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Figure 1: Visualizations of our assembled ImageNeXt dataset. Built upon ImageNet [44], a widely
used large-scale RGB classification dataset, ImageNeXt is composed of five popular visual modalities
for each sample, including RGB, Depth, LiDAR, Thermal, and Event.

Abstract

Recent research on representation learning has proved the merits of multi-modal
clues for robust semantic segmentation. Nevertheless, a flexible pretrain-and-
finetune pipeline for multiple visual modalities remains unexplored. In this paper,
we propose a novel multi-modal learning framework, termed OmniSegmentor. It
has two key innovations: 1) Based on ImageNet, we assemble a large-scale dataset
for multi-modal pretraining, called ImageNeXt, which contains five popular visual
modalities; 2) We provide an efficient pretraining manner to endow the model with
the capacity to encode different modality information in the ImageNeXt. For the
first time, we introduce a universal multi-modal pretraining framework that consis-
tently amplifies the model’s perceptual capabilities across various scenarios, regard-
less of the arbitrary combination of the involved modalities. Remarkably, our Om-
niSegmentor achieves new state-of-the-art records on a wide range of multi-modal
semantic segmentation datasets, including NYU Depthv2, EventScape, MFNet,
DeLiVER, SUNRGBD, and KITTI-360. Data, model checkpoints, and source code
will be made publicly available: https://github.com/VCIP-RGBD/DFormer.

1 Introduction

With the widespread use of modular sensors, multi-modal data for semantic segmentation is becoming
more and more accessible. The knowledge perceived from multi-modal data can achieve more robust

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



scene understanding, facilitating multi-modal learning research on a series of vision tasks. However,
existing works [71, 72, 10, 58] usually employ RGB pretrained or randomly initialized weights
to process different modalities, leading to mismatched encoding of the data [3]. Recent work
DFormer [66] attempts to solve this issue using a new pretraining manner on the modality-specific
scenes, i.e., RGB-D. Considering the current trend of fusing more and more modalities [6, 72, 58],
it would be of great interest to explore a flexible and efficient pretrain-and-finetune framework for
multi-modal data, which was seldom researched before.
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Figure 2: Performance comparisons between our
OmniSegmentor and recent state-of-the-art meth-
ods (e.g., HRFuser [6] and CMNeXt [72]) on var-
ious multi-modal semantic segmentation bench-
marks. ‘D, E, L, T’ are abbreviations for depth,
event, LiDAR, and the thermal modalities.

To construct such a flexible and efficient framework,
several prominent problems should be considered.
The foremost challenge is that multi-modal pretrain-
ing requires a large-scale dataset containing a vari-
ety of visual modalities. Although some existing
datasets [18, 24, 34, 72, 48, 49] can partially satisfy
this requirement, they either concentrate on a spe-
cific modality besides RGB images or have a limited
scale of training samples, making them unsuitable
for multi-modal pretraining. In addition, when the
types of visual modalities increase, how to efficiently
perform multi-modal pretraining and how to flexibly
deploy the pretrained weights to downstream tasks
with different types of visual modalities are still open
questions.

Taking the above analysis into account, in this
paper, we attempt to construct a flexible and ef-
ficient pretrain-and-finetune framework for multi-
modal semantic segmentation, named OmniSegmen-
tor. Firstly, we need to address the issue of lacking
large-scale multi-modal training data. Some meth-
ods [66, 3, 63] discover that synthetic data can com-
pensate for this deficiency and improve the capacity
of the model. For instance, DFormer [66] and DepthTrack [63] utilize synthetic depth data to perform
multi-modal pretraining, thereby avoiding the mismatch between RGB pretrained models and RGB-
D data and bringing significant improvement in RGB-D segmentation and tracking, respectively.
Inspired by these works, we build a large-scale multi-modal dataset with synthetic data, called
ImageNeXt, as shown in Fig. 1, to address the data issue and make the joint multi-modal pretraining
feasible. This dataset is built upon ImageNet [44] and supplements each RGB image with four
additional visual modalities, i.e., depth, thermal, LiDAR, and event. We empirically found that the
assembled dataset can help the model learn strong visual representations during pretraining.

Given the large-scale multi-modal data, the next challenge is to present an efficient method for
multiple modalities. However, our experiments reveal that simultaneously pretraining a unified
model on all the modalities not only imposes considerable computational burdens but also leads to
optimization difficulties. To better accommodate the multi-modal data, we design a novel pretrain-
and-finetune pipeline that can achieve efficient pretraining and flexible finetuning. To be specific,
during pretraining, instead of simultaneously inputting all types of modality data at each iteration,
we propose feeding the RGB data and a randomly selected other modality data into the model and
conducting feature alignment. This simple strategy enables the model to efficiently absorb the patterns
from different modality data, thus avoiding the mismatch problem between pretraining on RGB
and finetuning on multi-modal data. Moreover, the training efficacy can be largely improved. For
finetuning on downstream tasks, the weights corresponding to the supplementary modality in the
pretrained model are used to initialize the weights for each supplementary modality. This approach
allows each modality to be processed separately within each building block, thereby providing diverse
informative features from different types of modality data for semantic segmentation. By adding
a lightweight decoder head to the top of the ImageNeXt pretrained model, OmniSegmentor can
generate high-quality predictions for different multi-modal segmentation tasks.

To the best of our knowledge, we are the first to construct a flexible pretrain-and-finetune pipeline
for semantic segmentation with increasing visual modalities, i.e., OmniSegmentor, composed of
the ImageNeXt, well-designed pretraining and finetuning method. Extensive experiment results
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demonstrate the effectiveness of OmniSegmentor on the benchmarks of a wide range of multi-
modal semantic segmentation tasks, including NYU Depthv2 [48], EventScape [18], MFNet [24],
DeLiVER [72], SUNRGBD [49], and KITTI-360 [34]. As shown in Fig. 2, our OmniSegmentor
achieves new state-of-the-art records across all settings on all benchmarks. We hope that this work will
provide new insights for multi-modal representation learning and set new baselines for multi-modal
semantic segmentation.

2 Related Work

2.1 Multi-Modal Semantic Segmentation

Recently, significant advancements in semantic segmentation have been made as the rise of deep
learning technologies, typified by CNNs [38, 26, 27, 33] and Transformers [39, 54, 15, 5]. However,
most methods still struggle to cope with real-world scenes, as they only focus on processing RGB
images [74, 51, 23, 36, 65], which lack sufficient information from other visual modalities, like
LiDAR and depth. Multi-modal semantic segmentation has been explored by harvesting comple-
mentary information from supplementary modalities, such as depth [71, 9], thermal [73, 61, 47],
LiDAR [64], and event [2, 70]. A series of methods are proposed to utilize the characteristics
within other modalities for a more robust semantic segmentation. CMX [71] addresses multi-modal
segmentation through multi-level cross-modal interactions, including channel and token exchanges.
CMNeXt [72] introduces a universal multi-modal semantic segmentation framework with arbitrary
modal complements. However, most existing relevant methods [58, 71, 72] employ RGB pretrained
or randomly initialized weights to process the supplementary modalities, which may not fully extract
the specific characteristics of each modality. To address this issue, DFormer [66] proposes to pretrain
the encoder with RGB-D data to better leverage depth cues and alleviate the mismatch problem
between pretraining and finetuning. Its significant improvement in both efficiency and effectiveness
also emphasizes the importance of solving the mismatched encoding. However, DFormer is modality-
specific (RGB-D) and is difficult to be applied to other modalities. Beyond the aforementioned works,
we aim to provide a flexible and efficient pretrain-and-finetune framework that can efficiently perform
multi-modal pretraining and flexibly deploy the pretrained weights to various downstream tasks.

2.2 Multi-Modal Representation Learning

Multi-modal representation learning endows models with the capacity to establish the relations
among the specific information from multiple signal sources. The learned transferable representations
can yield remarkable performance across various downstream tasks, as demonstrated in previous
works [43, 67, 32]. Existing multi-modal learning methods encompass a large number of modalities,
including image-text [8, 11, 37, 43, 75, 60], text-video [1], image-depth [20, 3], and image-text-
audio [77, 21], etc. Structurally, these methods can be categorized into two types. The first type
of method adopts separate encoders. They exploit multiple encoders to independently project the
inputs of different modalities into a common space and minimize the distance between/among them
or perform feature fusion. For instance, CLIP [43] employs two individual encoders to encode
the image-text pairs and align them via contrastive learning. The second type of method adopts
unified encoders to encode different modalities individually or multiple modalities jointly. Typically,
Omnivore [20] and Meta-transformer [77] are able to process different modalities separately, while
DFormer [66] and MultiMAE [3] can simultaneously deal with two visual modalities, i.e., RGB and
depth. However, the former cannot establish connections between different modalities, and the latter
is limited to specific kinds of multi-modal data. An important reason that limits the development of
multi-modal representation learning is the lack of a large-scale multi-modal dataset. For example,
multi-modal datasets SUNRGBD [49] contains 10,325 RGB-D data, and KITTI-360 [34] has 61,280
RGB-L data, which are relatively small-scale and limited to specific multi-modal data, i.e., RGB-L or
RGB-D. Taking the above analysis into account, in this paper, we provide a large-scale dataset and a
novel pretrain-and-finetune framework, enabling supervised pretraining on five types of modal data
and flexible finetuning on downstream tasks.
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3 ImageNeXt Dataset

Building upon the ImageNet dataset, the assembled ImageNeXt is a large-scale dataset for multi-
modal representation learning. To the best of our knowledge, it is the first attempt to cover as many
popular visual modalities as possible, including RGB, depth, thermal, LiDAR, and event. Unless
otherwise specified, the ImageNet dataset in this paper refers to the original ImageNet-1K [44]. As
the ImageNet dataset, the sample numbers of the training set and the validation set of ImageNeXt are
1.2M and 50K, respectively. We will describe some details of each visual modality data.

RGB. RGB images are the foundational visual modality in computer vision research. It contains in-
formation about objects’ color, texture, shape, surroundings, etc. The RGB images in our ImageNeXt
come from the ImageNet dataset [44], which is one of the most popular large-scale image datasets so
far.

Depth. Depth maps provide 3D geometry information about range, position, and object contours.
Combining RGB and depth enhances the ability to distinguish objects with similar colors and textures,
especially when they occupy different spatial locations [71, 72]. Following DFormer [66], we employ
a popular depth estimation method, i.e., Omnidata [16], to produce depth maps for all the images in
our ImageNeXt.

Event. Event data offers numerous advantages, including a high dynamic range, excellent temporal
resolution, and immunity to motion blur. These qualities are crucial in dynamic scenarios with
motion-related information, such as driving and flying scenes. The N-ImageNet [29] dataset acquires
event data from an event camera that observes monitor-displayed images from ImageNet. We follow
this work and employ the samples in N-ImageNet as the event data for the ImageNeXt.

LiDAR. LiDAR cameras can furnish dependable and precise spatial-depth information about the
physical environment. Following the recent methods like CMX [71] and DeLiVER [72], we adopt
the widely-used pseudo-LiDAR generation method [56] to generate the LiDAR data based on our
synthetic depth maps of ImageNet. To maintain consistency between the LiDAR data and the
RGB images in terms of representation, we adhere to the approach used in [83], which involves
transforming LiDAR data into a format resembling a range-view image.

Thermal. The thermal sensor can detect temperature differences on the surface of objects, making
it very suitable for finding thermally concealed objects or detecting temperature anomalies. It does
not rely on visible light, but rather on the infrared radiation emitted by objects. According to our
investigation, there is no method for thermal image estimation. Thus, we train a thermal estimation
model, which imitates the depth estimation method adabins [4], on four RGB-T datasets VT821 [55],
VT1000 [52], VT5000 [53], and FLIR [22]. Then we use it to generate the thermal data.

4 OmniSegmentor

4.1 Efficient Multi-Modal Pretraining

Multi-modal pretraining needs to align different modal features and build interaction among them,
making it challenging to optimize and time-consuming. Existing works [58, 71, 28] mostly attempt
to finetune the RGB pretrained backbone for the multi-modal scenes, as shown on the left of Fig. 3.
However, the pretrained backbone for downstream task finetuning is often trained on RGB images,
which is inconsistent with the multi-modal input data during finetuning. This may cause representation
distribution shifts in that the multi-modal data is not considered during pretraining, and the RGB
pretrained backbone may not effectively extract the special information within the supplementary
modalities. We aim to explore a multi-modal pretraining manner to alleviate this issue by leveraging
the proposed ImageNeXt dataset.

Given the ImageNeXt dataset where each sample has five modalities and a classification label, a
straightforward way to implement multi-modal pretraining is to perform the classification optimization
on all modalities simultaneously, as shown in the middle part of Fig. 3. This paradigm is also
adopted in [76, 59], which uses modality-specific encoders to process multi-modal images. Under
this setting, each visual modality needs to be encoded independently, and the interaction will be
performed between the RGB images and each supplementary modality. However, such a pretraining
method yields considerable computational cost, greatly decreasing the pretraining efficiency. More
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Figure 3: Illustration for different pretraining manners. The corresponding finetuning manner is also
included. Left: RGB-only pretraining; Middle: simultaneous pretraining on all the modalities; Right:
ImageNeXt pretraining of our OmniSegmentor. We omit the classification and segmentation heads
for simplicity. The classification accuracy of the three manners is calculated with RGB input, all the
modalities input, and the average on the RGB and each supplementary modality settings, respectively.

importantly, we observe that the above joint pretraining manner makes the optimization process
difficult. As shown in Fig. 4, the training curve cannot converge well, and the Top-1 accuracy on
ImageNet greatly decreases compared to pretraining on only RGB images. This issue also exists on
the downstream multi-modal segmentation tasks as shown in Fig. 6.
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Figure 4: Curves of different pretraining man-
ners on ImageNeXt. ‘RGB’: pretraining on
RGB and removing the modality fusion op-
eration; ‘Simul’: simultaneously pretraining
on all the modalities; ‘Ours’: our ImageNeXt
pretraining.

To alleviate the above issue and meanwhile improve
the pretraining efficiency, we propose an efficient
multi-modal pretraining manner, called ImageNeXt
pretraining. Instead of optimizing the model with all
the modality data simultaneously, our method takes
RGB images and a randomly selected supplemen-
tary modality as input. This paradigm is inspired
by [20, 77, 21], which uses a single encoder to en-
code different modalities. Considering that process-
ing RGB images is the primary factor affecting 2D
semantic segmentation accuracy [3, 25, 66], we argue
that assigning less computational load to supplemen-
tary modalities compared to RGB can lead to better
performance and computation trade-offs. To imple-
ment this, we adopt an existing popular architecture,
DFormer [66], which is originally designed for pre-
training on RGB-D data. DFormer performs the si-
multaneous fusion of RGB and depth features from
global and local views, as shown in the left part of
Fig. 5. Meanwhile, it uses a base module to preserve
the diverse appearance information within the RGB
features. We find that such a block design can adapt
well to our pretraining manner, though it is originally
designed for RGB-D data.

Our pretraining strategy offers the following advantages. First, each supplementary modality partic-
ipates in the pretraining process. This makes the interaction between the RGB images and all the
supplementary modality data efficient and hence can avoid the negative influence of other modalities
on the representations of RGB images as much as possible. We empirically found that this strategy
also improves the multi-modal encoding efficacy during finetuning on downstream tasks. Besides,
the training process can be largely sped up. Particularly, compared to pretraining with all modality
data as input, our strategy brings 3.1% gains in Top-1 precision shows consistent improvements in
various downstream tasks in Fig. 6.
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Figure 5: Building block of our OmniSegmentor. During pretraining, fusion modules aggregate the
RGB features, and the features of the chosen modality, and the separate MLPs encode the features of
different modalities. During finetuning, the sum of the features of supplementary modalities is fused
with RGB features, and the features of different modalities are encoded separately by different MLPs.

4.2 Flexible Multi-Modal Finetuning

Given the pretrained model as described above, how to apply it to downstream tasks with multiple
modality data as input is also important. The pretraining architecture in the left part of Fig. 5 is only
suitable for processing data with an RGB image and a supplementary modality and is difficult to use
for multiple supplementary modalities. Here, we present a flexible finetuning strategy and explain
how to load the pretrained weights to initialize the model for downstream tasks.

During pretraining, the architecture adopts the modality-shared encoding for different supplementary
modalities to efficiently absorb the patterns. Differently, during finetuning, we need to utilize all the
provided modalities to perform robust semantic segmentation. In this situation, modality-specific
encoding can better extract the unique characteristics within each supplementary modality, enabling
the model to focus on different perspectives of the given scene. To achieve this, we use separate stem
layers and MLPs for different modalities to implement modality-specific encoding, and the resulting
features for different supplementary modalities are aggregated and then utilized to enhance RGB
features, as shown in the right part of Fig. 5. Compared to the pretraining process, the model for
finetuning has extra stem layers and MLPs to extract the characteristics within different supplementary
modalities. The extra stem layers and MLPs are initialized by the pretrained stem layer and MLPs for
the supplementary modality, while the other modules directly load the pretrained weights. We will
describe the pipeline of OmniSegmentor for the finetuning in the following.

Given the RGB image and supplementary modalities, we first use different stem layers to separately
process the input modalities. Then, the resulting features of different modalities are fed into the
hierarchical encoder to encode multi-scale features. In each block, we first adopt an addition operation
followed by a layer normalization to aggregate the information of all the supplementary modalities,
and the aggregated feature is denoted as Xagg. The number of supplementary modalities can be
arbitrary. Here, we empirically found that a more sophisticated fusion module will not bring further
improvement compared to the above simple fusion operation, and the details are shown in Tab. 3.
Then we fuse the RGB feature Xrgb and the aggregated feature Xagg to generate the enhanced
feature Xenh as follows as DFormer. After the fusion of modality clues, we add the Xenh to the
features of each modality as the output for each modality. The resulting features for each modality
are processed by separate MLPs and then sent to the next block. For the decoder during finetuning,
following DFormer, we adopt the Ham head [19] as the decoder. As a result, the OmniSegmentor is
able to serve as an encoder for multi-modal segmentation tasks that input different modalities.

5 Experiments

5.1 Experiment Setup

To validate the effectiveness of our OmniSegmentor, we conduct extensive experiments on six popular
multi-modal segmentation datasets, including NYU Depthv2 [48], SUNRGBD [49], MFNet [24],
KITTI-360 [34], EventScape [18], and DeLiVER [72]. The experiments are conducted on NVIDIA
A40 GPUs. The models are optimized using the cross-entropy loss function and the AdamW [30]
method, where the learning rate is initialized to 6e-5 and scheduled by the poly strategy. The images
are augmented by random resize with a ratio of 0.5 to 1.75, random horizontal flipping, and random
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Table 1: Results on multimodal semantic segmentation datasets. ‘D, E, L, T’ are abbreviations
for depth, event, LiDAR and thermal modalities, respectively. Follwoing [71, 72, 66], we adopt
multi-scale inference in (a), (b), and single-scale inference in (c)-(f).
(a) NYUDepth V2 (RGB-D) [48].
Method Backbone mIoU (%)

3DGNN [42] VGG-16 43.1
CFN [35] RefineNet-152 47.7
ACNet [28] ResNet-50 48.3
Omnivore [20] Swin-T 49.7
RDF-152 [40] ResNet-152 50.1
ESANet[45] ResNet-34 50.3
EMSANet[46] ResNet-34 51.0
SGNet [9] ResNet-101 51.1
DFormer [66] DFormer-T 51.1
ShapeConv [7] ResNext-101 51.3
CEN [57] ResNet-101 51.7
NANet [69] ResNet-101 52.3
SA-Gate [10] ResNet-101 52.4
CEN [57] ResNet-152 52.5
Omnivore [20] Swin-S 52.7
TokenFusion[58] MiT-B2 53.3
DFormer [66] DFormer-S 53.4
FRNet[82] ResNet-34 53.6
PGDENet[81] ResNet-34 53.7
Omnivore [20] Swin-B 54.0
TokenFusion [58] MiT-B3 54.2
CMX [71] MiT-B2 54.4
DFormer [66] DFormer-B 55.6
MultiMAE [3] ViT-B 56.0
CMX [71] MiT-B4 56.3
CMX [71] MiT-B5 56.9
CMNeXt [72] MiT-B4 56.9
DFormer [66] DFormer-L 57.2
OmniSegmentor ResNet-101 54.1
OmniSegmentor MiT-B2 56.8
OmniSegmentor DFormer-L 57.6

(b) SUNRGBD (RGB-D) [49].
Method Backbone mIoU (%)

CEN[57] ResNet-101 50.2
TokenFusion[58] MiT-B2 50.3
PGDENet[81] ResNet-34 51.0
TokenFusion[58] MiT-B3 51.0
CEN[57] ResNet-152 51.1
MultiMAE [3] ViT-B 51.1
FRNet[82] ResNet-34 51.8
CMNeXt [72] MiT-B4 51.9
CMX[71] MiT-B4 52.1
CMX [71] MiT-B5 52.4
DFormer [66] DFormer-L 52.5
OmniSegmentor ResNet-101 51.7
OmniSegmentor MiT-B2 52.0
OmniSegmentor DFormer-L 52.8

(c) MFNet (RGB-T) [24].
Method Backbone mIoU (%)

ACNet [28] ResNet-50 46.3
PAP [78] ResNet-18 50.5
FuseSeg [50] DenseNet-161 54.5
ABMDRNe [73] ResNet-18 54.8
LASNet [31] ResNet-152 54.9
FEANet [13] ResNet-152 55.3
MFTNet [79] ResNet-152 57.3
GMNet [80] ResNet-50 57.3
DooDLeNet [17] ResNet-101 57.3
CMX [71] MiT-B2 58.2
DFormer [66] DFormer-L 59.6
CMX [71] MiT-B4 59.7
CMNeXt [72] MiT-B4 59.9
OmniSegmentor ResNet-101 59.0
OmniSegmentor MiT-B2 60.5
OmniSegmentor DFormer-L 60.6

(d) KITTI-360 (RGB-L) [34].
Method Backbone mIoU (%)

HRFuser [6] HRFormer-T 48.7
PMF [83] SalsaNext 54.5
TokenFusion [58] MiT-B2 54.6
TransFuser [41] RegNetY 56.6
CMX [71] MiT-B2 64.3
CMNeXt [72] MiT-B2 65.3
DFormer [66] DFormer-L 66.3
OmniSegmentor MiT-B2 67.8
OmniSegmentor DFormer-L 69.2

(e) EventScape (RGB-D-E) [18].
Method Modal Backbone mIoU

HRFuser [6] RGB-E HRFormer-T 59.0
CMX [71] RGB-E MiT-B2 61.9
CMNeXt [72] RGB-E MiT-B2 62.1
CMX [71] RGB-E MiT-B4 64.3
OmniSegmentor RGB-E ResNet-101 61.5
OmniSegmentor RGB-E MiT-B2 64.5
OmniSegmentor RGB-E DFormer-L 65.0

HRFuser [6] RGB-D HRFormer-T 59.9
CMX [71] RGB-D MiT-B2 62.7
CMNeXt [72] RGB-D MiT-B2 63.1
CMX [71] RGB-D MiT-B4 64.8
OmniSegmentor RGB-D ResNet-101 62.2
OmniSegmentor RGB-D MiT-B2 64.9
OmniSegmentor RGB-D DFormer-L 66.2

HRFuser [6] RGB-D-E HRFormer-T 60.3
CMX [71] RGB-D-E MiT-B2 63.0
CMNeXt [72] RGB-D-E MiT-B2 63.9
CMX [71] RGB-D-E MiT-B4 65.0
OmniSegmentor RGB-D-E ResNet-101 62.8
OmniSegmentor RGB-D-E MiT-B2 65.4
OmniSegmentor RGB-D-E DFormer-L 67.6

(f) DeLiVER (RGB-D-E-L) [72]. ‘RGB-X’ means the corresponding input modalities.

Method Backbone RGB-E RGB-D RGB-L RGB-D-E RGB-E-L RGB-D-L RGB-D-E-L

HRFuser [6] HRFormer-T [68] 49.7 51.9 50.3 51.8 50.7 52.5 53.0
CMX [71] MiT-B2 [62] 57.6 62.7 57.8 63.3 58.0 63.8 63.9
CMNeXt [72] MiT-B2 [62] 57.5 63.6 58.0 64.4 58.9 65.5 66.3
OmniSegmentor MiT-B2 58.4 64.9 59.0 65.7 60.1 67.0 67.5
OmniSegmentor DFormer-L 58.6 64.7 59.2 65.9 60.4 67.2 68.0

crop. More details, e.g., pretraining settings, are in supplementary materials. Following DFormer [66],
we adopts the light decoder head [19] by default. More experimental details are in the supplementary
materials.

5.2 Comparison with Other Methods

Tab. 1 shows the comparisons of our OmniSegmentor against the recent state-of-the-art methods. In
the following, we illustrate the results in two settings, i.e., RGB with a single supplementary modality
and RGB with multiple supplementary modalities.

Single Supplementary Modality. We first conduct experiments on four bi-modal segmentation
datasets. As shown in Tabs. 1(a-d), our OmniSegmentor achieves new state-of-the-art records across
all the four benchmarks. For the RGB-D segmentation benchmarks, our OmniSegmentor achieves
57.6% on NYUDepthV2 [48] and 52.6% on SUNRGBD [49], even better than the recent strong
RGBD-specific pretrained methods, i.e., DFormer [66], Omnivore [20] and MultiMAE [3]. For
RGB-T segmentation on MFNet, our OmniSegmentor surpasses the recent SOTA CMNeXt (MiT-B4)
by 0.7% mIoU. In addition, the performance of our OmniSegmentor achieves 69.2% on KITTI-360,
which exceeds previous cutting-edge methods by a large margin (nearly +4%). Tab. 6 shows the
parameters and Flops of our OmniSegmentor and the recent SOTA methods. As can be seen, our
OmniSegmentor has lower computational cost compared to other methods but receives better results.
Following [71, 72, 66], we adopt multi-scale inference in RGB-D semantic segmentation benchmarks,
as shown in Tab. 1(a) and Tab. 1(b).
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Table 2: Different modality settings within our ImageNeXt pretraining. Note that the pretraining
duration is 100 epochs in this experiment. We mark the significantly dropped performance in bold.

pretraining modalities NYU V2 MFNet KITTI EventScape EventScape
Index RGB Depth Event LiDAR Thermal RGB-D RGB-T RGB-L RGB-E RGB-D-E

1 ✓ ✓ ✓ ✓ ✓ 54.3 57.6 64.6 61.8 63.8

2 ✓ ✓ ✓ ✓ 52.2 57.5 64.6 61.6 61.9
3 ✓ ✓ ✓ ✓ 54.2 57.6 64.5 60.5 62.9
4 ✓ ✓ ✓ ✓ 54.3 57.7 61.2 61.9 63.7
5 ✓ ✓ ✓ ✓ 54.3 56.4 64.8 62.1 63.8

6 ✓ ✓ ✓ 54.4 56.4 61.4 62.1 64.0
7 ✓ ✓ 54.6 56.2 61.3 60.5 63.1
8 ✓ 50.9 55.6 60.1 58.7 59.7

Multiple Supplementary Modalities. Then, we carry out studies on two segmentation datasets
with more visual modalities. As shown in Tab. 1(e), our OmniSegmentor surpasses all the other
methods on the RGB-E and RGB-D of the EventScape dataset. Moreover, compared to CMNeXt, the
advantage of OmniSegmentor is further enlarged from +0.7% (RGB-E), +1.4% (RGB-D), to +2.6%
(RGB-D-E). Similarly, as shown in Tab. 1(f), our OmniSegmentor shows significant and consistent
improvements across all seven settings of the input modalities on the DeLiVER dataset.

Furthermore, the ImageNeXt pretraining brings consistent improvements across all multi-modal
segmentation benchmarks for different backbones, including ResNet-101, MiT-B2, and DFormer-L.
For example, OmniSegmentor with the MiT-B2 backbone significantly exceeds other methods with
the same backbone and even achieves better results than other methods with the MiT-B4 backbone.

5.3 Analysis on ImageNeXt Pretraining

Pretraining manners. To explain the necessity of our OmniSegmentor pretraining, we compare it
with RGB-only pretraining and simultaneous multi-modal pretraining. Note that the modalities of the
input data and the model structure are the same for the finetuning setting.

63.1 (-0.3%)
67.6 (+4.2%)

NYU Depthv2

RGB-D

MFNet

RGB-T

KITTI-360

RGB-L
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RGB-D
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Performance of Different Pretraining Manners
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63.4
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Figure 6: Comparison of the performance for
different pretraining manners. ‘RGB only’:
RGB-only pretraining; ‘Simultaneous’: si-
multaneously pretraining on all modalities;
‘Ours’: our ImageNeXt pretraining. Note that
the input modalities when finetuning are the
same for all the models.

We adopt NYU Depthv2 [48], MFNet [24], KITTI-
360 [34] and EventScape [18] to conduct this exper-
iment. The results are shown in Fig. 6. The effi-
cient pretraining of OmniSegmentor brings signif-
icant improvements in all benchmarks, e.g., 2.4%
on MFNet and 5.1% KITTI-360. Specifically, on
the EventScape benchmark, the improvement is in-
creased from 3.3% to 4.2% on the RGB-D and RGB-
D-E settings, illustrating that the improvement of the
OmniSegmentor pretraining increases as the number
of modalities increases. It demonstrates the multi-
modal pretraining endows the model capacity to en-
code various modalities while the RGB-only pre-
trained model may not fully use other modalities.
These experiments indicate that the multi-modal rep-
resentation capacity learned at the pretraining stage
of OmniSegmentor is crucial for robust semantic seg-
mentation.

Ablation study on the pretraining modalities. For
more insights into our ImageNeXt pretraining, we
take off different modalities during pretraining and
then finetune it to verify whether the improvement
is direct from the modal data used in our pretrain-
ing. We finetune the models that are pretrained on different modalities for multi-modal semantic
segmentation tasks.

As shown in Tab. 2, first, from Row 2 to Row 5, we take off one of the supplementary modalities
in our ImageNeXt pretraining. It is clear that the missing modality during pretraining leads to a
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Table 3: Different fusion operations under different
pretraining manners on EventScape (RGB-D-E). The
pretraining duration of the model is 100 epochs.

Fusion Operation RGB-only ImageNeXt

Simple fusion 59.7 63.8
SQ-Hub [72] 61.0 63.7

Table 4: Effect of separate MLPs and shared
MLP to encode supplementary modalities on
the EventScape (RGB-D-E).

Modality Encoding Params Flops mIoU

Shared MLP 39.0M 68.9G 66.7
Separate MLPs 41.9M 68.9G 67.6

significant performance drop in the settings that contain this modality. For example, in Row 3, the
missing event modality during ImageNeXt pretraining leads to a significant performance drop in
the RGB-E and RGB-D-E segmentation settings on the EventScape [18] dataset. This phenomenon
demonstrates that the mismatched encoding may have an influence on the information extraction of
the supplementary modalities.

From Row 6 to Row 8, we further take off more modalities. When adopting the ImageNeXt pretrain-
ing in RGB-D-E modalities, the performance of RGB-D-E semantic segmentation on EventScape is
improved by 0.2%. Similarly, ImageNeXt pretraining on the RGB-D data brings 0.3% improvement
on RGB-D segmentation on NYU DepthV2. Compared with the RGB-D pretraining settings, Ima-
geNeXt brings significant improvements on all the other settings without sacrificing the performance
of the RGB-D scenes. These results illustrate that a common weight for the supplementary modalities
is sufficient to learn the information pattern within them during pretraining.

Moreover, we observe that ImageNeXt pretraining in RGB-D modalities also benefits segmentation
tasks with RGB and other supplementary modalities, such as the effect in Row 7 and Row 8.
Nevertheless, the improvement is relatively limited compared to the ImageNeXt pretraining with the
corresponding modality. Similar phenomena also appear in Tab. 2. Even with part of the types of
supplementary modality, the ImageNeXt pretraining can still help the model build the connection
between the RGB and supplementary clues. For example, in Row 6 of Tab. 2, ImageNeXt pretraining
without thermal also brings improvement on RGB-T segmentation compared to the RGB pretraining,
i.e., from 55.6 to 56.4 on MFNet. Meanwhile, ImageNeXt pretraining with thermal modality (Row 1)
can further improve the RGB-T segmentation results, i.e., from 56.4 to 57.6 on MFNet. These results
illustrate that ImageNeXt pretraining with all the supplementary modalities is necessary.

Discussion on the modalities fusion operation. In Tab. 3, we compare the adopted simple fusion
operation in our model with the self-query hub in the DeLiVER [72]. Under RGB-only pretrain,
sophisticated fusion operation brings a significant improvement compared to the simple fusion
operation, but it has no effect under the ImageNeXt pretrain. We hypothesize that the SQ-Hub may
help alleviate the optimization difficulties in selecting information from different modalities from the
random initialization weight, but our model can align the features of different modalities during the
ImageNeXt pretraining thus alleviating the optimization difficulties in the finetuning.

Separate MLPs or Shared MLP. In our OmniSegmentor, we adopt separate MLPs to encode
the unique characteristics within different supplementary modalities. In Tab. 4, we use the shared
MLP to encode different supplementary modalities as a comparison to the separate ones. As can
be seen, separate MLPs can bring significant improvement with a small increase in parameters. We
hypothesize that specific parameters help extract the unique characteristics of each supplementary
modality and achieve more robust segmentation results.

6 Conclusions and Future Work

In this paper, we propose a flexible framework for multi-modal segmentation, which is composed
of the ImageNeXt dataset and the pretrain-and-finetune method. To the best of our knowledge,
OmniSegmentor is the first framework to endow the model with the capacity to jointly encode more
than three types of multi-modal data during pretraining. Benefiting from the modality selection
mechanisms, OmniSegmentor can be applied for different multi-modal scenes, presenting robust
segmentation across all the multi-modal scenes.

In the experimental part, we have conducted extensive experiments on various multi-modal segmen-
tation benchmarks. However, these existing benchmarks are limited in scope, as they cover only a
subset of the five major visual modalities, and some rely on synthetic data generated by simulation
tools. In the future, we will attempt to gather more comprehensive multi-modal data from the real
world and explore unsupervised/self-supervised pretraining manners to perform multi-modal learning.
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the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide both implementation details and training datasets in Sec. 5 and
Sec. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We will release of code and data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide the detailed experiment setup in Sec. 5 and Sec. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow the convention in prior works and report the performance on the
standard benchmarks.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the demand of compute resources in Sec. 5 and Sec. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credited the creators or original owners of assets (e.g., code, data,
models), used in the paper and conformed the license and terms.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the details of dataset/code/model along with experiments setup,
license, limitations in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve study participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Experiment Details

A.1 RGBX benchmarks

To validate the effectiveness of our OmniSegmentor, we conduct extensive experiments on six popular
multi-modal segmentation datasets. The statistics of the datasets and the corresponding training strat-
egy of our model are shown in Tab. 5. We conduct extensive experiments with our OmniSegmentor
on different multi-modal segmentation datasets and briefly introduce them in the following. NYU
Depthv2 (RGB-D) [48] contains 1,449 RGB-D images with a size of 640×480, which is divided
into 795 training and 654 test images with annotations for 40 categories. SUNRGBD (RGB-D) [49]
includes 10,335 samples with 530×730 resolution. There are 37 semantic categories. Following
[66], we randomly crop and resize the input to 480×480 during training. MFNet (RGB-T) [24] is a
multi-spectral RGB-T image dataset, which has 1,569 images. 784/392/393 samples are used for
training/validation/test, respectively, annotated in 8 classes at the resolution of 640×480. KITTI-
360 [34] is a suburban driving dataset that contains 19 classes as same as the Cityscapes dataset [12].
EventScape [18] was originally designed for using RGB and event data to conduct depth estimation.
It has pixel annotations for semantic segmentation as well. Following CMX [71], we select one frame
from every 30 frames, obtaining 4,077/749 for training and evaluation to maintain data diversity from
the original sequences generated by the CARLA simulator [14]. DeLiVER [72] is a large-scale multi-
modal segmentation dataset, which is also generated by the CARLA simulator. This dataset contains
7,885 front-view samples divided into 3,983 / 2,005 / 1,897 for training / validation / test, respectively.
each of which contains two types of annotations (i.e., semantic and instance segmentation labels).

Table 5: Statistics of the used multimodal segmentation datasets and the corresponding training
settings used in the proposed method.

Datasets NYU DepthV2 [48] SUNRGBD [49] MFNet [24] KITTI-360 [34] EventScape [18] DeLiVER [72]

Modalities RGB-D RGB-D RGB-T RGB-L RGB-D-E RGB-D-E-L
Train/val/test split 795 / 654 / - 5285 / 5050 / - 1568 / 392 / 393 49,004 / 12,276 / - 4,077 / 749 / - 3983 / 2005 / 1897
Classes 40 37 8 19 12 25
Input size 640×480 480×480 640×480 1408×376 512×256 1024×1024
Batch size 8 16 8 16 4 8
Epochs 500 300 500 40 100 200
Base lr 6e-5 8e-5 6e-5 6e-5 6e-5 6e-5
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Weight decay 0.01 0.01 0.01 0.01 0.01 0.01
Lr schedule Linear decay Linear decay Linear decay Linear decay Linear decay Linear decay
Stochastic depth 0.35 0.20 0.40 0.30 0.20 0.30

A.2 Experiment Setup

Pretraining details. The multi-modal features from the last stage are flattened along the spatial
dimension and fed into the linear projection to obtain the category probabilities, which are used to
calculate the classification loss, i.e., the standard cross-entropy loss. To verify the universality and
robstness of our methods on different architectures, we adopt DFormer-L [66], MiT-B2 [62], and
ResNet-101 [26] as backbone and perform ImageNeXt pretraining with them. In the experiments,
unless otherwise specified, the OmniSegmentor uses the DFormer-L backbone. ImageNeXt pre-
training adopt the same hyperparameters as DFormer-L. Following the commonly used pretraining
durations [38, 62, 23, 66], OmniSegmentor is pretrained for 300 epochs. We use AdamW [30] with
learning rate 1e-3 and weight decay 5e-2 as our optimizer, and the batch size is set to 1024. We
adopt the same data augmentation strategies as DFormer [66], i.e., data augmentation strategies
related to color, e.g., auto contrast, are only used for RGB images, while other common strategies are
simultaneously performed on all the modalities, e.g., random rotation.

Finetuning details. The experiments are conducted on NVIDIA A40 GPUs. The models are
optimized using the cross-entropy loss function and the AdamW [30] method, where the learning
rate is scheduled by the poly strategy. The images are augmented by random resizing with a ratio
of 0.5 to 1.75, random horizontal flipping, and random cropping. Tab. 5 presents the detailed
training settings for different segmentation datasets. In Tab. 1, we compare our OmniSegmentor
with other SOTA methods on all multi-modal benchmarks. The segmentation of RGB and multiple
supplementary modalities is an emerging field. In EventScape (RGB-D-E) and DeLiVER (RGB-D-
E-L), the results of some methods are missing. For example, CMNeXt [72] lacks the results on the
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Table 6: Comparisons of our OmniSegmentor with other SOTA methods on the number of parameters
and Flops. The calculation is based on the same code, and these methods are evaluated when keeping
the inference settings in the corresponding papers. The inference time, i.e., frames per second
(FPS), is calculated on a single NVIDIA A40 GPU. When calculating FLOPs, the input size is set to
480×640.

Methods Ours CMNeXt-B4 CMNeXt-B2 CMX-B5 CMX-B4 TokenFusion MultiMAE HRFuser Omnivore

Params 39.0M 119.6M 58.8M 181.1M 139.9M 45.9M 95.2M 30.5M 95.7M
FLOPs 65.7G 131.9G 62.9G 167.8G 134.3G 94.4G 267.9G 223.0G 109.3G
FPS 28.0 13.7 27.2 10.1 13.0 12.6 20.0 18.4 10.5

RGB-R-L setting. To make the comparison more comprehensive, we implement these methods on
the missing settings based on their official code.
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