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ABSTRACT

Relations are basic building blocks of human cognition. Classic and recent work
suggests that many relations are early developing, and quickly perceived. Machine
models that aspire to human-level perception and reasoning should reflect the
ability to recognize and reason generatively about relations. We report a systematic
empirical examination of a recent text-guided image generation model (DALL-E
2), using a set of 15 basic physical and social relations studied or proposed in the
literature, and judgements from human participants (N = 169). Overall, we find
that only ∼22% of images matched basic relation prompts. Based on a quantitative
examination of people’s judgments, we suggest that current image generation
models do not yet have a grasp of even basic relations involving simple objects and
agents. We examine reasons for model successes and failures, and suggest possible
improvements based on computations observed in biological intelligence.

1 INTRODUCTION

Consider the line ‘the flooben was on the demaglis’. Even if you don’t know what a flooben or
demaglis are, you know something is on something1. This is because on is a basic relation. Our
understanding of basic relations is general, early developing (18), and fundamental to our reasoning
(49). There is also growing evidence that basic relations are perceived as directly as basic object
properties (15). Machines that attempt to capture elements of human reasoning would do well to
accurately perceive such relations in images, and produce accurate images from such relations as
input. Here, we propose a core set of relational reasoning prompts, and evaluate the accuracy of a
recent text-to-image foundation model (DALL-E 2) on its ability to generate images that match them.

Recent advances in image synthesis have achieved seemingly remarkable success in producing
arbitrary images from arbitrary text (e.g. 40; 37). A prompt such as ‘a robot-cat wearing cool glasses,
gazing at a supernova’ produces images that look somewhat like a robot-cat, wearing cool glasses,
gazing at a supernova. Such successes lead to the impression that these models understand the input
as a human would, as a compositional combination of objects, properties, and relations.

Despite their successes, these models are not without their limitations: early analyses drew attention to
failures (amongst others) in common sense reasoning, feature binding, and text generation (27; 8; 23),
and the literature on this topic has since grown at a precipitous rate. To aid in addressing the
failures of text-to-image models, the machine learning community has since proposed a number
of ‘visuolinguistic’ benchmarks (31; 39; 51; 4; 13; 30; 23; 29) that test all sorts of multimodal
competences. (A more comprehensive, up-to-date review of related work may be found in Section 5.)

In the current work, our intent is to provide a benchmark inspired less by automated machine learning
methods, and more directly by human psychology: Specifically, we focus on a set of 15 basic relations
previously described in the cognitive, developmental, or linguistic literature. The set contins both
grounded spatial relations (e.g. ‘X on Y’), and more abstract agentic relations (e.g. ‘X helping Y’).
The prompts are intentionally simple, without attribute complexity or elaboration.

Rather than rely on our own intuition for whether an image matches a given relation prompt, we
surveyed the intuitions of 169 participants. The use of multiple relations and many participants allows

1As Alice remarks after reading the nonsense poem, Jabberwockey: “Somehow it seems to fill my head with
ideas – only I don’t exactly know what they are! However, somebody killed something: that’s clear, at any rate”
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a more nuanced examination of model performance than pass/fail judgements. The stimulus set,
prompts, images, and participant data are all openly available at https://osf.io/sm68h.

2 EXPERIMENT

We designed our experiment to assess the fit between basic relations and the images generated by
DALL-E 2, by presenting images and sentences to human respondents and asking them whether an
image and sentence matched.

Based on core empirical work in the domains of cognitive, linguistic, and developmental psychology
(3; 26; 45; 21; 43; 54; 11; 17; 52; 53; 12; 6; 14; 9; 16), we created a set of 15 relations (8 physical,
7 agentic). The physical relations were: in, on, under, covering, near, occluded by, hanging over,
and tied to. The agentic relations were: pushing, pulling, touching, hitting, kicking, helping, and
hindering. We created a set of 12 entities (6 objects, 6 agents) to engage in these relations. The
objects were: box, cylinder, blanket, bowl, teacup, and knife. The agents were: man, woman, child,
robot, monkey, and iguana. The objects were simple bodies or common items used in previous
data-sets that study relations (e.g. 7; 20), or in psychophysics tasks (16), or both. The agents were
human, human-like, or of interest to the AI community. The iguana was a novel, visually distinct
subordinate category we included as a treat.

For each relation, we created 5 different prompts, by randomly sampling two entities five times. This
resulted in 75 prompts total (15 relations x 5 samples). For some relations, we restricted the set of
allowable entities as follows: (i) Physical relations involved two physical objects, (ii) Covering had
blanket as the first entity, (iii) In had box or bowl as the second entity, (iv) Agentic relations had an
agent as the first entity, and either an object or an agent as the second entity, (v) The relations helping
and hindering exclusively involved two agents.

We submitted each prompt to the DALL-E 2 rendering engine, and obtained the first 18 images that
resulted. In a small number of cases, the prompt was rejected as a policy violation (e.g. ‘a man
kicking a man’). In such cases, the second entity was replaced at random until no policy violation
was encountered. Our final stimulus set consisted of 1350 images (75 prompts x 18 images).

These stimuli were evaluated by 169 online participants. (See Appendix A.1 for demographic details,
and human subjects protocol). Participants were informed that they would be assessing a ‘picture-
drawing AI’, by examining grids of images that an AI drew in response to a given sentence. In each
trial, participants were shown 18 images, organized into a 3x6 grid, with the target prompt at the top.
Participants were instructed to select all images in the grid that matched the prompt. (See Figure A.1
for a screenshot of a typical trial, and trial sampling procedures.)

3 RESULTS

Unless otherwise noted, results are reported with the following convention: arithmetic mean [lower
95% confidence interval, upper 95% confidence interval] across participants or trials.

Participants on average reported a low amount of agreement between DALL-E 2’s images and the
prompts used to generate them, with a mean of 22.2% [18.3, 26.6] across the 75 distinct prompts.
Agentic prompts, with a mean of 28.4% [22.8, 34.2] across 35 prompts, generated higher agreement
than physical prompts, with a mean of 16.9% [11.9, 23.0] across 40 prompts (tWelch(71.82) =
−2.81, p < 8.41e−3, ĝHedges = −0.62 [−1.08,−0.16]). (See also Figure A.2).

Decomposing the broad categories of physical and agentic into constituent relations, we observe a
range of human agreement scores, as shown in Figure 1. While it is difficult to say what criterion
establishes whether DALL-E 2 ’understands’ a given relation, here we report comparisons to 3
thresholds: 0%, 25%, and 50% perceived agreement, averaged across participants. Holm-corrected,
one-sample significance tests for each relation suggest all 15 relations have participant agreement
significantly above 0% at α = 0.95 (pHolm < 0.05). However, only 3 relations entail agreement
significantly above 25% (touching, helping, and kicking), and no relations entail agreement above
50%. This remains true even without correction for multiple comparisons.

Considering the results qualitatively, we note that even a (relatively) high average agreement may
not indicate relational understanding, but rather an influence of the training set. For example, the
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Figure 1: The proportion of participants reporting agreement between image and prompt, by
the specific relation being tested. Points are the means of individual images, averaged across
participants. There is a large range of reported agreement between image and text, though no
relation entails average agreement significantly greater than 40%.

‘touching’ relation generated maximal average agreement (at a mean of 42% [34.3, 49.6] across 90
images), but with varied, bimodal success at the level of individual prompts. For example, the prompt
‘child touching a bowl’ generated 87% [80.1, 93] agreement on average, while ‘a monkey touching
an iguana’ generated 11% [5.3, 19.7] agreement on average (see Figure A.3). It may be then that
the combination of ‘child’ and ‘bowl’ is likely to generate images of a child touching a bowl simply
given the training data. We consider this point further in the discussion.

While there are many factors that influence the quality of DALL-E 2’s generated outputs, one
particular parameter of interest is the CLIP score of the generated images: That is, the similarity (as
determined by CLIP) between the generated image, and the text prompt used to generate that image
(36). Intuitively, this is one of the parameters most responsible for the match between the target
linguistic concept (in this case, a relation) and its depiction, but it’s not necessarily a given that CLIP
accounts for relations specifically. To examine the relationship between CLIP similarity and human
perception, we used OpenAI’s open-source ViT-L/14 model to calculate the similarity score between
each image in our image set and their associated prompts. We then averaged the CLIP scores across
the 18 images generated from each prompt, and correlated this average with the average perceived
agreement provided by the human respondents. We found a moderate relationship between the two:
ρ̂Spearman = 0.39 [0.17, 0.57], p = 5.5e−4 (and see Figure 2), suggesting CLIP is at least partially
sensitive to the kinds of relations we’ve tested. (See Appendix A.3 for a demonstration of how CLIP
similarity interacts with relation-type.)

4 DISCUSSION

Relational understanding is a fundamental component of human intelligence, which manifests early
in development (43), and is computed quickly and automatically in perception (15). DALL-E 2’s
difficulty with even basic spatial relations (such as in, on, under) suggests that whatever it has learned,
it has not yet learned the kinds of representations that allow humans to so flexibly and robustly
structure the world. A direct interpretation of this difficulty is that systems like DALL-E 2 do not yet
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Figure 2: Relationship between CLIP (ViT-L/14) similarity scores and human agreement
scores, averaged over images and participants. Each point is 1 / 75 prompts.

have relational compositionality. This is a point that has now been addressed by a variety of similiar
works (27; 51), so we won’t belabor it too intently here. (Though see A.4 for coverage of key points.)

More important than the failures themselves are the reasons for the failures, and how we might
address them. There are many potential reasons for Dall-E 2’s current lack of relational understand-
ing, and they range from the minutia of technical implementation, to larger disjuncts between the
computational principles underlying human intelligence and those underlying many current artificial
intelligence systems (including almost all foundation models). One such disjunct is the way in which
‘place’ is explicitly coded for in both the generative image and text models that constitute text-guided
image generation algorithms. Perhaps the only explicit encoding of relational order in such models is
to be found in the positional embeddings of the text transformer in CLIP – effectively an auxiliary
input that might easily be outweighed by the dozen or so nonlinear attention heads between them and
the model’s final outputs. This design choice (which in some cases produce models that function
more or less as highly nonlinear bags-of-words (56)) is a marked difference from earlier iterations
of natural language processing algorithms that provide syntactic parse trees in conjunction with
the tokens corresponding to individual morphemes and words (48). At the level of images, there is
an incompatibility between many modern machine vision algorithms – often designed explicitly to
mimic the primate ventral visual stream – and the explicit representation of relations (spatial and
otherwise) in the primate dorsal stream (46). Text-guided image generation algorithms might well
benefit from mimicking algorithms in robotics (e.g. CLIPort 41), which combine CLIP’s semantic
flexibility with spatial transformers to model object identities and affordances simultaneously.

Another plausible upgrade that may boost model performance on relations are architectural adjust-
ments that allow for multiplicative effects in a single layer of computation (44). These kinds of
adjustments are inspired by biological perceptual systems, including the dorsal stream, that contain
mixed selectivity neurons and lateral sub-circuits that facilitate the representation of interactions at
multiple levels of the information-processing hierarchy (42; 10).

DALL-E 2 and other current image generation models are things of wonder, but they also leave
us wondering what exactly they have learned, and how they fit into the larger search for artificial
intelligence. DALL-E 2 has seemingly done what many models before it have failed to do, and
bound the abstractions of natural language to clear points of perceptual reference. But that binding
so far remains far more tenuous than the binding that defines the clear referents of standard human
communication. The case of relational understanding provides a clear target for bringing an already
meaningful advancement in artificial intelligence even closer to human meaning. While this analysis
focuses exclusively on Dall-E, it can be replicated quickly and at low cost (see Appendix A.5) for
similiar models (e.g. Stable Diffusion, Imagen, Parti, et cetera). Any foundation model that makes
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a claim to meaningfully model the myriad, structured outputs of human perception and language
should be able to reason about relations, and arguably must do so to instantiate further progress.

5 RELATED WORK

The intense interest in the further development of DALL-E and other similiar text-to-image models
(e.g. Parti (55), MUSE (2), EDIFFI (1), GLIDE (40), GALIP (50), and Stable Diffusion (38))
has produced a commensurately intense interest in formalizing and tracking the progress of these
models in generating images that satisfy the semantic and syntactic specifications of their prompts
(31; 39; 51; 4; 13; 30; 23; 32; 25). The work we have presented here is thus just one in an increasingly
diverse mosaic of such works, taking as its singular focus the various kinds of relationships considered
significant in developmental cognitive science, but sharing a number of commonalities with other
benchmarks and probes of reasoning in text-to-image models. Below, we cover a sample of these
works in a bit more detail.

In early analyses probing the limitations of text-to-image models, Marcus, Davis, and Aaronson
gave Dall-E 2 several informal prompts that elicited failures in common sense, anaphora, relations,
negation, and number (27). AI blogger ‘Swimmer963’ (47) reported informal tests along similar
lines, and concluded DALL-E 2 has weaknesses with multiple characters, text, novel words, and
foreground-background. Farid (8) pointed out the implausibility of cast shadows and reflections in
DALL-E 2. Other limitations of text-to-image models were recognized by the developers of the
models themselves. For example, Ramesh et al. described difficulties with binding, relative size,
text, and other issues (Section 7 in 37). Saharia et al. proposed the ‘DrawBench’ benchmark, which
includes a head-to-head comparison of the Imagen model to DALL-E 2, GLIDE (29), VQ-GAN-CLIP
(5), and Latent Diffusion (38), on images from prior work that demonstrated failures with multiple
counts, unorthodox color, positional arguments, rare words, and text generation.

Perhaps most closely related to the current work is Dall-Eval (4), a benchmark of text-to-image gener-
ative models that considers both ‘physical reasoning and social biases’. Dall-Eval is comprehensive,
probing a suite of inferential ‘skills’ ranging from object recognition and counting to ‘2D spatial
relations’ (some of which overlap with our own spatial relation probes), as well as common social
biases (e.g. whether the otherwise unelaborated prompt ‘a picture of a nurse’ produces images that
recapitulate the frequently gendered stereotypes of many professions). (These biases received even
further attention in the ‘Winoground’ benchmark proposed by Thrush et al. (51)).

With our more intensive focus only on relations, the benchmark we have proposed here should be
seen as complementary to many of these previous works, expounding especially on certain core
agentic relations (e.g. helping or hurting) that other benchmarks consider only tangentially in the
form of social bias. For those that are interested in building models that recapitulate many of the core
compositional competences observed in human children, ours is the most directly linked (as far as we
are currently aware) to developmental cognitive science.

Already we have seen how the focus on compositionality, in particular, has borne some fruit in the
machine learning literature. Soon after Dall-E 2 was published, Liu et al. (24) proposed a composable
diffusion model, and show that it outperforms other text-to-image models in the generation of
structured images, by using basic conjunction (AND) and negation (NOT). Other models (e.g.
Composer (19) and Ti2-Adapter (28)) have followed suit, and shown even further gains. More
broadly, works like those of Li et al. (22) have suggested that human feedback (of the same variety
used to condition LLM foundation models like ChatGPT) may be useful in guiding text-to-image
models towards more reasonably human-like outputs.
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A APPENDIX

A.1 HUMAN SUBJECTS PROTOCOL + DEMOGRAPHICS

We recruited 180 participants online (33) via the Prolific platform (https://www.prolific.
co). Participants were restricted to those located in the USA, having completed at least 100 prior
studies on Prolific, with an acceptance rate of at least 90%. The mean age of the participants was
33.8; 59% of participants identified as female, 40% identified as male, and one did not identify as
either. Of this sample, 11 participants failed to pass two attention checks, and were removed from
analysis, leaving 169 participants in the final sample.

A.2 TRIAL SAMPLING

The 10 prompts any given participant rated were randomly drawn from the full set of 75 prompts.
This resulted in variability in the number of participants that evaluated any given image. The number
of participants that rated a given image ranged from 15 to 43, with an average of 23. After participants
finished evaluating 10 prompts, they were given another attention check, thanked for their time, and
given an opportunity to provide feedback.

A.3 FURTHER DETAILS ON CLIP SIMILARITY + RELATION TYPE

To assess more finely the combined influence of broad relation type (’agentic’ or ’physical’) and
CLIP scores on the human-perceived match between text and image, we used two Bayesian multilevel
(mixed-effects) models: a zero-inflated binomial model calculated directly over the participant-level
choice data (with additive effects for relation type and CLIP score, plus random intercepts for subject
and the order of image presentation [0-18]), and a zero-one-inflated beta model calculated over the
average scores per image (again with additive effects for relation type and CLIP score, but with a
random intercept for the order of image presentation alone). We use zero-inflated models in both
cases, given the outsize quantity of images that participants labeled as not matching the target prompt.
Controlling in both cases for variance injected by factors outside the study design (i.e. random
effects), these models suggest small-to-midsize significant effects of both relation type and CLIP
score on the probability of human respondents designating a target image as matching its prompt.
Results from these regressions are summarized in Table 1.

Figure A.1: Screenshot from a trial in our Experiment. Participants were presented with
grids of images, and a sentence prompt. Participants selected images that matched the target
sentence.
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Figure A.2: Experiment results, participant agreement that images matched a prompt. Each
point is an individual prompt. Points in black show all prompts. Points in color break down
the prompts by whether the subject of the prompt was an object (physical) or agent (agentic).

Table 1: Results of two mixed effects regressions of relation type and CLIP score on human
agreement, either at the individual subject level (zero-inflated binomial) or the image level
(zero-one-inflated-beta).

A.4 FURTHER DISCUSSION: FAILURE OF COMPOSITIONALITY IN IMAGE-TEXT MODELS

The notion that systems like DALL-E 2 do not have compositionality may come as a surprise to
anyone that has seen DALL-E 2’s strikingly reasonable responses to prompts like ‘a cartoon of a
baby daikon radish in a tutu walking a poodle’. Prompts such as these often generate a sensible
approximation of a compositional concept, with all parts of the prompts present, and present in the
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“A child touching a bowl”

“A monkey touching an iguana”

Figure A.3: Grids for two example prompts that probed the touching relation. While the
average agreement was 42%, the underyling distribution of prompt responses was effectively
bimodal, with e.g. the prompt ‘a child touching a bowl’ generating high agreement (87%),
and ‘a monkey touching an iguana’ generating low agreement (11%).

right places. Compositionality, however, is not only the ability to glue things together – even things
you may never have observed together before. Compositionality requires an understanding of the
rules that bind things together. Relations are such rules.

To the extent that DALL-E 2 is only able to generate relations some of the time is the extent to which
DALL-E 2 is actively not compositional. These failure cases are important, because they tell us
something about the way DALL-E 2 is getting things right. The fact that DALL-E 2 seems able to
easily generate ‘a spoon in a cup’, but not ‘a cup on a spoon’ (see Figure A.4), means that even when
it is getting ‘a spoon in a cup’ right this is likely due to a great deal of prior exposure to images of
spoons in cups, rather than an understanding of ‘in’ or ‘on’ – precisely the kinds of syntactic rules
that define compositionality. Real compositionality should be invariant at the level of the relation,
which is to say that ambiguity in meaning should come from the semantic elements involved in the
relation, and not from the relation itself (34; 35).

In addition to effects of training data on apparent successes, it is possible that DALL-E 2’s slightly
better performance with more abstract relations like ’helping’ is due to visual ambiguities, and the
interpretive steps that people take on top of a given image. That is, when seeing an image of a robot
touching another robot and the prompt ‘a robot helping a robot’, people may be thinking ‘Well, I
guess this could be helping, if...’. This is a tentative suggestion, but it could be tested empirically by
showing people images generated through prompts like ‘helping’ but without labeling, and having
them either freely describe the image, or giving people a forced choice among several relations.
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“A spoon in a cup” “A cup on a spoon”

Figure A.4: Illustrative example, images generated given ‘a spoon in a cup’ and ‘a cup on a spoon’.
Examining just the left images may lead to the conclusion that Dall-E 2 captures the in relation, but
the right images suggest this is simply an effect of training images that involve spoon and cup.

Even with the occasional ambiguity, the current quantitative gap between what DALL-E 2 produces
and what people accept as a reasonable depiction of very simple relations is enough to suggest a
qualitative gap between what DALL-E 2 has learned, and what even infants seem already to know.
This gap is especially striking given DALL-E 2’s staggering diet of image content.

A.5 REPLICATING THESE BENCHMARKS FOR OTHER IMAGE-TEXT MODELS

While human labeling of images may seem a suboptimal method for benchmarking, we take our work
as a demonstration that this is not necessarily the case. Our full sample of human participants (N =
180) was collected in approximately 36 hours, at a cost of $2.00USD per participant.

The prompts we use in this experiment are already freely available at https://osf.io/sm68h.
Full Javascript code for the behavioral experiment will be made available via GitHub on publication.

Figure A.5: The proportion of respondents reporting agreement between image and prompt,
broken down by each entity’s part of speech.

12

https://osf.io/sm68h

	Introduction
	Experiment
	Results
	Discussion
	Related Work
	Appendix
	Human Subjects Protocol + Demographics
	Trial Sampling
	Further Details on CLIP Similarity + Relation Type
	Further Discussion: Failure of Compositionality in Image-Text Models
	Replicating these Benchmarks for Other Image-Text Models


