552

predictions across different shots. We find that fine-553

tuning (FT) and model tuning models (FT-MT) are554

complementary to each other at low resource set-555

tings whereas the gains from PT-R to other modes556

are minimum. For the complete results, refer to Ap-557

pendix (Figure 6). This might indicate that prompt558

tuning may not be practical without good initializa-559

tion for extremely low-resource QA scenarios. For560

further discussions around few shot analysis, refer561

to Appendix A.1.562

A closer look at the task-level performance563

across different few-shot settings reveals564

counter-intuitive behaviors. We find that under565

low resource settings (< 256 shot) good initializa-566

tion helps significantly for target tasks that are sim-567

ilar to source tasks (e.g: OBQA, BoolQ, IIRC), and568

the performance gain decreases as we increase the569

number of shots. As seen from Figure 4, for simi-570

lar tasks PT-C and model tuning FT-MT performed571

significantly better than PT-R. However, in cases572

where there is little domain overlap (ShaRC), ini-573

tializations do not contribute substantially to the574

overall performance of the model. Interestingly, in575

some cases, we find counter-intuitive results where576

performance remains flat (ShaRC) from Figure 4)577

or zig-zag (Ropes) pattern is observed across dif-578

ferent shots. We point the reader to Appendix (Fig- 579

ures 7, 8, 4) for performance across different 580

modes against different shots. 581

8 Conclusion 582

In this work, we explore the viability of prompt- 583

tuning as a solution to unified QA and conduct 584

a thorough analysis of its promise, effectiveness, 585

and trade-offs compared with the model-tuning 586

paradigm on a set of 16 QA datasets, focusing 587

particularly on several few-shot scenarios. As a 588

result, we obtain several key findings and insights 589

that hopefully will inform which paradigm to prefer 590

under which scenarios. Prompt tuning is quite com- 591

petitive with model-tuning in the lower extreme of 592

the few-shot scenarios, given a good initialization. 593

While parameter-sharing leads to superior perfor- 594

mance in the few-shot setting, the trends flip in 595

the full-shot setting, A simple knowledge transfer 596

approach (i.e., an average of relevant prompts) is as 597

effective as complex methods without introducing 598

additional parameters. Pre-training the backbone 599

model on the source tasks significantly benefits 600

prompt tuning. While initializing from a strong 601

prior is very helpful for prompt tuning, its benefit 602

is not as substantial when using a larger backbone 603

model, especially when the number of training ex- 604

amples exceeds a certain threshold. 605
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Limitations606

Our work has several limitations: (1) since few-607

shot experiments are prone to have considerable608

variance due to the randomly sampled few train-609

ing examples, we repeat all the experiments us-610

ing three randomness seeds for the T5-base back-611

bone. However, since the number of experiments612

per seed is more than 1500, we were able to run the613

same experiments with a T5-large backbone using614

only one seed and excluding specific few-shot set-615

tings due to computational limitations, especially616

given the latter model has 3.5 times more parame-617

ters. Although our comparisons of the two models618

are still presented in an entirely fair fashion us-619

ing the same single seed, it would have been more620

strongly conclusive to test our findings with a T5-621

base backbone on the larger model to the same622

extent. That is also the reason why the current623

version of our study does not include comparisons624

with even larger models such as T5-3b or T5-11b.625

(2) We explore a limited number of prompt-tuning626

methods both in terms of how the soft prompts are627

injected in the model architecture following (Lester628

et al., 2021) and how the knowledge from source629

tasks are used to inform target tasks following (Vu630

et al., 2022; Asai et al., 2022). For example, Liu631

(2022) proposes a parameter-efficient fine-tuning632

alternative to soft prompt-tuning in recent work,633

while (Zhong et al., 2022a) shows the benefits of634

prompt-based pretraining. Although the key take-635

aways in the current version of our study are sup-636

ported by sufficient empirical evidence, incorporat-637

ing the aforementioned recent developments may638

prove even further promise and evidence for the639

prompt-based approaches towards few-shot unified640

QA. (3) Our study is currently limited to English-641

QA datasets, hindering our findings to be generally642

valid for cross-lingual and/or cross-model question-643

answering systems. Therefore, we need to consider644

how our findings would generalize to other lan-645

guages and modalities.646

Ethical Statement647

We observe a preference for multiple-choice648

question (MCQ) answer formats across various649

question-answering (QA) datasets with varying650

levels of reasoning ability. Additionally, the ma-651

jority of the source datasets were sourced from652

Wikipedia, which may contain gender or political653

bias that could be further perpetuated by models.654

The T5 model, which was used for pre-training,655

may also have biases due to its pre-training data. 656

However, the study did not conduct stress tests 657

to identify potential biases, and users should be 658

cautious when implementing the provided models. 659

The current models’ results may not align with the 660

facts in input documents, potentially leading to the 661

spread of false information online. This is a com- 662

mon issue in all current QA models, and further 663

research is needed in this area. The study’s experi- 664

ments were primarily conducted using A100 GPUs 665

and consumed a significant amount of GPU time 666

when repeated across random seeds. Nevertheless, 667

our findings can benefit subsequent studies and 668

applications by providing valuable insights, thus 669

avoiding the need for extensive repetition of these 670

comparisons. 671
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A Appendix1147

A.1 Qualitative Study1148

Do the same model across different few-shot set-1149

tings agree on its answers? Figure 5 presents1150

the overall agreement of different models for a sin-1151

gle task under different shot settings. We observe1152

patterns of high level agreement between adjacent1153

shots that gradually decrease with an increase in the1154

number of shots in fine-tuning and prompt tuning1155

with initialization mode. However, prompt tuning1156

with random initialization has an agreement per-1157

centage of 50% across different shots and has no1158

clear distinction of high agreement between the1159

adjacent shots as found in other settings.1160

Table 5 presents a few qualitative examples1161

across different shots and modes. We find prompt1162

tuning with good initialization to leverage world1163

knowledge better (e.g: Arctic Circle with cold1164

weather) even in low resource settings while1165

prompt tuning struggles in predicting local context-1166

based reasoning tasks (e.g: taking photos of home1167

does not associate with new home).1168

A.2 Hyper-parameters1169

After extensive tuning, we selected a learning rate1170

of 1e-5 for the backbone model, along with a maxi-1171

mum source length of 512, a gradient accumulation1172

step of 2, and a batch size of 16. During train-1173

ing, we saved and evaluated checkpoints every 5001174

steps, and trained the model for 100K steps with pa-1175

tience. For all experiments, the prompts consisted1176

of k = 100 tokens with a hidden dimension of d =1177

768.1178

Figure 5: Heatmaps showing agreement of different
shots for each mode: (a) FT (b) PT-C (c) PT-R
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Example Few Shot Label FT-MT PT-C PT-R

Context: M: How long have you been teaching? W: To be frank, I’m tired of teaching the same textbook
though I do enjoy being a teacher. I’m considering trying something new.
Question: What’s the woman probably going to do? 128 (B) (B) (A) (C)
Options: (A) To teach a different book. (B) To change her job. (C) To learn a different textbook.
Context: Q: Are you a Native American/American Indian? A: Yes; I just finished high school. 256 No No Yes Yes
My parents wanted me to go to college, but I never applied.
General Instructions: ... who has been accepted or enrolled in an accredited degree program,
in the field of health care, and you or your family member.
Question: Do I qualify for this benefit program?
Context: cold temperatures cause animals to shiver
Question: Where would animals shiver the most?
Options: (A) Arctic Circle (B) Sumatra (C) Java (D) tropical rainforest 512 Arctic Circle Sumatra Arctic Circle Java
Context: The house painters finished...While I would not say they were not the greatest guys...
they did do a nice job and the house looks so much better. Here are some photos ...
Question: What may have caused you to take photos of your house?
Options: (A) It got a new coat of color. (B) It was my new house. (C) I wanted to show off 128 (A) (A) (B) (B)
its old coat of color. (D) None of the above choices.

Table 5: Table presenting qualitative examples showing model predictions across different shots for different tasks.
Few shot column shows the shot until which the predictions in the table hold.

Target
Dataset

Format-based (Pt-F) Complete Set (PT-C)

ropes searchqa, newsqa, quac drop, siqa, quac
dream record, race, siqa searchqa, quac, siqa
sharc duorc, coqa, nar_qa quac, coqa, nar_qa
boolq pubmed_qa race, newsqa, pubmed_qa
piqa record, siqa, race quac, siqa, nar_qa
quoref quac, newsqa, nq duorc, nar_qa, drop
cosmos_qa record, siqa, race nar_qa, siqa, race
tweet_qa nq_open, duorc, nar_qa nq_open, duorc, nar_qa
CQA record, race, siqa newsqa, nar_qa, siqa
obqa record, race, siqa newsqa, race, siqa
reclor record, race, siqa duorc, siqa, nq_open
quarel record, race, siqa duorc, quac, nar_qa
mctest record, race, siqa nq, race, siqa
mc_taco pubmed_qa pubmed_qa, siqa, nar_qa
copa pubmed_qa searchqa, race, siqa
iirc hotpotqa, newsqa, nq newsqa, drop, nq

Table 6: Source Prompts most similar to target prompts for format-based and complete-set initialization corre-
sponding to PT-F and PT-C respectively. Bold indicates source tasks common in both partitions. Although some
source prompts are shared across target tasks, Quoref and COPA have none in common. The SIQA and RACE
source prompts are typically used for initialization, but we found that lifting the constraint of choosing prompts
from the same format allowed for successful cross-format initialization at the reasoning skill or domain level. For
example, the DREAM dataset (MCQ) was initialized with QuAC (ExtQA), which is reasonable since both involve
conversational data. The IIRC dataset was also initialized with the most relevant source task, HotpotQA. Yes/No
questions strongly prefer PubmedQA as a format.

Domain-based Skill-based
Machine Reading Comprehension Web & Social Media
iirc, tweet_qa, mctest, boolq, reclor tweet_qa, piqa, reclor
Commonsense Reasoning Wikipedia
cosmos_qa, piqa, commonsense_qa, mc_taco iirc, ropes, quoref, boolq
Dialog Reasoning Knowledge Graph
sharc, dream, quoref commonsense_qa, cosmos_qa
Causal Reasoning domain specific book
ropes, obqa, quarel, copa sharc, obqa, quarel

Table 7: Categorization of Target Datasets Based on Domain and Reasoning Skill
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Model tweet_qa ropes cosmos_qa piqa CQA dream obqa reclor sharc quarel mctest mc_taco boolq copa quoref iirc agg

16 Examples

FT 65.26 41.87 35.00 55.51 41.63 37.52 30.20 25.27 38.13 48.08 52.33 66.03 50.70 58.00 43.64 32.80 45.12
FT-MT 60.77 48.76 35.90 54.68 39.78 40.33 31.60 24.27 37.62 48.32 50.33 65.48 54.93 59.33 42.17 35.72 45.62
PT-R 39.97 40.22 25.93 52.39 35.68 35.92 25.80 25.80 23.10 47.48 53.50 66.13 37.90 51.33 38.26 23.22 38.92
PT-F 68.15 37.04 35.10 56.09 43.35 40.67 34.53 26.13 39.68 47.24 58.17 65.36 37.83 55.00 42.34 27.00 44.61
PT-C 68.15 57.67 36.07 54.35 41.71 36.31 31.47 26.27 38.94 49.88 52.67 65.31 42.75 57.00 43.03 27.18 45.55
att-st 63.38 31.94 34.82 54.91 40.57 36.90 32.93 27.20 39.17 50.12 54.00 66.20 51.12 61.67 45.80 40.49 45.70
ATT-MT 60.52 32.82 37.10 55.08 40.90 39.54 30.80 26.20 38.65 48.20 45.83 64.42 59.51 58.00 45.05 41.06 45.23

32 Examples

FT 65.55 49.74 36.08 55.42 41.85 37.43 30.60 24.33 41.84 48.08 52.17 66.14 60.52 60.67 44.77 26.56 46.36
FT-MT 61.01 53.55 36.05 55.68 41.61 42.53 32.40 25.33 39.42 46.76 50.83 64.95 58.20 53.33 44.28 46.00 47.00
PT-R 35.72 39.50 32.23 53.01 35.76 36.00 27.33 25.27 39.34 46.52 51.33 66.06 61.80 53.67 41.25 39.35 42.76
PT-F 68.61 46.41 34.80 56.22 42.97 41.44 40.20 27.07 40.00 46.64 59.17 66.09 37.83 55.00 42.51 26.97 45.75
PT-C 68.61 62.64 37.72 55.33 43.19 36.24 31.53 26.47 39.63 48.56 54.83 65.08 43.28 61.67 42.83 32.37 46.88
att-st 63.80 50.97 34.52 55.11 41.88 36.88 33.20 27.20 44.18 49.64 53.50 66.31 53.96 64.67 46.46 40.69 47.68
ATT-MT 64.11 55.53 36.94 55.89 42.56 41.55 30.87 27.13 44.33 46.76 45.33 63.72 59.82 53.00 43.72 47.20 47.40

64 Examples

FT 66.17 48.65 36.73 55.53 43.65 38.42 29.73 24.93 42.97 48.08 52.67 66.13 65.31 60.67 46.85 42.83 48.08
FT-MT 62.94 51.62 37.91 55.91 44.44 44.56 36.33 28.33 40.90 48.20 53.33 64.42 62.61 59.33 44.90 50.13 49.12
PT-R 57.15 40.45 31.65 53.12 37.51 36.57 27.13 25.93 40.12 47.48 53.00 66.12 62.39 53.67 39.11 38.03 44.34
PT-F 68.29 47.50 37.84 56.96 43.60 42.09 41.80 26.27 39.69 45.80 62.67 65.78 63.24 56.67 43.10 48.04 49.33
PT-C 68.29 58.97 38.43 55.01 43.73 37.21 31.53 26.33 37.56 49.88 57.83 65.35 61.22 62.33 43.02 44.82 48.85
att-st 63.26 53.20 37.45 55.89 42.56 37.14 32.80 26.27 43.11 49.04 53.50 65.61 58.27 63.67 46.96 48.25 48.56
ATT-MT 63.86 55.02 41.68 55.46 39.97 40.51 34.20 27.67 48.91 48.08 52.83 64.60 63.47 57.33 41.01 50.73 49.08

128 Examples

FT 66.42 48.92 40.76 55.22 46.44 37.71 33.87 25.33 44.62 47.96 53.00 67.64 72.10 57.33 50.14 54.79 50.14
FT-MT 64.91 52.98 41.03 57.00 46.00 47.89 43.33 30.13 43.62 52.52 59.17 66.21 67.75 61.00 48.43 54.38 52.27
PT-R 58.26 35.09 32.73 53.23 37.10 36.27 26.53 26.07 38.65 49.04 52.83 64.94 62.15 54.33 41.53 41.87 44.41
PT-F 68.79 47.89 39.03 56.58 44.25 43.99 42.33 25.13 41.26 46.28 66.00 65.49 64.90 57.67 42.74 52.66 50.31
PT-C 68.79 57.61 40.86 56.53 43.13 40.02 40.27 25.80 39.89 50.00 63.83 65.88 68.01 59.33 43.10 50.30 50.83
att-st 63.48 52.39 38.32 54.99 42.70 36.67 32.93 26.60 44.76 50.24 53.50 66.21 61.45 57.67 47.33 50.85 48.76
ATT-MT 65.34 46.84 42.14 54.28 42.81 42.27 41.33 29.27 47.99 51.32 57.83 67.11 69.23 53.33 42.01 51.91 50.31

256 Examples

FT 67.64 48.42 42.00 55.82 49.39 40.51 42.07 25.07 48.99 49.28 61.83 71.33 74.78 58.67 52.92 58.62 52.96
FT-MT 66.13 53.98 41.86 58.00 48.27 50.96 50.13 30.20 46.21 54.20 66.50 70.61 73.29 64.00 51.27 60.55 55.39
PT-R 63.26 44.25 36.36 53.39 38.08 36.24 26.47 27.00 39.65 49.16 55.50 66.14 62.31 46.67 43.08 44.80 45.77
PT-F 69.03 51.80 42.27 57.40 46.98 50.96 57.93 26.47 45.46 46.04 67.00 66.51 67.34 55.33 45.05 54.77 53.15
PT-C 69.03 50.37 42.21 56.89 44.55 41.36 45.40 28.73 43.58 48.80 68.67 66.36 71.21 60.33 45.54 53.96 52.31
att-st 62.79 54.77 39.79 55.91 46.25 37.34 36.67 26.40 46.70 49.40 51.67 66.09 65.73 63.00 47.57 53.34 50.21
ATT-MT 66.68 53.33 41.43 54.39 45.70 42.86 43.40 29.20 49.36 53.12 61.17 67.55 72.75 61.00 45.21 55.80 52.68

512 Examples

FT 68.11 54.84 45.45 56.91 51.76 45.08 53.40 26.73 53.11 48.44 69.17 74.11 76.47 61.67 57.89 62.39 56.60
FT-MT 67.98 58.25 42.75 58.74 51.35 56.23 60.00 34.33 52.02 58.99 72.50 74.99 75.46 65.67 57.36 66.02 59.54
PT-R 65.44 45.15 36.49 53.66 38.74 34.20 33.73 27.47 40.16 48.44 54.33 66.07 62.51 51.33 45.06 49.77 47.03
PT-F 67.28 54.33 43.96 57.13 48.98 52.92 61.33 25.73 40.65 48.32 71.00 67.07 75.64 54.33 51.72 58.23 54.91
PT-C 67.28 56.10 43.91 56.75 48.40 49.35 58.60 28.60 50.03 48.80 71.83 66.21 72.74 56.33 53.80 56.63 55.34
att-st 61.56 55.95 39.35 55.51 46.74 40.26 43.47 27.73 47.60 50.00 56.17 66.09 68.73 57.67 48.32 54.04 51.20
ATT-MT 68.23 58.65 44.32 56.29 47.67 46.72 53.80 31.33 51.87 53.60 68.33 72.71 50.52 58.33 50.24 62.52 54.70

1024 Examples

FT 68.90 52.90 46.21 56.46 54.57 52.17 60.60 27.93 56.12 52.52 75.50 78.76 76.99 65.00 63.15 67.55 59.71
FT-MT 70.59 58.57 42.91 58.74 54.38 59.22 64.80 35.80 55.87 61.15 76.33 76.84 76.27 63.67 61.28 67.26 61.48
PT-R 64.58 39.94 35.88 52.97 40.87 36.03 33.60 26.53 42.41 46.64 53.67 66.54 62.15 46.67 46.98 52.16 46.73
PT-F 67.39 55.21 42.66 56.40 52.33 52.19 62.80 30.00 53.53 49.52 77.33 66.86 76.45 59.33 58.50 64.57 57.82
PT-C 67.39 51.05 44.46 56.49 51.30 51.86 63.93 26.40 54.28 51.44 75.17 68.02 74.51 56.00 58.53 66.67 57.34
att-st 69.69 57.27 40.22 55.77 50.01 47.60 55.27 26.87 53.74 49.64 62.50 66.59 75.02 60.67 50.83 59.28 55.06
ATT-MT 69.46 59.06 44.88 56.13 51.35 50.15 59.00 31.13 54.03 54.32 71.00 75.41 75.52 61.33 56.74 66.69 58.51

Full

FT 77.40 59.16 69.82 67.63 62.74 66.32 74.20 47.20 67.36 67.99 78.00 99.41 82.97 67.00 71.18 70.57 70.56
FT-MT 76.34 58.53 67.30 67.03 61.18 67.40 74.20 36.20 63.35 59.35 73.50 92.21 80.58 66.00 70.19 69.88 67.70
PT-R 75.63 55.32 55.58 60.94 59.38 60.49 68.40 40.60 58.72 62.23 74.00 95.95 80.61 55.00 68.48 69.20 65.03
PT-F 73.31 51.31 49.78 58.11 56.59 62.65 71.20 35.00 57.24 56.12 78.50 78.87 79.54 59.00 64.10 68.64 62.50
PT-C 75.23 52.13 58.69 60.93 58.07 64.12 71.40 41.60 58.53 62.95 76.50 96.43 79.76 62.00 67.58 69.55 65.97
att-st 55.31 60.29 59.45 79.33 62.62 68.68 61.94 75.71 58.56 70.22 69.00 97.90 66.91 77.50 64.00 42.60 66.88
ATT-MT 74.37 57.02 58.63 61.53 58.89 61.67 67.80 39.60 60.11 57.19 77.00 94.19 80.86 65.00 67.71 68.89 65.65

Table 8: Complete set of results for comparison between model-tuning and prompt-tuning approaches on 16 target
QA datasets with T5-base as pre-trained language model.
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Backbone : T5-Base Backbone : PrLM
k-shot FT MT PT-R PT-F PT-B ATT-ST ATT-MT FT MT PT-R ATT-MT
16 4.07 2.74 6.05 1.45 2.18 3.49 3.29 1.84 2.11 4.18 2.24
32 1.28 2.71 6.11 2.90 3.11 3.50 2.85 1.68 1.60 2.77 1.85
64 4.60 2.53 2.02 3.29 3.03 2.42 3.21 1.13 1.87 2.35 2.42
128 2.25 2.22 2.12 4.13 4.01 1.73 2.76 1.34 1.39 2.80 2.81
256 3.36 2.40 1.97 3.25 4.23 3.12 3.63 1.41 1.90 2.84 2.93
512 2.62 1.35 4.22 1.35 2.04 3.77 2.45 0.83 1.22 2.23 3.17
1024 1.73 1.71 4.31 2.62 2.21 3.95 2.93 1.35 2.09 2.78 2.01

Table 9: Table displays the aggregate standard deviation of target tasks with different seeds. Increasing training
instances reduces standard deviation, improving model robustness and reducing sensitivity to minor variations.
PrLM reduces standard deviation across all approaches, leading to stable performance and better generalization
while addressing overfitting. Prompt tuning has a higher deviation due to initialization sensitivity. Parameter-sharing
and prompt initialization techniques reduce deviation, leveraging knowledge from other tasks for stable performance,
especially in low-resource scenarios, and mitigating overfitting.

Model tweet_qa ropes cosmos_qa piqa CQA dream obqa reclor sharc quarel mctest mc_taco boolq copa quoref iirc agg

16 Examples

FT 73.17 50.92 47.52 55.79 52.33 68.02 67.47 35.80 40.14 47.12 86.50 67.03 73.59 68.00 49.88 45.75 58.06
FT-MT 71.44 52.13 47.18 57.44 51.02 68.61 67.40 37.27 40.68 48.68 84.83 67.40 76.15 65.33 48.61 43.90 58.00
PT-R 61.75 52.32 42.64 55.97 40.92 59.00 59.07 36.27 40.36 48.20 78.17 66.13 68.71 56.33 48.20 35.83 53.12
ATT-MT 69.37 49.36 47.07 56.09 52.47 65.78 66.60 36.40 41.61 50.12 85.83 67.14 71.67 67.67 47.09 45.18 57.47

32 Examples

FT 73.32 51.69 48.61 55.77 52.69 68.02 67.87 36.27 42.45 48.92 86.67 66.23 74.22 70.33 51.08 50.59 59.05
FT-MT 71.46 52.67 46.58 57.02 51.00 68.64 68.47 36.80 42.94 50.00 84.67 67.41 79.18 63.67 50.53 48.21 58.70
PT-R 61.64 51.26 43.27 56.13 41.96 63.68 63.07 35.60 39.79 47.96 80.83 66.14 65.48 52.67 49.42 35.02 53.37
ATT-MT 70.09 50.39 48.94 55.79 51.73 66.23 67.67 35.80 38.81 48.68 86.17 66.29 72.30 65.00 51.26 46.89 57.63

64 Examples

FT 74.17 51.56 49.39 55.59 53.26 68.69 68.80 35.73 43.21 47.48 86.50 66.51 80.88 66.33 53.92 58.00 60.00
FT-MT 72.06 52.55 48.15 56.78 52.17 68.82 67.73 37.87 40.10 49.16 84.83 66.70 80.10 64.00 54.09 52.26 59.21
PT-R 66.83 53.82 46.91 55.53 42.37 63.15 64.20 36.13 40.76 48.20 80.50 66.22 74.07 58.33 49.93 41.75 55.54
ATT-MT 71.61 51.48 48.14 55.98 52.33 66.06 68.33 36.07 40.15 50.36 85.67 63.57 77.32 66.33 52.39 46.09 58.24

128 Examples

FT 74.00 51.63 50.73 56.51 54.79 68.30 69.00 35.80 43.89 48.44 86.33 67.71 81.70 66.67 56.16 64.60 61.02
FT-MT 72.69 51.04 49.96 57.18 54.00 69.12 68.13 37.60 44.25 52.52 85.33 68.38 81.53 63.67 56.61 59.04 60.69
PT-R 71.70 54.12 45.62 56.35 42.34 66.01 63.87 36.47 39.19 48.08 83.83 65.81 72.94 58.33 50.79 44.39 56.24
ATT-MT 71.76 52.32 48.39 56.18 51.05 66.86 68.80 34.73 40.33 50.36 85.33 62.20 78.50 59.00 54.49 52.64 58.31

256 Examples

FT 74.00 52.58 52.23 56.20 55.88 69.26 69.67 37.53 46.86 49.76 86.83 69.75 82.02 65.00 60.49 67.60 62.23
FT-MT 72.28 53.47 50.97 58.14 54.05 69.87 67.53 40.20 48.83 54.44 82.83 70.85 81.73 65.33 59.20 64.95 62.17
PT-R 71.71 52.73 48.15 55.75 47.94 67.19 65.40 34.27 39.75 48.32 84.17 65.81 75.92 55.00 50.96 50.33 57.09
ATT-MT 71.41 52.20 49.65 56.33 52.06 66.21 69.73 37.73 44.07 52.52 86.33 67.96 78.50 62.67 55.05 56.64 59.94

512 Examples

FT 74.34 55.50 53.45 58.54 57.41 68.84 70.67 36.40 55.78 51.08 86.67 75.79 82.14 65.33 63.96 69.18 64.07
FT-MT 72.79 55.85 52.74 58.89 55.26 70.18 69.40 39.13 53.94 54.92 85.50 71.93 81.61 66.67 62.65 67.49 63.68
PT-R 71.98 54.72 48.08 55.84 48.38 66.67 69.93 34.60 37.24 50.48 84.33 66.15 74.74 60.33 51.66 47.99 57.70
ATT-MT 73.27 53.55 51.66 55.91 51.13 62.53 67.93 37.00 49.49 55.04 85.17 70.23 81.36 60.33 60.66 65.41 61.29

1024 Examples

FT 73.83 57.80 57.20 58.29 58.75 70.85 70.67 42.27 59.91 53.48 87.33 80.24 82.20 66.00 66.28 69.26 65.90
FT-MT 73.87 59.29 54.84 59.65 56.21 70.39 71.13 43.33 58.16 62.59 83.33 79.16 81.27 64.00 65.04 68.25 65.66
PT-R 71.79 52.84 48.59 56.13 51.11 66.63 68.53 34.27 38.71 49.40 85.33 65.70 77.19 61.33 55.15 49.38 58.26
ATT-MT 74.78 59.91 54.42 55.93 51.82 67.21 70.67 39.87 56.24 56.95 86.50 75.09 81.00 65.67 62.51 68.78 64.21

Full

FT 79.05 65.52 71.06 67.85 62.16 73.24 72.20 54.40 66.99 73.74 85.00 99.40 82.75 69.00 72.78 72.19 72.96
FT-MT 77.16 61.79 69.82 67.25 61.75 73.33 72.20 42.60 65.94 69.42 83.00 93.37 82.91 69.00 71.61 70.62 70.74
PT-R 77.04 62.60 66.57 61.70 60.85 70.69 70.60 42.80 59.38 70.86 85.50 95.59 82.35 61.00 71.28 70.84 69.35
ATT-MT 77.34 63.56 67.14 63.22 61.26 70.20 68.80 45.40 60.82 69.42 84.50 89.65 82.05 65.00 72.13 70.67 69.45

Table 10: Complete set of results for comparison between model-tuning and prompt-tuning approaches on 16 target
QA datasets with PrLM as pre-trained language model trained on source tasks.
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Model tweet_qa ropes cosmos_qa piqa CQA dream obqa reclor sharc quarel mctest mc_taco boolq copa quoref iirc agg

16 Examples

ft 75.12 44.38 39.63 56.91 53.40 41.27 40.80 27.40 28.54 49.28 73.50 64.50 74.65 67.00 48.85 49.74 52.19
ft-mt 71.87 46.81 38.83 59.79 55.28 52.75 42.80 31.00 31.37 55.04 73.50 63.66 71.41 72.00 46.97 46.84 53.74
pt-random 74.79 54.52 37.09 55.60 48.32 41.13 31.80 22.60 8.46 48.56 56.50 66.10 59.54 58.00 51.04 27.46 46.34
pt-best 72.91 45.23 38.39 54.95 51.52 39.75 31.80 22.40 38.87 46.76 59.00 66.20 74.16 65.00 53.56 42.92 50.21
att-mt 69.38 56.38 36.72 55.82 52.91 39.51 29.60 26.80 41.19 46.76 65.00 66.14 65.78 65.00 54.52 43.83 50.96

32 Examples

ft 75.56 57.00 41.24 54.62 51.76 48.77 50.40 26.00 38.49 50.00 71.00 67.17 73.18 76.00 57.88 56.34 55.96
ft-mt 72.84 52.79 41.81 58.65 55.61 58.53 52.00 31.20 39.16 53.96 71.50 65.99 70.64 77.00 54.47 53.63 56.86
pt-random 75.62 51.59 38.19 54.73 52.25 40.15 32.00 22.40 14.93 47.48 58.00 66.38 69.79 65.00 52.55 28.31 48.09
pt-best 72.82 46.39 38.22 55.50 51.43 39.95 32.00 21.00 39.43 47.12 57.50 66.13 73.39 65.00 54.19 45.60 50.35
att-mt 68.92 58.59 37.22 55.77 52.91 39.56 31.80 26.00 41.89 48.56 60.50 66.15 65.87 65.00 53.47 46.31 51.16

128 Examples

ft 75.37 42.31 47.84 59.52 55.53 58.63 59.80 30.20 49.75 58.27 76.00 71.41 80.18 73.00 62.59 63.65 60.25
ft-mt 73.23 50.07 49.45 62.13 56.92 64.71 61.60 34.80 48.92 58.63 80.50 74.09 79.54 73.00 61.20 62.27 61.94
pt-random 75.23 60.79 36.35 56.37 48.73 41.13 32.80 21.40 40.40 49.64 59.50 66.17 68.87 62.00 52.66 28.20 50.01
pt-best 73.68 57.55 37.96 55.11 52.09 40.44 29.80 23.80 40.84 48.92 59.50 65.97 76.24 69.00 55.44 46.74 52.07
att-mt 73.13 61.37 38.12 54.08 54.22 39.71 26.80 26.60 42.57 50.00 59.50 66.13 69.08 62.00 56.02 48.80 51.76

1024 Examples

ft 78.71 54.74 56.38 63.44 66.91 71.67 73.40 41.80 59.23 72.66 85.50 85.89 83.67 79.00 70.42 71.99 69.71
ft-mt 77.17 54.05 56.98 64.31 64.05 74.95 74.60 42.40 61.20 72.66 88.00 85.56 81.90 80.00 69.36 70.68 69.87
pt-random 73.38 56.78 38.39 54.35 54.46 40.59 32.40 24.40 47.05 52.88 60.50 66.08 73.39 63.00 55.85 44.37 52.37
pt-best 73.19 56.41 35.78 53.92 59.62 37.40 57.00 28.00 54.07 47.84 81.50 66.45 81.35 65.00 67.27 64.24 58.06
att-mt 75.57 50.53 39.30 55.01 58.89 49.85 49.20 26.60 50.63 52.52 78.00 66.13 79.82 67.00 59.89 55.52 57.15

Full

ft 81.34 68.10 77.79 72.80 72.24 78.73 81.40 50.60 71.37 77.34 88.00 99.48 86.02 80.00 76.63 73.33 77.20
ft-mt 80.31 64.66 74.67 71.38 73.46 78.97 80.60 49.20 68.00 72.66 88.50 93.74 83.98 78.00 77.12 73.96 75.58
pt-random 79.20 57.26 66.83 68.17 70.52 77.25 76.60 32.40 62.52 75.90 85.00 97.26 84.89 70.00 74.30 71.11 71.83
pt-best 80.08 58.00 67.57 67.36 68.55 77.40 78.20 42.80 63.33 72.30 86.50 98.28 83.79 73.00 75.34 73.43 72.87
att-mt 78.88 54.88 57.35 63.87 68.14 67.45 74.60 33.40 59.79 62.59 84.50 85.12 84.59 69.00 74.62 71.33 68.13

Table 11: Complete set of results for comparison between model-tuning and prompt-tuning approaches on 16 target
QA datasets with T5-Large as pre-trained language model.
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Figure 6: Heatmaps showing union matrix of different
shots for each mode: (a) FT (b) PT-C (c) PT-R
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Figure 7: Graphs showing task level agreement across
different shots for different modes: (a) 16 shot (b) 64
shot (c) 256 shot

19



mc_taco boolq copa sharc ropes quoref iirc
Datasets (Extractive, Abstractive, YNQ)
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Figure 8: Graphs showing task level agreement across different shots for different modes: (a) 16 shot (b) 64 shot (c)
256 shot

Figure 9: Graphs showing performance of PT-C on target datasets for different shots.
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Figure 10: Comparison of FT-MT, PT-F, PT-C and ATT-MT in several few-shot scenarios using T5-Base as the
backbone model for different domains: (top-left) domain-specific books, (top-right) Knowledge graphs, (bottom-
left) Wikipedia and (bottom-right) Web & Social Domain

Figure 11: Comparison of FT-MT, PT-F, PT-C and ATT-MT in several few-shot scenarios using T5-Base as the
backbone model for different reasoning skills : (top-left) Reading Comprehension, (top-right) Dialog, (bottom-left)
Causal and Commonsense reasoning skill (bottom-right).
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