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ABSTRACT

Contrastive learning has shown its effectiveness in image classification and gen-
eration. Recent works apply contrastive learning on the discriminator of the Gen-
erative Adversarial Networks. However, there is little work exploring if con-
trastive learning can be applied to the encoders-decoder structure to learn dis-
entangled representations. In this work, we propose a simple yet effective method
via incorporating contrastive learning into latent optimization, where we name
it ContraLORD. Specifically, we first use a generator to learn discriminative
and disentangled embeddings via latent optimization. Then an encoder and two
momentum encoders are applied to dynamically learn disentangled information
across a large number of samples with content-level and residual-level contrastive
loss. In the meanwhile, we tune the encoder with the learned embeddings in an
amortized manner. We evaluate our approach on ten benchmarks in terms of
representation disentanglement and linear classification. Extensive experiments
demonstrate the effectiveness of our ContraLORD on learning both discrimina-
tive and generative representations.

1 INTRODUCTION

In recent years, disentanglement of factors in images has attracted many researchers’ attention,
which mainly includes two folds: adversarial and non-adversarial methods. Adversarial meth-
ods (Mathieu et al., 2016; Denton & Birodkar, 2017; Hadad et al., 2018; Razavi et al., 2019; Gab-
bay & Hoshen, 2021) often apply a min-max optimization framework (Goodfellow et al., 2014)
for disentanglement of images, which costs much time on hyper-parameters tuning. In terms of
non-adversarial models, several variational autoencoders (Higgins et al., 2017; Kim & Mnih, 2018)
variants have been proposed to disentangle the generative factors in an unsupervised manner without
inductive biases, which did not achieve satisfactory results as proven in an empirical study (Locatello
et al., 2019).

With the extra class supervision, semi-supervised methods achieve promising performance in disen-
tanglement. Typically, comprehensive experiments in (Locatello et al., 2020) validate the effective-
ness of a limited amount of supervision in state-of-the-art unsupervised disentanglement models.
LORD (Gabbay & Hoshen, 2020) applies a latent optimization framework with a noise regularizer
on content embeddings to achieve superior performance over amortized inference. Based on LORD,
OverLORD (Gabbay & Hoshen, 2021) is proposed to disentangle class, correlated and uncorrelated
attributes for image translation. A more recent work (Gabbay et al., 2021) adopts a pre-trained
CLIP (Radford et al., 2021) model to generate partial annotations for image manipulation. How-
ever, there exist two main drawbacks among these methods: 1) using different separate encoders
for different factors is resource-wasteful for real-world applications and requires expensive human
design. 2) just learning the content embeddings inside each sample is not sufficient to learn the
diversity existing in the dataset.

Driven by the shortcomings discussed above, we propose a simple yet effective method named
ContraLORD, where we incorporate contrastive learning into latent optimization for representation
disentanglement. Recent works (Deng et al., 2020; Ojha et al., 2020) apply the contrastive learning
on the discriminator of the GAN (Goodfellow et al., 2014) for disentangling representations. Typi-
cally, the 3D imitative-contrastive learning in (Deng et al., 2020) is used for controllable face image
generation by comparing pairs of generated images. However, in this work, we focus on applying
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contrastive learning on the encoders to learn the discriminative and generative embeddings with dis-
entangled information. Specifically, we first apply a generator to learn discriminative and generative
embeddings via latent optimization. Then we apply an encoder and a momentum encoder to dy-
namically learn disentangled information across a large number of samples with content-level and
residual-level contrastive loss. In the meanwhile, we use the learned discriminative and generative
embeddings to tune the encoder in an amortized manner.

We evaluate our ContraLORD on two main tasks: linear classification and disentanglement. Exten-
sive experiments show the effectiveness of the learned discriminative embeddings on linear classi-
fication and generative embeddings on the disentanglement of factors. We conduct comprehensive
studies on three benchmarks on linear classification and seven benchmarks on disentanglement to
investigate if contrastive self-supervised models can learn disentangled features. In the meantime,
we achieve superior performance on linear classification compared to baselines. Our ContraLORD
also achieves promising results over state-of-the-art methods in terms of disentanglement.

The main contributions of this work can be summarized as follows:

• We present a simple yet effective method called ContraLORD by incorporating contrastive
learning into latent optimization for representation disentanglement and linear classifica-
tion.

• We formally explore the disentangled features across a large number of samples with
content-level and residual-level contrastive losses.

• Extensive experiments on ten benchmarks show the effectiveness of our approach on learn-
ing disentangled representations.

2 RELATED WORK

Discriminative representations learning. Discriminative representations learning has addressed
researchers’ attention for a long time since discriminative representations are significant for image
classification. Most of the previous works adopt supervised (Lezama et al., 2018) and unsupervised
learning (Ji et al., 2017; Zhang et al., 2018; Zhou et al., 2018; Zhang et al., 2019) to learn embeddings
that most discriminate between classes in the dataset. Typically, the principle of maximal coding
rate reduction (Yu et al., 2020) is applied to maximize the coding rate difference between the whole
dataset and the sum of each separate class. However, there exists little work of contrastive learning
to explore the discriminative representations for the pre-training stage. In this work, we mainly focus
on learning discriminative embeddings for linear classification by incorporating contrastive learning
into latent optimization to improve the performance of baselines.

Disentangled Representations Learning. Disentangled representation learning aims at learning
generative factors existing in the dataset, that is, disentanglement learning. A bunch of previous
work focuses on unsupervised learning with variational autoencoders, such as β-VAE (Higgins et al.,
2017), Factor-VAE (Kim & Mnih, 2018). Following those work, DCI disentanglement (Eastwood &
Williams, 2018), SAP score (Kumar et al., 2018), and Mutual Information Gap (MIG) (Chen et al.,
2018) are often utilized as quantitative metrics to measure the quality of disentangled representa-
tions. In recent years, semi-supervised models have been used by many researchers in the literature.
Adding a limited amount of supervision to unsupervised models is proven in (Locatello et al., 2020)
to be effective in learning disentangled representations for real-world scenarios. LORD (Gabbay
& Hoshen, 2020) leverages the latent optimization framework with a noise regularizer on content
embeddings for class and content disentanglement. More recently, a simple framework for disen-
tangling labeled and unlabeled attributes is utilized in OverLORD (Gabbay & Hoshen, 2021) for
high-fidelity images synthesis. A study (Gabbay et al., 2021) uses a CLIP (Radford et al., 2021)
pre-trained model to annotate a set of attributes for disentangled image manipulation. In this work,
we intend to learn disentangled embeddings via combining latent optimization and contrastive self-
supervised learning.

Contrastive Learning. Recently, contrastive self-supervised learning (Tian et al., 2020; Chen et al.,
2020a;b; Grill et al., 2020; He et al., 2020; Chen et al., 2020c; Chen & He, 2021) has been explored
a lot by many effective methods. SimCLR (Chen et al., 2020a), an end-to-end structure, is proposed
to pull away from the features of each instance from those of all other instances in the training set.
In the self-supervised setting, low-level image transformations such as cropping, scaling, and color
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jittering are utilized for encoding the in-variances from samples. The InfoNCE loss, that is, the
normalized temperature-scaled cross-entropy loss, are often optimized to maximize the similarity
between positive samples and minimize the similarity between negative samples. Large batch size
is always used in this kind of end-to-end structure (Chen et al., 2020a;b) to accumulate a large
bunch of negative samples in the contrastive loss. PIRL (Misra & Maaten, 2020) without a large
batch size applies a memory bank to store negative samples and update representations at a specified
stage. MoCo (He et al., 2020) and MoCov2 (Chen et al., 2020c) replace the memory bank with a
memory encoder to queue new batch samples and to dequeue the oldest batch. In this work, we
leverage content-level and residual-level momentum encoders to store a queue of negative samples
with disentangled information for learning generative embeddings, where content-level and residual-
level contrastive losses are applied to capture content and residual representations.

3 METHODOLOGY

3.1 PROBLEM SETUP

In this part, we first begin with the problem setup, and formally define the notations for easy read-
ing. In terms of the problem, our goal is to demystify the disentangled and discriminative features
learned by contrastive self-supervised learning. To address this problem, we propose a simple yet ef-
fective method by combining contrastive learning and latent optimization together for representation
disentanglement. To explain it better, we define the notations below in a unified manner.

Notations. Given a set of training examples X = {x1,x2, · · · ,xn}. For each image xi, i ∈
{1, 2, · · · , n}, we need to learn one discriminative embeddings d and a generative embeddings
gi from a pre-defined set of embeddings {g1,g2, · · · ,gm}, where m denotes the total number of
generative factors in the training data. That is, di ∈ R1×d,gi ∈ R1×g , where d, g denote the
dimensionality of discriminative and generative embedding, separately. In our setting, we split the
generative embedding gi into two folds: content embeddings gc

i and residual embeddings gr
i . The

content embeddings contain the information that is related to the discriminative embedding, while
the residual embedding includes the uncorrelated information.

Overall, the objective of our work is to learn di,g
c
i ,g

r
i for each image xi from a training dataset. In

the next part, we present the technical details of our method. To learn di,g
c
i ,g

r
i from a set of training

examples, we propose a simple yet effective approach called ContraLORD, as shown in Figure 1.
Our ContraLORD mainly includes two parts: 1) embedding optimization: we first use a generator
G(·) to learn discriminative and disentangled embeddings via latent optimization. 2) encoder pre-
training: we apply a encoder f(·) and a momentum encoder fm(·) to dynamically learn disentangled
information across large amount of samples with content- and residual-level contrastive loss.

3.2 EMBEDDING OPTIMIZATION

In order to learn the discriminative and disentangled embeddings, we are motivated by LORD (Gab-
bay & Hoshen, 2020) to introduce the latent optimization in the first stage. Specifically, we apply
a generator G(·) to reconstruct the original image xi by using the discriminative and disentangled
embeddings of each sample. Instead of using the KL-divergence in variation auto-encoders (Kingma
& Welling, 2014), we equally add a regularizer with Gaussian noise of a fixed variance to the disen-
tangled embeddings gci and gri . Thus, the objective of embeddings optimization is defined as

Lopt = s

n∑
i=1

`(G(di, gci + zi, gri + zi)), xi) + λ · (||gc
i ||2 + ||gri ||2) (1)

where `(·) denotes `2 loss for synthetic data and VGG perceptual loss for real images. λ is the
penalty weight of the capacity of the disentangled embeddings. zi ∼ N (0, σ2I). In this way, we
can learn the disentangled embeddings di, gci , gr

i without any adversarial learning involved, that is,
d̃i, g̃

c
i , g̃

r
i = argmin Lopt. For training sets with annotations, d̃i is given.
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Figure 1: The overall framework of our proposed ContraLORD model.

3.3 ENCODER PRE-TRAINING

After learning the optimized embeddings, we need to train a generalized encoder during the pre-
training stage. In order to optimize the encoder f(·), we reconstruct the original image xi with the
output embeddings from f(·), and the loss function is calculated as

Lrec =

n∑
i=1

`

(
G
(
hd
(
f(xi)

)
, hcg
(
f(xi)

)
, hrg
(
f(xi)

))
, xi
)

(2)

where `(·) denotes `2 loss for synthetic data and VGG perceptual loss for real images.
hd(·), hcg(·), hrg(·) denote the head for generating the discriminative, content-level, and residual-level
embeddings. To learn more disentangled information in the discriminative and disentangled embed-
dings, we use the learned embeddings in the first stage as the supervision and define the objective
as:

Lsup =

n∑
i=1

||hd(f(xi))− d̃i||2 + ||hcg(f(xi))− g̃ci ||
2 + ||hrg(f(xi))− g̃ri ||

2 (3)

where d̃i, g̃ci , g̃ri denote the learned representations from the first optimization stage, respectively.

Content-level Contrastive Loss. To learn more disentangled content embeddings across examples
in the dataset, we feed a content momentum queue {xkey

1 , xkey2 , · · · , xkeyk , · · · , xkeyK } of one query
sample xqueryi into a momentum encoder fm(·). The illustration of the content-level contrastive
learning is shown in Figure 2 (left). As can be seen, we generate the content embeddings gck, k ∈
{1, 2, · · · ,K} from the momentum queue, and gc

q from the query sample xqueryi . Then we calculate
the similarity between the original content embedding gc

i and gcq, gck for content-level contrastive
loss. Finally, the content-level contrastive loss is defined as

Lcon =

n∑
i=1

− log
exp(gci · gcq/τ)

exp(gci · gcq/τ) +
∑K

k=1 exp(gci · gck/τ)
(4)

where K denotes the number of negative samples in the momentum queue. τ is a temperature
hyper-parameter. In the backward process, we update the parameters of the encoder f(·) according
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Figure 2: Content-level (left) and residual-level (right) contrastive learning designed in our Con-
traLORD.

to the gradient of this loss. The parameters of the momentum encoder f cm(·) is updated by fm(·)←
mfm(·) + (1−m)f(·), where m ∈ (0, 1] is a momentum coefficient.

Residual-level Contrastive Loss. In order to further disentangle the residual part in the disentangled
embeddings, we introduce a residual momentum encoder frm(·) to receive the residual momentum
queue and generate a set of residual embeddings grk, k ∈ {1, 2, · · · ,K}. Thus, the residual-level
contrastive loss is defined with key embeddings gr

k, query embedding grq , and the original embedding
gri as

Lres =

n∑
i=1

− log
exp(gr

i · grq/τ)
exp(gri · grq/τ) +

∑K
k=1 exp(gri · grk/τ)

(5)

where K denotes the number of negative samples in the momentum queue, and τ is a temperature
hyper-parameter. The gradient of this loss is also used to update the parameters of the encoder f(·).
We update the parameters of the momentum encoder fm(·) by fm(·) ← mfm(·) + (1 − m)f(·),
where m ∈ (0, 1] is a momentum coefficient.

The overall objective of our ContraLORD is optimized in an end-to-end manner as
L = (Lrec + ·Lsup) + λcon · Lcon + λres · Lres (6)

where λcon, λres denote the weight of the content-level and residual-level contrastive loss, respec-
tively. Extensive ablation studies are conducted to explore the effects of each loss on the final
performance of our ContraLORD. We summarize the overall algorithm of our training approach in
Algorithm 1.

3.4 SMOOTHNESS OF EMBEDDINGS

In order to measure the smoothness of embeddings pre-trained by the encoder, we borrow the idea of
uniformity property in the instance-wise contrastive learning, and introduce the Gaussian potential
kernel (Bartók & Csányi, 2015) to calculate the average pairwise Gaussian potential as:

smoothness = E(gi,gj)∼pc
[e−t||gi−gj ||

2

] + E(gi,gj)∼pr
[e−t||gi−gj ||

2

] (7)

where pc, pr denotes the distribution of content and residual embeddings in the hyper-sphere, and
t is a positive factor to define the weight of the `2 distance between embeddings gi and gj . In our
experiments, we follow previous work (Wang & Isola, 2020) and set t=2.
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Algorithm 1 ContraLORD main learning algorithm
Input: generator G(·), encoder f(·), momentum encoders f cm(·), frm(·), heads hd(·), hg(·).

1: Initialize the parameters G(·), f(·), fcm(·), frm(·), hd(·), hg(·),
2: Initialize the embeddings di, gi, i ∈ {1, 2, · · · , n}
3: # Embedding Optimization
4: for each epoch do
5: Apply G(·) to reconstruct original images
6: Calculate the optimization loss in Eq. 1
7: Update di, gi
8: # Encoder Pre-training
9: for each epoch do

10: Apply f(·), hd(·), hg(·) to reconstruct original images and calculate the loss in Eq. 2
11: Apply embeddings d∗i , g∗i as supervision and calculate the loss in Eq. 3
12: Apply f(·), f cm(·) to encode content features gcq, gck and calculate loss as in Eq. 4
13: Apply f(·), frm(·) to residual features grq, grk and calculate loss as in Eq. 5
14: Compute the total loss in Eq. 6
15: Update the parameters of f(·), hd(·), hg(·)
16: Update the momentum parameters of f cm(·), frm(·)
17: Update the content and residual momentum queue

Output: f(·), hd(·), hg(·)

4 EXPERIMENTS

4.1 DATASETS & CONFIGURATIONS

Following previous methods (He et al., 2020; Chen et al., 2020a), we evaluate the linear classifi-
cation of the encoder pre-trained by our ContraLORD on three widely-used benchmarks, including
CIFAR-10, CIFAR100, ImageNet-100 (Deng et al., 2009; Tian et al., 2020). In terms of disentangle-
ment (Gabbay & Hoshen, 2020; 2021), we evaluate the disentangled embeddings on four synthetic:
Shapes3D (Kim & Mnih, 2018), Cars3D (Reed et al., 2015), dSprites (Higgins et al., 2017), Small-
Norb (LeCun et al., 2004); And three real datasets: CelebA (Liu et al., 2015), AFHQ (Choi et al.,
2020), CelebA-HQ (Karras et al., 2018).

Specifically, Shapes3D (Kim & Mnih, 2018) contains 4 shapes, 8 scales, 15 orientations, 10 floor
colors, 10 wall colors, and 10 object colors. Cars3D (Reed et al., 2015) includes 183 car CAD mod-
els with 24 different azimuth directions and 4 elevations, where 163 models are for training and 20
for testing. dSprites (Higgins et al., 2017) contains 3 shapes, 6 scales, 40 orientations, 32 x posi-
tions, and 32 y positions. SmallNorb (LeCun et al., 2004) consists of 50 toys with 5 generic classes,
6 lighting conditions, 9 elevations, and 18 azimuths. CelebA (Liu et al., 2015) includes 10,177
celebrities, in total 202,599 images, where we use 9,177 images for training and 1,000 images for
testing. AFHQ (Choi et al., 2020) is an animal face dataset with 15,000 high-quality images of three
categories: cat, dog, and wildlife. CelebA-HQ (Karras et al., 2018) contains 30,000 high-quality
images from CelebA with gender as the class, and masks are used for the hairstyle disentanglement.

For a fair comparison, we follow the same setting as previous work (Gabbay & Hoshen, 2020; 2021).
During embedding optimization, we set d=256, g=128, K=12800, and λ=0.001. The generator is
optimized by Adam (Kingma & Ba, 2014) optimizer with a learning rate of 0.0001. We train the
encoder with a learning rate of 0.001. For the regularized Gaussian noise, we set σ=1. For encoder
pre-training, we closely follow MoCo (He et al., 2020) and use the same data augmentation. For the
encoder networks, we experiment with the commonly used encoder architecture, ResNet-50. We
train at batch size 256 for 200 epochs.

4.2 EVALUATION METRICS

For evaluation metrics, we use top-1, top-5 accuracy for linear classification. In terms of evaluating
the disentangled embeddings, we use three mainly-used metrics in the literature: DCI (Eastwood
& Williams, 2018), SAP score (Kumar et al., 2018), and MIG (Chen et al., 2018). DCI measures
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the disentanglement, completeness, and informativeness of the generative embeddings. SAP score
refers to a separated attribute predictability score that captures one generative factor in only one
disentangled dimension. MIG is the mutual information gap to calculate the difference between the
top two latent factors with the highest mutual information. In the meanwhile, we follow previous
works (Gabbay & Hoshen, 2020; 2021) and evaluate our ContraLORD on FID and LPIPS. FID
measures how the disentangled embeddings are translated to the target domain, while LPIPS is used
for calculating the quality of transferred content embeddings in terms of perceptual similarity.

4.3 EXPERIMENTAL RESULTS

In this part, we conduct extensive experiments to evaluate the discriminative and disentangled em-
beddings learned by our ContraLORD, which demonstrates the advantage of our approach against
previous work (Gabbay & Hoshen, 2020; 2021) to learn discriminative and disentangled represen-
tations via content-level and residual-level contrastive loss.

Evaluation of discriminative embeddings. We evaluate the quality of the discriminative embed-
dings on linear classification. Specifically, we train the linear model on frozen features from var-
ious self-supervised methods and report the experimental results in Table 1. Our ContraLORD
substantially outperforms baselines (Gabbay & Hoshen, 2020; 2021) in terms of top-1 and top-5
accuracy on all benchmarks. Particularly, we achieve the performance gain over LORD (Gabbay &
Hoshen, 2020) by 8.88%, 9.35%, 8.91%. In the meanwhile, we surpass a concurrent work (Gabbay
& Hoshen, 2021) using the class embeddings with a higher dimension. This demonstrates the supe-
riority of our ContraLORD incorporating content-level and residual-level contrastive learning into
latent optimization. Furthermore, our ContraLORD outperforms the pure contrastive self-supervised
methods (He et al., 2020; Chen et al., 2020a), which also validates the effectiveness of latent opti-
mization in learning more generalized and discriminative embeddings for linear classification.

Table 1: Comparison results of linear classification on CIFAR-10, CIFAR-100, ImageNet-100, and
TinyImageNet-200 datasets.

Dataset Method Arch. Epochs Top-1 Top-5

CIFAR-10

MoCo ResNet-50 200 93.30 99.85
SimCLR ResNet-50 200 92.00 99.81
LORD ResNet-50 200 85.13 96.22
OverLORD ResNet-50 200 91.62 98.61
ContraLORD (ours) ResNet-50 200 94.01 99.89

CIFAR-100

MoCo ResNet-50 200 71.70 90.23
SimCLR ResNet-50 200 71.58 90.11
LORD ResNet-50 200 63.32 87.05
OverLORD ResNet-50 200 69.96 89.53
ContraLORD (ours) ResNet-50 200 72.67 90.97

ImageNet-100

CMC ResNet-50 200 66.20 88.75
MoCo ResNet-50 200 72.80 91.04
LORD ResNet-50 200 67.32 89.26
OverLORD ResNet-50 200 70.16 90.45
ContraLORD (ours) ResNet-50 200 76.23 92.52

Evaluation of disentangled embeddings. Following existing work (Gabbay & Hoshen, 2020;
2021), we evaluate the disentanglement performance of disentangled embeddings with 100 labels
on four synthetic datasets. Table 2 reports the comparison results. As can be seen, our ContraLORD
still outperforms existing methods in terms of all metrics, including DCI, SAP, and MIG. This shows
that our ContraLORD with the content-level and residual-level contrastive loss is superior to learn
more disentangled information in the disentangled embeddings. In the meanwhile, we follow the
setting in OverLORD (Gabbay & Hoshen, 2021) and conduct experiments on three real benchmarks
in Table 3. We can observe that our ContraLORD achieves the best performance in terms of 5 out of
7 evaluation metrics. For the other two metrics, we still achieve comparable results when compared
to OverLORD (Gabbay & Hoshen, 2021). These results further validate the effectiveness of our
ContraLORD in learning disentangled representations with more disentangled information.

Smoothness of content and residual embeddings. We simultaneously measure the smoothness
score of content, and residual embeddings pre-trained by the encoder and report the results in the
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Table 2: Disentanglement performance on Shapes3D, Cars3D, dSprites, and SmallNorb datasets.
Dataset Method D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)

Shapes3D

Locatello et al. 0.03 0.03 0.22 0.01 0.02 0.15
LORD 0.54 0.54 0.54 0.15 0.43 0.48
Gabbay et al. 1.00 1.00 1.00 0.30 0.96 0.82
ContraLORD (ours) 1.00 1.00 1.00 0.42 1.00 0.96

Cars3D

Locatello et al. 0.11 0.17 0.22 0.06 0.04 0.16
LORD 0.26 0.48 0.36 0.13 0.20 0.27
Gabbay et al. 0.40 0.41 0.56 0.15 0.35 0.33
ContraLORD (ours) 0.51 0.56 0.71 0.25 0.41 0.45

dSprites

Locatello et al. 0.01 0.01 0.16 0.01 0.01 0.12
LORD 0.16 0.17 0.43 0.03 0.06 0.18
Gabbay et al. 0.75 0.75 0.68 0.13 0.48 0.52
ContraLORD (ours) 0.85 0.84 0.79 0.24 0.62 0.67

SmallNorb

Locatello et al. 0.02 0.08 0.18 0.01 0.01 0.13
LORD 0.01 0.03 0.30 0.01 0.02 0.17
Gabbay et al. 0.27 0.39 0.45 0.14 0.27 0.29
ContraLORD (ours) 0.36 0.51 0.56 0.26 0.42 0.48

Table 3: Disentanglement performance on CelebA, AFHQ, and CelebA-HQ datasets.

Method CelebA AFHQ CelebA-HQ
Id (↑) Exp (↓) Pose (↓) FID (↓) LPIPS (↑) FID (F2M,↓) FID (M2F,↓)

LORD 0.48 3.2 3.5 97.1 0 - -
OverLORD 0.63 2.7 2.5 16.5 0.51 54.0 42.9
ContraLORD (ours) 0.61 2.6 2.3 15.8 0.53 54.2 42.6

last column of Table 2. We can observe that our ContraLORD outperforms existing methods by
a large margin (0.14, 0.12, 0.15, 0.19) on all four benchmarks in terms of the smoothness score,
which shows the advantage of our ContraLORD on learning disentangled embeddings that are more
uniformly distributed on the hyper-sphere. In the meanwhile, our smoothness score is positively cor-
related with the previous disentanglement metrics. This demonstrates the effectiveness of learning
uniformly distributed embeddings of disentangled information for representations disentanglement.

5 ABLATION STUDY

In this section, we perform comprehensive ablation studies to explore the effect of each loss
(Lrec,Lsup,Lcon,Lres), batch size, and the number of negative samples (K) on the final perfor-
mance of our ContraLORD. Unless specified, we conduct all ablation studies on the Shapes3D
dataset.

Table 4: Ablation study on each loss.
Lrec Lsup Lcon Lres D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)

7 7 7 7 0.02 0.01 0.13 0.01 0.01 0.09
3 7 7 7 0.26 0.29 0.31 0.08 0.15 0.22
3 3 7 7 0.54 0.54 0.54 0.15 0.42 0.48
3 3 3 7 0.91 0.89 0.88 0.37 0.85 0.75
3 3 3 3 1.00 1.00 1.00 0.42 1.00 0.96

Effect of each loss. To explore how each proposed loss affects the final performance of our method,
we ablate each module on the final loss and show the disentanglement results in Table 4. Without
four losses in the encoder pre-training stage, we achieve the worst performance. Adding Lsup to
only Lrec boosts the results by 0.24, 0.28, 0.18, 0.07, 0.14, and 0.13. By combining Lcon with Lsup

and Lrec, we achieve a performance gain of 0.37, 0.35, 0.34, 0.22, 0.43, and 0.27. These results
demonstrate the effectiveness of our content-level and residual-level loss in learning disentangled
embeddings. Finally, our ContraLORD, with all losses, achieves the best performance in terms of
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all disentanglement metrics and the smoothness score, which validates the rationality of each loss
on learning disentangled representations.

Effect of batch size. Table 5 reports the exploration study results of batch size. Specifically, we vary
the batch size from 16, 32, 64, 128, 256, 512 during the encoder pre-training stage. From the results,
we can observe that our approach performs the best when the batch size is 512. With a smaller batch
size of 256, our ContraLORD does not have a large performance decline (0.03, 0.01) in terms of
SAP score and Smoothness score. When the batch size is set to 32, our method has an obvious
performance decrease, which shows the importance of suitable batch size in our content-level and
residual-level contrastive loss by introducing negative samples across the same batch. When we
increased the batch size to 1024, the performance of our approach on all disentanglement metrics
and the smoothness score is deteriorated by the confusion of too many negative samples in the same
batch.

Table 5: Ablation study on the bath size.
Batch Size D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)

32 0.82 0.81 0.79 0.36 0.82 0.72
64 0.89 0.87 0.86 0.38 0.88 0.79

128 0.93 0.91 0.91 0.39 0.91 0.85
256 1.00 1.00 1.00 0.42 1.00 0.96
512 1.00 1.00 1.00 0.45 1.00 0.97

1024 0.99 0.98 0.98 0.41 0.99 0.93

Effect of negative samples. In order to explore the effect of negative samples on the final perfor-
mance of our ContraLORD, we vary the number of negative samples from 1600, 3200, 6400, 12800,
25600, 51200 for the content and residual momentum queue. We show the experimental results in
Table 6. As can be seen, with the increase of the number of negative samples in the momentum
queue, our ContraLORD achieves better performance in terms of all metrics. However, too many
negative samples, i.e., a large number of negative samples, degrades the performance of our ap-
proach since it is hard for the content-level and residual-level contrastive loss to discriminate hard
negative samples in the momentum queue with many negative samples. This further demonstrates
the importance of negative samples in learning generative embeddings with disentangled informa-
tion.

Table 6: Ablation study on the number of negative samples.
K D (↑) C (↑) I (↑) SAP (↑) MIG (↑) Smoothness (↑)

1600 0.62 0.63 0.61 0.26 0.61 0.52
3200 0.81 0.79 0.77 0.33 0.79 0.68
6400 0.88 0.86 0.87 0.37 0.87 0.77

12800 1.00 1.00 1.00 0.42 1.00 0.96
25600 0.96 0.95 0.95 0.41 0.95 0.89
51200 0.87 0.85 0.85 0.36 0.86 0.75

6 CONCLUSION

In this work, we propose the ContraLORD, a simple yet effective approach by incorporating con-
trastive learning into latent optimization for representation disentanglement. Specifically, we first
use a generator to learn discriminative and disentangled embeddings via latent optimization. Then
an encoder and two momentum encoders are applied to dynamically learn disentangled information
across a large number of samples with content-level and residual-level contrastive losses. Finally,
we tune the encoder with the learned embeddings in an amortized manner. We conduct extensive
experiments on ten benchmarks to demonstrate the effectiveness of our ContraLORD on learning
disentangled representations. Comprehensive ablation studies also validate the rationality of each
contrastive loss proposed in our approach. We also empirically observe the importance of nega-
tive samples across a large number of samples in learning generative embeddings with disentangled
information.
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