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Abstract

Reliable detection of out-of-distribution (OOD) in-
stances is becoming a critical requirement for ma-
chine learning systems deployed in safety-critical
applications. Recently, many OOD detectors have
been developed in the literature, and their perfor-
mance has been evaluated using empirical stud-
ies based on well-established benchmark datasets.
However, these studies do not provide a conclusive
recommendation because the performance of OOD
detection depends on the benchmark datasets. In
this work, we want to question the reliability of
the OOD detection performance numbers obtained
from many of these empirical experiments. We re-
port several experimental conditions that are not
controlled and lead to significant changes in OOD
detector performance and rankings of OOD meth-
ods. These include the technicalities related to how
the DNN was trained (such as seed, train/test split,
etc.), which do not change the accuracy of closed-
set DNN models but may significantly change the
performance of OOD detection methods that rely
on representation from these DNNs. We performed
extensive sensitivity studies in image and text do-
mains to quantify the instability of OOD perfor-
mance measures due to unintuitive experimental
factors. These factors need to be more rigorously
controlled and accounted for in many current OOD
experiments. Experimental studies in OOD detec-
tion should improve methodological standards re-
garding experiment control and replication.

1 INTRODUCTION

As machine learning systems are increasingly used in real-
world, high-stakes applications, such as autonomous vehi-
cles or clinical use, safety is becoming the critical require-

ment for ML technologies Hendrycks et al. [2021], Nicora
et al. [2022], McAllister et al. [2017]. To ensure safe and
robust ML recognition, ML models must reliably detect
out-of-distribution (OOD) examples.

A variety of state-of-the-art OOD detectors have been de-
veloped in recent literature. They either rely on representa-
tions learned by closed-set classifiers (post-hoc methods)
or require additional training (e.g., contrastive learning or
training with exposure to outlier examples).

Progress in OOD detection is justified empirically: a new
method is considered the new SoTA if it performs better on
well-established OOD benchmarks, with often only slight
improvement over previous methods. For instance, the well-
known MDS method based on Mahalanobis distance (Lee
et al. [2018]) outperforms the LID method (Ma et al. [2018])
by ca. 1 p.p. (in AUC measure, with SVHN as in-distribution
(ID)), and ODIN (Liang et al. [2017]), by 2.5 p.p. on CIFAR-
10 as ID; or recent SoTA VIM method (Wang et al. [2022])
outperforms the second best MDS by ca. 0.2 to 4 p.p. (with
ImageNet-1K as ID). See more examples in Table 1.

These studies do not lead to conclusive results concerning
the objective ranking of OOD detectors, as the performance
of OOD detectors depends on the benchmark, with no uni-
versal SoTA method available Tajwar et al. [2021], Yang
et al. [2022].

In this work, we want to raise the question about the relia-
bility of the current measures of progress in OOD detection
methods. The question is motivated by the problem with
reproducibility of OOD performance metrics: trying to re-
produce the OOD benchmark results for a given DNN ar-
chitecture and ID/OOD datasets often leads to performance
figures different than reported in the original paper (unless
the original code is used intact). We make an (unintuitive)
observation that OOD performance numbers are sensitive
to subtle variations/changes in the experiments. We aim to
identify these factors of variability in OOD detection per-
formance. We show that in many current OOD detection
empirical studies, these factors are not rigorously controlled,
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which impairs the reliability of OOD detection performance
measures reported in many recent works.

Our main contributions are the following:

• We show that OOD performance numbers are sensitive
to experimental factors, which do not affect the closed-
set accuracy of the DNN models used in the study but
significantly change results for OOD detection. These
subtle experimental details include the seed, train/test
split, etc., used in training the DNN model.

• We analyze the experimental settings/factors and quan-
tify the instability of OOD performance measures as a
function of these factors. In these analyses, we consid-
ered OOD detection in the image and text recognition
domains, with representations generated by CNNs or
transformers (BERT).

• We suggest an explanation of the nature of this problem
(as these factors barely affect discriminative models
but vastly change generative models implied by OOD
detectors).

• We formulate conclusions for improving the reliabil-
ity of OOD detection benchmarks. We postulate that
the OOD experimental factors we identify should be
rigorously reported along with the results. Also, OOD
experimental studies should not rely on single-point re-
sults but should average over these factors of instability
for a more reliable comparison of OOD detectors.

Code is available at https://github.com/
TrustAIRiders/OoD-instability.

2 RELATED WORK

The problem of reliability of performance measures reported
in ML empirical studies was previously raised by Recht et al.
[2018, 2019], Engstrom et al. [2020]. They raised this cru-
cial question: "‘How reliable are our current measures of
progress in machine learning?"’ - in the context of relia-
bility of the accuracy of closed-set DNN models evaluated
on standard benchmarks such as CIFAR-10, ImageNet, etc.
These studies show that dataset replication to semantically
the same dataset (CIFAR-10, ImageNet) leads to a drop in
model accuracy. The results of these studies suggest that
current DNN accuracy numbers on standard benchmarks
are susceptible to subtle changes in the experiment design
related to how the dataset is replicated. Further concerns
about the reliability of the performance measures come from
Hendrycks et al. [2019b], who show that DNNs are suscep-
tible to natural adversarial examples - hence the experiment
only replicates within the standard benchmark.

The issue of irreproducibility of results and analysis of po-
tential sources of variability have been investigated in many
different areas of machine learning: NLP Belz et al. [2021],

Table 1: Best and the second best OOD detectors for the
comprehensive benchmark Yang et al. [2022], along with
the AUC result and difference in AUC between the sec-
ond and first method. The SoTA OOD detectors were
proposed in: MDS(Lee et al. [2018]), KNN(Sun et al.
[2022]), Gram(Sastry and Oore [2020]), MLS(Hendrycks
et al. [2022]), VIM(Wang et al. [2022]). MSP(Hendrycks
and Gimpel [2017]).

Benchmark OOD Detector
ID vs OOD Best(w/ AUC) / 2nd Best

MNIST vs Near-OOD MDS(98.0) / KNN(-1.5)
MNIST vs Far-OOD Gram(99.8) / MLS(-0.9)
CIFAR-10 vs Near-OOD KNN(90.5) / VIM(-2.5)
CIFAR-10 vs Far-OOD KNN(92.8) / VIM(-0.1)
CIFAR-100 vs Near-OOD MLS(81.0) / MSP(-0.9)
CIFAR-100 vs Far-OOD VIM(82.4) / KNN(-0.2)
ImageNet vs Near-OOD KNN(80.8) / VIM(-0.9)
ImageNet vs Far-OOD VIM(98.4) / KNN(-0.4)

deep reinforcement learning Henderson et al. [2018], fore-
casting with ML methods Makridakis et al. [2018], recom-
mender systems Ferrari Dacrema et al. [2021] or image
recognition with deep learning Bouthillier et al. [2019]. A
systematic taxonomy of sources of variation that lead to
irreproducibility of ML results is given by Gundersen et al.
[2022].

In this work, we want to analyze the reliability of progress
measures in the OOD detection field. To our best knowledge,
the problem of replicating results of experimental studies
that justify new SoTA OOD detection methods was not
raised in the literature.

The problem of inconclusive rankings of OOD detectors.
Recent comprehensive studies show that no OOD detector
consistently outperforms other methods Tajwar et al. [2021],
Yang et al. [2022]. In Table 1, we illustrate this on com-
monly used ID datasets with a comprehensive collection of
OOD datasets grouped as Near- or Far-OOD (semantically
similar or dissimilar to the ID data). We observe that the im-
provement between methods is usually marginal. However,
in this work, we show that the instability ranges (in AUC)
due to experimental factors are much larger; hence in line
with our findings, we should take the OOD rankings with
caution.

3 EXPERIMENTAL RESULTS

3.1 OVERVIEW

Typical DNN models are designed to achieve the best pos-
sible closed-set classification accuracy. There are many de-
cisions to be made when designing them, such as setting
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the appropriate hyperparameters. In practice, many of these
decisions have minimal impact on the final closed-set re-
sults. On the other hand, our experiments suggest that they
can differ significantly in how the model builds its decision
boundaries to separate classes in the feature space. There-
fore, even small (in a closed-set perspective) changes in
hyperparameters can greatly affect OOD performance.

We analyze the following sources of instability that can
affect OOD performance: minor model architecture im-
plementation differences (for example, there are many
implementations for ResNet for CIFAR-10), the influence
of initial seed (we suggest that initial weights values can
much influence how the model’s final decision boundaries
are built, and although it does not strongly affect the ac-
curacy of the closed-set it is of enormous importance in
the open-set classification problem), when exactly trained
model is stopped (usually the optimizer during last epochs
slightly improves - if at all - the quality of closed classifica-
tion), train/test split of in-distribution data, which OOD
examples to choose for evaluation (some datasets like
SVHN contain many more examples that test in-distribution
examples, we only need to select a subset from them), and
choosing the right data augmentation strategy (although
it is evident that this also strongly changes the closed-set
accuracy, the changes for OOD detection are even more
significant).

We quantify the effect of these experiment variations on
the instability of OOD performance measures. In Sections
3.3 through 3.8, we focus on image data with representa-
tions generated by CNNs; in Section 3.9, we expand the
evaluation onto text data with BERT (transformer-based)
representations.

3.2 EXPERIMENT ORGANIZATION

All experiments followed a similar procedure. First, we
trained from scratch the CNN model for classical closed-set
classification of images and tuned up the BERT-based model
for texts. Next, we calculated the OOD scores and, on the
basis of these, we evaluated each OOD detection method.

Our experiments in the image domain were based on
ResNetHe et al. [2016](mostly ResNet-152) architecture
for CIFAR-10 as in-distribution images and the MobileNet-
v2Sandler et al. [2018] architecture for CIFAR-100. We
used fixed seed (mainly as 0), SGD optimizer, cross-entropy
loss, scheduler for learning rate, early stopping and Ran-
domCrop, and RandomHorizontalFlip with Normalize as
an augmentation strategy. As out-of-distribution images, we
used SVHN and opposite CIFARs. The experiments in the
text domain were based on BERT representations (Devlin
et al. [2019]) fed into the fully connected layer for classifi-
cation; see Section 3.9 for details.

We maintained a 1:1 ratio of known to unknown data in the

testing phase. We tested 7 OOD scoring methods based on
different principles: MSP (Hendrycks and Gimpel [2017]),
MaxLogits (denoted in tables as ML, Hendrycks et al.
[2019a]), FreeEnergy (denoted as FE, Liu et al. [2020]),
KNN (Sun et al. [2022]), LOF (Breunig et al. [2000]) with
Euclidean and Cosine distance, and Mahalanobis (denoted
in tables as Mah) (Maciejewski et al. [2022]). The former
three methods work in logits space, the latter - in the feature
space. We used standard evaluation metrics: TNR at TPR
95%, AUC (or AUCROC), detection accuracy (DTACC),
and AUPR. However, we only report AUC in the paper as it
is the most representative; the other metrics are presented in
the supplementary materials.

We have not reported all hyperparameters for the sake of
clarity. However, we have publicly available codes where
all details are presented. Furthermore, we keep the same
parameters for all experiments except for the source of the
instability under investigation.

3.3 CNN ARCHITECTURE FEATURES

The CNN architecture is usually designed for high-
resolution images, such as ImageNet. The models need to
be modified to perform experiments on smaller datasets.
For example, to train the ResNet model on CIFAR-10 from
scratch, specific modifications (such as adjusting the size of
the convolutional kernels, the number of pooling operations,
or even the number of convolutional layers) are applied
in the network architecture. There are no clear guidelines
in this regard. We want to highlight that simply using the
name of a model such as "ResNet" can be insufficient to
explain the details of implementation and the subtle differ-
ences in architecture. Those differences can impact OoD
detection performance, which is not considered in many
research studies. In our experiments, we have trained three
different models based on the publicly available version of
ResNet-101 or ResNet-110. We denoted them as type-01,
type-12, and type-23. The results are presented in Table 2.

It can be seen that all three models have similar closed-set
accuracy, around 93%. However, the OOD detection metrics
are not stable. See MaxLogit (denoted as ML in the table)
for SVHN as OOD data - the range of AUC is from 70.13
to 88.99. The LOF with Euclidean distance (LOFE) for
CIFAR-100 as OOD data has a range from 78.72 to 86.82.
Note also that the rankings of OOD detectors are different
for each type. For example, for CIFAR-10 vs. SVHN and
type-0, the top-3 methods are (KNN, Mahalanobis, MSP),
while for type-2 - (LOF with cosine distance (LOFC), Ma-
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3https://github.com/akamaster/pytorch_
resnet_cifar10
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halanobis, LOF with euclidean distance (LOFE)). Similarly,
for CIFAR-100 vs. CIFAR-10, OOD detector rankings also
change with the architecture type.

3.4 CNN TRAINING INITIAL SEEDS

We trained models with ten different initial seeds. There
are no other differences between the models. Results are
presented in Table 3.

We see that the closed-set accuracy of the models is very
stable. The standard deviation for MobileNet trained on
CIFAR-100 is only 0.27, and for ResNet trained on CIFAR-
10, it is 0.31. However, we postulate that the initial seed
has a significant effect on the representations generated by
the CNN, while the decision boundaries are more stable. In
particular, the feature-based OOD detectors (such as KNN,
LOF, or Mah) are extremely variable, while the logit-based
methods (ML, MSP, FE) are less sensitive. This effect is
most prominent for ResNet with CIFAR-10 vs. SVHN: the
standard deviation of AUC for the KNN OOD detector is
equal to 14.89, with a delta of 50.02 (maximum minus
minimum value). Hence, this method can be the best or the
worst, and it only depends on the initial seed. We observe a
similar phenomenon for other benchmarks and methods: see
MobileNet model in problem CIFAR-100 vs. SVHN and
LOF with Euclidean distance (LOFE) with delta 11.50 and
ranking from 1st to last, or Mahalanobis (ResNet in problem
CIFAR-10 vs. CIFAR-100) where the standard deviation of
AUC is 6.84 with a delta of 21.53.

3.5 CNN TRAINING EPOCHS

Next, we trained the models and observed their state during
training. We stored the state of the models after each epoch
together with the OOD detection evaluation. The closed-set
accuracy of the models did not change significantly after
reaching a specific value. We adopted an early stopping
approach, i.e., the models stopped learning after 10 epochs
without reducing the training loss.

The obtained AUC and ACC are presented in Figures 1.
Again, we can see that the closed-set accuracy is very sta-
ble. Similarly, the AUC is stable for MobileNet and Resnet
when CIFAR-100 is OOD data. However, interestingly, in
the problem with SVHN as OOD data, both models show
high fluctuations in the AUC metric. Consequently, the final
ranking of the OOD detectors changes. It only depends on
the choice of the final epoch.

3.6 OOD EXAMPLES SELECTION

In performed experiments, we maintain a 1:1 ratio of known
to unknown samples in our experiments. The in-distribution
test set of CIFAR-10 and CIFAR-100 contains 10,000 sam-
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Figure 1: OOD detection instability as a function of the
number of learning epochs for four different OOD tasks.
The black dashed line shows the close-set (ACC) accuracy,
while the solid lines show the AUC for the analyzed OOD
methods. The MaxLogit (ML) and FreeEnergy (FE) plots
are indistinguishable, so they are represented by a single
line. There is almost no change in the closed set ACCs,
while for SVHN as OOD, the AUC results for all methods
show high variability, which may cause rank changes for
some OOD methods. For CIFAR-100/CIFAR-10 as OOD
set, the AUC has less variability than in the previous case
and this does not affect the ranking of the OOD methods.



Table 2: Results for the closed set classification on CIFAR-10 and OOD detection for three modifications of the ResNet
architecture and two OOD data sets (SVHN and CIFAR-100). Seven OOD methods were tested: KNN, Mahalanobis (Mah),
MaxLogit (ML), MSP, LOF with cosine distance (LOFC ), LOF with euclidean distance (LOFE), and FreeEnergy (FE) (see
section 3.2 for references). Bold shows the best results for each of OOD tasks. It can be seen that changing the details of the
architecture leads to different winning OOD methods and can cause large changes in the OOD quality metrics (i.e., AUC
from 70.13% to 88.99% for MaxLogit (ML) for the CIFAR-10 vs SVHN task).

Type Closed-set OOD AUC
ACC KNN Mah ML MSP LOFC LOFE FE

CIFAR-10 vs SVHN

type-0 94.50 92.54 91.29 88.99 89.44 87.49 87.67 88.99
type-1 93.64 93.61 90.07 80.05 85.32 91.36 91.78 79.90
type-2 92.91 88.94 89.69 70.13 76.60 89.96 88.99 70.07

CIFAR-10 vs CIFAR-100

type-0 94.50 86.37 85.11 88.20 87.83 78.72 76.66 88.23
type-1 93.64 88.58 87.91 86.78 86.52 86.82 86.05 86.81
type-2 92.91 86.90 85.24 84.12 84.79 83.36 82.13 84.14

ples. In contrast, OOD subsets such as the SVHN train and
the opposite CIFAR train include 72,000 and 50,000, respec-
tively. This means that we can select different subsets for
OOD. We measure how the selection of these samples af-
fects the OOD performance. The results are shown in Table
4.

We observe that the effect of the sub-sampling of the OOD
data from the same distribution is minimal. In the supple-
mentary materials, we have also shown the table with the
rankings, which are also stable and mainly independent of
the selected subset. The result of the experiments confirms
that there are easier or harder examples in the OOD data
samples in the context of the OOD detection problem.

3.7 TRAIN-TEST SPLIT

We performed experiments with different train/test splits.
In practice, we combined the original in-distribution sub-
sets into one. Then we split them again with a different
seed, but with the same ratio. Although this factor is not
changed in most benchmarks, we decided to do this study
to complement the study shown in the previous subsection
(influence of the subset of OOD data). Moreover, in real-
world OOD detection problems, the impact of splitting data
into train/validation/test subsets needs to be more carefully
noticed.

The results are shown in Table 5. Our study confirms earlier
observations. Different training data imply building slightly
different decision boundaries. The models perform well
on the classical closed-set classification task (the standard
deviation of accuracy is small, less than 0.5% for both mod-
els). However, using the same models for OOD detection

problems shows much less stable evaluation metrics. For
instance, the delta of AUC for CIFAR-100 vs. SVHN is
greater than 10 for all OOD detectors; all four methods can
be the best in ranking. For CIFAR-10 vs. SVHN again, all
four different OOD detectors can be the first in the order.
For CIFAR-10 vs. CIFAR-100, the effect is less observ-
able. However, note that the standard deviation for AUC for
features-based OOD detectors is around 4.5.

3.8 AUGMENTATION STRATEGIES

Next, we trained models using different augmentation strate-
gies. We tested the following approaches using the Albumen-
tations library Buslaev et al. [2020]: None, Affine, ColorJit-
ter, CoarseDropout, CropAndPad, MixUp. We additionally
used Normalize and HorizontalFlip(except None) for all of
them.

The results are shown in Table 6. In contrast to the previ-
ous experiments, the changing data augmentation strategy
affects both closed-set accuracy and OOD detection. This
factor has a significant impact on how decision boundaries
are constructed. We can see a wide range of AUCs, often
above 20 percent. In addition, the ranking list is confused
depending on the setting of this factor - the effect is es-
pecially noticeable for CIFAR-10 vs. SVHN. The higher
closed-set accuracy does not guarantee better results in the
OOD detection task, although the correlation is evident.

3.9 TEXT BASED OOD

We extended the empirical evaluation to text classification
based on BERT representations. The [CLS] token was used



Table 3: Instability of OOD detection decisions as an effect of different random seeds used during training. We trained each
of the analyzed architectures (ResNet and MobileNet) ten times on the same close set tasks (CIFAR-10 and CIFAR-100,
respectively), but with different seeds of random number generators. We analyzed seven OOD methods (the names are
explained in the caption of Table 2. In the table, we show the accuracy of the closed set (ACC) as the mean and standard
deviation, the AUC metric in the same convention, and with its deltas (maximum minus minimum value). We also give the
ranks of the OOD methods, where 0 means the best method and 6 means the worst, and the range of rank values obtained.
We can see little variation in the accuracy of the closed set (std c.a. 0.3 p.p.), but large variation in OOD (up to 50 p.p. of
AUC spread). As a result, the rank of the OOD method could be selected in almost any order just by peeking at the seed
used during training.

MobileNet with closed set ACC = 74.75±0.31

CIFAR-100 vs SVHN CIFAR-100 vs CIFAR-10

Method AUC Rank AUC Rank
mean±std delta mean±std range mean±std delta mean±std range

KNN 65.20±7.63 23.03 5.60±0.92 3-6 62.04±1.53 4.27 4.90±0.54 4-6
Mah 70.52±7.08 20.44 4.40±1.20 2-5 58.19±2.25 8.37 5.70±0.90 3-6
ML 82.47±4.60 17.37 1.70±1.19 1-5 77.73±0.54 1.92 0.00±0.00 0-0
MSP 78.11±4.21 15.06 3.60±1.02 2-6 76.53±0.35 1.03 2.00±0.00 2-2
LOFC 82.72±3.47 10.23 1.50±1.36 0-4 65.89±2.01 6.40 3.10±0.30 3-4
LOFE 76.23±3.88 11.50 3.50±1.20 1-6 63.46±1.39 5.23 4.30±0.46 4-5
FE 82.92±4.75 17.98 0.70±1.19 0-4 77.63±0.58 2.09 1.00±0.00 1-1

ResNet with closed set ACC = 92.73±0.27

CIFAR-10 vs SVHN CIFAR-10 vs CIFAR-100

Method AUC Rank AUC Rank
mean±std delta mean±std range mean±std delta mean±std range

KNN 76.84±14.89 50.02 3.50±2.01 0-6 64.27±7.68 24.13 3.90±0.83 3-6
Mah 78.30±6.29 23.01 4.60±0.80 3-6 63.94±6.84 21.53 4.00±0.77 3-5
ML 84.35±1.51 4.76 1.70±1.19 0-4 87.74±0.42 1.28 1.00±0.00 1-1
MSP 85.77±1.09 3.28 0.70±0.90 0-2 85.87±0.42 1.34 2.00±0.00 2-2
LOFC 70.80±6.30 22.39 5.70±0.46 5-6 57.76±3.38 9.07 5.70±0.90 3-6
LOFE 82.96±7.03 27.81 2.10±1.22 0-3 60.15±3.82 13.09 4.40±0.92 3-5
FE 84.27±1.52 4.77 2.70±1.19 1-5 87.77±0.42 1.29 0.00±0.00 0-0

Table 4: AUC scatter due to random selection of OOD images. We randomly selected 10,000 images (to balance ID and
OOD data) 100 times from the OOD data set (out of 72,000 for SVHN and 50,000 among CIFAR-10 and CIFAR-100) and
performed OOD detection using one of seven OOD methods (the names of the methods are explained in the caption of Table
2) in four OOD tasks. The results show that random selection of OOD examples can change the AUC by about 1 percentage
point.

Method CIFAR-10 vs SVHN CIFAR-10 vs CIFAR-100 CIFAR-100 vs SVHN CIFAR-100 vs CIFAR-10
mean±std range mean±std range mean±std range mean±std range

KNN 75.56±0.18 0.90 60.67±0.22 1.14 87.80±0.17 0.88 59.80±0.27 1.50
Mah 75.52±0.20 0.87 57.55±0.24 1.18 85.26±0.18 1.02 58.67±0.27 1.43
ML 81.72±0.15 0.80 76.88±0.18 0.85 83.88±0.12 0.63 87.73±0.13 0.69
MSP 78.25±0.18 0.87 76.09±0.16 0.96 86.69±0.11 0.53 86.20±0.13 0.66
LOFC 84.31±0.15 0.74 68.41±0.20 0.94 72.08±0.21 1.39 55.56±0.23 1.28
LOFE 78.87±0.18 0.97 64.31±0.22 1.12 91.40±0.12 0.63 62.73±0.22 1.09
FE 81.84±0.14 0.80 76.70±0.18 0.89 83.75±0.12 0.62 87.76±0.13 0.69



Table 5: Instability of OOD results for closed-set train-test split. We used the same architectures (ResNet for the CIFAR-10
data and MobileNet for CIFAR-100) and trained them 10 times, using different (random) train-test splits. Then, each trained
model was applied to OOD detection. Again, we test seven different methods (their acronyms are explained in the caption of
Table 2. As one can see, the closed-se accuracy (ACC) variance is small, but the OOD results,i.e., AUC and method ranks,
differ greatly.

MobileNet with closed set ACC = 74.98±0.50

CIFAR-100 vs SVHN CIFAR-100 vs CIFAR-10

Method AUC Rank AUC Rank
mean±std delta mean±std range mean±std delta mean±std range

KNN 71.33±4.27 12.83 5.30±1.19 3-6 62.10±1.52 5.08 4.20±0.75 3-5
Mah 76.94±6.36 22.20 4.00±1.84 0-6 55.78±2.49 8.67 6.00±0.00 6-6
ML 85.09±7.12 22.67 1.90±1.70 0-5 82.14±6.81 16.06 0.30±0.46 0-1
MSP 82.55±7.78 22.80 3.50±1.57 2-6 81.43±7.79 18.12 1.40±0.92 0-2
LOFC 84.35±3.49 10.49 2.10±1.30 0-4 65.17±3.81 11.40 3.20±0.40 3-4
LOFE 79.90±5.83 19.32 2.80±1.33 1-4 62.40±3.16 8.74 4.60±0.49 4-5
FE 85.31±7.13 22.62 1.40±1.80 0-5 82.03±6.77 15.99 1.30±0.46 1-2

ResNet with closed set ACC = 94.41±0.24

CIFAR-10 vs SVHN CIFAR-10 vs CIFAR-100

Method AUC Rank AUC Rank
mean±std delta mean±std range mean±std delta mean±std range

KNN 86.66±3.13 11.68 2.00±1.73 0-5 82.05±4.06 13.11 3.80±0.40 3-4
Mah 86.79±1.96 5.29 2.10±1.64 0-4 82.97±2.93 8.76 3.20±0.40 3-4
ML 86.27±2.74 8.76 2.40±0.80 1-4 88.53±0.50 1.54 1.00±0.00 1-1
MSP 87.02±2.04 7.68 1.80±1.72 0-5 87.94±0.33 1.13 2.00±0.00 2-2
LOFC 82.28±4.57 15.96 4.20±1.89 0-6 77.04±5.21 16.03 5.00±0.00 5-5
LOFE 75.94±3.85 13.93 5.90±0.30 5-6 67.27±5.92 19.08 6.00±0.00 6-6
FE 86.25±2.75 8.77 2.60±1.20 1-4 88.57±0.50 1.51 0.00±0.00 0-0



Table 6: Instability of OOD detection as a function of different augmentation methods used during training of the close-set
model. We analyze six different augmentation methods, four OOD tasks, and present results (AUC) for seven OOD methods.
We also report results for a close set (ACCs in column 2). The results show a large impact of augmentation techniques on
the OOD results (the AUC varies by up to 20 percentage points). With SVHN as the OOD, almost any OOD method can be
considered to be the best by choosing the appropriate augmentation method.

Augmentation ACC KNN Mah ML MSP LOFC LOFE FE

MobileNet CIFAR-100 vs SVHN

None 53.73 71.34 80.05 74.84 70.48 81.30 79.22 75.35
Affine 74.41 79.09 83.00 75.54 75.73 83.36 86.45 75.07
CoarseDropout 67.18 61.15 67.55 84.08 78.20 81.49 73.05 84.86
ColorJitter 65.98 61.56 67.05 81.70 75.55 84.99 80.10 82.49
CropAndPad 72.59 66.16 77.57 83.42 80.65 85.95 81.81 83.53
MixUp 68.65 67.33 86.59 75.90 76.11 86.13 85.97 72.92

MobileNet CIFAR-100 vs CIFAR-10

None 53.73 56.20 54.21 66.89 66.51 56.96 48.81 66.67
Affine 74.41 61.98 57.03 78.96 77.55 67.19 61.96 78.84
CoarseDropout 67.18 61.09 57.40 72.55 72.14 61.96 56.69 72.37
ColorJitter 65.98 59.56 58.33 72.47 71.74 66.16 59.14 72.32
CropAndPad 72.59 62.97 56.92 76.32 75.47 65.07 60.10 76.19
MixUp 68.65 61.98 57.25 73.98 73.98 56.25 58.23 72.12

ResNet CIFAR-10 vs SVHN

None 83.64 78.88 74.15 80.14 79.25 82.07 75.67 80.10
Affine 94.76 92.65 91.01 91.89 90.49 91.68 88.08 91.97
CoarseDropout 89.27 61.16 60.26 87.68 85.59 69.31 78.85 87.74
ColorJitter 87.98 88.23 75.89 84.07 83.93 90.45 88.15 83.98
CropAndPad 94.01 91.52 88.39 93.32 90.98 90.90 86.83 93.45
MixUp 89.41 84.39 89.25 51.27 88.62 78.95 86.26 29.08

ResNet CIFAR-10 vs CIFAR-100

None 83.64 67.50 66.41 80.98 78.52 61.68 56.69 81.10
Affine 94.76 88.23 87.60 89.77 88.92 86.86 84.94 89.81
CoarseDropout 89.27 59.36 55.06 85.75 83.45 56.16 55.06 85.81
ColorJitter 87.98 81.08 78.12 84.40 82.45 81.37 77.75 84.48
CropAndPad 94.01 87.17 85.03 88.76 87.93 83.71 79.37 88.81
MixUp 89.41 66.80 71.69 76.33 82.18 64.14 59.94 70.73



Table 7: Instability of OOD detection decisions as an effect
of different random seeds used during training for text classi-
fication based on BERT (transformer based) representations.
We used the AGNEWS dataset; the ID data are three se-
lected classes (World, Sports, Business), and OOD data are
texts from the Sci Tech class. We trained BERRT 8 times,
but with different seeds of random number generators.

BERT with closed set ACC = 97.49±0.11

Method AUC Rank
mean±std delta mean±std range

KNN 79.21±5.21 14.76 1.50±1.58 0-4
Mah 78.09±2.57 8.27 2.75±2.17 0-6
ML 72.56±7.54 23.16 4.25±1.71 1-6
MSP 71.06±11.79 35.68 3.75±2.11 0-6
LOFC 78.14±3.27 11.16 2.00±1.22 0-4
LOFE 77.79±3.22 11.04 2.75±0.97 1-4
FE 72.54±7.54 23.18 4.00±2.12 0-6

as a feature vector and a fully connected layer was added to
BERT for classification. The whole network was tuned up
on the data. Experiments were carried out on the AGNEWS
dataset4 with four subject classes of text documents; the ID
data are three selected classes (World, Sports, Business), and
OOD data are texts from the Sci Tech class. The instability
of OOD detection due to the 8 different seeds used during
training is shown in Table 7. The conclusions are the same
as those reported in Section 3.4. We see a large variation in
OOD (up to 35 p.p. spread in the AUC). As a result, the rank
of the OOD method could be chosen in almost any order
simply by looking at the seed used during training.

4 CONCLUSION

We showed that current benchmark studies for evaluating
the performance of OOD detectors are susceptible to ex-
perimental details that significantly change the results. For
instance, subtle changes in DNN model training (such as
seed or number of training epochs) that do not affect the
closed-set accuracy may dramatically change the perfor-
mance numbers of OOD detectors. The highest instability
(with AUC range ca. 20 up to 50 p.p.) is related to the train-
ing seed or architecture details; see Table 3 and Table 7 for
CNN-based and transformer-based (BERT) representations,
respectively. Hence, an OOD detector benchmarked on two
DNN models trained with different seeds may evaluate as
very successful or useless. These conclusions hold for OOD
detection in the image and text domains and for both CNN

4http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html

and BERT features.

This instability issue can be explained by the different nature
of the discriminative model (DNN as a closed-set classifier)
and generative model (used by many OOD detectors). By
retraining a DNN, we obtain a stable discriminative model
(stable closed-set accuracy) but unstable generative mod-
els used by OOD detectors (such as Mahalanobis, LOF,
or KNN). The instability of generative models of known
ID classes is not surprising, considering the fact that they
are built from scarce high-dimensional data. This effect
is most clearly demonstrated for the ResNet model (with
2K-dimensional representations, the highest dimensionality
considered in this work); see Table 3. In this study (ResNet
with CIFAR-10 as in-distribution), generative models are
built with 5K training samples per CIFAR-10 class in 2K-
dimensional space. All OOD detectors working on genera-
tive models in the feature space, such as KNN, Mahalanobis,
and LOF, show significantly higher instability (with delta
ca. 20-50 and 10-20 for SVHN and CIFAR-100 as OOD
data, respectively) than the logit-based OOD detectors, such
as ML, MSP or FE (with delta values significantly smaller).
Deeper insight into the nature and way to control the in-
stability of the logit and feature-space OOD detectors is a
matter for future work.

This work concludes that currently reported OOD perfor-
mance measures should be considered unreliable since they
depend on the subtle variations in the experiment. The main
incentive of this work was to signal this issue and to iden-
tify the primary sources of variability in OOD detection
experiments. The research community active in OOD detec-
tion needs to address this problem. The first step towards
improvement is to realize the issues with the current bench-
marks/procedures used to measure progress in OOD detec-
tion. However, providing a mature solution to control the
variability in OOD experiments is a matter of future work.

Based on this work, we can formulate the following conclu-
sions/recommendations for improving the quality of OOD
experiments.

The first and most important conclusion is the postulate
that all relevant experimental factors should be rigorously
reported along with the results; otherwise, which is the
common practice, comparing OOD detectors may lead to
misleading and unreliable conclusions.

Secondly, multiple training runs should be recommended to
assess the variance, with OOD detection performance met-
rics reported as confidence intervals rather than point results.
This procedure is an undisputable experimental standard in
empirical studies, e.g., natural sciences. The difficulty and
some impracticality of this postulate in our field lie in the
high cost of retraining representation generators for large-
scale models. This issue deserves more careful attention in
the machine learning community, and one of the goals of
our work is to trigger this discussion.

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
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