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Figure 1: We demonstrate our game-theoretic predictive safety filter approach on two different
quadruped robots equipped with safety-agnostic walking policies. The gameplay filter continually
monitors the robot’s safety by rapidly simulating worst-case futures invoked by a learned virtual
adversary, and it preemptively disallows task-driven actions that would cause the robot to lose to
it (violate safety). The gameplay-filtered robots exhibit rich and highly robust behaviors such as
counterbalancing to fight persistent pulls and springing into a wide stance to break imminent falls.
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Abstract: Despite the impressive recent advances in learning-based robot
control, ensuring robustness to out-of-distribution conditions remains an open
challenge. Safety filters can, in principle, keep arbitrary control policies from
incurring catastrophic failures by overriding unsafe actions, but existing solutions
for complex (e.g., legged) robot dynamics do not span the full motion envelope
and instead rely on local, reduced-order models. These filters tend to overly
restrict agility and can still fail when perturbed away from nominal conditions.
This paper presents the gameplay filter, a new class of predictive safety filter
that continually plays out hypothetical matches between its simulation-trained
safety strategy and a virtual adversary co-trained to invoke worst-case events
and sim-to-real error, and precludes actions that would cause failures down
the line. We demonstrate the scalability and robustness of the approach with a
first-of-its-kind full-order safety filter for (36-D) quadrupedal dynamics. Physical
experiments on two different quadruped platforms demonstrate the superior
zero-shot effectiveness of the gameplay filter under large perturbations such as
tugging and unmodeled terrain. Experiment videos and open-source software are
available online: https://saferobotics.org/research/gameplay-filter
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1 Introduction

Autonomous robots are increasingly required to operate reliably in uncertain conditions and quickly
adapt to carry out a broad range of jobs on the fly [1-5]. Rather than synthesize an intrinsically safe
control policy for every new assigned task, it is efficient to endow each robot with a safety filter that
automatically precludes unsafe actions, relieving task policies of the burden of safety altogether.
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Unfortunately, today’s safety filter methods fall short of this promise for most modern-day robots.
To cover a diverse range of tasks and environments, a safety filter needs to give the robot significant
freedom to execute varied motions across its state space while robustly protecting it from catas-
trophic failures throughout this large envelope. To date, such minimally restrictive safety filters are
only systematically computable for systems with 5-6 state variables [6—8], woefully short of the
12 needed to accurately model drone flight and the 30—50 needed for legged locomotion. Existing
safety filters for high-order robot dynamics rely on reduced-order models [9—12]. These filters re-
strict the robot’s motion to a local envelope, such as the vicinity of a stable walking gait, and become
ineffective whenever the robot is perturbed away from it by external forces or unmodeled environ-
ment features (Fig. 1). How can we tractably and systematically compute safety filters that cover
broad regions of robots’ high-dimensional state spaces and a wide variety of deployment conditions?

Contribution. This paper introduces the gameplay filter, a novel type of predictive safety filter
that can scale to full-order robot dynamics and enforce safety across a broad motion envelope and
a designer-specified range of possible conditions (operational design domain). The filter is first
synthesized by simulated self-play between a safety-seeking robot control policy and a virtual ad-
versary that invokes worst-case realizations of uncertainty and modeling error (or sim-to-real gap).
At runtime, the deployed filter continually rolls out hypothetical games between the two learned
agents, overriding candidate actions that would result in the robot losing a future safety game. This
methodology—based on the core game-theoretic principle that a strategy that wins against the worst-
case opponent must also win against all others—unlocks real-time filtering in the robot’s full state
space by only requiring a single, highly informative trajectory rollout. We demonstrate the effective-
ness of our approach experimentally on two quadruped robots that differ in physical parameters and
sensing capabilities (Fig. 1). Each gameplay filter is synthesized and deployed using an off-the-shelf
physics engine to simulate a manufacturer-provided robot model with a 36-D state space and a 12-D
control space. We observe highly robust zero-shot safety-preserving behavior without incurring the
conservativeness typical of robust predictive filters. To the best of our knowledge, this constitutes
the first successful demonstration of a full-order safety filter on legged robot platforms.

Related Work. The last decade has seen important advances in robot safety filters. We briefly
discuss the techniques most relevant to our work and direct interested readers to recent survey ef-
forts [13—15] that shed light on safety filters’ common structure and relative strengths.

Value-based filters. Hamilton—Jacobi (HJ) reachability methods use finite-difference dynamic pro-
gramming to compute the best available safety fallback policy and the worst possible uncertainty
realization from each state on a finite grid [6, 16, 17], which enables minimally restrictive safety
filters. Although highly general, HJ computational tools suffer exponential blowup and do not scale
beyond 5-6 state dimensions [18, 19]. Control barrier function (CBF) filters keep the system in-
side a smaller safe set while discouraging excessive control overrides [20]. CBFs lack a general
constructive procedure and instead rely on manual design [21], sum-of-squares synthesis [22], or
learning from demonstrations [23]. Robust formulations are comparatively less mature [24-27].
Self-supervised and reinforcement learning techniques can synthesize safety-oriented control poli-
cies and value functions (“safety critics”) for systems beyond the reach of classical methods, but
they are inherently approximate and offer no formal assurances [28-32]. Statistical generalization
theory may be used to bound the probability of failure under the assumption that the robot can be
tested on a statistically representative sample of environments and conditions before deployment [3].

Rollout-based filters. Predictive safety filters perform model-based runtime assurance by continually
simulating—and in some cases optimizing—the robot’s future safety efforts for a short lookahead
time horizon [33-38]. Recent advances in fast forward-reachable set over-approximation [39—41]
make it possible to check safety against all possible uncertainty realizations, although this runtime
robustness comes at the cost of significant added conservativeness: for example, Hsu et al. [38] ob-
serve safety overrides 5 times as frequent as those of a least-restrictive HJ filter. Bastani and Li [35]
instead propose sampling multiple possible trajectories, assuming a well-characterized disturbance
distribution, to maintain a statistical guarantee. Our approach mimics Hsu et al. [38] in co-training
a safety controller and a worst-case disturbance through simulated self-play, but it eschews over-
conservative reachable sets by instead simulating a single closed-loop match between the two.




Legged robot safety filters. Legged robots have attracted increasing interest from researchers due
to their versatility and increasing availability, as well as their challenging high-order and contact-
rich dynamics [42]. Recent simulation-trained controllers leveraging domain randomization are
showing promising agility and adaptability [1, 2, 43, 44]; however, robustness to out-of-distribution
conditions cannot be easily quantified and remains an open issue. Unfortunately, all safety filters
demonstrated on legged robots to date are based on simplified reduced-order dynamical models [3,
10-12], sometimes combined with local analysis around nominal walking gaits [9, 45, 46]. The
dynamic envelope protected by these safety filters is limited to local state space regions where the
simplified models apply, and their robustness to disturbances and modeling errors is contingent on
the effectiveness of low-level tracking controllers. Our demonstration of the gameplay filter uses a
full-order dynamical model of the robot, both at synthesis and at deployment, which enables it to
enforce safety across a broad range of motions and operating conditions.

2 Preliminaries: Robust Robot Safety in an Operational Design Domain

We wish to ensure the safe operation of a robot with potentially high-order nonlinear dynamics
under a wide range of environments and task specifications, which may be unknown at design time.
Formally, we consider a robotic system with uncertain discrete-time dynamics

Tit1 = [ (Th, uk, dip), (D
where, at each time step k € N, x, € X C R"= is the state of the system, uy, € U C R™« is the
bounded control input (typically from a control policy 7% € II*: X — U), and dy, € D C R™ is
a disturbance input, unknown a priori but bounded by a compact D. While the control bound I/ en-
codes actuator limits, the disturbance bound D is a key part of the operational design domain (ODD).

Operational Design Domain. The ODD can be viewed as social contract between the system
operator and the public, delineating the set of conditions under which the robotic system is required
to function correctly and safely [47]. In this paper, we are interested in robust safety, where the
disturbance (or “domain”) bound D may encode a range of potential perturbations like wind or
contact forces, environmental parameters like terrain friction, manufacturing tolerances, variations
in actuator performance and state estimation accuracy, and other factors contributing to designer
uncertainty about future deployment conditions and modeling error. The ODD further specifies a
deployment set Xy C X of allowable initial states (for example, the robot is always turned on while
static on flat ground) and, crucially, a failure set F C X, which characterizes all configurations that
the system state must never reach, such as falls or collisions. The required safety property can then
be succinctly expressed as:

Vag € Xy, Vk > 0,Ydy,...,dr € D, xp ¢]‘-, 2)

that is, once deployed in an admissible initial state, the robot must stay clear of the failure set for
any realization of the domain uncertainty.

Safety Filter. Explicitly ensuring the safety property in the synthesis of every robot task policy 79
can be impractically cumbersome, especially for increasingly general-purpose robotic systems with
broad ODDs. Instead, we aim to relieve task policies of the burden of safety by augmenting them
with a safety filter ¢ that depends on the robot’s ODD but rot on the task specification. Rather than
directly applying the proposed task action uy, = 7%(z}) from each state xy, the robot executes'

ur, = p(ar, ). 3)

The safety filter’s role is to prevent the execution of any candidate actions that would jeopardize
future safety, while also avoiding spurious interventions that unnecessarily disrupt task progress. In

'For the scope of this paper, we assume that the robot maintains an appropriately accurate estimate of its
dynamical state through onboard perception. We make two observations: First, moderate state estimation errors
typical in many robotic systems can be absorbed by inflating the failure set 7 and dynamical uncertainty D.
Second, more substantial state uncertainty, e.g., induced by sensor faults, occluding objects, or multiagent
interaction, may be handled with information-space safety filters, a subject of ongoing research [48-50].



fact, for any well-defined ODD there exists a perfect safety filter that allows every safe candidate
action and overrides every unsafe one, robustly enforcing (2) with no overstepping [13, Prop. 1].
Formally, a perfect safety filter only disallows actions that may cause the state to exit the maximal
safe set (0 C X, the set of all states from which there exists a control policy that can enforce (2).
While computing such a perfect filter is known to be intractable for most practical systems [7], we
aim to synthesize effective safety filters that allow robots significant freedom to perform a wide range
of tasks (including online learning and exploration) while maintaining safety across their ODD.
Intuitively, we would like to obtain a safety filter that robustly keeps the robot inside a conservative
safe set 2 C * as close as possible to the theoretical 2*. Our proposed method uses game-
theoretic reinforcement learning and faster-than-real-time gameplay simulation to approximate a
perfect safety filter for any given robot ODD, targeting the robot’s full dynamic envelope, in contrast
with existing reduced-order filters, which aim to enforce safety within a significantly smaller set €).

Reach—Avoid Safety Game. Whether it is possible for the robot to robustly maintain safety, as
in (2), can be seen as the categorical (true/false) outcome of a game of kind between the robot’s
controller and an adversarial disturbance that aims to drive it into the failure set. In turn, this result
can be encoded implicitly through a game of degree with a continuous outcome (for example, the
closest distance that will separate the robot and any obstacle). In particular, for the purposes of pre-
dictive safety filtering, we consider a sufficient finite-time condition for all-time safety: it is enough
for the robot to reach a known controlled-invariant set 7 C F° (for example, coming to a stable
stance) in H steps without previously entering the failure set /. Once there, the robot can switch to
apolicy 77 that keeps it in 7 indefinitely. This induces a reach—avoid game [17, 32] with outcome

J;ruﬂrd (z) := Tg[lli)liﬂ min {E (), SIgI[l]iCI’:_] g (x‘;)} 4)

where ¢ and ¢ are the (Lipschitz) failure and target margins, satisfying g(z) <0<z € F,
l(x) >0« x €T. The outcome summarizes the aforementioned condition for all-time safety:
For any given T € [0, H], if we previously enter the failure set F, g(z,) < 0, then for k € [0, 7],

w d
Ji ™ (z) < 0, denoting that past failure overrides future successes. The value function of this
game satisfies the reach—avoid Isaacs equation

Vie(z) = max mdin min {g(z), max {{(z), Vig1(f(z,u,d))}}, (5a)
Vi (x) = min{{(z), g(z)} , (5b)

and the robot’s controller is guaranteed a winning strategy from any state where Vy(x) > 0}.

3 Predictive Gameplay Safety Filters
3.1 Offline Gameplay Learning

We extend the Iterative Soft Adversarial Actor—Critic for Safety (ISAACS) scheme [38] to reach—
avoid games (4), approximately solving the infinite-horizon counterpart of the Isaacs equation (5).

Simulated Adversarial Safety Games. At every time step of gameplay, we record the transition
(z,u,d,z’, ¢, ¢') in the replay buffer B, with 2’ := f(x,u,d), ¢’ := ¢(z’) and ¢’ := g(z’).

Policy and Critic Networks Update The core of the proposed offline gameplay learning is to find
an approximate solution to the time-discounted infinite-horizon version of (5). We employ the Soft
Actor—Critic (SAC) [51] framework to update the critic and actor networks with the following loss
functions. We update the critic to reduce the deviation from the Isaacs target’

L(w) = o Qe d) = )?]

 @udal g~
y=vmin{ ¢, max {¢',Q,(z',v/,d)}} + (1 —y)min{¢, ¢'} (6a)
Deep reinforcement learning typically involves training an auxiliary target critic Q_,, with parameters w’

that undergo slow adjustments to align with the critic parameters w. This process aims to stabilize the regression
by maintaining a fixed target within a relatively short timeframe.
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Figure 2: The L-step gameplay filter evaluates 7 for L steps. The rollout started at k=0 returns a
win result by k= L, so the safety filter allows 7 to proceed for k=L, ..., 2L — 1. Meanwhile, the
next rollout, initiated at k = L, predicts a defeat, so the filter selects 79 from 2L to 3L — 1.

with u' ~ mg(- | 2), d ~ my(- | «'). We update control and disturbance policies following the
policy gradient induced by the critic with entropy regularization:

LO)=_E | = Qule.@,d) + o logm (i | @), (6b)
Lw):= E [Qu (. u.d) + o logmy(d | 2)]. (6¢)

where @ ~ my(- | ), d ~ my(- | x), and a*, a? are hyperparameters incentivizing exploration
(entropy in the stochastic policies), which decay gradually in magnitude through the training.

Following the ISAACS scheme, we jointly train the safety critic, controller actor and disturbance
actor through (6). For better learning stability, the controller actor can be updated at a slower rate
(only every 7 > 1 disturbance updates), consistent with the asymmetric information structure of
the game, and a leaderboard of best-performing controllers and disturbances can be maintained to
mitigate mutual overfitting to the latest adversary iteration [38].

3.2 Online Gameplay Filter

This section demonstrates how the synthesized reach—avoid control actor 7y and disturbance actor
my can be systematically used at runtime to construct highly effective safety filters for general non-
linear, high-dimensional dynamic systems. The gameplay rollout considers applying the candidate
task policy 7% followed by the learned fallback policy 79, with the whole rollout under attack by
the learned disturbance policy 7y, to check if accepting the candidate action from task policy 7o
will lead to an inevitable failure even if we then apply our best-effort attempt to maintain safety. The
gameplay outcome follows the reach—avoid outcome defined in (4) . A runtime gameplay filter can
then be defined with the simple switching rule:

A9(z,78) = IL{ Ire{l,...,H}, i, €TA
Vse{l,...,7}, &s &’]—"}

0 —
_ ™, A (.T, ™ ) - 17
oz, 77) { 79, A9(z,7%) =0,
(7a)
with &9 = &, 2,41 = f(2r, Ur, y(27)), T > 0, and
A -
R (&), T=0, ° mo(x), x&T,
T = N == 7b
g {WO(%), ref{l,.. H—1}, (@) { T(a), zeT. D
That is, if the gameplay monitor predicts a win (the simulated trajectory safely reaches the target
set), the filter selects the task policy 7; otherwise, the filter selects the fallback safety policy 7.

In practice, the computation of a full gameplay rollout may span multiple time steps (i.e., multiple
control policy executions). In that case, the filter in (7) can be extended to a multi-step variant
in which decisions are made by the filter every L steps, appropriately accounting for the rollout
computation latency. Fig. 2 illustrates the gameplay safety filter logic with L-step latency.



4 Experimental Evaluation

We run hardware experiments and an extensive simulation study, focusing on quadruped robots as
an informative platform but stressing that our proposed methodology is general and can be applied
to other types of robots. We aim to evaluate the extent to which the synthesized gameplay filters
can maintain safety within the ODD specified at training, generalize beyond the ODD, and avoid
unnecessarily impeding task execution. Specifically, we use a 50 N force applied to the robot’s
torso in training, with failure defined as any time a non-foot part contacts the ground. We test the
robots under two conditions: tugging forces on flat terrain (similar to ODD) and irregular terrain
(out-of-ODD). The task of moving from a start location to a goal across a terrain is evaluated on the
Ghost Robotics Spirit S40 and Unitree Go2 (Fig. 1). We also conduct ablation studies to investigate
the importance of reach—avoid reinforcement learning (RARL) and adversarial self-play in the filter
synthesis and of the gameplay rollout in the filter’s runtime monitoring by considering three prior
reinforcement learning algorithms: (1) standard SAC [51] with (sparse) reward defined as +1 inside
T, —1 inside F, and 0 everywhere else; (2) single-agent RARL [32] with and without domain
randomization (DR); and (3) adversarial SAC with the above sparse reward. We also compare to a
critic (value-based) filter, which intervenes when Q,, (z, 7) < e with the threshold e determined by
running a parameter sweep and used in all experiments. Implementation details are in Appendix B.

4.1 Physical Results

Safe walking within and beyond the ODD. We evaluate the effectiveness of our proposed game-
play filter in terms of both safety and disruption of task performance. We run similar experiments
with baseline methods for rough comparison purposes but caution that, due to the impossibility of
reproducing identical conditions, these results should not be taken as a fine-grained quantitative
comparison between methods. Such a comparison is conducted at scale, albeit in simulation, in
Section 4.2.Table 1 shows the results for the S40 robot, subject to tugging forces and irregular ter-
rain (not considered in the ODD), and Table 2 shows the results for the Go2 robot under a larger
range of tugging forces (up to 4x the ODD bound). Our proposed gameplay safety filter is remark-

Table 1: We evaluate S40 walking under tugging forces (modeled) and irregular terrain (unmodeled).
We record the fraction of safe (fall-free) runs, the frequency of filter interventions (as a fraction of
all time steps) and the average time taken to reach the goal. In the tug test, we also report the fraction
of withstood attacks (tugs separated by at least 1.0 s), both overall and restricted to those roughly
(within 10% error) inside the ODD bound of 50 N, and the peak force statistics in successful/failed
runs. The gameplay filter completes all terrain runs safely and withstands almost all tugs (even out-
of-ODD) without impractically hindering task progress.

Tugging Forces Irregular Terrain
Poli Successful Runs Failed Runs Successful Runs
olicy iths acks o . ol ca .
Safe/All Runs A]]V;/\::K:i?.nﬁg;dcok];])) Filter Freq. Tyoq) Fap\t;k F,g:,‘(k F;R,Lgdk Fll:n'k Safe/All Runs  Filter Freq.  Tyon
pme 7110 53/56 (33/35) 0.17 263 675N  70.5N 59.8N 527N 10/10 0.19 412
geritic 4/10 22/28 (10/15) 0.10 26.8 737N 809N 53.6N  40.0N 5/10 0.22 335
7r 0/10 6/16 (1/5) - - - - 56.5N 414N 5/10 - 16.4

Table 2: We evaluate Go2 under tugging forces, comparing our gameplay filter against the robot’s
production-grade walking policy. The gameplay filter withstood stronger tugs and had fewer failures.
It remained safe for all 5 runs in which tugs remained within the ODD bound (50 N) and only failed
under forces of at least 2x the ODD bound (while resisting some forces of over 4 x the ODD bound)

Tugging Forces
Policy Successful Runs Failed Runs
AllRuns (Rums withinODD) "R PR Fet R
pEme 8/10 (5/5) 424N 215N 105.7N 104.4N
< 0/10 (0/10) - - 327N 153N
wbum,m 7/10 (5/5) 239N 134N 106.1N 94.3N




Table 3: Maximum force magnitude withstood by the S40 with various policies' at different tugging
angles. Our learned fallback 79 outperforms the task policy and other safety fallback baselines and

has comparable robustness to the policy used in the target set.

i Safety policies from reward-based RL and ISAACS with the
Right avoid-only objective fail immediately before applying force.

Maximum Force

Algorithm Left
Low High Low High * The policy was able to withstand this magnitude of force. Be-
()] " * - " cause the policy made the quadruped move in the tugging direc-
4 87.IN 6LIN 993N 59.IN tion, we were not able to apply a larger force in 10 pull attempts.
) 100.5N* 150.3N* 121.6N* 121.9N*
RARL + DR 46.4N 43N 572N 72.IN*
7r 83.2N 96.9N 82.8N* 59N
=T 151.9N* 173.7N* 140.3N* 142.6N*
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Figure 3: Sensitivity analysis of gameplay horizon and monitoring criterion. The proposed gameplay
safety filter, utilizing the reach—avoid criterion, maintains a 100% safe rate (fraction of failure-free
runs) for all gameplay horizons. As the horizon shortens, the gameplay filter with reach—avoid crite-
rion only experiences a decrease in filter efficiency without compromising safety. In contrast, the fil-
ter with avoid-only criterion shows more safety violations than the task policy under short horizons.
Overall, our proposed gameplay filter shows both higher safe rates and distance traveled (measured
horizontally between the initial and final position) than the critic safety filter and task policy.

ably robust across robot platforms and test conditions; while not unbeatable outside of the specified
ODD, it still withstands large tugging forces before violating the safety constraints. Importantly,
the gameplay filter does not disproportionately interfere with the task-oriented actions: it maintains
comparable filter frequency and task performance as the critic filter while drastically reducing safety
failures. Fig. 1 shows the gameplay filter in action on the S40, dynamically counterbalancing tugs or
springing into a wide stance. Time plots of tugging forces in all S40 runs are given in Appendix D.

External forces. We measure the maximum tugging force withstood by various safety policies and
filters, reported in Table 3. We pull the quadruped from different directions, with “low” indicating
angles in the range [—0.1, 0.4] rad, and “high” in [0.5, 1.0] rad. The employed 7y can withstand
150 N from all directions, but the non-game-theoretic counterpart (RARL+DR) is vulnerable to the
tugging from the left and can only withstand 43 N. This suggests that DR struggles to capture the
worst-case realization of disturbances in a bounded class. This arises from its inherent nature: as
the dimension of the disturbance input increases, the likelihood of the random policy simulating the
worst-case disturbance decreases exponentially. Further, we notice the reward-based RL baselines
and ISAACS with avoid-only objective fail almost immediately by overreacting and flipping over.
Reach—avoid policies behave more robustly by bringing the robot to a stable stance. We also include
tests for task policy 7% and the fixed-pose policy 77 (used when the state is in the target set). We
observe that ISAACS control actor is strictly better than 79 and is comparable to 77 .

4.2 Simulated Results

Bespoke ultimate stress test (BUST). To test each policy’s robustness when taken to the limit, we
RL-train a specialized adversarial disturbance 7, to exploit its safety vulnerabilities (Table 4).

For each robot—disturbance policy pair, we play 1,000 finite horizon games and record the safe rate—
overall fraction of failure-free runs. All pairs use the same set of 1,000 initial states. We observe
that 7 is vulnerable to all m,,» while the proposed gameplay filter is only exploited by its associated



Table 4: We perform a bespoke ultimate stress test (BUST) of each control scheme in simulation
by explicitly RL-training a specialized adversarial disturbance to find and exploit its vulnerabilities.
We also sample random disturbances uniformly from D (7™¢) or from its extreme points (7™4*),
and observe that the domain randomization test is far less challenging (all safety methods excel).

* * * ¢ game * (i critic md md.+

() T (7r ) oy (657) T (¢~ ) ki b
o 0.37 0.38 0.17 0.44 0.88 0.85
7r 0.0 0.0 0.0 0.0 0.03 0.03
psame 0.42 0.35 0.03 0.45 0.84 0.89
et 0.37 0.34 0.10 0.44 0.86 0.86

BUST disturbance ,(¢**"). Further, the robustness of ¢**™ pushes 7, (¢**") to learn effective
attacks that also exploit other policies (the third column has the lowest safe rates compared to other
columns across the board). The last two columns show the safe rate under random disturbances. All
safety filters and safety policies remain at remarkably high safe rates, suggesting that our adversarial
BUST evaluation method establishes a more demanding safety benchmark for policies than DR.

Sensitivity analysis: reach-avoid criteria vs. avoid-only. We evaluate the significance of using
reach—avoid criteria in the gameplay filter by performing a sensitivity analysis of the horizon in the
imagined gameplay. Fig. 3 shows that the gameplay filter with reach—avoid criteria still remains
100% safe rate even when the gameplay horizon is short (H = 10). In contrast, an “avoid-only”
gameplay filter that only requires not reaching F for [ steps incurs more safety violations as the
horizon decreases. The difference is due to shorter imagined gameplay resulting in more frequent
filter intervention for reach—avoid criteria but overly optimistic monitoring for avoid-only criteria
(oblivious to imminent failures beyond H). Further, as the gameplay horizon increases, the reach—
avoid gameplay filter’s intervention frequency decreases.

5 Conclusion

This work presents a game-theoretic learning approach to synthesize safety filters for high-order,
nonlinear dynamics. The proposed gameplay safety filter monitors system safety through imagined
games between its best-effort safety fallback policy and a learned virtual adversary, aiming to realize
the worst-case uncertainty in the system. We validate our approach on two different quadruped
robots under strong tugging forces and unmodeled irregular terrain while maintaining zero-shot
safety. An exhaustive simulation study is also performed to rigorously stress-test the approach and
quantify its reliability and conservativeness.

Limitations. Despite the strong empirical robustness in both simulated and physical experiments,
we do not have strong theoretical guarantees on convergence of offline gameplay learning, and
therefore learned disturbance policy can in general be expected to behave suboptimally in at least
certain regions of the state space. Naturally, the potential implications are quite serious, since a
suboptimal (not-truly-worst-case) disturbance model may lead the gameplay rollout to erroneously
conclude that a proposed course of action is safe, only to then be met by an ODD realization that
unexpectedly drives the robot into a catastrophic failure state. Without strong theoretical assurances
that for now remain elusive, this is not a method that should be placed in sole charge of a truly
safety-critical system where an eventual catastrophic failure can carry inadmissible cost.

The remarkably high effectiveness demonstrated by the gameplay filter across various within-ODD
experiments and even under out-of-ODD conditions could indicate that this new type of filter does
in fact enjoy desirable properties yet to be established. This calls for future theoretical work at the
intersection of game-theoretic reinforcement learning and nonlinear systems theory. In parallel, we
see an opportunity for application-driven research to leverage the computational scalability and de
facto robustness of gameplay filters to tackle ongoing challenges in robot learning, for example for
safe acquisition of novel skills as well as rapid detection of shifts in operating conditions enabling
safe runtime adaptation of ODD assumptions.
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Appendices

A Frequently Asked Questions

We discuss some design choices and implications of our method using an informal FAQ format.

Why choose worst-case safety and not probabilistic analysis? Although not as established in
the robot learning community, robust/worst-case formulations are widely used across engineering.
Their key advantage is that they can enforce systematic handling of all scenarios in a well-defined
class, even if some of them are highly unlikely—e.g., the robot must withstand all (rather than most)
external forces of up to 50 N, even the unlucky push that happens to maximally disturb its stance.
This is consistent with much of the safety analysis found in bridges, elevators, automobiles, aircraft,
and other safety-critical engineering systems, in great part because it facilitates a clear-cut social
contract between their designers and the broader public. For example, we do not certify elevators
for 95% of loads up to 300 kg or bridges for 99% of earthquakes up to magnitude 8, but rather all
such loads and earthquakes, and we treat any loss of safety within the specified bounds as a serious
failure to comply with the promise made to society. As robots and autonomous systems become
more widely deployed, we argue that their safety should be certified and held to similar standards,
at least in truly safety-critical settings where people could otherwise get hurt.

Isn’t worst-case safety too conservative to be useful? Actually, this is a common misconception.
Robust/worst-case assessments are not intrinsically more or less conservative than probabilistic
ones: this depends entirely on what set and distribution we choose to run these assessments against.
The term “worst-case” doesn’t mean a system must preserve safety in the worst conceivable scenario
(whatever that means), but rather under all conditions—including the worst one—in a specified set.
Worst-case safety lets designers and regulators draw this line (the ODD boundary), and it ensures
that the system then maintains safety across all certified (in-ODD) conditions. If your robot’s behav-
ior is “too conservative” this means it’s guarding against eventualities you don’t really care about:
just exclude them from your ODD. But, if you do want safety under these conditions, then your robot
is not actually too conservative: it’s doing what it should. With the gameplay filter, you are never
left wondering: each time it overrides the task policy, it logs the specific future it’s preempting.
Then, only one question remains: did you or did you not want your robot to avoid that hypothetical
crash? Worst-case safety is extremely powerful, and it lets you control exactly what situations your
robot is required to handle. You just need to be ready to answer to some hard what-if questions.

What does it mean for the proposed gameplay filter to approximate a perfect filter? If we had
the exact solution to the Isaacs reach-avoid equation (5), our gameplay rollouts would be necessary
and sufficient for safely reaching 7 in H (or fewer) steps. Since 7T is typically chosen to be a
broad, naturally reachable class of robot states (e.g., coming to a stable stance for a walking robot
or pulling over for an autonomous vehicle), safely reaching 7 within a long enough horizon H is
possible as long as remaining safe is possible in the first place. In other words, the sufficient reach-
avoid condition becomes a tight approximation of the all-time safety condition. We can observe this
phenomenon in Fig. 3, where the reach-avoid filter’s overstepping vanishes with long H.

Why is computing a gameplay rollout better than just querying the learned reach-avoid critic?
In theory, the critic should make fairly accurate predictions of game outcomes after training. In
practice, we have found that it’s often unreliable and/or overly conservative. A key advantage of the
gameplay rollout is that the uncertainty linked to the learning-based safety analysis is much more
structured: the robot’s future safety fallback is perfectly predicted (since it will be implemented as-
is), and the dynamics can be reliably simulated given players’ actions, so all uncertainty falls on the
learned disturbance. One very useful implication of this structure is that, even if the disturbance is
suboptimally adversarial, a predicted gameplay rollout ending in a safety failure constitutes a valid
certificate (i.e., a proof) that there exists an ODD realization in which the robot will violate safety if
the filter does not intervene immediately. That is, we know the gameplay safety monitor isn’t falsely
crying wolf—we can’t prove anything like that about the black-box neural safety critic’s predictions.
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Why is reach—avoid preferable if it’s more conservative than avoid-only? This is an important
aspect of predictive safety filtering and relates to a deeper tenet in safety engineering philosophy:
whatever the safety boundary is (i.e., a strategy that is “just safe enough”), it is preferable to approach
it from the safe side than from the unsafe side. In practice, we don’t know a priori how many
prediction steps H we need to avoid being blindsided by future failures just beyond the lookahead
horizon. When in doubt, it’s preferable to risk being overly conservative than to risk losing safety.

Having a terminal state constraint is common in MPC, how is reach—avoid different? The use
of a terminal controlled-invariant set in MPC is well established and ensures recursive feasibility.
Our choice of reach—avoid over an avoid—only safety condition is an instance of the same principle.
An important difference is that the (also well-established) reach—avoid condition gives our filter extra
flexibility by allowing the gameplay trajectory to reach the forever-safe set 7 at any time within the
horizon. This reduces conservativeness and often lets us to terminate the gameplay rollout early.

How do you determine 7 ? In practice, a suitable 7 is obtained from domain knowledge, offline
computation, pre-deployment learning, or some combination, often in the form of a stability basin
(region of attraction) around a desirable class of equilibrium points sufficiently away from failure.
For example, most robots can be robustly stabilized around static or steady cruising configurations
by comparatively simple linear feedback controllers (e.g., most modern walking robots ship with
built-in controllers that can stabilize them around a default stance). Larger all-time safe regions may
be found by (robust) Lyapunov analysis or even optimized through control Lyapunov functions.

What are the implications of the choice of 7? Broadly speaking, the larger the 7 we can char-
acterize offline, the easier the job of the gameplay filter at runtime, and, potentially, the fewer steps
we’ll need to reach it from more dynamic configurations. In fact, in the extreme case, we could be
remarkably lucky and find 7 = Q*, in which case, the gameplay filter’s job is made much easier,
since all candidate actions that are safe will keep the state in 7, immediately terminating the rollout
check. Conversely, all actions that leave 7 are unsafe and the gameplay rollout will not be able
to return to 7. In order to avoid initializing the gameplay filter from a no-win scenario, designers
should ensure that 7 contains the range of expected robot deployment conditions (Xp) in the ODD.

Why aren’t you using onboard cameras or lidar? Our empirical focus in this paper is on demon-
strating automatically synthesized safety filters that account for the full-order (36-D) walking dy-
namics of quadruped robots. We think that the simplest and clearest demonstration of this concept
is by having the filter only consider the robot’s own state (proprioception) without accounting for
the environment, obstacles, etc. (exoception). That said, incorporating information about the robot’s
surroundings can be extremely valuable—and often critical—to safety. We are very excited by the
scalability and generality that new safety approaches like the one we present in this paper seem to
enjoy, and we expect they will soon unlock full-order safety filters that incorporate rich exoceptive
information in real time, whether straight from raw sensor data or through intermediate representa-
tions provided by the perception and localization stack.

14



B Implementation Details

Robot hardware. Both the Ghost Robotics Spirit S40 and Unitree Go2 have built-in IMUs to
obtain body angular velocities and linear acceleration, and internal motor encoders to measure joint
positions and velocities. The S40 has no foot contact sensing; the Go2 receives a Boolean contact
signal for each foot. Neither robot’s safety filter is given access to visual perception.

Gameplay filter runtime implementation. To easily deploy our gameplay safety filter across two
different robots for the physical experiments, we encapsulate its computation inside a ROS service,
which we run on an offboard computer. Each robot’s onboard process calls this service wirelessly
(approximately 3.5 times per second) passing its current state estimate and proposed course of action
/newcandidate task policy; the offboard server then simulates a H-step gameplay for a fixed horizon
(for us, H = 300 or 3 s) and returns a Boolean indicating which policy to use for the next L time
steps; our choice of L = 10 accounts for the wireless round trip, which makes up a significant
fraction (approximately 70%) of the total latency.

We note that the computational resources used for the offboard computation are comparable to those
available on current mobile robot platforms. In particular, the entire simulation and filter logic
was run on one single core of an Intel i7-1185G7 processor at 3GHz. For comparison, the Go2 is
equipped with a second computer (not used in our experiments) with a 6-core 8GB NVIDIA Jetson
Orin Nano processor at 1.5 GHz. We estimate that the total latency of the gameplay filter run fully
onboard the Go2 with the same simulator would be roughly comparable, possibly lower given the
absence of a wireless roundtrip.

Operational design domain. The safety filter is computed for a fairly simple ODD, defined by the
nominal robot simulator perturbed by forces of up to 50 N applied anywhere on the robot’s torso;
the disturbance adversary acts by a vector d € D C RS encoding what force to apply and where.
We intentionally limit the ODD to only consider flat ground. The failure set F is defined as all fall
states, in which any non-foot robot part makes contact with the ground. The deployment set and
controlled-invariant set X = 7 are chosen empirically to contain all four-legged stances with a
lowered torso, around which the robot is robustly stable with a simple leg position controller 77 .

Test conditions. The irregular terrain is a 2 m X 4 m area with a 15-degree incline along one edge,
and two memory foam mounds, 5 cm and 15 cm high, positioned 1.8 m from each other. Tugging
forces are applied manually through a rope, attached to the robot’s torso and to a motion-tracked
dynamometer with rated capacity of SO0ON, 0.1 N resolution and sampling rate of 1000 Hz and set
to provide audiovisual alerts at 80% and 100% of the ODD limit

Policies. The learned control and disturbance actors, as well as the safety critics, are independent
of the robot’s absolute position p.,p,,p. and heading angle 6,; of these, only distance to the
ground has an effect on the dynamics, but since it is hard to observe without vision, we do not
make it available. In the case of the Go2 quadruped (but not the S40), the policies additionally
depend on the discrete contact state, encoded as a Boolean (true/false) indicator for each foot. In
simulation, each neural network policy receives as input the ground-truth state of the robot in the
simulator; in hardware experiments, they instead receive a state estimate computed by the robot’s
on-board perception stack. Each policy is implemented by a fully-connected feedforward neural
network with 3 hidden layers of 256 neurons, and critics have 3 hidden layers with 128 neurons.
We handcraft a task policy using an inverse kinematics gait planner for forward/sideways walking.
We use a low-level PD position controller that outputs torques 7 = K,(66}) — K4 - w? to the robot
motor controller with K,, K, the proportional and derivative gains.

State and action spaces. For the scope of this paper, we aim to construct a proprioceptive safety
filter that relies on onboard estimation of the robot’s kinematic state but no exoceptive information
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(from camersa, lidar, etc.) about the surrounding environment.> We encode the quadrupedal robots’
state and action vectors as follows:

X = [pzapyypzaUzvvyaUzvgzvgyvgszmwyawm{0}}7{0‘)}}] ,

u:=[{663}] ,

with pg, py, p. the position of the body frame with respect to a fixed reference (“world”) frame;
Vg, Uy, v, the velocity of the robot’s torso expressed in (forward-left—up) body coordinates;
6,0y, 0. the roll, pitch, and yaw angles of the robot’s body frame with respect to the world frame;*
Wy, wy,w, the body frame’s axial rotational rates; and 6}, w?, 0} the angle, angular velocity, and
commanded angular increment of the robot’s i joint.

The above constitutes a full-order state representation of the robot’s idealized Lagrangian mechanics.
A total of 18 generalized coordinates encode the 6 degrees of freedom of the torso’s rigid-body pose
in addition to the configuration of 3 rotational joints (hip abduction, hip flexion, and knee flexion)
for each of the 4 legs; the robot’s rate of motion is expressed through 18 corresponding generalized
velocities, for a total 36 continuous state variables. We discuss discrete contact variables below.

The robot’s control authority is achieved by independently modulating the torque applied on each
of its 12 rotational joints by an electric motor; in modern legged platforms, these motors typically
have dedicated low-level controllers, so our control policy sends a tracking reference to each motor
controller rather than directly commanding a torque.

Finally, the disturbance is modeled as an external force that can act on any point of the robot’s torso
and in any direction of Euclidean space, with a bounded modulus. The specified range of admissible
disturbance forces is discussed below.

Black-box simulator(s). The dynamical model is implemented by the off-the-shelf PyBullet physics
engine [52] using the standardized robot description files made available by the manufacturers of
each platform. Our method treats the simulator as black-box environment for both training and
runtime safety filtering, allowing the engine and/or robot model to be easily swapped out. The
generality and modularity of our approach is perhaps best illustrated by the fact that we synthesized
and deployed the safety filter for the Go2 robot using identical hyperparameter values as for the
S40 robot. Our only modification, other than replacing the robot model in the physics engine,
was to append 4 state components to each neural network’s input space to account for foot contact
information; we note that even this straightforward addition is entirely optional, since we could have
alternatively constructed a safety filter that simply disregarded the extra sensor data.

Safety specification. We are interested in preventing falls, understood as any part of the robot other
than its feet making contact with the ground. To encode the failure set of all such falls with a simple
margin function, we define a small number of critical points p., including the 8 corners of a (tight)
3-D bounding box around the robot’s torso as well as its four knee joints. The failure margin is

g(x) = min {miin{zciorner} - ECOTHCE_(]? miin{zlinee} - anee} i

i mer the vertical distance to the ground of the i™ robot body corner point and z{ ., the vertical
distance to the ground of the i robot knee point. The target (all-time safe set) is defined as a narrow
neighborhood of a static stance with all four feet on the ground and a sufficiently lowered torso,

with z?

3Ranged perception can improve the robustness of walking controllers by sensing terrain geometry and
texture, and it is strictly needed for ODDs including unmapped or moving obstacles. Full-order legged robot
safety filters combining proprioception and exoception have significant potential and are ripe for investigation.
“For the purposes of this demonstration, we find that an Euler angle representation of body attitude performs
adequately and makes the failure set straightforward to encode. In general, a quaternion-based representation
may be preferable, avoiding the risk of computational issues in the neighborhood of singularities (at 0, = +7).
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chosen so that the robot is robustly stable with a simple stance controller. The target margin is
z) = min{@ — |wal, @ = |wy|, @ — |w.],
U— |vﬂﬂ|7 v— |Uy|7 v— |UZ|7
Zeomner,¢ — m?X{Z(l;orner}ﬂ Zfoot — mlax{zt?ool}}a

with z{ , the vertical elevation of the i robot foot relative to the ground. The threshold values we
used for our failure and target set specification are as follows.

Zeomer,g = 0.1 m Zknee = 0.05 m
Zeorner,! = 0.4m Ztoot = 0.05 m
w=10%s v=0.2m/s

Uncertainty specification. To account for uncertainty in the deployment conditions as well as gen-
eral modeling error (or sim-to-real gap), our operational design domain (ODD) includes an external
force that may push or pull any point on the robot’s torso in any direction with a maximum magni-
tude of 50 N:

d= [vaFyanapfapgapf] ) ®)

where F' = [F,, F,,, F,] represents the force vector applied at position defined by pf , pff , pf in the
body coordinates p’, p5 € [-0.1,0.1], pf € [0,0.05] m. The red arrows in the imagined gameplay

of Fig. 2 show examples of learned adversarial disturbance.
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C Extended Evaluation

To further demonstrate the strengths of our approach and shed light on its superior scalability to
complex robot dynamics, we compare the gameplay performance of the self-play-trained controller
and disturbance policies as training proceeds. The results in Figures 4 and 5 suggest that the dense
temporal difference signal in reach—avoid games plays a determining role in enabling data-efficient
learning, while previously proposed safety methods that use reward-based RL with a (sparse) failure
indicator consistently require more training episodes before starting to learn meaningfully robust
safe control strategies.

Step

1.5M 2M 2.5

Figure 4: Safe rate achieved by the robot controller against the co-trained adversarial disturbance
as the adversarial RL synthesis proceeds under reach-avoid objective (blue) and reward-based
objective (red).
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Figure 5: Cumulative safety violation count as the adversarial RL synthesis proceeds under reach-
avoid objective (blue) and reward-based objective (red).

D Detailed Tugging Force Plots

We provide time plots for all runs of the tug test experiment on the S40 robot (summarized in Ta-
ble 3), displaying the magnitude of the tugging force over the course of each trial. We present all
10 runs for each of the three evaluated control schemes: gameplay filter ¢#*™¢, critic (value-based)
filter qﬁcritic, and unfiltered task policy 73, Each run is annotated to show individual attacks, defined
as sequences of significant tug forces (> 10N) that are applied continually or close together in time
(less than 1 s interruption within an attack). Conversely, distinct attacks are at least 1 s away from
each other, to ensure that the effects of the previous attack have died off before the next one begins.

Looking at individual attacks within each run provides a more fine-grained insight on the perfor-
mance of each control scheme under various disturbances (both within-ODD and out-of-ODD).
Importantly, it allows us to attribute a safety failure to the attack that immediately preceded it in a
given run, but mark all earlier attacks in the same run as safely handled.
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Figure 6: Time plots of the force applied in all 10 runs of the Spirit S40 physical tugging test using
the gameplay filter. Across the 10 runs, there were 56 attacks, 35 of which were roughly (up to 10%

error) within the ODD bound of 50 N. Plots in red indicate a failed run (ending in a fall), plots in

blue indicate a safe (fall-free) run.
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Figure 7: Time plots of the force applied in all 10 runs of the Spirit S40 physical tugging test using
the critic (value-based) filter. Across the 10 runs, there were 28 attacks, 15 of which were roughly
(up to 10% error) within the ODD bound of 50 N. Plots in red indicate a failed run (ending in a fall),
plots in blue indicate a safe (fall-free) run.
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Figure 8: Time plots of the force applied in all 10 runs of the Spirit S40 physical tugging test using
the gameplay filter. Across the 10 runs, there were 16 attacks, 5 of which were roughly (up to 10%
error) within the ODD bound of 50 N. Plots in red indicate a failed run (ending in a fall), plots in
blue indicate a safe (fall-free) run.
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