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Abstract

As digital media manipulation becomes increasingly sophis-
ticated, accurately detecting and localizing image forgeries
with minimal supervision has become a critical challenge.
Existing weakly supervised image forgery detection (W-IFD)
methods often rely on convolutional neural networks (CNNs)
and limited exploration of internal relationships, leading to
poor detection and localization performance with only image-
level labels. To address these limitations, we introduce a
novel Multi-View and Multi-Level Relation Learning Net-
work (M?RL-Net) for W-IFD. M?RL-Net effectively iden-
tifies forged images using only image-level annotations by
exploring relationships between different views and hierar-
chical levels within images. Specifically, M?RL-Net achieves
patch-level self-consistency learning (PSL) and feature-level
contrastive learning (FCL) across different views, facilitating
more generalized self-supervised learning of forgery features.
In detail, PSL employs self-supervised learning to distinguish
consistent and inconsistent regions within images, enhancing
its ability to accurately locate tampered areas. FCL utilizes
feature-level self-view and multi-view contrastive learning to
differentiate between genuine and tampered image features,
thereby improving the recognition of authentic and manipu-
lated content across different views. Extensive experiments
on various datasets demonstrate that M>RL-Net outperforms
existing weakly supervised methods in detection and localiza-
tion accuracy. This research sets a new benchmark for W-IFD
and lays a robust foundation for future studies in this field.

Introduction

Digital images play a crucial role in disseminating informa-
tion and documenting reality. However, the proliferation of
advanced editing tools and models, such as Diffusion and
GANSs (Franceschi et al. 2024; Rombach et al. 2022) has
made image manipulation increasingly accessible, challeng-
ing the notion of ’seeing is believing.” The edited or manip-
ulated images can fabricate fake news, perpetrate academic
fraud, and facilitate illegal activities, thereby threatening so-
cial stability. Detecting such manipulation is difficult, mak-
ing it imperative to advance image forgery detection to ver-
ify image authenticity and spot the tampered areas. Most
existing deep learning (DL)-based methods (Zhang et al.
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2024a; Zhu et al. 2024; Yu et al. 2024; Ma et al. 2023) for
image forgery detection mainly focus on fully supervised
learning to extract tampered artifact features, requiring ex-
tensive pixel-level annotations. While effective to a certain
extent, these methods face high annotation costs and scala-
bility issues. As image processing technologies evolve, tra-
ditional methods often fail to adapt to new types of ma-
nipulations, especially those generated using advanced Al
techniques (Qu et al. 2024; Zhang, Li, and Chang 2024;
Zhang et al. 2024b). Moreover, DL-based image forgery de-
tection methods typically perform well on training datasets
but exhibit significant performance degradation on unknown
images, limiting their effectiveness in real-world applica-
tions. While pixel-level annotations provide full supervision
for differentiating between authentic and tampered regions,
their high cost restricts the number of training images.

Given these challenges, we propose a weakly-supervised
image forgery detection (W-IFD) method, called Multi-
View Multi-Level Relation Learning Network (M?RL-Net),
which only requires binary image-level labels to localize the
manipulated area, eliminating the need for detailed pixel-
level masks during training. In W-IFD, we commonly focus
on identifying inconsistencies between normal (authentic)
and abnormal (tampered) areas within an image. We posit
that by investigating how features in manipulated regions re-
late to those in surrounding areas across various views and
levels of detail, we can overcome the limitations associated
with relying exclusively on image-level annotations. Specif-
ically, M?2RL-Net leverages multi-view feature representa-
tions (MFR) and employs two relation learning strategies:
patch-level self-consistency learning (PSL) and feature-level
contrastive learning (FCL) to improve its generalization in
detecting and localizing complex tampering scenarios.

MER captures feature representations from both RGB and
noise views, where the RGB stream is designed to detect vi-
sually apparent tampering artifacts, while the noise stream
focuses on identifying distribution inconsistencies be-
tween tampered and authentic regions to identify semantic-
agnostic artifacts. PSL explores internal patch-level similari-
ties to enforce consistency constraints within ambiguous ar-
eas of forgery localization. This self-supervised technique
utilizes generated pseudo-localization regions to correct po-
tential false positives, precisely estimate inconsistent manip-
ulation regions, and mitigate overfitting. FCL asserts that



pixels of the same class have similar representations in the
feature space, thus we can extract category knowledge pro-
totypes for both authentic and forged classes and extend it
for contrastive learning under self-view and multi-view con-
ditions using supervision from reliable pixels, differentiating
between authentic and tampered features.

Overall, M2RL-Net integrates MFR, PSL, and FCL to fa-
cilitate relation learning at different levels, enhancing the
detection of inconsistency manipulations and identifying
manipulative pattern features across different views. Our
method enhances the model’s pixel-level detection of forged
regions and improves its generalization capabilities.

In summary, our contributions are listed as follows:

* We propose a novel end-to-end weakly-supervised im-
age forgery detection method called M?RL-Net, which
reduces dependency on extensive labeled datasets while
achieving high accuracy in detecting and localizing ma-
nipulated regions.

* We introduce Patch-Level Self-Consistency Learning
(PSL) to leverage inherent patch-level similarity for self-
consistency learning, enhancing generic image manipu-
lation detection.

* We propose Multi-view Feature Representation (MFR)
and Feature-Level Contrastive Learning (FCL) to learn
and extract prototypes of genuine and forged knowledge
from various feature representations, utilizing reliable
pixels for self-view and multi-view contrastive learning,
cultivating more discriminative genuine and forged fea-
tures, thereby enhancing general detection capabilities.

* We have extensively validated our methods across mul-
tiple benchmark datasets, demonstrating superior per-
formance in both detection accuracy and manipulation
localization compared to existing fully-supervised and
weakly-supervised methods.

Related Work

Image Forgery Detection Early methods design hand-
crafted features to identify specific manipulations. Given
the diverse and often unknown nature of real-world edit-
ing, recent studies focus on practical general tampering de-
tection (Triaridis and Mezaris 2024; Guillaro et al. 2023).
These methods detect forgeries by identifying multiple
traces like JPEG artifacts, edge inconsistencies, noise pat-
terns, and camera model fingerprints. Researchers (Li et al.
2024; Zeng et al. 2024; Guo et al. 2023; Zhou et al. 2018) en-
hance detection by exploring clues beyond RGB views, con-
verting images into noise views with fixed or learnable filters
like SRM and learnable convolutions to highlight artifacts.
Some studies (Kwon et al. 2022, 2021; Wang et al. 2022)
incorporate DCT coefficients alongside RGB to detect com-
pression artifacts. Recently, contrastive learning has been
applied to image forgery detection, with methods like (Wu,
Chen, and Zhou 2023; Lou et al. 2024; Niloy, Bhaumik, and
Woo 2023) using contrastive loss to differentiate authentic
and forged pixel embeddings. These studies rely on anno-
tated ground truth labels for pixel-level or block-level con-
trastive learning in fully supervised settings, which has not
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been explored in weakly supervised contexts. Fully super-
vised methods, though effective, are time-consuming, result
in large training datasets, and increase false positives. Be-
sides, new editing techniques like language-driven tamper-
ing do not always produce pixel-level masks. Weakly su-
pervised image forgery detection has been successively pro-
posed to address the limitations of fully supervised methods.

Weakly-supervised Learning Weakly-supervised learn-
ing strategies are designed to alleviate the extensive labeling
effort required by fully-supervised systems. This paradigm
enables the prediction of fine-grained labels using coarse
or incomplete supervision, such as using image-level la-
bels to predict segmentation masks. Given the relatively
limited research on weakly-supervised image forgery de-
tection (W-IFD), this paper references the latest techniques
WSCL (Zhai et al. 2023) and EdgeCAM (Zhou et al. 2024)
and compares them with weakly-supervised segmentation
algorithms. Our method demonstrates significant advantages
at both the image and pixel levels, enabling effective gener-
alization across varied and unseen manipulation scenarios.

Methodology

In this section, we present the proposed Multi-View
and Multi-Level Relation Learning Network (M?RL-Net)
framework designed to tackle the challenges in weakly-
supervised image forgery detection (W-1FD).

Problem Definition

In this paper, we try to explore the internal properties of the
forgery detection network to localize partially manipulated
images when only image-level labels are available. For the
image forgery detection network Net(-), given an input im-
age I € RHXW>3 we have an image-level manipulation
label y; € {0,1}, where O indicates authentic images and
1 indicates fake images. The network generates a predic-
tion map m = Net(I) € R¥*W from which we derive
the image-level prediction score y = Pooling(m). During
training, we only utilize image-level labels for supervision.
At inference, we not only identify whether an image is au-
thentic or forged but generate a predicted map m to localize
forged regions at the pixel level within manipulated images.

Overview of M2RL-Net

As illustrated in Fig. 1, we present an overview of M?RL-
Net, which comprises three main components: Multi-
view Feature Representation (MFR), Patch-level Self-
Consistency Learning (PSL), and Feature-level Contrastive
Learning (FCL). The framework aims to fully exploit the
forgery artifacts representation from diverse views to pro-
vide robust cues for manipulation detection and leverage
multi-level relation learning to discern manipulative patterns
across different levels for weakly-supervised image forgery
detection and localization.

Multi-View Feature Representation (MFR)

Tampering operations often disrupt the natural noise dis-
tribution between the source and target images. Thus we
posit that mining noise inconsistencies can provide robust
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Figure 1: Overall architecture of our M?RL-Net framework, which mainly consists of: a multi-view feature representation, a
decoder and feature projector for two relation learning (PSL and FCL), and a classification layer (CLS) for auxiliary tasks.

artifact cues for forgery detection. Specifically, we employ
a dual-stream structure to fully exploit and integrate clues
from both RGB and noise perspectives during the multi-
view feature representation (MFR) stage. Initially, the in-
put RGB image X7 is transformed into a noise view repre-
sentation Xy = T(X7). The transformation T'(-) utilizes
the learnable constrained convolutional layer (Bayar and
Stamm 2018), which can reveal low-level tampering incon-
sistencies. Subsequently, the input image X; and noise map
X are processed through the feature encoding pipeline.
We explore Transformer-based models (Xie et al. 2021) that
achieved astonishing performance on visual classification
benchmarks. Specifically, X; and X are divided into N 2
patches of size P, and these patches are flattened into em-
beddings and linearly mapped into N2 patch tokens. These
tokens as the transformer encoder’s input z;,, € RN*XD are
fed into the feature encoding stage, where D is the dimen-
sion of input tokens. The transformer encoder consists of L
encoding layers internally. Each layer, ¢, comprises two sub-
layers: a multi-head self-attention (MHSA) layer (Vaswani
etal. 2017) and a multilayer perceptron (MLP) layer. Within
each encoding layer, we input tokens z;,, and receive z,y;.
The 24+ from one layer becomes the z;,, for the subsequent
encoder layer, iterating for L iterations.

© = MHSA (LN (z71)) + 2! 4))

=MLP (LN (y)) +y* )

where LN is layer normalization (Ba, Kiros, and Hinton

2016) and MLP consists of two linear projections separated
by GeLU (Hendrycks and Gimpel 2016) non-linearity.

After going through the L transformer layers, these en-

coded tokens z;,s; are then arranged as the final extracted
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features Fy,(n € {I, N}). After the MFR stage, we can ac-
quire discriminative feature representations of input images.

Patch-Level Self-Consistency Learning (PSL)

Prior works (Ru et al. 2022; Zhu et al. 2023) have in-
dicated in each transformer block of the standard Trans-
former Encoder, there exists a Multi-Head Self Atten-
tion (MHSA) layer that calculates the similarity between
queries and keys from different patch tokens, referred to as
Patch Attention Maps. Different from the weakly-supervised
WSCL method (Zhai et al. 2023), which computes the
pair-wise similarity of extracted features, our transformer-
based method directly uses the Patch Attention Maps from
intermediate layers for self-consistency learning. Conse-
quently, as shown in Fig. 1, we propose Patch-Level Self-
Consistency Learning (PSL) to leverage the Patch Atten-
tion Maps in the transformer encoder to identify inconsis-
tencies between image patches and differentiate feature rep-
resentations of authentic and tampered patches. Concretely,
within the transformer encoder in MFR, we obtain the Patch
Attention Maps of N? different patch tokens relative to
themselves from the L MHSA layers, which is denoted as

A e R<LXH)XN2XN2, where L is the MHSA layers, H is
the number of attention heads, N2 is the number of patch
tokens. A(#7):(k:D) represents the consistency between the
patch token at position (i, j) and another patch token at posi-
tion (k, 1), with higher values indicating greater consistency.

To combine the representation of all attention heads in
MHSA layers, it typically directly averages the self-attention
maps of different heads in the same layer and then sums
them by different layers. This mean-sum approach to the
Patch Attention Maps tends to introduce more interference



to the activation of forgery regions. Thus, we propose uti-
lizing an adaptive learning module to recalibrate the im-
portance of different attention heads. As shown in Fig. 1,
first, we get the Patch Attention Maps A € R(EZXH)xN *xN?
and aggregate the corresponding global context information
W € REXH)X1 by applying pooling across the heads. Sub-
sequently, we utilize a fast 1D convolution (Conv1D) of size
k to efficiently facilitate interaction among the different at-
tention heads as follows:

W' = Conv1D(Pooling(A)) 3)

Finally, we multiply the interacted weights woe
REXH) X1 pack to the Patch Attention Maps A and apply
a mean operation to obtain a comprehensive Patch Relation
Map A € RN*XN? a5 follows:

“

During training, the Patch Relation Map Ais typically
coarse and inaccurate due to the absence of explicit con-
straints. With the approximate pseudo-forgery location map
Y,(n € {I,N}), the pseudo-localization label M,, is de-
rived. Specifically, for M,,, if the pixels (4, j) and (k, [) share
the same consistency, their patch-level consistency similar-
ity is set to 1; otherwise, it is set to 0, as follows:

. 1, if My = My,
@):(kD 770, otherwise

The patch self-consistency loss term L, is formalized as:

1 L
N2 > Isigmoid(Ag j) k1) — Coigy.kl (6)
i,7,k,l

&)

Epsl =

Overall, £,5; imposes consistency constraints in confus-
ing regions, forming a self-supervised paradigm. PSL lever-
ages self-consistency learning to detect inconsistent image
patches and differentiate features between real and tampered
patches, enhancing the final more reliable prediction.

Feature-Level Contrastive Learning (FCL)

Relying solely on PSL remains challenging for distinguish-
ing between real and forged regions under weak supervision,
which depends only on image-level labels. To address this,
we introduce a Feature-Level Contrastive Learning (FCL)
module that explores feature-level relationships, ensuring
that pixels of the same class have similar representations in
the feature space, thereby enhancing detection performance.

FCL operates by extracting category-specific knowledge
prototypes for both real and forged classes, which serve
as representative embeddings, helping to reduce noise from
erroneous pseudo-labels in weakly supervised settings. By
introducing corresponding positive prototype pixels, FCL
drives negative prototype pixels apart within the projected
feature space, enabling contrastive learning to generate more
discriminative feature embeddings for each pixel.

Initially, in the absence of labeled pixels for image tag-
ging, we depend on trustworthy pseudo-label maps to guide
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Figure 2: Illustration of the proposed FCL. Self-contrast and
multi-view contrast are formed.

FCL. From these maps, we select reliable pixels for each
class to compute their class prototypes. The process involves
pixel-level contrastive learning between the class features
and prototypes within the feature space, enabling us to ob-
tain discriminative feature embeddings for each pixel. Fol-
lowing (Du et al. 2022), these pseudo-label maps Yn €
R>HXW are derived by selecting class prediction maps Y;,,
applying a ReLU function and normalizing the values to the
[0, 1] range as estimates of the probability of belonging to
the forged class. Subsequently, we apply a feature projec-
tor to the feature representations F,, to produce pixel-level
projected feature embeddings F), € R!28XH>W which in-
cludes 1 x 1 convolutional layers and ReL.U activation.

As illustrated in Fig. 2, with the pseudo-label maps Y,
and projected feature embeddings F,, we estimate the pro-
totypes, defined as the discriminative feature embeddings for
each class, by calculating them from the most reliable pix-
els in the pseudo-label maps. Specifically, for pixels in Y,
assigned to different classes, we select the top-K most con-
fident pixels to estimate prototypes. We then use the reliable
class pseudo-labels to categorize the pixel-level projected
feature embeddings E, A weighted averaging is performed

on all pseudo-labeled features F), to derive the prototypes
P, as follows:

ZZ'EQC Yvi,cF 7
Zieﬂc Yiac
Here, Y, represents the pseudo-label map for class c, and €2,
denotes the set of top-K pixels in the pseudo-label map for
class c. The hyperparameter K determines the range of pixels
used to compute the prototype, where a smaller K indicates
higher confidence in the prototype estimation.
To obtain class-specific pixel feature embeddings E., we
use the pseudo-label maps Yasa probability map for pixel-
level classes. By applying thresholding p, where pixels with

P = (N



values above or equal to p are marked as forged, and those
below p are marked as genuine, we generate class masks
M; .. Consequently, the projected feature embeddings F are
divided into tampered embeddings E; 4, and authentic em-
beddings E; 4., as shown in the right part of Fig. 2.

Finally, the similarity between class feature embeddings
and their positive prototypes (E; ¢, and FP; )y, F; 4, and
P; 4v) should be maximized, while the similarity between
class features and negative prototypes (F;ip and FP; 4,
E; o and P; ;) should be minimized, as illustrated in Fig. 2.
In this study, the contrastive learning (CL) between class
feature embeddings and prototypes is formulated as follows:

GXp(Ei . ,PMi/T) (8)
ZCEC exp(Ei : PC/T)
where M ; is the pseudo-label of pixel ¢, which determines
the positive prototype Pas,. The temperature coefficient 7

is set to 0.1, and C represents the set of both forged and
authentic classes.

Self-Contrast. For self-view contrastive learning, the
comparison is conducted within a single view of each im-
age. For a pixel ¢ with pseudo-label Y;, self-view contrastive
learning extracts the prototype P from the current view and
conducts contrastive learning between pixel class features
and prototypes as follows:

1
Leat = 17 > " (CL(Ey, Pr, My) + CL(Ex, Py, My))

i€V
C))
where V' indicates the entire image and | - | represents the
cardinality.  and N denote the input RGB and noise view.
However, due to the lack of precise pixel annotations in
weak supervision settings, the pseudo-label Y; assigned to
pixel ¢ may be inaccurate, leading to inaccurate prototypes
‘P and thus incorrect contrast between category features and
prototypes. We address this issue from two aspects. On one
hand, to fully utilize reliable forged and real pixels across
the entire dataset without being constrained by the batch
size, we propose a prototype update strategy similar to Ex-
ponential Moving Average (EMA) to update the prototypes
P, thereby learning more generalized prototypes for forged
and real classes. The process is as follows:

Py < OPr—1+ (1 —9)Py (10)

where Pj,_1 and Py, are the prototypes at the (k — 1)-th and
k-th iterations during training, and 0 is the update weight.

CL(EZ‘; P; Ml> = — log

Multiview-Contrast. On the other hand, considering the
consistency of features from the two streams towards manip-
ulation characteristics, we construct multi-view contrastive
learning, using prototypes from other views to provide su-
pervision signals for the current view and vice versa, as
shown in Fig. 2. Given a pixel ¢ with pseudo-label Y, and
projected feature embeddings F,, we regularize the current
view using prototypes P, (v € {I, N}) from another view.
The multi-view contrastive loss is calculated as:

1
Lo = 77 > " (CL(Ey, Px, M) + CL(Ex, Pr, My))

%
(11)
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Dataset | #Au  #Tp #Spli. #Cpmv. #Inpa. #Ps.
CASIAvV2 ‘ 7,491 5,063 3,235 1,828
CASIAv] 800 920 459 461
Columbia 183 180 180 -

COVER 100 100 - 100 -

NIST16 - 564 288 68 208 -
IMD20 2010 2010 - - 2010

Table 1: Public dataset details. Au, Tp, Cpmv., Spli., Inpa.
and Ps. are abbreviations for Authentic, Tampered, Copy-
move, Splicing, Inpainting, and Photoshop, respectively.

The FCL module integrates self-view and multi-view con-
trastive learning, which can be expressed as:

Efcl = ACself + £multi (12)

Optimization and Inference

As illustrated in Fig. 1, our framework consists of four
loss terms: an auxiliary classification loss L,ux, a binary
classification loss L5, a patch-level self-consistency learn-
ing (PSL) loss L1, and a feature-level contrastive learning
(FCL) loss Lg. For the classification loss, following com-
mon practice, we employ a global average pooling (GAP)
layer followed by a classification layer (CLS) to compute
the class probability vector. £, is applied using the Bi-
nary Cross-Entropy (BCE) criterion. Additionally, we utilize
global max pooling on the predicted pseudo mask to gener-
ate image-level predictions, where the BCE loss serves as
the binary classification loss L. The PSL loss L4 and
FCL loss Lg are specifically defined in Eq. 6 and Eq. 12,
respectively. The overall loss is the weighted sum of these
loss terms:

L= ﬁaux + »Ccls + »Cpsl + Cfcl (13)

The final image-level prediction is obtained by weighted
averaging the predictions from RGB and noise streams, and
the prediction map is the ensemble localization map.

Experiments
Experimental Settings

Datasets. To ensure a fair basis for comparison, we ad-
hered to established test protocols outlined in prior stud-
ies (Dong et al. 2022; Zhai et al. 2023). The training
dataset utilized in our experiments is CASIAv2 (Dong,
Wang, and Tan 2013). For in-dataset evaluation, we em-
ploy the CASIAv1 dataset, while for cross-dataset eval-
uation, we utilize the Columbia (Hsu and Chang 2006),
COVER (Wen et al. 2016), NIST16 (Guan et al. 2019), and
IMD20 (Novozamsky, Mahdian, and Saic 2020) datasets as
testing datasets. Our approach relies solely on image-level
labels without any fine-tuning on the target datasets. De-
tailed information on the datasets is provided in Tab. 1.

Evaluation Metrics. In our experiments, we evaluate
image-level manipulation detection using specificity (Spe.),
sensitivity (Sen.), their F1 score (I-F1), and the area un-
der the ROC curve (AUC). For pixel-level localization, we



Method CASIAvV1 ‘ Columbia ‘ COVER ‘ IMD20 ‘ AVG
AUC Spe. Sen. I-F1 | AUC Spe. Sen. I-F1 | AUC Spe. Sen. I-F1 | AUC Spe. Sen. I-F1 | AUC I-F1
Unsupervised methods.
NOI1 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.500 0.000
CFA1 0.482 0.000 1.000 0.000 ‘ 0.344 0.000 1.000 0.000 ‘ 0.525 0.000 1.000 0.000 ‘ 0.500 0.000 1.000 0.000 ‘ 0.500  0.000
Fully-supervised methods.
H-LSTM 0.498 0.0 0.997 0.000 | 0.506 0.001 1.000 0.002 | 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.515 0.001
ManTra-Net 0.141 0.000 1.000 0.000 | 0.701 0.000 1.000 0.000 | 0.491 0.000 1.000 0.000 | 0.719 0.000 1.000 0.000 | 0.513 0.000
RRU-Net 0.507 0.006 0.994 0.001 | 0.497 0.000 1.000 0.000 | 0.495 0.000 1.000 0.000 | 0.512 0.000 1.000 0.000 | 0.503 0.000
CR-CNN 0.766  0.224 0930 0.361 | 0.783 0246 0961 0.392 | 0.566 0.070 0.967 0.131 | 0.617 0.112 0.936 0.200 | 0.683 0.271
GSR-Net 0.502 0.011 0.994 0.022 | 0.502 0.011 1.000 0.022 | 0.515 0.000 1.000 0.000 | 0.505 0.008 0.998 0.014 | 0.506 0.019
SPAN 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.500 0.000 1.000 0.000 | 0.500 0.000
CAT-Net 0.630 0.328 0.762 0.459 | 0.849 0373 0.782 0.505 | 0.572 0.093 0902 0.169 | 0.721 0.132 0.872 0.229 | 0.693 0.157
FCN+DA 0.796 0.844 0.717 0.775 | 0.762 0322 0950 0.481 | 0.541 0.100 0.900 0.180 | 0.746 0.030 0.981 0.182 | 0.711 0.404
MVSS-Net 0.937 0.988 0.615 0.758 | 0.980 1.000 0.669 0.802 | 0.731 0.940 0.140 0.244 | 0.656 0915 0.220 0.355 | 0.826 0.534
Weakly-supervised methods.
MIL-FCN 0.647 0.538 0.569 0.553 | 0.807 0.220 0.732 0.338 | 0.542 0.062 0.793 0.115 | 0.578 0.116 0.886 0.205 | 0.644 0.303
MIL-FCN+WSCL  0.829 0.795 0.690 0.738 | 0.920 0.519 0.983 0.680 | 0.584 0.440 0.714 0.544 | 0.733 0.221 0.966 0.360 | 0.766 0.580
Araslanov 0.642 0458 0.542 0.496 | 0.773 0.127 0.746 0.140 | 0.560 0.077 0.746 0.140 | 0.665 0.126 0.832 0.219 | 0.600 0.270
Araslanov+WSCL  0.796 0.638 0.726 0.679 | 0.917 0.324 0948 0.483 | 0.591 0220 0.838 0.348 | 0.701 0.193 0.872 0316 | 0.751 0.456
EdgeCAM 0.836 0928 0.713 0.806 | 0.897 0.776 0.694 0.733 | 0.729 0470 0270 0.343 | 0.642 0.582 0.648 0.613 | 0.776 0.624
WSCL(re-trained) 0.778 0.875 0.622 0.727 | 0.921 0.909 0.961 0.909 | 0.570 0.450 0.670 0.538 | 0.612 0.879 0.302 0.449 | 0.720 0.655
Ours 0948 0.908 0.827 0.866 | 0.999 0.951 1.000 0.975 | 0.716 0.860 0.473 0.610 | 0.827 0.990 0.415 0.585 | 0.862 0.762

Table 2: Comparison of state-of-the-art methods for image-level manipulation detection across multiple datasets, evaluated by
AUC, specificity (Spe.), sensitivity (Sen.), and image-level F1 score (I-F1). The best and second-best results are highlighted in

boldface and underlined, respectively.

compute precision, recall and their F1 score (P-F1) on tam-
pered images. We also use the combined F1 score (C-F1)
for overall performance assessment, applying a uniform de-
cision threshold of 0.5 for F1 computations.

Implementation Details. The proposed M?RL-Net is im-
plemented with PyTorch and trained on four NVIDIA RTX
3090 GPUs. Following (Zhai et al. 2023), all input images
are resized to 224 x 224 and augmented by commonly used
cropping and flipping. Segformer (Xie et al. 2021) is adopted
as the transformer encoder for both views, which is pre-
trained on the ImageNet dataset, while the classifier, de-
coder, and projector are initialized using random weights.
We use the AdamW optimizer (Loshchilov and Hutter 2019)
with a batch size of 32 and an initial learning rate of 1e .
The entire model is trained for 60 epochs. In FCL, the
threshold p is set to 0.5 and the update weight O to 0.1.

Comparison with State-of-the-Art

In this section, we compare M?RL-Net’s image-level detec-
tion and pixel-level localization performance with 15 ex-
isting methods (unsupervised: CFA1 (Ferrara et al. 2012),
NOIl (Mahdian and Saic 2009); fully supervised: H-
LSTM (Bappy et al. 2019), ManTra-Net (Wu, AbdAl-
mageed, and Natarajan 2019), RRU-Net (Bi et al. 2019),
CR-CNN (Yang et al. 2020), GSR-Net (Zhou et al. 2020),
SPAN (Hu et al. 2020), CAT-Net (Kwon et al. 2022),
FCN+DA (Chen et al. 2021), MVSS-Net (Dong et al.
2022); weakly supervised: MIL-FCN (Pathak et al. 2015),
Araslanov (Araslanov and Roth 2020), WSCL (Zhai et al.
2023)), EdgeCAM (Zhou et al. 2024) in both in-dataset and
cross-dataset setups.

Image-level Detection Results. Tab. 2 presents the results
of the image manipulation detection. Compared to unsuper-
vised and fully supervised methods, M?RL-Net has compet-
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Method ) P-F1

CASIAvl Columbia COVER IMD20 NIST16 AVG
Unsupervised methods.
NOI1 0.157 0.311 0.205 0.124 0.089 0.190
CFALl 0.140 0.320 0.188 0.111 0.106 0.188
Fully-supervised methods.
H-LSTM 0.154 0.130 0.163 0.195 0.354 0.176
ManTra-Net 0.155 0.364 0.286 0.122 0.000 0.185
RRU-Net 0.225 0.452 0.189 0.232 0.265 0.273
CR-CNN 0.405 0.436 0.291 - 0.238 -
GSR-Net 0.387 0.613 0.285 0.175 0.283 0.349
SPAN 0.184 0.487 0.172 0.170 0.221 0.214
CAT-Net 0.276 0.352 0.134 0.102 0.138 0.200
MVSS-Net 0.452 0.638 0.453 0.260 0.292 0.419
Weakly-supervised methods.
MIL-FCN 0.117 0.089 0.121 0.097 0.024 0.090
MIL-FCN+WSCL 0.172 0.270 0.178 0.193 0.110 0.185
Araslanov 0.112 0.102 0.127 0.094 0.026 0.092
Araslanov+WSCL 0.153 0.362 0.201 0.173 0.099 0.198
WSCL(re-trained) 0.150 0.305 0.169 0.062 0.015 0.140
Ours 0.347 0.434 0.213 0.248 0.113  0.265

Table 3: Compare against existing methods on pixel-level
manipulation detection on F1 score (P-F1).

itive AUC and Image-level F1 (I-F1) scores, meaning our
method outperforms the counterparts on both in-and-cross
datasets. For instance, our method achieve a 42.7% improve-
ment in average I-F1 compared to the supervised algorithm
MVSS-Net. According to both sensitivity (Sen.) and speci-
ficity (Spe.) metrics, our method can learn from the authen-
tic and obtain higher specificity, and thus lower false alarm
rate, on all test sets. Furthermore, our method outperforms
the equivalent weakly-supervised algorithm, WSCL, with a
19.7% improvement in AUC and a 16.3% boost in I-F1.
Such results highlight the effectiveness of our method, es-
pecially the generalization ability and false detection rate in
authentic images.

Pixel-level Localization Results. Tab. 3 showcases the
comparative results for pixel-level manipulation localiza-



Com-F1

Method CASIAV1 Columbia COVER IMD20 AVG
Unsupervised methods.

NOI1 0.000 0.000 0.000 0.000  0.000
CFA1 0.000 0.000 0.000 0.000  0.000
Fully-supervised methods.

H-LSTM 0.000 0.004 0.000 0.000  0.001
ManTra-Net 0.000 0.000 0.000 0.000  0.000
RRU-Net 0.023 0.000 0.000 0.000  0.006
CR-CNN 0.382 0413 0.181 - -
GSR-Net 0.042 0.042 0.000 0.026  0.028
SPAN 0.000 0.000 0.000 0.000  0.000
CAT-Net 0.345 0.406 0.149 0.144  0.261
MVSS-Net 0.566 0.711 0.317 0.300 0474
Weakly-supervised methods.

MIL-FCN 0.193 0.141 0.118 0.131 0.146
MIL-FCN+WSCL 0.280 0.386 0.268 0.252  0.296
Araslanov 0.194 0.140 0.133 0.046  0.125
Araslanov+WSCL 0.250 0.414 0.255 0.159  0.270
WSCL(re-trained) 0.242 0.457 0.258 0.111 0.267
Ours 0.495 0.603 0.316 0.348  0.441

Table 4: Overall performance on manipulation detection
measured by combined F1 score (Com-F1), the harmonic
mean of pixel-level F1 and image-level F1 on four test sets.

tion. Our approach outperforms weakly supervised MIL-
FCN+WSCL algorithms, demonstrating a 43.2% superior
average P-FI metric. and the average performance on five
datasets is comparable with the fully-supervised ManTra-
Net and CAT-Net. Such a strong performance demonstrates
the capability of our pixel-level manipulation localization.

Overall Performance. Tab. 4 provides overall detection
and localization performance. Our method outperforms the
weakly-supervised algorithm WSCL by a substantial margin
of 45.9% and achieves the best overall performance (Com-
F1) on the IMD20 dataset, which is close to real-world sce-
narios. Besides, our method surpasses the supervised algo-
rithm, demonstrating that our method effectively maintains
a balance between image-level and pixel-level image manip-
ulation detection accuracy with only image-level labels.

Qualitative Results

As illustrated in Fig. 3, our method reveals that unsupervised
methods produce noisy predictions, while both fully super-
vised and weakly supervised methods generate cleaner lo-
calization maps. For instance, the WSCL method predicts
larger areas, encompassing the ground truth but is less pre-
cise compared to our M?RL-Net method. Overall, our ap-
proach ensures clearer and more accurate localization.

Ablation Study

To evaluate the effectiveness of each component in our pro-
posed approach, ablation experiments are conducted on the
CASIAv1 and COVER datasets, with the results shown in
Tab. 5. When RGB is replaced by a noise view, image-level
detection scores (I-F1 and AUC) decrease, while pixel-level
localization improves, and performance is further enhanced
with the addition of multiview, indicating the benefit of noise
cues in better artifact feature representation. The integra-
tion of an auxiliary classifier (L) aids in distinguishing
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COVERAGE  Columbia

IMD20

NIST16

(b)GT (0 Ours  (d) WSCL (

NOI1 (f) CFA1 (g

Figure 3: Qualitative comparison of our method (c) on five
datasets with weakly-supervised (d), unsupervised (e)(f),
and fully-supervised methods (g)(h).

. CASIAvI COVER
Variant Models AUC IFl P-Fl AUC IFl P-Fl
RGB View (baseline) 0.823 0.720 0.128 0.612 0.607 0.149
Noise View 0.842 0634 0.151 0.622 0609 0.164
MultiViews 0916 0.813 0280 0.675 0.562 0.156
+AUX. (Las) 0.938 0.856 0296 0.684 0612 0.162
+PSL (Lpar) 0951 0.867 0312 0.661 0.608 0.186
+FCL (W/ Laerf) 0.945 0.861 0319 0.698 0.619 0.187
+FCL (W/ Lonuiss) 0.943 0860 0323 0.701 0.636 0.197
+FCL (L) 0.948 0.866 0347 0.716 0.610 0213

Table 5: Ablation results. Pixel-level F1 performance along-
side Image-level F1 and AUC metrics are reported.

between real and forged images, enhancing detection per-
formance, as evidenced by a 5.3% increase in I-F1 scores.
Additionally, the inclusion of the PSL module significantly
boosts overall performance, underscoring the module’s ef-
fectiveness. Within the FCL framework, employing Self-
contrast (L r) and Multiview-contrast (L,,,41¢;) leads to the
development of more discriminative features for image ma-
nipulation detection, enhancing localization results. The best
performance is achieved when all components (Lque, Lpsi,
and L) are integrated, demonstrating the robustness and
effectiveness of our comprehensive approach.

Conclusion

We introduce a novel approach for weakly supervised im-
age forgery detection, dubbed as Multi-View and Multi-
Level Relation Learning Network (M?RL-Net). M?RL-Net
leverages patch-level self-consistency learning (PSL) and
feature-level contrastive learning (FCL) to effectively use
image-level annotations for precise forgery detection and lo-
calization. Our experimental results show that M2RL-Net
sets a new benchmark in the field, significantly improving
detection accuracy and localization performance, while also
paving the way for future advancements in image security.
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