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ABSTRACT

Modeling long-range interactions, the propagation of information across distant
parts of a graph, is a central challenge in graph machine learning. Graph wavelets,
inspired by multi-resolution signal processing, provide a principled way to capture
both local and global propagation. However, existing wavelet-based graph neural
networks rely on finite-order polynomial approximations, which limit their recep-
tive fields and hinder long-range propagation. We propose Long-Range Graph
Wavelet Networks (LR-GWN), which decompose wavelet filters into complemen-
tary local and global filters. Local aggregation is handled with efficient low-order
polynomials, while long-range interactions are captured through a flexible spectral
parameterization. This hybrid design unifies short- and long-distance information
flow within a principled wavelet framework. Experiments show that LR-GWN
achieves state-of-the-art performance among wavelet-based methods on long-range
benchmarks, while remaining competitive on short-range datasets.

1 INTRODUCTION

Long-range interactions are central to complex systems, from electron correlations in quantum
chemistry (Ambrosetti et al., 2014; Knorzer et al., 2022) to allosteric effects in biology (Dokholyan,
2016; Zhu et al., 2022). In graph neural networks (GNNs) (Gori et al., 2005; Scarselli et al., 2009;
Gilmer et al., 2017; Bronstein et al., 2017), capturing these interactions requires models that can
propagate information beyond local neighborhoods without the computational overhead of dense
global interactions (Alon & Yahav, 2021; Dwivedi et al., 2022).

Wavelet-based graph neural networks (WGNNs) (Hammond et al., 2011), inspired by wavelet theory
(Mallat, 1989), provide a principled framework for this challenge. In fact, WGNNSs define spectral
filters that can in principle capture different scales of information propagation through their filtering
characteristics. However, designing exact wavelet filters face a fundamental computational bottleneck,
as it would require computing the full eigenvalue decomposition of the graph Laplacian, which is
prohibitive for large graphs.

To circumvent this cost, current WGNNs (Hammond et al., 2011; Xu et al., 2019; Liu et al., 2024a)
approximate wavelet filters using low-order polynomials. While computationally efficient, these
approaches suffer from two critical limitations. First, polynomial filters aggregate information only
within a finite number of hops (Balcilar et al., 2020), inherently restricting their spatial reach. More
fundamentally, polynomial approximations face an inherent trade-off between computational effi-
ciency and functional expressiveness: while high-degree polynomials can theoretically approximate
any function defined on the real interval as proved by the Weierstrass theorem, practically feasible
orders cannot accurately represent the discontinuous or steep characteristics needed for selective
frequency filtering, such as wavelets (Geisler et al., 2024).

Achieving both computational efficiency and sufficient functional expressiveness therefore requires re-
thinking how wavelet filters are parameterized. Existing polynomial-based approaches fundamentally
fail to resolve this trade-off. On the one hand, low-order polynomials are highly efficient but their
locality inherently confines propagation to a small neighborhood, preventing meaningful long-range
interactions (Fig. 1a). On the other hand, increasing the polynomial order extends the receptive
field and allows information to travel across more distant nodes, yet this comes at a rapidly growing
computational cost and still does not provide true global coverage (Fig. 1b). Crucially, even very
high polynomial degrees cannot faithfully reproduce the sharp spectral characteristics of wavelets,
which are essential for selective frequency filtering. At the opposite end of the spectrum, an exact
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Figure 1: Signal propagation under different Mexican hat wavelet filter approximations. (a) Low-
order polynomial (p = 20) restricts propagation to local neighborhoods. (b) Higher-order polynomial
(p = 50) extends reach but remains spatially bounded. (c) Full EVD (k = N = 2503) enables global
propagation at prohibitive cost. (d) LR-GWN (p = 8,k = 12) achieves global propagation with
minimal computational overhead.

formulation based on a full eigenvalue decomposition of the graph Laplacian achieves principled and
unrestricted global information flow. However, this approach scales cubically with the number of
nodes and is thus infeasible for graphs of realistic size (Fig. 1¢). These limitations highlight the need
for a new design paradigm that bridges the gap between purely polynomial approximations, which are
efficient but spectrally limited, and full spectral methods, which are expressive but computationally
prohibitive.

We propose Long-Range Graph Wavelet Networks (LR-GWN), which overcome the limitations of
polynomial-based WGNNSs through a hybrid filter design. Our method decomposes each wavelet
filter into two components: a low-order polynomial for efficient local aggregation and a spectral filter
operating on the low-frequency eigenspace to enable long-range propagation (Fig. 1d). This approach
requires only a partial eigendecomposition at preprocessing time, making it computationally practical
while achieving the global reach that purely polynomial methods cannot provide. LR-GWN can
operate under strict wavelet theory or with relaxed constraints for enhanced performance, providing a
principled yet flexible framework for wavelet-based long-range graph learning.

Our contributions are as follows:
I. Hybrid parametrization combining polynomial spatial filters with learnable spectral filters
operating on truncated eigenspaces;

II. Principled wavelet framework that maintains theoretical admissibility constraints while
optionally allowing relaxation when needed;

III. Efficient implementation requiring only partial eigenvalue decomposition with minimal
preprocessing overhead, linear in the number of edges;

IV. State-of-the-art performance among wavelet-based GNNs on long-range benchmarks,
when both respecting wavelet admissibility criteria and relaxing them.

2 BACKGROUND

We recall the main tools from spectral graph theory and wavelet analysis; see Appendix A for a more
detailed exposition.

Graphs. We consider undirected graphs G = (A, X)) with n nodes, m edges, an adjacency matrix
A € {0,1}™*", and node features X € R"*?. The degree matrix is D = diag(A1), where 1 is
the all-ones vector. From this, one can define the 1combinlatorial Laplacian L = D — A and the
symmetrically normalized Laplacian £ = I — D2 AD™2. In this work, we primarily use L.

For undirected graphs, £ is symmetric and positive semidefinite, which guarantees an eigende-
composition £ = UAU " with orthogonal eigenvectors U and eigenvalues 0 = A\; < --- < \,, < 2
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(Chung, 1997). Small eigenvalues correspond to smooth, slowly varying components, while large
eigenvalues capture oscillatory, high-frequency behavior.

Graph Fourier Transform. The eigenvectors of £ form an orthogonal basis often referred to as the
graph Fourier basis. Any graph signal x € R™ can be decomposed in this basis via the graph Fourier
transform (GFT) as & = U ' z, with inverse = UZ. Filtering with a spectral kernel g : R — R
amounts to rescaling Fourier coefficients according to the eigenvalues:

g*g T = UE(A) UTma

where g(A) = diag(g(A\1), ..., G(An)). In this sense, spectral filters are functions of the Laplacian
spectrum, directly analogous to frequency-domain filters in classical Fourier analysis.

Wavelets. Wavelet theory extends Fourier analysis by enabling localized, multiresolution represen-
tations of signals (Mallat, 1989; 2009). A mother wavelet ¢ generates dilated and translated functions
Vs (t) = s~ 12 (1), whose coefficients W (s, 1) = [ f( t) dt decompose a signal across
scales s and locations [. Reconstruction requires the admlss1b111ty condltlon 1(0) = 0, ensuring
1) acts as a band-pass filter. A complementary scaling function ¢ with gf)(O) > ( provides low-pass
coverage, yielding a multiresolution analysis where wavelets capture localized variations and the
scaling function captures global trends.

Wavelets on graphs. The spectral graph wavelet transform (SGWT) (Hammond et al., 2011)
adapts this construction to graphs. Given £ = UAU T, a band-pass kernel 1/ defines the wavelet
operator ¥ = U z/;( YU T. Dilation to scale s is achieved by ¥(sA). A scaling function defines
the low-pass operator ¢ = U ¢(A) U ". For a graph signal z, the wavelet coefficients at scale s are
We(s) = U (sA)U "z, while scaling coefficients are H, = Ud)( YU T x. Together, they provide
a multiscale representation where 1) captures localized variations (band-pass) and ¢ global structure
(low-pass).

Polynomial approximations. Exact spectral filtering requires full eigendecomposition, which
is impractical for large graphs. A common workaround is to approximate filters with low-order
polynomials of £, which can be applied directly in the vertex domain. Chebyshev expansions are
particularly effective (Defferrard et al., 2016):

where A = (2/Amax)A — I rescales the spectrum to [—1, 1].

Definition 1 (Chebyshev Polynomials of the First Kind). The Chebyshev polynomials T; are defined
recursively by

To(z) =1, Ti(x)=2z, Ti(x)=2xT;—1(x)—Ti—a(x) (i>2).

Chebysheyv filters require no eigendecomposition and correspond to message passing within at most
p hops on the graph (Balcilar et al., 2020), providing a scalable but inherently local approximation to
spectral filters.

3 LIMITATIONS OF POLYNOMIAL GRAPH FILTERS

Approximating spectral filters with polynomials avoids explicit eigendecomposition, since powers of
L act directly in the vertex domain. For instance a spectral filter of the form g.,(A) = 7 wi A
corresponds to the spatial operator g.,(£) = >0, w; L*. This equivalence arises because powers of
L in the vertex domain correspond exactly to powers of its eigenvalues in the spectral domain, and
extends to other bases such as Chebyshev polynomials (see Appendix E.1). The main advantage of
this parametrization lies in efficiency: recursive evaluation yields linear cost in the number of edges.

Despite these computational benefits, polynomial filters face structural barriers that limit their ability
to capture long-range dependencies. We outline these issues from three complementary perspectives:
(i) message propagation, (i7) function approximation, and (ii7) convergence to discontinuous filters.
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Perspective I: Propagation. Balcilar et al. (2020) showed that an /-layer message-passing GNN
corresponds exactly to an £-order polynomial filter (i.e., with degree p = £). In practice, each layer
adopts a first-order update of the form

H® = (woI +w L)H* ),

where multiplication by £ aggregates information from one-hop neighbors (Kipf & Welling, 2016).
Stacking ¢ such layers therefore propagates messages across at most £ hops. Beyond this range,
information is inaccessible, and attempting to increase depth leads to over-squashing (Alon &
Yahav, 2021), where exponentially many distant signals are compressed into fixed-size embeddings.
Thus, polynomial filters cannot achieve effective long-range propagation without either prohibitive
computational depth or architectural modifications.

Insight I: Polynomial filters of degree p propagate information at most p hops, and increasing
depth induces over-squashing, making them structurally unsuitable for long-range dependencies.

Perspective II: Approximation. From an 04 :
approximation-theoretic viewpoint, low-degree \ Tr“f e )
polynomials are weak approximators for functions 031\ T Ouj;()p =8 A 0P
with steep transitions. This limitation is formalized . Z; 0

by Markov’s inequality:
Theorem 1 (Markov’s Inequality (Markov, 1889)). %
Let P : [—1,1] — [—1, 1] be a polynomial of degree

at most p. Then

dP(x)
dx

R T S R = SO

max < p2. 0.01 —

z€[—1,1]

10-3 10-2 10-! 10°

log(M
This bound implies that the slope of a polynomial &)

is fundamentally limited by p2. While smooth func- Figure 2 Different polynomial approx.
tions can be represented with modest degree, approxi- vary in their ability to model low-frequency
mating filters with sharp spectral cutoffs—such as  wavelets. Both low-order (p = 20) and high-
scaling functions or low-scale wavelets—requires order (p = 50) variants struggle with sharp
prohibitively large p. Empirically, medium-scale transitions. Our method (p = 8, eyt = 0.05)

wavelets can be approximated relative]y well by low- captures both smooth and Sharp irregu]arities.
order polynomials, whereas scaling functions and

fine-scale wavelets remain poorly represented unless the degree is dramatically increased (see Fig. 2).
As a result, polynomial filters impose a strong smoothness bias that prevents them from capturing
sharp spectral variations.

Insight II: Approximating filters with steep transitions requires large polynomial degrees, making
low-order polynomials unsuitable for modeling sharp spectral features.

Perspective III: Convergence. The most fundamental limitation arises for discontinuous spectral
filters, which are common in graph learning (e.g., ideal band-pass kernels, step functions, or virtual-
node mechanisms). While the Weierstrass theorem guarantees approximation for continuous functions,
discontinuities fall outside its scope. Recently, Geisler et al. (2024) proved the following result:

Theorem 2 (Slow Polynomial Convergence (Geisler et al., 2024)). Let g be a discontinuous spectral
filter. For any polynomial approximation sequence (g.,)pen, there exists a graph sequence (G,) pen
such that
—g) *g, X
Ba>0:  sup 19+, — 9) *g, Xllr
0#£X eRl9plxd ||X||F

=0(p™).

In words, convergence to discontinuous filters is arbitrarily slow in operator norm, regardless of
polynomial degree. This establishes a structural gap: polynomial filters are fundamentally incapable
of efficiently approximating frequency-selective or discontinuous operators, even for large p.
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Insight III: Polynomial filters converge extremely slowly to discontinuous spectral operators,
making them fundamentally mismatched to long-range or frequency-selective behaviors.

Summary: Polynomial filters are efficient but inherently constrained. They are limited to p-hop
propagation, biased toward smooth spectral responses, and unable to approximate discontinuous
filters at any reasonable rate. These limitations highlight the necessity of alternative parametrizations
that can reconcile efficiency with spectral expressiveness.

4 LONG-RANGE GRAPH WAVELET NETWORKS

We propose the Long-Range Graph Wavelet Network (LR-GWN), a parametrization of graph wavelet
filters that enables efficient, principled, and expressive filtering of graph signals, specifically tailored
to capture long-range dependencies. Our design addresses three core limitations of prior approaches:
it resolves the locality bottleneck of polynomial filters, preserves the interpretability of pure wavelet
propagation, and achieves linear complexity with respect to the number of edges. The following
subsections introduce its hybrid filter parametrization, wavelet-based propagation mechanism, and
efficient implementation.

4.1 HYBRID PARAMETRIZATION OF WAVELET FILTERS

Effective graph filters must balance efficiency, expressivity, and theoretical grounding. Polynomial
filters are attractive because they can be implemented recursively with linear cost in the number
of edges. However, their inherent smoothness makes them poorly suited to approximate the sharp
spectral transitions characteristic of wavelets. In contrast, purely spectral filters can realize principled
wavelet propagation, but computing the full eigendecomposition of the Laplacian is prohibitive.

To reconcile these trade-offs, we introduce a hybrid parametrization that combines a polynomial
backbone with a spectral correction. We recall that our goal is to parametrize wavelet filters, namely
the scaling function ¢ and wavelet function ¢ At each layer [, both the wavelet kernel w (1 and the
scaling function ng () are modeled as the sum of local and global contributions:

dO(A) = ow/p( )+ S"f/f)( )s oO(A) = Pu;z)( )+ 59<z>( )s (1)

where P is a finite-order polynomial (spatial/local component) and .S, is a learnable spectral
(global) component. The polynomial term efficiently captures localized interactions, while the spectral
term affords precise control over selected frequency ranges, crucial for long-range propagation.

Lemma 1. For a graph signal x € R" and a filter kernel k. parametrized as in Eq. (1), the filtering
operation can be expressed as

kxx = UPA)+SAU 'z = P(L)x + USAU "z

This decomposition highlights the dual nature of our filtering mechanism: the polynomial term
P(L)z acts directly on L (i.e., the vertex domain), while the spectral correction US(A)U "z acts
on the eigenvalues (i.e., the spectral domain) and introduces frequency-selective adjustments. A proof
is provided in Appendix E. Accordingly, at layer [ we define

(U, A, L)z =[P L0 (L) + USyo (A U, 2)

¢(U, A, L)z = [P (l)(c) + USyo

o (AU . (3)
Truncated spectrum. In practice, we compute a partial eigendecomposition (U, A) = EVD(L, k)
of lowest k eigenpairs with k < n, i.e., U € R"**¥ A € R¥** This focuses the spectral component
on informative frequencies (e.g., low X for long-range effects) while maintaining scalability. The de-
composition costs O(km), where m < n? is the number of edges, is computed once at preprocessing
time and reused across layers.

Filter parametrization. We implement the spatial filter P(L£) using a Chebyshev basis for stable,
recursive evaluation, and the spectral filter S(A) via Gaussian smearing (Schiitt et al., 2017), enabling
fine-grained, band-specific control. Implementation details are given in Appendix B.1.
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4.2 PRINCIPLED WAVELET PROPAGATION

A central feature of LR-GWN is that propagation is realized entirely through wavelet operators.
Each layer applies a scaling function ¢ and a family of wavelet functions {wj} '_,, followed by
pointwise nonlinearities and aggregation. The result is a propagation process that con51sts solely of
wavelet-based transformations, preserving an interpretable, wavelet-based filtering operation.

Formally, given input features H(~1), one LR-GWN layer computes

J
HO =o[60(W,A,L) 1 EHY)] & Po[vl A0 1P ED)], @

j=1

where o is a nonlinearity, ?9 denotes aggregation, and f () is a learnable feature transformation. In
practice, we incorporate f (H@=1) into each filter and compute, for the scaling function,

$O(U, A L) £ (HID) = U (Sy0 (A) © [UT £ (HD]) + P (£) £ (HID) (5)

with the wavelet functions defined analogously via (wfbl), 95)).

We can ensure the band-pass behavior of the wavelet family, hence its wavelet theoretical validity,
by enforcing the admissibility condition ¢(0) = 0, which guarantees invertibility of the wavelet
transform. In practice, strict admissibility is not always necessary and relaxing it can yield slight
empirical gains. A distinctive feature of LR-GWN is that it supports both regimes: admissibility can
be enforced when theoretical guarantees are required, or relaxed when flexibility and performance
are prioritized. We show how to enforce the constraint in Appendix B.2.2.

4.3 COMPUTATIONAL EFFICIENCY

LR-GWN achieves per layer linear complexity in the number of edges, O(m), by combining efficient
polynomial filters (O(pm)) with low-rank spectral projections (O(kdn)). The key insight is that
partial eigendecomposition with k < n enables global spectral control at O(km) preprocessing cost,
amortized across all layers. This contrasts with purely spectral methods requiring O(n?) full EVD or
polynomial methods limited to p-hop neighborhoods. Detailed analysis is provided in Appendix B.3.

Summary. LR-GWN offers a hybrid parametrization that unifies polynomial and spectral filters, a
propagation scheme based solely on wavelet operators, and an implementation that scales linearly
with the number of edges, as common GNNs. Together, these components provide an efficient,
principled, and expressive framework for long-range graph signal filtering.

5 EMPIRICAL RESULTS

We evaluate LR-GWN on graph learning tasks requiring both long-range and short-range modeling
capabilities. Our evaluation follows two axes: (i) comparing methods based on their adherence to
pure wavelet propagation, distinguishing theory-compliant from theory-relaxed approaches, and (ii)
demonstrating performance across interaction scales to validate the generality of our hybrid design.

Experimental setup. We conduct between 5 and 10 independent runs per experiment using different
random seeds and report the mean performance and standard error of the mean. Our experiments are
optimized for resource efficiency, requiring less than 10 GB of GPU memory, making them feasible
on widely available hardware such as Nvidia GTX 1080Ti and 2080Ti GPUs. We use the AdamW
optimizer (Loshchilov & Hutter, 2018) with cosine annealing scheduler (Loshchilov & Hutter, 2017)
and linear warmup for stable training. Early stopping based on validation metrics prevents overfitting.
All results use the independent filter parametrization (see Appendix B.1). We follow standard practice
by augmenting node features with positional encodings (PEs) (Tonshoff et al., 2023), noting that our
partial EVD provides PEs for free. Additional implementation details are provided in Appendix B.

Wavelet methods categorization. To fairly assess wavelet-based approaches, we distinguish
between methods based on their theoretical adherence. Theory-compliant (TC) methods satisfy
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Table 1: Long-range benchmark results by theoretical adherence. Theory-compliant methods (TC)
satisfy wavelet admissibility and use pure wavelet propagation. Theory-relaxed methods (TR) either
use additional non-wavelet modules, or relax theory constraints. Bold/underline represent first and
second best, respectively.

PEPTIDES-FUNC (1) PEPTIDES-STRUCT ({)
Method TC TR TC TR
SGWT (Hammond et al., 2011) 60.23 £+ 0.27 - 25.39 £ 0.21 -
GWNN (Xu et al., 2019) - 65.47 +0.48 - 27.34 +£0.04
DEFT (Bastos et al., 2023) - 66.95 + 0.63 - 25.06 +0.13
WaveGC (Liu et al., 2024a) - 69.73 +£0.43 - 24.95 £ 0.07
LR-GWN (ours) 70.52 +0.29 72.16 £ 0.41 24.63 +0.07 24.62 + 0.06

admissibility constraints and propagate entirely through wavelet operations. Only SGWT (Hammond
etal., 2011) and LR-GWN (with admissibility) qualify as theory-compliant. Theory-relaxed (TR)
methods either incorporate auxiliary non-wavelet components (WaveGC (Liu et al., 2024a)) or relax
theoretical constraints (LR-GWN (without admissibility), GWNN (Xu et al., 2019), DEFT (Bastos
et al., 2023), ASWT-SGNN (Liu et al., 2024b)).

5.1 LONG-RANGE TASKS

Datasets. We evaluate on PEPTIDES-FUNC (multi-label classification of 10 functional classes) and
PEPTIDES-STRUCT (node-level regression for 11 3D structural properties) from the Long-Range
Graph Benchmark (Dwivedi et al., 2023; Tonshoff et al., 2023). These tasks specifically test long-
range propagation in biological structures (peptides) where distant interactions determine physical
conformations and biological functions.

Quantitive Analysis. LR-GWN achieves state-of-the-art performance on both datasets, as reported
in Table 1. Most notably, it significantly outperforms all existing theory-compliant methods (70.52 vs
60.23 on PEPTIDES-FUNC) while maintaining theoretical guarantees. When constraints are relaxed,
it surpasses all theory-relaxed baselines. It is worth noting that even the theory-compliant version of
LR-GWN, achieves comparable performance to the theory-relaxed baselines, while maintaining pure
wavelet interpretability and propagation.

Training Time. On PEPTIDES-FUNC, training LR-GWN takes approximately 20 seconds per
epoch, totaling under 2.5 hours for full training (400 epochs). The partial EVD preprocessing costs
roughly 1 minute, accounting for approximately 0.7% of total training time, highlighting that spectral
augmentation via partial EVD remains computationally practical.

5.2 SHORT-RANGE TASKS

Datasets. We evaluate on PHOTO and COMPUTERS from Amazon co-purchase graphs (McAuley
et al., 2015; Shchur et al., 2018). These datasets focus on local neighborhood interactions, validating
that our long-range optimization does not compromise local modeling capabilities.

Quantitive Analysis. As reported in Table 2, LR-GWN achieves state-of-the-art performance on
PHOTO and competitive results on COMPUTERS, demonstrating our proposed hybrid parametrization
offers the flexibility to model both global and local propagation. Contrary to long-range tasks,
relaxing admissibility constraints does not consistently improve performance on short-range datasets.

Training Time. On PHOTO, training LR-GWN takes approximately 3 sec. per epoch with total
training time ~ 20 min. for the full run (400 epochs). The partial EVD preprocessing with k = 50
costs roughly 1.3 sec. using sparse solvers, accounting for approximately 0.1% of total training time.
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Table 2: Short-range benchmark results by theoretical adherence. Theory-compliant methods (TC)
satisfy wavelet admissibility and use pure wavelet propagation. Theory-relaxed methods (TR) either
use additional non-wavelet modules, or relax theory constraints. Bold/underline represent first and
second best, respectively.

PHOTO (1) COMPUTERS (1)
Method TC TR TC TR
SGWT (Hammond et al., 2011) 9245 + 0.15 - 85.19 +£0.22 -
GWNN (Xu et al., 2019) - 94.45 + 0.18 - 90.75 + 0.16
ASWT-SGNN (Liu et al., 2025) - 93.80 + 0.12 - 89.40 + 0.19
WaveGC (Liu et al., 2024a) - 95.37 £0.44 - 92.26 + 0.18
LR-GWN (ours) 95.22 +0.20 95.69 +0.23 91.15+0.08 91.03 £+ 0.20

5.3 ABLATION STUDY

We assess the contribution of each component in LR-GWN for long-range tasks by performing an
ablation study on PEPTIDES-FUNC.

Component Analysis. The spectral compo- Table 3: Component ablation study on PEP-
nent proves essential for long-range modeling TIDES-FUNC. We report absolute and relative
(3.34% performance drop when removed), while drops in average precision (Aap) when removing
the polynomial component contributes primarily individual components from LR-GWN.
to computational efficiency with minimal perfor-
mance impact (0.24% drop). This validates our ~ Aplation App (abs)  App (%)
design rationale: spectral filtering enables long- -

No Spatial Component —0.0017 —-0.24

range propagation, while polynomial filtering No Spectral Component  —0.0239 334
provides efficient local aggregation. p P . .

Admissibility Trade-off. The performance difference between theory-compliant (70.52) and theory-
relaxed (72.16) variants on PEPTIDES-FUNC demonstrates LR-GWN’s flexibility in balancing theoret-
ical guarantees with empirical performance, allowing adaptation to application-specific requirements.

Considerations on k and p. We conducted preliminary ablation studies on both the number of
retained eigenvalues k£ and polynomial order p. While performance varies with both hyperparameters,
no consistent pattern emerges across datasets. For smaller graphs like PEPTIDES-FUNC, we retain a
large number of eigenvalues (£ = 150) while keeping computational costs manageable, exploring the
full expressive capacity. On larger graphs, smaller k values typically suffice to balance efficiency and
performance. Similarly, optimal p is dataset-specific, but the model remains robust within reasonable
ranges (typically p = 3 — 15).

We report additional results in Appendix D.

6 RELATED WORK

Wavelets on Graphs. The Spectral Graph Wavelet Transform (SGWT) by Hammond et al. (2011)
introduced cubic spline wavelets and an exponential scaling function at fixed scales, ensuring admis-
sibility but lacking learnable parameters. SGWT approximates filters using finite-order Chebyshev
polynomials. Graph Wavelet Neural Networks (GWNN) (Xu et al., 2019) extend SGWT with fixed
exponential wavelets, i.e., g(s)\;) = e**¢. While building on wavelet theory, this construction does
not enforce the admissibility condition, since g(0) = 1. DEFT (Bastos et al., 2023) follows SGWT
and parametrizes wavelet filters using free-parameters Chebyshev polynomials via a combination of
GNNs and MLPs. The coefficients, however, are not bound and, by construction, do not enforce the
admissibility condition. ASWT-SGNN (Liu et al., 2024b) approximates wavelet filter coefficients
using Jackson—Chebyshev polynomials. Similarly to the discussion above about GWNN and DEFT,
the coefficients are not bound to satisfy g(0) = 0. AGT (Cho et al., 2024) extends GWNN, and learns
node-wise scales, either exactly or via approximation. As with the methods discussed so far, this
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approach does not enforce the admissibility condition, and thus does not guarantee that the resulting
filters behave as band-pass wavelets. WaveGC (Liu et al., 2025) satisfies the admissibility condition
by parametrizing the scaling function with odd-terms of a Chebyshev polynomial, and the wavelet
function with even-terms. However, the separation of basis terms limits functional expressiveness,
and the use of non-wavelet-interpretable message passing diminishes the benefit of using wavelets.

Hybrid Graph Neural Networks. Hybrid GNNs combine local spatial and global spectral infor-
mation to enhance long-range modeling. Stachenfeld et al. (2020) propose a hybrid message-passing
framework that sacrifices permutation equivariance, while Liao et al. (2018) incorporate spectral in-
formation via the Lanczos algorithm. More recently, Geisler et al. (2024) introduced a spatial-spectral
parametrization to improve efficiency. Beyond the explicit combination of spatial and spectral filters,
graph rewiring (Gasteiger et al., 2019; Arnaiz-Rodriguez et al., 2022) enhance connectivity and
mitigate over-squashing by modifying connectivity.

Graph Transformers. Graph Transformers (GTs) (Min et al., 2022; Dwivedi et al., 2021; Geisler
et al., 2023) use global attention mechanisms to enable interactions between distant nodes. GTs
often rely on spectral positional encodings paired with message passing (Rampasek et al., 2023;
Geisler et al., 2023). Rampdasek et al. (2023) introduce a framework for general, powerful and
scalable graph transformers (GPS), which allow for the definition of a broad family of architectures
that combine local message passing with global attention mechanisms. Similarly to these models,
LR-GWN integrates local and global components. In our case, local aggregation is achieved through
polynomial filters, while global propagation is handled via a spectral wavelet filter. However, the core
methodology and motivation differ. LR-GWN is rooted in wavelet theory, with the aim of modeling
low-pass and band-pass filters in a principled and interpretable manner. Graph transformers, by
contrast, cover a broad family of architectures with varying attention mechanisms and are generally
not designed with the same frequency-selective properties in mind. We report comparison to a
well-established GT architecture that integrates local message passing with global attention, namely
GPS (Rampasek et al., 2023), in Appendix D.

7 LIMITATIONS

While LR-GWN is effective and efficient in practice, it has a few inherent constraints. First, partial
spectral decomposition, though more scalable than full EVD, can still be costly for very large
graphs, especially when the number of retained eigenvalues k increases. Second, the admissibility
condition—used to ensure that wavelet filters behave as proper band-pass filters with desirable
localization properties—provides useful theoretical grounding, but may limit flexibility in designing
task-specific filters and might not be ideal in all scenarios. Lastly, our current formulation emphasizes
low-frequency components by selecting the smallest k& eigenvalues and corresponding eigenvectors;
however, this is not a fundamental limitation—LR-GWN can be extended to focus on other spectral
regions, such as mid- or high-frequency bands, by selecting different eigenvalue ranges.

8 DISCUSSION AND CONCLUSION

We revisited the limitations of wavelet GNNs constrained by polynomial approximations and intro-
duced Long-Range Graph Wavelet Networks (LR-GWN), a hybrid design that couples polynomial
aggregation with spectral corrections on truncated eigenspaces. This construction unifies local and
global information flow within wavelet operators, while supporting both strict admissibility for
theoretical guarantees and relaxed variants for empirical gains.

Empirically, LR-GWN achieves state-of-the-art performance across wavelet-based models on long-
range benchmarks and remains competitive on short-range tasks. More importantly, LR-GWN
establishes wavelet-based filters as interpretable and theoretically grounded tools for graph learning,
laying the foundation for adaptive and more expressive architectures. With LR-GWN, we aim to
advance both the theoretical foundations and practical applications of wavelet-based long-range graph
representation learning.
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REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. A complete description
of the mathematical foundations, including background on spectral graph theory, wavelet analysis,
and polynomial approximations, is provided in Section 2 and Appendix A. The architecture of LR-
GWN, including its hybrid parametrization, wavelet propagation, and computational complexity, is
detailed in Section 4 of the main paper and further elaborated in Appendix B (implementation details,
admissibility condition, and residuals). Hyperparameters, training setup, and dataset descriptions are
specified in Section 5 and Appendix C, with ablation studies reported in Section 5.3 and Appendix D.
Proofs of theoretical claims (e.g., Lemma 1 and the equivalence of polynomial filters in spectral and
spatial domains) are provided in Appendix E. For empirical reproducibility, we conduct multiple
independent runs per experiment and report means and unbiased standard errors (Section 5). All
experiments are based on the standardized LRGB benchmark framework (Dwivedi et al., 2022;
Tonshoff et al., 2023).

USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely for polishing the writing of the paper. The models
were applied to improve clarity, grammar, and style in parts of the text. No LLMs were used for
generating research ideas, designing experiments, analyzing results, or drawing conclusions. All
scientific content and contributions are the responsibility of the authors.
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APPENDIX

This appendix provides additional technical material, implementation details, and extended results that
complement the main text. We first expand the theoretical and mathematical background underlying
our approach, including graphs and Laplacians, the graph Fourier transform, wavelet theory, and
polynomial approximations. We then provide additional implementation details (filter parametrization,
admissibility condition, residuals, and complexity analysis), and extended empirical results such as
ablation studies and comparisons against broader baselines. Finally, we include complete proofs of
the theoretical statements referenced in the main paper.

A EXTENDED BACKGROUND

This appendix provides a more detailed overview of the mathematical foundations underlying our
method. We first recall core concepts from spectral graph theory, then review wavelet analysis in both
Euclidean and graph domains, and finally introduce polynomial approximations that enable scalable
implementations.

A.1 GRAPHS AND LAPLACIANS

A graph G = (A, X)) consists of n nodes, m edges, an adjacency matrix A € {0,1}"*", and node
features X € R"*?. The degree matrix is defined as D := diag(A1) € R"*", where 1 € R"
denotes the all-ones vector. From this, the combinatorial Laplacian is L := D — A, while the
symmetrically normalized Laplacian is £ := I — D~z AD™=. In this work we primarily use £,
though other variants (e.g., random-walk Laplacian) are also common.

For undirected graphs, £ is symmetric and positive semidefinite, which guarantees an eigenvalue
decomposition £ = UAU ". Here U € R™*™ contains the eigenvectors as columns, forming an
orthogonal basis for functions defined on the graph (UU " = I), and A = diag(\y, ..., \,) collects
the eigenvalues. The spectrum is bounded as 0 = Ay < --- < A, < 2. Small eigenvalues correspond
to smooth, slowly varying components, while large eigenvalues capture oscillatory, high-frequency
behavior (Chung, 1997).

A.2 GRAPH FOURIER TRANSFORM

The graph Fourier transform (GFT) (Shuman et al., 2011; Sandryhaila & Moura, 2013) generalizes
the classical discrete Fourier transform (DFT) (Bracewell, 2000) to signals supported on graphs. In
the classical Euclidean setting, a signal is decomposed into complex exponentials, whose frequencies
correspond to sinusoidal oscillations of different scales. On a graph, there is no notion of translation
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or frequency in the usual sense. Instead, the eigenvectors of the Laplacian play the role of Fourier
modes, with the associated eigenvalues serving as the notion of frequencies.

Given a graph signal £ € R™ (often corresponding to a column of the feature matrix X), the GFT
is = U "z, which projects the signal onto the eigenbasis of £. The inverse GFT reconstructs the
signal as * = Uz. Filtering with a spectral kernel g : R — R amounts to rescaling each Fourier
coefficient according to the eigenvalue, yielding

grgx=UgA) U 'z,

where G(A) = diag(g(\1),...,9(M\n)), and g = U " g. In this sense, spectral filters are functions of
the Laplacian spectrum, directly analogous to frequency filters in classical Fourier analysis.

A.3 WAVELET ANALYSIS

Wavelet theory extends Fourier analysis by enabling localized, multiresolution representations of
signals (Mallat, 1989; 2009). Whereas Fourier bases are global and capture only frequency infor-
mation, wavelets provide both spectral and spatial localization by combining scaling and translation
operations.

The continuous wavelet transform (CWT) of a function f : R — R at scale s > 0 and location [ € R
is defined as

WW@=ANWMW&

where the wavelet family is generated from a mother wavelet ¢ by scaling and translation,
Ys1(t) = ﬁzp (%l) , and * denotes complex conjugation. Exact reconstruction requires the mother
wavelet to satisfy the admissibility condition, ensuring that no frequency component is lost.

Proposition 1 (Wavelet Admissibility). A wavelet 1) with Fourier transform 1Z is admissible if

_ [T QP
ey = [ M ac <o,

which holds when 12(0) = 0 and lim¢_s o0 {b\(g) =0.

This condition ensures that 1) behaves as a band-pass filter, emphasizing intermediate frequency bands
while attenuating very low and high frequencies. To retain the low-frequency components, wavelet
systems are typically complemented by a scaling function ¢ with Fourier transform ¢(0) > 0, which
acts as a low-pass filter. Together, ¢ and the wavelet family provide a multiresolution decomposition
of signals.

A.4 WAVELETS ON GRAPHS

Hammond et al. (2011) extend wavelet analysis to graphs by defining filters in the Laplacian spectral
domain. Let £L=UAU be the eigendecomposition of the (normalized) Laplacian, and let 9
and ¢ denote a band-pass wavelet kernel and a low-pass scaling kernel, respectively (both applied
elementwise to eigenvalues).

The wavelet operator at scale s > 0 and the scaling operator are
U, =Up(sAUT, &:=UpA)U".

Given a graph signal € R", the wavelet coefficients at scale s are W (s) = ¥z, while the scaling
coefficients are H, = ®x. This parallels the classical construction: wavelets capture localized
variations, whereas the scaling function captures smooth, global structure. A multiscale analysis is
obtained by a family of dilations {s;}, i.e., {¢(s;-)},. On graphs, admissibility is typically enforced
by ¥ (0) = 0, with low frequencies covered by ¢ satisfying ¢(0) > 0.

A.5 CHEBYSHEV POLYNOMIAL APPROXIMATIONS

Although spectral constructions are mathematically elegant, direct computation is expensive due to
the eigenvalue decomposition, which scales cubically in the number of nodes. To make spectral filters
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scalable, they are commonly approximated with low-order polynomials in the Laplacian, which can
be applied directly in the vertex domain.

A widely used choice is the Chebyshev polynomial basis (Hammond et al., 2011; Defferrard et al.,
2016). For a filter g, one approximates

/g\w(A) = Z wz/—z—’z(—&%
=0

where w = [w, . . . 7cup] are learnable coefficients, p is the polynomial order, and A= X 2_ A-1T
rescales the spectrum to [—1, 1], the domain of the Chebyshev basis.

Definition 2 (Chebyshev Polynomials of the First Kind). The Chebyshev polynomials T; are defined
recursively by

To(z) =1, Ti(z)==2z, Ti(x)=2xT;—1(x)—Ti—2(x) (i>2).
Chebyshev expansions are particularly effective because they minimize the maximum approximation
error on [—1, 1] (in the minimax sense), and can be evaluated efficiently via recurrence. In practice,

this enables fast, localized, and scalable approximations of spectral filters, including graph wavelets,
without explicit eigendecomposition.

B IMPLEMENTATION DETAILS

B.1 FILTER PARAMETRIZATION

Spatial Filter. We model the spatial filter P, : [0, )\max]’“ — RF using a finite-order Chebyshev

polynomial expansion with learnable coefficients w(® = [w, ... W] € RA+1:
p
Pow (L) = ngl)Ti(/:)v (6)
=0

where T;(-) is the i-th Chebyshev polynomial. This formulation enables spatially localized filtering
with computational efficiency. Alternative polynomial bases, such as Bernstein (He et al., 2021) or
Jacobi polynomials (Wang & Zhang, 2022), could also be employed.

Spectral Filter. The spectral component Sy : [0, Amax]* — R* operates directly on the eigenval-
ues of L, offering fine-grained frequency control. It is defined as

Sew (A) = GaussianSmearing(A) Wy, ™

where Wy € R=*4" are learnable weights, and d(*) is the output dimensionality of layer . The
basis GaussianSmearing(\) : [0,2]¥ — R*** projects eigenvalues onto z Gaussian radial functions,
introducing a frequency cutoff .y < Amax (Schiitt et al., 2017). We follow Geisler et al. (2024) and
apply a frequency-domain windowing function to regularize the spectral response. Element-wise,
the filter is defined as Sgq) (A)y,v := Sv(Au; 0(”). Alternative spectral parametrizations, such as
SpecFormer (Bo et al., 2023), could be used depending on application-specific needs.

B.1.1 SHARED AND INDEPENDENT FILTER CONFIGURATIONS

We define two configurations for our wavelet-based graph neural network: the shared filter and the in-
dependent filter approaches. In the shared filter configuration, we parametrize a single mother wavelet
and generate a family of self-similar wavelet functions by applying predefined or learnable scales.
Conversely, in the independent filter approach, each wavelet function is parametrized independently,
allowing greater flexibility and expressivity.

Shared Filter. In this configuration, the j-th wavelet filter is constructed as
(U,A, L;s;) =USy, (s;A)UT + Py, (s;L), ®)

where a single function v is parametrized following Eq. (3) and then scaled using predefined or
learnable scales (Appendix B.1.2). This method is computationally efficient, as it requires only a
single set of parameters ¢, and w,;, reducing the overall complexity of the model.
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Independent Filters. To increase model expressivity, we introduce an alternative approach in which
each wavelet function is parametrized independently instead of being derived from a single mother
wavelet. This configuration allows each wavelet to adjust its spectral and polynomial components
separately, adapting to different levels of smoothness or sharpness. Larger-scale wavelets tend
to be smoother and benefit more from polynomial components, while smaller-scale wavelets are
sharper and require a stronger contribution from the spectral component. In the independent filters
configuration, the j-th wavelet filter is given by

¥ (U, A L) =USy, (MU' + P, (L), )
where each ¢); has its own set of learnable spectral parameters 6, and polynomial parameters wy .

B.1.2 SCALE PARAMETRIZATION

Wavelet-based graph filters rely on a set of scales {s; 3-]:1 to capture multi-resolution informa-

tion. Instead of using fixed scales as in Hammond et al. (2011), we introduce a learnable inter-
polation scheme in the shared filter configuration (Appendix B.1.1). The scale bounds are de-
fined as 1og Smin = 10g(tL/Amax) and 1og Smax = 1og(tuALp/Amax ), Where ¢, and ¢y are learnable
lower and upper limits, and A p emphasizes low-frequency components. Assuming the maximum
eigenvalue of the graph to be A\,,x = 2 as it is usually the case in real-world graphs, we have
log smin = log tL, log smax = log tyALp. The intermediate scales are uniformly spaced in log-space,

’L(lOg Smin — lOg Smax) )

N-1 (10)

To ensure positive scales, we apply the softplus function.

S; = exp (log Smax +

B.2 MODELING PRACTICES
B.2.1 INITIALIZATION

The wavelet filter parameters are initialized using standard Xavier initialization (Glorot & Bengio,
2010) for neural network weights and by setting wg = 1 and w; = Oforall¢ = 1,...,p in
the Chebyshev polynomials. While the spectral and spatial components could theoretically be
designed to match a predefined wavelet, such as the Mexican hat wavelet, we observed no significant
improvements from this approach. Consequently, we adopt conventional parameter initialization
without enforcing wavelet-based constraints in our experiments.

B.2.2 ADMISSIBILITY CONDITION

To ensure the theoretical validity of our graph wavelet filter, we must guarantee the invertibility of the
wavelet transform. This requires satisfying the admissibility condition at zero frequency, as stated in
Appendix 1. Since the graph spectrum is bounded (i.e., A € [0, Ayax] With Apax < 2), we only need
to enforce the condition 1(0) = 0, while disregarding limy_, ¥(\) = 0.

Enforcing the admissibility condition is not always a necessity. Rather, it is a theoretical property
that ensures the wavelet behaves as a band-pass filter. In practice, many applications do not strictly
require this condition, and relaxing it can lead to slight empirical gains in some cases. However,
with LR-GWN, we aim to provide a theoretically grounded framework that can allow to enforce
the admissibility condition if needed, while also permitting for flexibility in applications where this
condition is not strictly required.

Primary Approach. In practice, we can enforce this constraint by subtracting the zero-frequency
response from the spectral and polynomial filters:

Pu(A) = Pu(\) = P(0),  Sp(A) = Sa(A) — Sp(0). (11)

This transformation ensures ¢ (0) = P,(0) 4+ Sy(0) = 0 by construction. Thus, the wavelet filter in
the spectral domain becomes

D(A) = Pu(A), +55(A) (12)
and the filtering operation in the vertex domain is given by
WU, A, L) = P(L), +USy(A)U T (13)

where both P,,(£) and Sg(A) are zero-frequency corrected versions of their respective filters.
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Figure 3: Examples of filters learned by our model during training. The polynomial component
P()) captures the smooth part of the filter, while the spectral component S()) introduces flexibility,
enabling sharper variations. Our filters inherently satisfy the admissibility condition ¢(0) = 0.

Alternative Approach. For the wavelet filter ¢)(A) = Sp(A) + P,,(A), where P,,(A) is expressed
as a Chebyshev polynomial, the admissibility condition at zero frequency is satisfied if

p

wo = Z(*l)ﬂrlwi - SQ(O)

=1

We show the steps that lead to the above formulation. The wavelet filter ¢)(\) consists of two
components:

$(A) = So(A) + (N,
where Sp(A) and P,,(\) are the spectral and polynomial filter responses, respectively, at frequency .
The admissibility condition requires that ¢»(0) = 0, i.e.,

Sp(0) + P, (0) = 0.

For the admissibility condition to hold, we either enforce both components to be zero (Sp(0) =
P,(0) = 0) or allow P,(0) = —Sp(0). We express P, (A) as a Chebyshev polynomial. After
rescaling the input from A € [0,2] to A € [—1, 1], the condition P, (0) = P, (—1) leads to the

equation
P

Wy = Z(—l)”lwz - SQ(O),
i=1
which satisfies the admissibility condition at zero frequency.

However, this approach is more challenging to implement, as it requires manually updating the
learnable parameters. While this is feasible, we found that the primary approach worked better
overall. It is more flexible and streamlined, making it easier to integrate into our model while still
satisfying the necessary conditions.

B.2.3 WAVELET RESIDUALS

We introduce residual connections within the wavelet filter (wavelet residuals) to improve model
generalization. We write the forward step of our model with included wavelet residual connections as

AV = [(¢O WA L)+ 1) HED] =0 o U, A LB a4)

In the graph frequency domain, the forward step defined in the previous equation corre-
sponds to the graph wavelet filter ¢y (A) = Sg(A) + FP,,(A) + I. While including wavelet resid-
ual connections brings desirable properties in terms of gradient flow, preserving the theoreti-
cal properties of the wavelet transform remains important to theoretically guarantee the exis-
tence of the inverse wavelet transform. Similarly to how we enforced the admissibility con-
dition in Appendix B.2.2, we can now let the spectral and polynomial filters transform as
So(A) — Sp(A) — Sp(0) — 1/2, and P,(N\) — P,(N\) — P,(0) — 1/2. In fact, this allows us
to write ¥r(A) = Sg(A) — Sp(0) —I/2+ P,(A) — P,(0) —I/2+ 1. The wavelet filter then
becomes 1 (U, A, L) = USp(A)UT + P, (L) + I, where Sp(A) = Sp(A) — Sp(0) — I/2 and
P,(L)=P,(L)— P,(0) — I/2,thus ensuring the condition ¢)(0) = 0 by construction.
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Residual Connections. While the inclusion of wavelet residuals theoretically ensures the preserva-
tion of the admissibility condition, in practice, we observe that normal residual connections, where the
residual is added after the filtering operation, further improve the model’s generalization. Therefore,
we opt to use standard residual connections.

B.3 COMPUTATIONAL COMPLEXITY

The LR-GWN layer integrates multiple structural components whose computational costs can be
precisely characterized. Let n and m denote the number of nodes and edges in the input graph, and let
d represent the feature dlmensmnahty, assumed constant across all layers of the network. We denote
by L the depth of the MLP fﬁ ), by p the polynomial order used in the Chebyshev approximation, by
k the number of retained eigenvectors for the spectral component, and by J + 1 the total number of
filters, including the scaling function.

Each layer begins with a node-wise transformation via an L-layer MLP of hidden size d, shared across
both filtering components. This projection incurs a cost of O(Ld>?n). The polynomial component
uses recursive Chebyshev polynomials over the sparse Laplacian. Recall that multiplication between
an n X n sparse matrix with m non-zero entries, and a dense n x d matrix has cost O(md). For
a p-order polynomial, and across all filters, this results in a total cost of O((J + 1)pmd). The
spectral component computes a projection via U and back, for each filter. This involves two matrix
multiplications of cost O(kdn) and an element-wise scaling of cost O(kd), which is asymptotically
negligible. Across filters, the spectral component contributes a total cost of O((J + 1)kdn).

Crucially, the partial eigendecomposition required for the spectral component is computed once per
graph at cost O(km) as a preprocessing step, and can be amortized across the network.

In summary, the per-layer complexity is O (Ld?n + (J + 1)pdm + (J + 1)kdn). Since J, L, d, p,
and k are typically small constants in practice, the dominant terms grow with the number of nodes n,
and edges m. The expression therefore simplifies to O(n + m). For sparse graphs we can assume
constant node degree deg, hence m = deg - n = Q(n), yielding an asymptotical complexity of O(m).
This decomposition reveals the efficiency of LR-GWN: despite leveraging both spatial and spectral
graph filters, the model remains scalable to large, sparse graphs.

C EXPERIMENTAL DETAILS

Our codebase builds on the LRGB benchmark framework (Dwivedi et al., 2023)', as updated by
Tonshoff et al. (2023)2, which itself is based on the GraphGPS codebase (Rampasek et al., 2023)°.
This foundation enabled fair and consistent model evaluation by providing a shared pipeline for
data preprocessing, training, and testing. By reusing the same infrastructure, we ensured reliable
comparisons and minimized implementation-related discrepancies. All experiments were run on
Nvidia GTX 1080Ti GPUs with memory usage kept below 10GB.

C.1 HYPERPARAMETER TUNING AND SELECTION

To optimize LR-GWN, we performed hyperparameter tuning using multiple sweeps to identify the
best combination for each experiment. The hyperparameters were selected based on the highest
validation performance, ensuring that the chosen configuration maximized the model’s generalization
ability. We explored a wide range of hyperparameters, including learning rate, batch size, number
of layers, hidden dimension size, and wavelet-specific parameters. For each sweep, we conducted
experiments across different values, evaluating the model’s performance on the validation set after
each configuration. Once the best-performing configuration was identified, it was used for the final
testing phase. Table 4 summarizes the hyperparameters used for our experiments.

lhttps ://github.com/vijaydwivedi75/1rgb
Mttps://github.com/toenshoff/LRGB
3https ://github.com/rampasek/GraphGPS
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Table 4: Hyperparameters of our model for experiments in Tables 1 and 2

PEPTIDES-FUNC PEPTIDES-STRUCT
PE/SE MagLapPE (dim=16) MagLapPE (dim=16)
Hidden dim. 256 256
Head depth 2 2
Wavelet layers 2 2
Num. wavelets 10 10
Spectral part Yes Yes
Spatial part Yes Yes
Admissibility No No
Gaussians 60 60
Cutoff Amax 0.9 0.9
Polynomial order p 8 8
Activation o GeLU GeLU
Dropout prob. 0.25 0.25
Skip connections True True
Batch size 200 200
Learning rate 0.001 0.001
Weight decay 0.0 0.0001
Epochs 400 400
Parameters 248k 248k

C.2 DATASETS

Long-range interactions. To evaluate the ability of models to capture long-range dependencies,
we include the PEPTIDES-FUNC and PEPTIDES-STRUCT datasets from the Long-Range Graph
Benchmark (LRGB) (Dwivedi et al., 2023; Tonshoff et al., 2023). These datasets are derived from
SATPdb and are commonly used to assess how well models handle relationships extending beyond
local neighborhoods. PEPTIDES-FUNC is a multi-label classification task with 10 peptide func-
tional categories, while PEPTIDES-STRUCT is a regression task predicting 11 distinct 3D structural
properties.

Short-range interactions. For short-range interactions, we consider the COMPUTERS and PHOTO
datasets (Shchur et al., 2018), segments of the Amazon co-purchase graph (McAuley et al., 2015). In
these graphs nodes represent goods, edges indicate that two goods are frequently bought together,
node features are bag-of-words encoded product reviews, and class labels are given by the product
category. These datasets primarily exhibit localized interactions, making them well-suited for
evaluating traditional message-passing GNNs.

Table 5: Dataset overview. For each dataset, we list the source, license, propagation type, number of
graphs, average number of nodes and edges, task, and evaluation metric.

Dataset Derived from License Propagation # Graphs Avg. # Nodes Avg. # Edges Task Metric
PEPTIDES-FUNC (Dwivedi et al., 2022) SATPdb CCBY-NC4.0 Long-range 15,535 150.9 307.3 Graph classification  Avg. Precision
PEPTIDES-STRUCT (Dwivedi et al., 2022) SATPdb CCBY-NC4.0 Long-range 15,535 150.9 307.3 Graph regression Mean Abs. Error
AMAZON PHOTO (Shchur et al., 2018) McAuley et al. (2015)  Not provided Short-range 1 7,650 238,163 Node classification Accuracy
AMAZON COMPUTER (Shchur et al., 2018)  McAuley et al. (2015)  Not provided Short-range 1 13,752 491,722 Node classification Accuracy

D ADDITIONAL RESULTS

Beyond the wavelet-focused comparison presented in Section 5, we report extended results against
a broader set of baselines in Tables 6 and 7. On long-range tasks (PEPTIDES-FUNC, PEPTIDES-
STRUCT), LR-GWN consistently outperforms all prior wavelet-based models, including WaveGC
(Liu et al., 2025), which was the strongest previous competitor on the LRGB benchmark. Among non-
wavelet methods, LR-GWN achieves the best performance on PEPTIDES-FUNC, surpassing message-
passing and transformer-style models such as GCN, PathNN, CIN++, and GPS. On PEPTIDES-
STRUCT, where local features are especially predictive, GCN remains slightly ahead, but LR-GWN
still matches or exceeds the majority of long-range baselines, highlighting its ability to capture both
global and local structure.
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Table 6: Long-range benchmark results. We report the mean and the unbiased standard error of
the mean across multiple runs on PEPTIDES-FUNC and PEPTIDES-STRUCT. Results for baselines
are either from (Tonshoff et al., 2023) or from respective papers (e.g., PathNN (Michel et al., 2023),
CIN++ (Giusti et al., 2023), WaveGC (Liu et al., 2025)).

Method PEPTIDES-FUNC (1) PEPTIDES-STRUCT ({)
GCN 68.60 + 0.50 24.60 4 0.07
«~ GINE 66.21 + 0.67 24.73 +£0.17
2 GatedGCN 67.65 +0.47 24.77 £ 0.09
= PathNN 68.16 + 0.26 25.45 + 0.32
CIN++ 65.69 + 1.17 25.23 +0.13
GPS 65.34 + 0.91 25.09 +0.14
SGWT 60.23 + 0.27 25.39 + 0.21
v GWNN 65.47 + 0.48 27.34 + 0.04
§ DEFT 66.95 + 0.63 25.06 +0.13
§ WaveGC 69.73 +0.43 24.83 +£0.11
LR-GWN (ours) 72.16 £ 0.41 24.62 1 0.06

Table 7: Short-range benchmark results. We report the mean and the unbiased standard error of the
mean across multiple runs on PHOTO and COMPUTER. Results for baselines are either from Liu et al.
(2025) or from respective papers (e.g., GWNN (Xu et al., 2019)).

Method PHOTO (1) COMPUTER (1)
g GCN 92.70 +0.20 89.65 + 0.52
< GAT 93.87 £ 0.11 90.78 £0.13
O  ChebNetll 94.71 £ 0.25 89.85 +0.85

SGWT 92.45 £ n.d. 85.19 £ n.d.
v GWNN 94.45 £+ n.d. 90.75 £+ n.d.
E ASWT-SGNN 93.80 £ n.d. 89.40 + n.d.
g WaveGC 95.37+0.44  92.26 +£0.18

LR-GWN (ours) 95.69 +0.23  91.154+0.08

On short-range tasks (PHOTO, COMPUTERS), LR-GWN achieves state-of-the-art accuracy on PHOTO
and performs competitively on COMPUTERS, where WaveGC attains the top score. Compared
to traditional message-passing GNNs such as GCN, GAT, and ChebNetll, LR-GWN consistently
yields higher performance, demonstrating that the proposed hybrid design remains effective even
when interactions are predominantly local. Taken together, these results confirm the conclusions
from the main body: LR-GWN establishes a new state-of-the-art among wavelet-based approaches
on long-range tasks, while remaining broadly competitive with non-wavelet baselines across both
interaction scales.

E THEORETICAL RESULTS

E.1 POLYNOMIAL FILTERS IN SPECTRAL AND SPATIAL DOMAIN

For a graph with Laplacian £ = UAU " and a polynomial filter of degree p, the spectral filtering
operation Ug,,(A)U " z is equivalent to the spatial operation g,,(£)z, where g,,(A) = >7_, w; A"
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Proof. We prove this by showing that powers of the Laplacian in the spatial domain correspond to
powers of eigenvalues in the spectral domain. Starting with the spectral filtering operation:

p
Ug,(MNAU z=U (Z wiAi> Uz (15)
1=0
p .
=> wUAUz (16)
1=0

Now we use the key insight that for the eigendecomposition £ = UAU T, we have:
UANU'" = (UAUT) = L.
This holds by induction:

» Basecase i = 1: UAU " = L by definition
+ Inductive step: Assume UA*U T = £F. Then:

UAFIUT =UAPAUT (17)
=UA(UTU)AU" (since U'U =TI) (18)
= (UA'UT(UAUT) (19)
=Lk = chH (20)

Therefore:

p
Ug, (MU "z = Zwiﬁix = gu(L)x
=0

This equivalence explains why polynomial spectral filters can be implemented efficiently without
eigendecomposition—they correspond exactly to polynomial operations on the Laplacian matrix
itself. O

Remark. This result extends immediately to any polynomial basis (Chebyshev, Bernstein, etc.)
since they are all linear combinations of monomials.

E.2 PROOF OF LEMMA 1

Proof. We begin by expanding the left-hand side of the expression. Distributing the product over the
sum gives

US(AMU" +UPA)U'. (21)
Next, we focus on the term P(A), which is parameterized as a polynomial function of the eigenvalues
of the graph Laplacian A. Specifically, P(A) can be written as

P
P(A) =AY, (22)
=0

where +; are learnable coefficients and p is the polynomial degree. Substituting this expansion for
P(A) into the expression, we get:

P
UPANU" =U (Z wv’) U’ (23)
=0
p .
=> wUAUT (24)
=0

The key insight is that for the eigendecomposition £L = UAU T, we have:
UAU' =C". (25)
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This holds by induction as shown in Appendix E.1. Substituting Eq. (25) into Eq. (24), we obtain

P
UPMUT =Y L' = P(L). (26)
i=0
Finally, combining the two terms from Eq. (21), we get the desired decomposition
U[S(A)+P(MUT =USAU" + P(L). (27)
This completes the proof. O
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