
Under review as a conference paper at ICLR 2023

HIGH-PRECISION REGRESSORS FOR PARTICLE
PHYSICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Monte Carlo simulations of physics processes at particle colliders like the Large
Hadron Collider at CERN take up a major fraction of the computational bud-
get. For some simulations, a single data point takes seconds, minutes, or even
hours to compute from first principles. Since the necessary number of data points
per simulation is on the order of 109 – 1012, machine learning regressors can be
used in place of physics simulators to significantly reduce this computational bur-
den. However, this task requires high-precision regressors that can deliver data
with relative errors of less than 1% or even 0.1% over the entire domain of the
function. In this paper, we develop optimal training strategies and tune various
machine learning regressors to satisfy the high-precision requirement. We lever-
age symmetry arguments from particle physics to optimize the performance of
the regressors. Inspired by ResNets, we design a Deep Neural Network with skip
connections that outperform fully connected Deep Neural Networks. We find that
at lower dimensions, boosted decision trees far outperform neural networks while
at higher dimensions neural networks perform significantly better. We show that
these regressors can speed up simulations by a factor of 103 – 106 over the first-
principles computations currently used in Monte Carlo simulations. Additionally,
using symmetry arguments derived from particle physics, we reduce the number
of regressors necessary for each simulation by an order of magnitude. Our work
can significantly reduce the training and storage burden of Monte Carlo simula-
tions at current and future collider experiments.

1 INTRODUCTION

Particle physics experiments like those at the Large Hadron Collider at CERN, are running at pro-
gressively higher energies and are collecting more data than ever before. As a result, the experimen-
tal precision of the measurements they perform is continuously improving. However, to infer what
these measurements mean for the interactions between the fundamental constituents of matter, they
have to be compared with and interpreted in light of, our current theoretical understanding. This is
done by performing first-principles computations for these high energy processes order by order in
a power series expansion. After the computation, the resulting function is used in Monte Carlo sim-
ulations. The successive terms in the power series expansion, simplistically, become progressively
smaller. Schematically, this can be written as:

F (x) = f00(x) + α f01(x) + α2 {f11(x) + f02(x)}+ (1)

where α ≪ 1 is the small expansion parameter. The term of interest to our current work is the one
enclosed by the curly braces in equation (1) which we will refer to as the second-order term1. The
function, F (x), must be evaluated on the order of 109 – 1012 times for each simulation. However,
for many processes, evaluating the second-order term, specifically, f02, is computationally space-
and time-intensive and could take several seconds to compute a single data point. Moreover, these
samples cannot be reused leading to an overall high cost of computation for the entire process under
consideration. Building surrogate models to speed up Monte Carlo simulations is highly relevant
not only in particle physics but in a very large set of problems addressed by all branches of physics
using perturbative expansion like the one in equation (1). We give a broader overview of the physics
motivation and applications in appendix A.

1Here order refers to the power of the expansion coefficient α.

1

Under review as a conference paper at ICLR 2023

A simple solution to speed up the computation of the functions is to build a regressor using a rep-
resentative sample. However, to achieve the precision necessary for matching with experimental
results, the regressors need to produce very-high accuracy predictions over the entire domain of the
function. The requirements that we set for the regressors, and in particular what we mean by high
precision, are:

High precision: prediction error < 1% over more than 90% of the domain of the function
Speed : prediction time per data point of < 10−4 seconds
Lightweight : the disk size of the regressors should be a few megabytes at the most for portability

In this work we explore the following novel concepts:

• With simulated data from real physics processes occurring in particle colliders, we study the
error distributions over the entire input feature spaces for multi-dimensional distributions
when using boosted decision trees (BDT), Deep Neural Networks (DNN) and Deep Neural
Networks with skip connections (sk-DNN).

• We study these regressors for 2, 4, and 8 dimensional (D) data making comparisons be-
tween the performance of BDTs, DNN and sk-DNNs with the aim of reaching errors
smaller than 1% – 0.1% over at least 90% of the input feature space.

• We outline architectural decisions, training strategies and data volume necessary for build-
ing these various kinds of high-precision regressors.

In what follows, we will show that we can reduce the compute time of the most compute-intensive
part, f11(x) + f02(x) (defined in equation (1)), by several orders of magnitude, down from sev-
eral seconds to sub-milliseconds without compromising the accuracy of prediction. We show that
physics-motivated normalization strategies, learning strategies, and invocation of physics symme-
tries will be necessary to achieve the goal of high precision. In our experiments, the BDTs out-
perform the DNNs for lower dimensions while the DNNs give comparable (for 4D) or significantly
better (for 8D) accuracy at higher dimensions. DNNs with skip connections perform comparably
with fully connected DNNs even with much fewer parameters and outperform DNNs of equiva-
lent complexity. Moreover, DNNs and sk-DNNs meet and exceed the high-precision criteria with
8D data while BDTs fail. Our goal will be to make the most lightweight regressor for real-time
prediction facilitating the speed-up of the Monte Carlo simulation.

2 RELATED WORK

Building models for the regression of amplitudes has been a continued attempt in the particle physics
literature in the recent past. boosted decision trees (BDTs) have been the workhorse of particle
physics for a long time but mostly for performing classification of tiny signals from dominating
backgrounds (Radovic et al., 2018). However, the necessity to use BDTs as a regressor for theo-
retical estimates of experimental signatures has only been advocated recently (Bishara & Montull,
2019) and has been shown to achieve impressive accuracy for 2D data.

Several other machine learning algorithms have been used for speeding up sample generation
for Monte Carlo simulations. Winterhalder et al. (2022) proposed the use of Normalizing
Flows (Jimenez Rezende & Mohamed, 2015) with Invertible Neural Networks to implement im-
portance sampling (Müller et al., 2018; Ardizzone et al., 2018). Recently, neural network surrogates
have been used to aid Monte Carlo Simulations of collider processes (Danziger et al., 2022). Bad-
ger et al. (2022) used Bayesian Neural networks for regression of particle physics amplitudes with
a focus on understanding error propagation and estimation. Chen et al. (2021) attempted to reach
the high-precision regime with neural networks and achieved 0.7% errors integrated over the entire
input feature space. Physics-aware neural networks were studied by Maı̂tre & Truong (2021) in
an attempt to handle singularities in the regressed functions. In the domain of generative models,
GANs (Goodfellow et al., 2014; Springenberg, 2016; Brock et al., 2018) and VAEs (Brock et al.,
2018) have been used for sample generation (Butter et al., 2021; Otten et al., 2021).

Similar applications have surfaced in other domains of physics where Monte Carlo simulations are
used. Self-learning Monte Carlo methods have been explored by Liu et al. (2017). Applications of

2

Under review as a conference paper at ICLR 2023

0 1 2 3 4 5 6
f00(x) ×107

0

2000

4000

6000

8000

10000

12000

14000

f 0
2
(x

)

2D

500

1000

1500

2000

2500

3000

3500

4000

[f
11

(x
)

+
f 0

2
(x

)]
/f

00
(x

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
f00(x) ×107

0

2000

4000

6000

8000

10000

12000

f 0
2
(x

)

4D

500

1000

1500

2000

2500

3000

[f
11

(x
)

+
f 0

2
(x

)]
/f

00
(x

)

0 5000 10000 15000 20000 25000 30000
f00(x)

0

5000

10000

15000

20000

25000

30000

f 0
2
(x

)

8D

0.2

0.4

0.6

0.8

1.0

[f
11

(x
)

+
f 0

2
(x

)]
/f

00
(x

)

Figure 1: The effects of normalizing second-order term f02(x), with the zeroth-order term, f00(x).
The two functions are highly correlated (ρ = 0.87 for 8D, ρ = 0.91 for 4D and ρ = 0.96 for 2D)
and the resulting normalized functions, f(x) = [f11(x) + f02(x)]/f00(x) are much less peaked.

Boltzmann machines (Huang & Wang, 2017), deep neural networks (Shen et al., 2018) and autore-
gressive neural networks (Wu et al., 2021) have been seen recently. Stratis et al. (2022) use neural
networks in Quantum Monte Carlo simulations to learn eigenvalues of Hamiltonians and the free
energy of spin configurations, an application that lies outside the domain of particle physics. How-
ever, the primary goal of all these efforts has been to avoid first-principles computation and, hence,
reduce compute time while staying below credible error budgets that are set in a problem-specific
manner.

In contrast to prior works (Bishara & Montull, 2019; Winterhalder et al., 2022; Butter et al., 2021;
Otten et al., 2021), the novelty of our contribution is that we try to attain high precision in the en-
tire domain of the function being regressed with fast and efficient regressors. For that, we compare
BDTs and neural networks for functions with 2D, 4D, and 8D input feature spaces. We propose
a new architecture which is a DNN with skip connections to avoid the problem of vanishing gra-
dients for deeper neural networks and show that they perform better than fully connected DNNs.
We also propose novel methods, derived from physics domain knowledge, for scaling the function
being regressed with another function that is computationally inexpensive to calculate and is highly
correlated with the function being regressed. We leverage the symmetry properties of the physical
process under consideration for the reduction of the number of regressors required to be trained. The
applicability of our work goes beyond the domain for which it has been developed and can be used
for any application that requires high precision in speeding up simulations or sample generation.

3 MODELS: DECISIONS TREES AND NEURAL NETWORKS

In this section, we will develop several methods that will enable us to achieve the high-precision
requirements that we set. As a benchmark, we will use the condition: |δ| < 1% in over 90% of the
domain of the function being regressed2. Here, δ is defined as the difference between the predicted
value of the function, f(x)predicted, and its true value, f(x)true, normalized by f(x)true, or,

δ =
f(x)predicted − f(x)true

f(x)true
(2)

knowing a priori that f(x)true is positive definite. Usually, the performance of a regressor and
model comparison in machine learning is done using a single accuracy measure which is a statistical
average of the distribution for that accuracy measure over the entire test sample. This, however,
does not provide a complete picture of the accuracy of the regressor in high-precision applications.
Using error distributions instead of a single number leads to a better criterion for model selection
and enhances the interpretability of the model.

Physics informed normalization: An attempt to build regressors with the raw data from the Monte
Carlo simulations results in a failure to meet the high-precision requirements that we have set.
Hence, we have to appeal to a novel normalization method derived from the physics that governs the
physical processes. The functions of interest in particle physics processes at colliders are often very
highly peaked in one or more dimensions. This makes it quite difficult to build a regressor that will

2For a more detailed explanation of the precision requirements please read appendix A

3

Under review as a conference paper at ICLR 2023

retain the desired high precision over the entire domain of the function. This problem cannot be ad-
dressed by log scaling or standardizing to zero mean and unit variance since the peaks can be quite
narrow and several orders of magnitude greater than the mean value of the function. A regressor
trained on the log scaled function provides an error distribution over the entire domain which, when
exponentiated, transforms to large errors around the peak. This behavior is not desirable. Normal
scaling does not help since the standard deviation of the distribution is much smaller than the peak
value, often being several orders of magnitude smaller, making the peak-values outliers.

As a solution, we normalized the second-order contribution with the zeroth-order contribution as
defined in equation (1), i.e., we transform to a distribution:

f(x) =
f11(x) + f02(x)

f00(x)
, (3)

where f(x) is the function that will be regressed. This first-order term, f00(x), also has a peak sim-
ilar to and is highly correlated with the second-order term, f11(x) + f02(x), with ρ ∼ 0.9. Hence,
this normalization yields a distribution, f(x), that is more tractable to regress. We show examples
in figure 1 where one can see that both f00(x) and [f11(x)+ f02(x)] are both very peaked and span
several orders of magnitude but their ration spans only one order of magnitude as the two terms are
highly correlated. Computation of the first-order term from first principles is numerically inexpen-
sive and does not require regression. Furthermore, we standardize the distribution by removing the
mean and scaling to unit variance.

3.1 DNN DESIGN DECISIONS

The DNN architectures that we used are fully connected layers with Leaky ReLU (Maas, 2013)
activation for the hidden layers and linear activations for the output layer. We show a comparative
study of activation functions in appendix C where we find that the Leaky ReLU outperforms other
activation functions like ReLU (Nair & Hinton, 2010; Sun et al., 2014), softplus and ELU (Clevert
et al., 2016). We do not consider any learnable activation functions in this work and leave it for a
future work. We use the following design decisions:

Objective function: we use the mean-square-error loss function without any regularization. While
we use linear relative error, δ, to estimate the performance of the model over the entire feature space,
our decision to use the mean-square-error loss function is made so as to preferentially penalize
outliers and reduce their occurrence.

Learning rate: It is necessary to cool down the learning rate as a minimum of the objective function
is approached. This is absolutely necessary to search out an optimum that allows for uniformly low
error over the entire feature space. For both the DNN and the sk-DNN, we use the Adam optimizing
algorithm. Kingma & Ba (2015) discuss an inverse square-root decay rate scaling for the Adam
optimizer. We do not find this optimal for this high-precision application. The square-root cooling
is quite rigid in its shape as it is invariant to scaling up to a multiplicative constant. Hence, we use
an exponential cooling of the learning rate which has an asymptotic behavior similar to the inverse-
square-root scaling but its shape is far more tunable. The learning rate is cooled down starting from
10−3 at the beginning of the training to 10−6 at 2500 epochs. Much of the learning is completed
during the early stages of the training, i.e. within 200 epochs. The R2 score at this point is about
0.5% from the final R2 score (> 99.9%). However, to attain the high-precision requirements, the
final stages of the training are necessary and take about 2500 – 3000 more epochs.

Training epochs and validation: An early stopping criterion based on RMSE is used to determine
the number of epochs the regressors is trained for with patience3 set to an unusually large number,
200 epochs. We use this large patience to allow the optimizer to possibly move to a better optimum
while having a very small learning rate if a better one exists. We first split the data into 20% test
set and 80% training and validation set. The latter set is further split into 60% training set and 40%
validation set. This results in a 20%-48%-32% split for test, train and validation respectively. The
large validation set is necessary to make sure that errors are uniformly low over the entire domain of
the function being regressed. For all cases, we use a dataset with 10 million samples.

3We define patience as the number of epochs after which the training is stopped as no reduction is seen in
the RMSE computed from the validation set and the weights and biases are reset to those corresponding to the
lowest RMSE.

4

Under review as a conference paper at ICLR 2023

3.2 DNN WITH SKIP CONNECTIONS

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

Dense, Leaky ReLU activation

Dense, Leaky ReLU activation

Dense, Linear activation

Leaky
ReLU

W

x

f(x)

Figure 2: The building block for a DNN with skip connections. The first two layers are fully
connected with Leaky ReLU activation. The last layer has linear activation and is added to the input
through the skip connection before being transformed with a non-linear Leaky ReLU function. The
matrix W is a weight matrix which is trainable if the input and output dimensions are different for
the block and I otherwise. The blocks are stacked sequentially to form the neural network.

In addition to a fully connected DNN, we also experiment with a DNN with skipped connections
(sk-DNN) to address the problem of vanishing gradients for deeper neural networks. The building
block of the sk-DNN is illustrated in figure 2. Given an input x the output of the block is

y = g (h(x) +Wx) (4)

where h(x) is the output of the third layer with linear activation, g is a non-linear function and W
is a trainable weight matrix of dimension i × j when the input dimension, i, is different from the
output dimension, j, and I otherwise. The structure of this block can be derived from the Highway
Network (Srivastava et al., 2015) architecture with the transform gate set to I and the carry gate set
to W for dim(x) ̸= dim(y) and I otherwise. Structurally, the sk-DNN block is similar to a ResNet
block (He et al., 2015) with a different set of hidden layers.

We keep the normalization of the target variable and the learning rate decay schedule the same as
for the DNN. We also test the sk-DNN with the weight matrix, W fixed with a random initialization
of the elements and see no difference in the accuracy of the model and hence keep W trainable.

4 EXPERIMENTS

4.1 PHYSICS SIMULATIONS

The functions in question are maps, f (n)
ij : Rn → R, where n ∈ {2, 4, 8} and i, j ∈ {0, 1, 2}, cf.

equation (1). The domain of the functions, i.e. the feature space, is mapped to the unit hypercube and
populated from a uniform distribution. The corresponding datasets are generated using the particle
physics simulation code VVAMP (Gehrmann et al., 2015) from first principles using building-block
functions that we will refer to as form factors. Apart from the 2D dataset, which is a special case
of the 4D one, the same form factors were used to generate the 4D and 8D datasets. The difference
between the 4D and 8D feature spaces lies in the physics of the process in question, namely the
number of external particles the functions describe. The regressor of the 4D functions, g(4)ij ≈ f

(4)
ij ,

can be used to generate the 8D functions, f (8)
ij , after multiplying by two other (exact) functions that

are computationally inexpensive to calculate and summing them.

The number of resulting functions, technically called helicity amplitudes, depends on the dimension
as shown in table 1. While the number of required regressors for the 4D feature space is the largest,
it also offers the most flexibility for downstream physics analyses. To generate the 8D functions,

5

Under review as a conference paper at ICLR 2023

Symmetry properties reduce the number of required functions

Dimensionality Total functions Independent functions Sum is physical?

2D 18 5 Yes
4D 162 25 No
8D 8 4 Yes

Table 1: The number of total and independent functions that arise at 2, 4, and 8D and the number
of independent functions, a minimal subset from which the other functions can be generated by re-
mapping the feature space.

more details of the process have to be specified during data generation which is then frozen into the
regressor. Consequently, different physics analyses will require different regressors. By contrast,
the 4D regressors are more general-purpose and do not contain any frozen physics parameters.

The smaller number of necessary functions in the third column of table 1 is obtained by leveraging
the symmetry properties discussed below derived from physics domain knowledge. For the data used
in this analysis, it stems from the symmetries manifest in the scattering process that was simulated.
The last column indicates whether summing the functions has a physics meaning; in the cases where
it does, i.e. 2D and 8D, only the single regressor of the sum of the functions is required.

Symmetry properties: the full set of functions, f (n)
ij , for any dimension, n, is over complete. Pairs

of functions can be mapped into one another via particular permutations of the external particles
the process describes. This translates into a linear transformation on the second coordinate, x2,
independently and in combination with the permutation of the third and fourth coordinates, x3 and
x4, in feature space. For example, in 4D, two permutations π12 : p1 ↔ p2 and π34 := p3 ↔ p4,
where pi is a particle with label i reduces the number of independent functions from 162 to 25.

Permutation particle symmetry coordinate symmetry

π12 p1 ↔ p2 x2 → 1− x2

π34 p3 ↔ p4 x2 → 1− x2 and x3 ↔ x4

Computational burden of Monte Carlo simulations. Generating the 2D, 4D and 8D datasets
required 144 hours on 96 AMD EPYC 7402 cores for 13 million data points per set. This had to be
done twice, once for the 2D dataset and once for the 4D and 8D datasets which were generated from
the same computationally intensive form factors which have to be calculated from first principles. In
contrast, the regressors that we build generate a million samples in a few seconds to a few minutes
on any desktop computer.

4.2 BDT VS. DNN VS. SK-DNN

10−2 10−1 100

learning rate

30

40

50

60

70

80

90

100

fr
ac

ti
on

of
te

st
se

t
w

it
h
|δ|

<
1%

(%
)

max-depth: 20

2D

4D

8D

0.96 1.92 2.88 3.84 4.80
size of training set in 106

40

50

60

70

80

90

100

fr
ac

ti
on

of
te

st
se

t
w

it
h
|δ|

<
1%

(%
)

2D DNN (8-56)

4D DNN (8-72)

8D DNN (8-100)

2D sk-DNN (9-28)

4D sk-DNN (9-36)

8D sk-DNN (9-50)

2D BDT (20)

4D BDT (20)

8D BDT (20)

Figure 3: Left panel: the effect of learning rate on achieving high precision with BDTs. The learn-
ing rate is not an important parameter for low dimensions but is significant for higher dimensions.
Right panel: the data volume required to train the different regressors. For lower dimensions small
volumes of data (< 1M) is sufficient. However, for higher dimensions, a lot more data is necessary.

We use XGBoost (Chen & Guestrin, 2016) to implement the BDTs. In varying the architecture of
the regressors, we focus on the max-depth of the BDT which is a hyperparameter that controls the

6

Under review as a conference paper at ICLR 2023

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
δ (%)

0

2

4

6

8

10

12

δ distribution for 2D DNN regressors

baseline (8-56)

8-56 (22,569)

4-56 (9,801)

2-56 (3,417)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
δ (%)

0

2

4

6

8

10

12

δ distribution for 2D sk-DNN regressors

baseline (9-28)

9-28 (21,281)

4-28 (9,101)

2-28 (4,229)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
δ (%)

0

10

20

30

40

50

δ distribution for 2D BDT regressors

baseline (50)

max-depth: 50

max-depth: 20

max-depth: 10

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
δ (%)

0

2

4

6

8

10

12

14

16
δ distribution for 4D DNN regressors

baseline (8-72)

8-72 (37,225)

4-72 (16,201)

2-72 (5,689)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
δ (%)

0

2

4

6

8

10

12

14

16
δ distribution for 4D sk-DNN regressors

baseline (9-36)

9-36 (34,993)

4-36 (15,013)

2-36 (7,021)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
δ (%)

0

2

4

6

8

10

12

14

16
δ distribution for 4D BDT regressors

baseline (50)

max-depth: 50

max-depth: 20

max-depth: 10

−6 −4 −2 0 2 4 6
δ (%)

0.0

0.2

0.4

0.6

0.8

1.0

δ distribution for 8D DNN regressors

baseline (8-100)

8-100 (71,701)

4-100 (31,301)

2-100 (11,101)

−6 −4 −2 0 2 4 6
δ (%)

0.0

0.2

0.4

0.6

0.8

1.0

δ distribution for 8D sk-DNN regressors

baseline (9-50)

9-50 (67,201)

4-50 (28,951)

2-50 (13,651)

−6 −4 −2 0 2 4 6
δ (%)

0.0

0.2

0.4

0.6

0.8

1.0

δ distribution for 8D BDT regressors

baseline (50)

max-depth: 50

max-depth: 20

max-depth: 10

Figure 4: The δ = (f(x)predicted − f(x)true)/f(x)true distribution for the various 2D (upper
panels), 4D (middle panels), and 8D (lower panels) regressors. The labels for the DNN and sk-
DNN designate depth-width (number of parameters) where depth is the number of layers for the
DNN and the number of blocks for the sk-DNN. For the BDTs, the labels denote max depth: N
with max dept being the maximum depth of the trees. Detailed analyses can be found in the text.

maximum depth to which a tree grows in a boosted ensemble. If figure 3 we show how changing the
learning rate and the training data volume changes the accuracy of the trained BDT models. In the
final version of our experiments, we use a learning rate of 0.01 and 10 million data points of which
48% is used for training, 32% is used for validation and early stopping and 20% is used for testing.
More details on hyperparameter correlation and selection can be found in appendix B.

For the neural networks, we focus on the depth, width and number of trainable parameters in the
regressor (denoted as width-depth (trainable parameters) in the tables and figures). The depth of the
sk-DNN denotes the number of sequential sk-DNN blocks in the regressor and not the total number
of layers. The width of the sk-DNNs is chosen to be half the width of the DNNs and the depth of the
sk-DNN is adjusted so that they have approximately the same number of parameters as the DNNs
with similar depth. An sk-DNN with 2 blocks is an exception and has more parameters than the
corresponding DNN with 2 layers. The data strategy remains the same as for the BDTs.

To compare the performance of the regressor we use the distribution of δ (defined in equation (2)).
We focus on this distribution as it is important for the high-precision requirement to identify the
fraction of test data that has large errors. We will identify the following statistics:

|δ| < 1%: the fraction of the test set that has δ less than 1%
µδ: the mean of the δ distribution
σδ: the standard deviation of the δ distribution

Baselines: To understand the efficacy of the optimization strategies that we developed, we build a
baseline without any optimization for BDTs, DNNs and sk-DNNs. We do not normalize the data as
described in section 3, rather, we only log scale the data. We set the train-validation split to 80%-
20%. For the BDTs, we use an ensemble with max-depth = 50, set the learning rate to 0.1. For the
DNNs and sk-DNNs, we fix the learning rate of the Adam optimizer at 10−3, lower the patience to 10
rounds, and use the most effective architecture chosen from amongst the high-precision regressors.
The results are presented in table 2 and figure 4. We see that without the optimizations the regressors
perform very poorly.

7

Under review as a conference paper at ICLR 2023

2D |δ| < 1%(%) |δ| < 0.1%(%) µδ(%) σδ(%)

D
N

N

2-56 (3,417) 95.54 32.43 0.0114 0.52
4-56 (9,801) 99.95 75.58 −0.0005 0.13
8-56 (22,569) 99.99 94.43 0.0 0.06

baseline (8-56) 77.16 9.01 0.1361 1.83

sk
-D

N
N 2-28 (4,229) 99.92 67.71 0.0001 0.14

4-28 (9,101) 99.99 87.95 0.0012 0.07
9-28 (21,281) 100.0 95.72 −0.0005 0.05

baseline (9-28) 90.79 15.31 0.0173 1.39

B
D

T max-depth: 10 100.0 95.01 −0.0001 0.05
max-depth: 20 100.0 99.1 0.0 0.03
max-depth: 50 100.0 99.16 0.0 0.02

baseline (50) 99.91 94.04 −0.0045 0.1

4D

D
N

N

2-72 (5,689) 99.18 34.34 0.002 0.32
4-72 (16,201) 99.97 66.42 −0.0068 0.13
8-72 (37,225) 100.0 91.58 −0.0096 0.07

baseline (8-72) 88.67 13.63 0.0449 1.1

sk
-D

N
N 2-36 (7,021) 99.96 69.23 0.0004 0.13

4-36 (15,013) 100.0 89.24 −0.0009 0.07
9-36 (34,993) 100.0 92.85 0.0007 0.06
baseline(9-36) 84.99 10.81 0.2701 1.11

B
D

T max-depth: 10 99.26 66.16 0.0014 0.22
max-depth: 20 99.41 81.34 0.0016 0.18
max-depth: 50 99.4 83.19 0.0017 0.18
baseline (50) 95.85 27.8 0.0023 0.55

8D

D
N

N

2-100 (11,101) 37.2 3.95 0.1322 4.13
4-100 (31,301) 82.37 11.64 0.029 1.05
8-100 (71,701) 94.22 18.12 0.0016 0.6

baseline (8-100) 31.97 3.3 0.799 4.38

sk
-D

N
N 2-50 (13,651) 72.76 9.31 0.049 1.5

4-50 (28,951) 90.98 15.69 0.0035 0.7
9-50 (67,201) 94.94 19.36 −0.0063 0.56

baseline (9-50) 30.91 3.23 −0.547 4.85

B
D

T max-depth: 10 51.68 5.95 0.0921 2.91
max-depth: 20 72.6 12.06 0.0577 1.85
max-depth: 50 62.15 9.61 0.1505 2.36
baseline (50) 22.33 2.3 1.3953 13.35

Table 2: Parameters extracted from the error distributions shown in figure 4. Predictions from 1
million test samples were used to generate these statistics. The best-performing models for each of
2D, 4D, and 8D are marked in bold. More details regarding the notations are available in the text.

Key results: we present the results of the experiments in table 2 and figure 4. We show the distribu-
tion of errors over two variables, square root of the center-of-mass energy,

√
s 7→ x1, and cos θ 7→ x2

in figure 5. It is clear that the BDTs far outperform the DNNs in 2D. However, at 4D and 8D the
sk-DNN not only outperforms the fully connected DNNs, but also outperforms the BDTs as can be
seen from the distributions in figure 4 and the numbers in table 2. While at 4D the improvement of
accuracy from the DNN and sk-DNN is marginal over the BDTs, at 8D the improvement of accuracy
is quite significant. One major disadvantage of the BDTs is that they take up significant disk space as
the ensemble grows large, especially at higher dimensions, which is necessary for high-precision ap-
plications but affects their portability. Hence the sk-DNNs are a good solution for having a portable,
yet accurate regressor that meets the thresholds we set at the beginning of the work.

5 CONCLUSION

With Monte Carlo simulation in Physics being time and resource intensive, a distinct necessity of
building regressors for speeding up the simulations exists. We carefully examine the requirements
of high precision for these regressors and lay down design strategies to achieve the necessary bench-
marks. We use domain knowledge from particle physics to determine normalization strategies, apply
symmetry arguments to reduce the number of necessary regressors, and set benchmarks for high-
precision regression.

8

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

DNN_8_56 @ 2D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

sk-DNN_9_28 @ 2D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

BDT-50 @ 2D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

DNN_8_72 @ 4D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

sk-DNN_9_36 @ 4D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

BDT-50 @ 4D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

DNN_8_100 @ 8D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

sk-DNN_9_50 @ 8D

10−3

10−2

0.1

1

|δ| [%]

0.0 0.2 0.4 0.6 0.8 1.0√
ŝ

0.0

0.2

0.4

0.6

0.8

1.0

co
s
θ

BDT_20 @ 8D

10−3

10−2

0.1

1

|δ| [%]

Figure 5: The δ = (f(x)predicted − f(x)true)/f(x)true distribution for the various 2D (upper
panels), 4D (middle panels) and 8D (lower panels) regressors. The errors are averaged over each
bin.

We show that boosted decision trees are reliable workhorses that can easily outperform DNNs at
lower dimensions even when very large and complex neural networks are used. However, this edge
that BDTs have over neural networks tends to fade at higher dimensions especially when DNNs with
skip connections are used. In fact, for 4D and 8D data, sk-DNNs outperform both DNNs and BDTs
and exceed the benchmark of δ < 1% over 90% of the domain of the function. Moreover, sk-DNNs
are capable of outperforming DNNs of higher complexity as can be seen from table 2.

The primary disadvantage of BDTs is that for higher dimensions the ensemble of trees grows large
enough to take a significant amount of disk space, often > 1 GB, affecting the portability of the
regressor if it is intended to be used as part of a Monte Carlo simulation package. On the other hand,
the disk space occupied by a neural network stay below a few megabytes, making them a lot more
portable. In summary, the important conclusions of our work are:

• High precision regressors required to speed up Monte Carlo simulations by factors of 103
– 106 are better optimized by leveraging physics domain knowledge and symmetry argu-
ments.

• BDTs outperform DNNs at lower dimensions but start to make large errors in predictions in
parts of the function domain at higher dimensions. While fully connected DNNs perform
relatively well at higher dimensions, a DNN with skip connections outperforms both BDTs
and fully connected DNNs at 4D and 8D.

• sk-DNNs can outperform DNNs with a larger number of parameters.
• Compared to the few seconds that it takes for a single sample generation during a Monte

Carlo simulation, the regressors we design can provide precise predictions in milliseconds
to microseconds.

In this work, we aimed at reaching the desired precision but by no means have we exhausted the
possibilities of achieving even higher precision. As future directions, surveying a wider gamut of
activation functions, the modifications of the likelihood with possible physics constraints or sym-
metry arguments or further reducing the number of models by simultaneously predicting a set of
functions from a single neural network might be directions that can be explored in detail.

9

Under review as a conference paper at ICLR 2023

CONTRIBUTION TO SUSTAINABILITY

Monte Carlo simulations of physics processes leave a very large carbon footprint. It is estimated that
about 50% of the energy budget of each experiment at the Large Hadron Collider is consumed by
such simulations. Hence, our work directly contributes to reducing the carbon footprint significantly
through a much more efficient way of generating these events.

Generating the 2D, 4D and 8D datasets required 144 hours on 96 AMD EPYC 7402 cores for 13
million data points per set. This had to be done twice, once for the 2D dataset and once for the
4D and 8D datasets which were generated from the same first principles computation. In contrast,
the regressors that we build generate a million samples in a few seconds to tens of seconds on any
desktop computer. The regressors we build can be trained on personal computers with a few CPU
threads and a single GPU in about a day as our focus has been to build lightweight models. No spe-
cial hardware is required to train or test these regressors. Given that these Monte Carlo simulations
have to be done thousands of times during the life cycle of a single analysis, the regressors can sig-
nificantly reduce the carbon footprint from energy consumption without any significant compromise
to the precision necessary for quantitative scientific research.

REPRODUCIBILITY STATEMENT

The code and the data will be made publicly available after the review process to maintain the
double-blind requirements.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

REFERENCES

Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, Daniel Rahner, Eric W. Pellegrini, Ralf S.
Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with
invertible neural networks. CoRR, abs/1808.04730, 2018. URL http://arxiv.org/abs/
1808.04730.

Simon Badger, Anja Butter, Michel Luchmann, Sebastian Pitz, and Tilman Plehn. Loop Amplitudes
from Precision Networks. 6 2022. URL http://arxiv.org/abs/2206.14831.

Fady Bishara and Marc Montull. (Machine) Learning amplitudes for faster event generation. 12
2019. URL http://arxiv.org/abs/1912.11055.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. CoRR, abs/1809.11096, 2018. URL http://arxiv.org/abs/
1809.11096.

Anja Butter, Sascha Diefenbacher, Gregor Kasieczka, Benjamin Nachman, and Tilman Plehn. GAN-
plifying event samples. SciPost Phys., 10(6):139, 2021. doi: 10.21468/SciPostPhys.10.6.139.
URL https://doi.org/10.21468/SciPostPhys.10.6.139.

I-Kai Chen, Matthew D. Klimek, and Maxim Perelstein. Improved neural network Monte Carlo
simulation. SciPost Phys., 10(1):023, 2021. doi: 10.21468/SciPostPhys.10.1.023. URL https:
//doi.org/10.21468/SciPostPhys.10.1.023.

Tianqi Chen and Carlos Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’16, pp. 785–794, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.1145/
2939672.2939785. URL http://doi.acm.org/10.1145/2939672.2939785.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network
learning by exponential linear units (elus). In Yoshua Bengio and Yann LeCun (eds.), 4th Inter-
national Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4,
2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/1511.07289.

10

http://arxiv.org/abs/1808.04730
http://arxiv.org/abs/1808.04730
http://arxiv.org/abs/2206.14831
http://arxiv.org/abs/1912.11055
http://arxiv.org/abs/1809.11096
http://arxiv.org/abs/1809.11096
https://doi.org/10.21468/SciPostPhys.10.6.139
https://doi.org/10.21468/SciPostPhys.10.1.023
https://doi.org/10.21468/SciPostPhys.10.1.023
http://doi.acm.org/10.1145/2939672.2939785
http://arxiv.org/abs/1511.07289

Under review as a conference paper at ICLR 2023

Katharina Danziger, Timo Janßen, Steffen Schumann, and Frank Siegert. Accelerating Monte Carlo
event generation – rejection sampling using neural network event-weight estimates. SciPost Phys.,
12:164, 2022. doi: 10.21468/SciPostPhys.12.5.164. URL http://doi.org/10.21468/
SciPostPhys.12.5.164.

Thomas Gehrmann, Andreas von Manteuffel, and Lorenzo Tancredi. The two-loop helicity ampli-
tudes for qq′ → V1V2 → 4 leptons. JHEP, 09:128, 2015. doi: 10.1007/JHEP09(2015)128. URL
https://doi.org/10.1007/JHEP09(2015)128.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014. URL https:
//arxiv.org/abs/1406.2661.

Massimiliano Grazzini, Stefan Kallweit, and Marius Wiesemann. Fully differential NNLO compu-
tations with MATRIX. Eur. Phys. J. C, 78(7):537, 2018. doi: 10.1140/epjc/s10052-018-5771-7.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Li Huang and Lei Wang. Accelerated monte carlo simulations with restricted boltzmann machines.
Phys. Rev. B, 95:035105, Jan 2017. doi: 10.1103/PhysRevB.95.035105. URL https://link.
aps.org/doi/10.1103/PhysRevB.95.035105.

Danilo Jimenez Rezende and Shakir Mohamed. Variational Inference with Normalizing Flows.
arXiv e-prints, art. arXiv:1505.05770, May 2015. URL https://arxiv.org/abs/1505.
05770.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Junwei Liu, Yang Qi, Zi Yang Meng, and Liang Fu. Self-learning monte carlo method. Phys. Rev. B,
95:041101, Jan 2017. doi: 10.1103/PhysRevB.95.041101. URL https://link.aps.org/
doi/10.1103/PhysRevB.95.041101.

Andrew L. Maas. Rectifier nonlinearities improve neural network acoustic models. 2013.
URL https://ai.stanford.edu/˜amaas/papers/relu_hybrid_icml2013_
final.pdf.

Daniel Maı̂tre and Henry Truong. A factorisation-aware Matrix element emulator. JHEP, 11:066,
2021. doi: 10.1007/JHEP11(2021)066. URL https://doi.org/10.21468/10.1007/
JHEP11(2021)066.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák. Neural im-
portance sampling. CoRR, abs/1808.03856, 2018. URL http://arxiv.org/abs/1808.
03856.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltzmann machines.
ICML’10, pp. 807–814, Madison, WI, USA, 2010. Omnipress. ISBN 9781605589077. URL
https://dl.acm.org/doi/10.5555/3104322.3104425.

Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks, Caspar van
Leeuwen, Damian Podareanu, Roberto Ruiz de Austri, and Rob Verheyen. Event Generation
and Statistical Sampling for Physics with Deep Generative Models and a Density Information
Buffer. Nature Commun., 12(1):2985, 2021. doi: 10.1038/s41467-021-22616-z. URL https:
//doi.org/10.1038/s41467-021-22616-z.

Alexander Radovic, Mike Williams, David Rousseau, Michael Kagan, Daniele Bonacorsi, Alexan-
der Himmel, Adam Aurisano, Kazuhiro Terao, and Taritree Wongjirad. Machine learning at
the energy and intensity frontiers of particle physics. Nature, 560(7716):41–48, Aug 2018.
ISSN 1476-4687. doi: 10.1038/s41586-018-0361-2. URL https://doi.org/10.1038/
s41586-018-0361-2.

11

http://doi.org/10.21468/SciPostPhys.12.5.164
http://doi.org/10.21468/SciPostPhys.12.5.164
https://doi.org/10.1007/JHEP09(2015)128
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1406.2661
http://arxiv.org/abs/1512.03385
https://link.aps.org/doi/10.1103/PhysRevB.95.035105
https://link.aps.org/doi/10.1103/PhysRevB.95.035105
https://arxiv.org/abs/1505.05770
https://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://link.aps.org/doi/10.1103/PhysRevB.95.041101
https://link.aps.org/doi/10.1103/PhysRevB.95.041101
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://doi.org/10.21468/10.1007/JHEP11(2021)066
https://doi.org/10.21468/10.1007/JHEP11(2021)066
http://arxiv.org/abs/1808.03856
http://arxiv.org/abs/1808.03856
https://dl.acm.org/doi/10.5555/3104322.3104425
https://doi.org/10.1038/s41467-021-22616-z
https://doi.org/10.1038/s41467-021-22616-z
https://doi.org/10.1038/s41586-018-0361-2
https://doi.org/10.1038/s41586-018-0361-2

Under review as a conference paper at ICLR 2023

Huitao Shen, Junwei Liu, and Liang Fu. Self-learning monte carlo with deep neural networks. Phys.
Rev. B, 97:205140, May 2018. doi: 10.1103/PhysRevB.97.205140. URL https://link.
aps.org/doi/10.1103/PhysRevB.97.205140.

Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical generative
adversarial networks. In Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on
Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016. URL http://arxiv.org/abs/1511.06390.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway networks. CoRR,
abs/1505.00387, 2015. URL http://arxiv.org/abs/1505.00387.

Georgios Stratis, Phillip Weinberg, Tales Imbiriba, Pau Closas, and Adrian E. Feiguin. Sample gen-
eration for the spin-fermion model using neural networks. arXiv e-prints, art. arXiv:2206.07753,
June 2022. URL https://ui.adsabs.harvard.edu/abs/2022arXiv220607753S.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned face representations are sparse, selective,
and robust. CoRR, abs/1412.1265, 2014. URL http://arxiv.org/abs/1412.1265.

Ramon Winterhalder, Vitaly Magerya, Emilio Villa, Stephen P. Jones, Matthias Kerner, Anja Butter,
Gudrun Heinrich, and Tilman Plehn. Targeting multi-loop integrals with neural networks. SciPost
Phys., 12(4):129, 2022. doi: 10.21468/SciPostPhys.12.4.129. URL http://doi.org/10.
21468/SciPostPhys.12.4.129.

Dian Wu, Riccardo Rossi, and Giuseppe Carleo. Unbiased monte carlo cluster updates
with autoregressive neural networks. Phys. Rev. Research, 3:L042024, Nov 2021. doi:
10.1103/PhysRevResearch.3.L042024. URL https://link.aps.org/doi/10.1103/
PhysRevResearch.3.L042024.

Appendix

A THE PHYSICS BACKGROUND

The goal of this appendix is to provide the context in which the regressors discussed in this paper
are needed and thus elucidate the requirements laid out in the introduction. Namely,

1. that the prediction error relative to the exact value be < 1%,

2. that this be the case for 90% of the domain of the function,

3. that the evaluation time be faster than O(10−3) seconds,

4. and, finally, that the disk size of the regressors be on the order of megabytes rather than
gigabytes.

These regressors will be used as surrogate models for exact functions that are numerically slow to
evaluate. As a result of their (extreme) slowness, these exact functions, which are used in Monte
Carlo simulations, are by far the biggest bottleneck in the simulation.

The physics context. The theoretical model that describes the fundamental particles and their in-
teractions is called the Standard Model of particle physics. This model is an example of a quantum
field theory; what this means exactly is not crucial here. Rather, the important feature of this theory
is that computing observables (i.e., outcomes of experiments) cannot, in general, be done exactly
because such calculations are not tractable for several reasons the explanation of which goes be-
yond the scope of this work. The usual way of obtaining predictions is by expanding the theory
as a power series in a small expansion parameter and computing higher orders in this expansion to
improve the accuracy of the prediction. Such perturbative expansions are ubiquitous in physics in
general since only a few systems, most notably, e.g., the simple harmonic oscillator and the two-
body inverse r2 problem can be solved exactly. A very large fraction of physics problems spanning
atomic physics, nuclear physics, condensed matter physics, astrophysics, cosmology, hydrodynam-
ics, electrodynamics, quantum mechanics, complex systems etc. requires the use of perturbative
expansions where the higher order terms are very tedious and slow to compute. Hence, the methods

12

https://link.aps.org/doi/10.1103/PhysRevB.97.205140
https://link.aps.org/doi/10.1103/PhysRevB.97.205140
http://arxiv.org/abs/1511.06390
http://arxiv.org/abs/1505.00387
https://ui.adsabs.harvard.edu/abs/2022arXiv220607753S
http://arxiv.org/abs/1412.1265
http://doi.org/10.21468/SciPostPhys.12.4.129
http://doi.org/10.21468/SciPostPhys.12.4.129
https://link.aps.org/doi/10.1103/PhysRevResearch.3.L042024
https://link.aps.org/doi/10.1103/PhysRevResearch.3.L042024

Under review as a conference paper at ICLR 2023

we develop here are more broadly applicable in any problem where a perturbative expansion is used
and/or a function that requires a very large number of evaluations is very slow to evaluate and a
certain threshold of precision is required.

The slow functions that are the focus of this work arise at second order in this power series ex-
pansion. The number of terms produced at each order rapidly increases and the complexity of the
mathematical functions that appear also increases. For example, at first order in the expansion (if the
zeroth order is a so-called tree process), polylogarithms of at most order 2 can appear. At second or-
der, higher order polylogarithms appear. On top of the fact that these functions are time-consuming
to evaluate numerically, large cancellations between these functions typically exist which requires
using arbitrary precision arithmetic libraries to circumvent the infamous ‘catastrophic cancellation’
problem in numerical analysis.

For example, the time penalty for improving the accuracy of the prediction of the rate of production
of four electrons by including the second-order term is a factor of 1500! For details, please see table
11 in the journal version of Ref. Grazzini et al. (2018). So here lies the logic behind requirement
3: the second-order functions typically take 1 − 10 seconds per point to evaluate while all other
functions in the Monte Carlo simulation typically take milli-seconds. Therefore, the bottleneck is
removed if the surrogate model takes 10−3 second per point or less to evaluate.

The accuracy requirement. There are many sources of uncertainty that propagate to the final
prediction. Roughly speaking, there are systematic errors of order 1% that cannot be reduced at
the moment and for the foreseeable future. There are also statistical errors inherent in the finite
samples produced by Monte Carlo simulations. The goal is to strive to have Monte Carlo statistical
errors much smaller than 1%, say 0.1%. Since the contribution of the second order functions is of
order 10%, then it is sufficient for the surrogate models to be accurate to 1% in order for the
error on the total prediction (including the zeroth and first order) to be of order 0.1%. While this
precision would be good to have in the entire domain of the function it is not necessary given the
error margins we aim for. Assuming that the errors in the predictions made by the model follow a
Gaussian distribution, we can safely set the threshold to 1% error over 90% of the function domain.
We checked, after the fact, that the Gaussian assumption is approximately realized (cf. figure 4).
An elaboration of this requires a discussion of specific integrals for specific scattering processes in
particle physics that we shall leave for a more particle-physics-oriented work.

Portability. In contrast with the speed and accuracy requirements (items 1, 2, & 3), the require-
ment that the disk size of the models be of order megabytes (item 4) is desirable but not a strict
requirement. In practice, to implement the surrogate models discussed in this work into Monte
Carlo codes, several regressors are required. Since these codes must be downloaded locally by the
users, it is desirable that the disk size remain small. As shown before BDTs can reach several GB
in compressed model format for higher dimensional data. Hence, in this work, we focus on building
specific neural networks that are a lot more portable.

B HYPERPARAMETER SURVEYS FOR BOOSTED DECISION TREES

Maximum depth of trees in the ensemble: The BDT models are trained with an early stopping
condition which stops the growth of the trees once the RMSE stops decreasing after checking for
its decrease for 25 rounds. This makes the hyperparameters used to train a BDT correlated to a
certain extent. For example, a decrease in the learning rate increases the number of trees grown till
the optimum is reached. This can be seen from figure 6. However, as one increases the maximum
depth to which each tree can grow the number of total trees grown decreases. The number of nodes
of a tree grows exponentially with the depth of the trees and, hence, allowing for a larger maximum
depth of the trees results in a much larger disk size for the trained models. This is aggravated further
with higher dimensional data. Therefore, when portability is a concern, BDTs cannot be used for
high-precision applications for higher dimensional data.

Learning rate and maximum depth of trees: When exploring the learning rate for the BDT models
in figure 6, we find that, initially, with decreasing learning rate, starting at 1, the accuracies of the
trained models increase but after a point, the accuracy decreases. This is evident for shallower trees.
We also note that the accuracies of the models increase with the maximum depth of the trees but

13

Under review as a conference paper at ICLR 2023

10−3 10−2 10−1 100

learning rate

0

2000

4000

6000

8000

nu
m

b
er

of
tr

ee
s

(d
et

er
m

in
ed

by
ea

rl
y

st
op

p
in

g)

8D data

max depth: 5

max depth: 10

max depth: 15

max depth: 15

max depth: 15

10−3 10−2 10−1 100

learning rate

0

20

40

60

80

100

fr
ac

ti
on

of
te

st
se

t
w

it
h
|δ|

<
1%

(%
) 8D data

max depth: 1

max depth: 5

max depth: 10

max depth: 15

max depth: 20

max depth: 50

Figure 6: Left panel: The variation of the number of trees grown in a BDT ensemble increases
rapidly with decreasing learning rate when using an early-stopping criterion. Note: The learning
rate for BDTs with maximum depths 20 and 50 could not be reduced below 0.1 as the disk size of
the memory consumption while training the models with 8D data gets too large for a single node in
a high-performance computing cluster. Right panel: Larger maximum depth for BDT ensembles
gives better accuracy up until a certain value and then the accuracy falls. The optimal value for
maximum depth seems to be 15 or 20. Also, the learning rate has an optimal after which it decreases
or plateaus.

only up to a certain depth. In the example in the right panel of figure 6 we use the 8D data and we
see that the accuracy of the model increase till a maximum depth of 15 and then decreases.

C DEPENDENCE ON ACTIVATION FUNCTIONS

−6 −4 −2 0 2 4 6
δ (%)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Leaky ReLU

ReLU

softplus

ELU

Figure 7: A comparison between Leaky ReLU, ReLU, softplus and ELU for the 8D data using an
sk-DNN with 9 blocks of width 50. The Leaky ReLU activation function outperforms any other
activation function and we use it for all experiments with DNNs and sk-DNNs in our work

We performed tests for various activation functions keeping all other hyperparameters and data
strategies the same. We use the 8D dataset with a 9-deep and 50-wide sk-DNN on an exponen-
tial learning rate schedule and data normalized using equation (3). We explore only non-trainable
activation functions like the ReLU, Leaky ReLU, ELU and softmax activations functions. The last
three were chosen as they are similar to ReLU and have shown improved learning abilities in several
domains Maas (2013); Sun et al. (2014); Clevert et al. (2016). As in the other experiments, the
models were trained with an early-stopping criterion. From figure 7 we see that the Leaky ReLU
activation function far outperforms all other activation function with a narrower error distribution.
Hence, for all experiments in this work we use the Leaky ReLU activation function.

14

	Introduction
	Related Work
	Models: Decisions Trees and Neural Networks
	DNN design decisions
	DNN with skip connections

	Experiments
	Physics Simulations
	BDT vs. DNN vs. sk-DNN

	Conclusion
	The Physics background
	Hyperparameter surveys for boosted decision trees
	Dependence on activation functions

