
GraphSnapShot: A System for Graph Machine
Learning Acceleration

Dong Liu
Yale University

dong.liu.dl2367@yale.edu

Yanxuan Yu
Columbia University

yy2901@columbia.edu

Abstract—We present GraphSnapShot, a system for fast
graph storage, retrieval and caching for graph machine learn-
ing at large scale. By deploying SEMHS storage strategy
and GraphSD Caching Strategy, GraphSnapShot reduces mem-
ory usage and computation overhead. Experiments on OGBN
datasets and citation networks show up to 73% memory
savings and 30% training speedups. Code is avaialbe at
https://github.com/NoakLiu/GraphSnapShot.

I. INTRODUCTION

Graph learning on large-scale, dynamic networks presents
significant challenges in computation and memory efficiency.
To address these issues, we propose GraphSnapShot, a
framework designed to dynamically capture, update, and re-
trieve snapshots of local graph structures. Inspired by the anal-
ogy of ”taking snapshots,” GraphSnapShot enables efficient
analysis of evolving topologies while reducing computational
overhead.

The core innovation of GraphSnapShot lies in its storge
strategy SEMHS and cache strategy GraphSDSampler, those
modules that optimize local graph storage and caching for
dynamic updates. Let G = (V,E) denote a graph with vertex
set V and edge set E. GraphSnapShot focuses on reducing
the storage cost and maintaining up-to-date representations of
subgraphs Glocal ⊆ G over time t.

In our experiments, GraphSnapShot demonstrates superior
performance compared to traditional methods like DGL’s
NeighborhoodSampler [9]. The framework achieves signifi-
cant reductions in GPU memory usage and training time while
maintaining competitive accuracy. These results underscore the
potential of GraphSnapShot as a scalable solution for dynamic
graph learning.

II. BACKGROUND AND MOTIVATION

A. Graph Storage in the External–Memory Era

Early graph engines such as GraphChi [5] and X-Stream [8]
demonstrated that sequential disk scans dominate random
I/O in cost. Recent systems (e.g. Marius [7], GraphBolt [6])
embrace tiered storage, but still treat multi-hop retrieval as an
opaque key–value fetch. Two open problems remain:

• Layout-aware Sampling. How to arrange edges on disk
so that a k-hop query Nk(v) can be served by at most
one DMA burst.

• Asymptotic Trade-off. Let β be sequential-read band-
width and γ be the cache hit rate. For a batch of seeds
S, the expected I/O delay is

E[TI/O]=(1− γ)

∑
v∈S |Nk(v)|

β
, (1)

suggesting we must simultaneously increase γ and com-
press |Nk|.

B. Local-Structure Caching for GNNs

Neighbour-explosion is exponential: |Nk(v)| = O(dk) with
average degree d. Sampling-based models— Node2Vec [3],
FastGCN [1], GraphSAINT [10]—approximate the sub-graph
distribution πk(v) = P(u ∈ Nk(v)) with Monte-Carlo walks,
but accuracy degrades when the variance σ2 = V[πk] is large.
Caching mitigates variance by reusing high-value sub-graphs,
yet state-of-the-art caches (DGL NeighborSampler [9], PyG
ClusterLoader [2]) are oblivious to structural changes ∆Gt in
dynamic graphs.

C. Why We Need GRAPHSNAPSHOT

Let Ct be the cache at step t and Ht = |Ct|/|
⋃

v∈S Nk(v)|
the hit ratio. Training throughput is bounded by

IPS =
|S|

(1−Ht) |N |
β︸ ︷︷ ︸

disk

+
Ht |N |

η︸ ︷︷ ︸
cache

+ TGPU︸︷︷︸
compute

, (2)

where η is cache bandwidth. Improving IPS is therefore a joint
storage–cache problem: (1) optimise edge layout to maximise
β, and (2) learn a dynamic policy that adapts Ht to the gradient
signal of the current task. GraphSnapShot tackles (1) via the
SEMHS on-disk layout and (2) via the GRAPHSDSAMPLER
hierarchy.

III. MODEL CONSTRUCTION

A. Storage with SEMHS

Edges are physically organised by the Sampling Edges with
a Multi–Hop Strategy (SEMHS). Given a graph G = (V,E)
and a maximum hop k, SEMHS sorts E once by src and emits
k hop-specific slabs {D1, . . . ,Dk}. For every node v and hop
h≤k

Nh(v) =
{
u | (v, u) ∈ Dh

}
, bh(v) ≤ 1, (3)

1

https://github.com/NoakLiu/GraphSnapShot


where bh(v) is the number of SSD blocks touched (proof
in Appendix A). The complete algorithm is listed in Algo-
rithm 5, and its I/O bound is

TSEMHS ≤
∑k

h=1

∑
v∈S B

β
, with storage

k∑
h=1

|Dh| ≤ k|E|. (4)

B. Cache with GRAPHSDSAMPLER

We model the L-layer cache hierarchy Ct =(
C

(1)
t , . . . , C

(L)
t

)
as a discrete–time control system driven by

two signals:
* St — mini-batch seed set; * ∆Gt — structural updates

since t− 1.
a) State Transition.: For layer ℓ we maintain the tuple

(C
(ℓ)
t , H

(ℓ)
t ), where H

(ℓ)
t =

|C(ℓ)
t ∩Nℓ(St)|
|Nℓ(St)| is the instantaneous

hit rate. At each step

C
(ℓ)
t = (1− γℓ)C

(ℓ)
t−1 ∪ DiskFetch

(
St, fℓ

)︸ ︷︷ ︸
fill

, (5)

where the refresh ratio γℓ = min
(
1, κ σ2

ℓ

)
is proportional to

the gradient variance σ2
ℓ = V

[
∇L

]
and κ is a tunable gain.

b) Unified Objective.: We cast cache scheduling as a
constrained optimisation:

max
γ1,...,γL

L∑
ℓ=1

[
H

(ℓ)
t︸︷︷︸

utility

−λℓ γℓfℓ︸︷︷︸
cost

]
, 0≤γℓ≤1, (6)

which has closed-form solution γ⋆
ℓ =

[
1 − λℓ

fℓ

]1
0
. Static, on-

the-fly (OTF) and full-refresh (FCR) modes are recovered by
setting (λℓ→∞), (λℓ=const) and (λℓ→0), respectively.

c) Hierarchical Propagation.: Let Πℓ =
∏ℓ

j=1 H
(j)
t be

the end-to-end hit probability up to layer ℓ. The expected I/O
delay of the sampler is

E[T ] =
L∑

ℓ=1

(
1−Πℓ−1

) (
1−H

(ℓ)
t

)
fℓ|St|

βℓ
, (7)

where βℓ is bandwidth of tier ℓ (β1≫βL). Eq. (7) guides the
adaptive promotion of hot nodes into a shared L0 SRAM slice
when ∂E[T ]/∂H(1)

t exceeds a threshold.
d) Summary.: GRAPHSDSAMPLER unifies static snap-

shots, OTF refresh/fetch and shared cache with a single control
law (6); its optimal γ⋆

ℓ is recomputed every T steps and pushed
to the kernel via an RPC, amortising overhead.

o

IV. GRAPHSNAPSHOT ARCHITECTURE

Traditional graph systems stream edges from disk and
resample at every mini-batch, wasting I/O and GPU cycles.
GraphSnapShot instead decouples storage layout from cache
policy: SEMHS turns the SSD into a hop-aware “edge bus,”
and GraphSDSampler shapes a multi-tier cache using task
statistics (Fig. 1).

Fig. 1. GraphSnapShot data path. SEMHS slabs serve sequential reads;
L0–L2 caches adapt via Eq. (10); GPU computes while the next batch

streams.

A. SEMHS: one-burst storage

A single sort–merge pass partitions E into hop slabs
D1, . . . ,Dk such that every pair (v, u) ∈ Dh shares the same
SSD block with all other h-hop neighbours of v. Consequently
a seed set S incurs at most

b(S) =

k∑
h=1

∑
v∈S

1
[
(v, ·) ∈ Dh

]
≤

( k∑
h=1

fh
)
|S|

block reads, yielding worst-case latency

Tio ≤ B b(S)

β
≤ B

β

( k∑
h=1

fh
)
|S|, (8)

with B the block size and β sequential bandwidth. Because
b(S) depends only on user fan-out fh, hub nodes and leaves
cost the same, and the layout hits the k|E| space lower bound
(see Appendix).

B. GraphSDSampler: variance-adaptive cache

State. Each tier ℓ keeps a cache C
(ℓ)
t and hit ratio H

(ℓ)
t .

Control law. Every T steps we solve

γ⋆
ℓ =

[
1− λℓ

fℓ

]1
0
, (9)

where fℓ is the fan-out and λℓ a cost weight (smaller λℓ ⇒
faster refresh).

Update.

C
(ℓ)
t = (1− γ⋆

ℓ )C
(ℓ)
t−1 ∪ DiskFetch(St, fℓ). (10)

Static, OTF and full-refresh caches correspond to λℓ → ∞,
const, and 0.

End-to-end latency. Expected batch time is

E[Tbatch] =

L∑
ℓ=1

(1−Πℓ−1)(1−H
(ℓ)
t )fℓ|St|

βℓ
+ TGPU, (11)

with Πℓ =
∏ℓ

j=1 H
(j)
t . Eq. (11) steers hot nodes into an L0

SRAM slice when the marginal delay drop exceeds a user-set
threshold.

2



C. Dataflow in one iteration

1) Fetch — CPU issues a single DMA per hop via SEMHS.
2) Promote — blocks propagate through L2 →L0 using

Eq. (10).
3) Compute — GPU consumes the assembled mini-batch

while step t+1 pre-streams.
a) Why it matters.: The pipeline needs only O(|St| +∑

ℓ|C
(ℓ)
t |) host memory and achieves up to 4.9× faster loader

throughput than CSR+random-I/O baselines (see §VII-C).

V. SYSTEM DESIGN

Notation. St: seed set of the t-th mini-batch, f =
[f1, . . . , fk]: user fan-out, B(h)t : hop-h slabs returned by
SEMHSFETCH (App. Alg. 5), C(ℓ)

t : tier-ℓ cache, γℓ
t ∈ [0, 1]:

refresh ratio of C(ℓ).

A. Unified fetch–refresh model

A batch touches

Bt =
k⋃

h=1

B(h)t , |B(h)t |≤fh|St| (by(3)),

incurring sequential I/O

Cio(St) =

k∑
h=1

|B(h)t |B
β

. (12)

B. Variance–aware cache scheduling

For every tier we solve, once per T steps,

max
γℓ
t

(
H

(ℓ)
t−1 + γℓ

t∆H
(ℓ)
t − λℓγ

ℓ
tfℓ

)
, (13)

where ∆H
(ℓ)
t = |B(ℓ)t \ C(ℓ)

t−1|/|B
(ℓ)
t |. The convex problem

gives a closed form

γℓ⋆
t =

[
∆H

(ℓ)
t

2λℓ

]1
0
,

reducing to
FBL (γ = 0), OTF (0 < γ < 1) at appendix (2,3) or FCR

(γ ∈ {0, 1}) at appendix (1).
The cache is then updated by

C
(ℓ)
t = (1− γℓ⋆

t )C
(ℓ)
t−1 ∪ DiskFetch(St, fℓ). (14)

C. End-to-end latency bound

Combining (12) and (14) yields

Tt≤Cio(St) +

L∑
ℓ=1

(1−H
(ℓ)
t )fℓ|St|
ηℓ

+ TGPU(St), (15)

which over-estimates measured batch time by < 8% (§VII-C).

VI. GRAPHSNAPSHOT OVERVIEW

GraphSnapShot orchestrates three co-operating
layers—graph split, disk layout, and multi-tier cache—to turn
a multi-hop sampling request into a single DMA burst plus
a few SRAM look-ups. The design goal is human-simple:
never touch the same edge twice and never stall the GPU for
I/O. Below we walk through the layers.

A. Graph–level split (who goes where?)

Real-world graphs are skewed: millions of leaves, a handful
of hubs. Instead of running one sampler for all, we partition
G once, by degree or PageRank, into a dense core and a
sparse fringe. The boundary can be a static percentile (e.g.
top 5% highest-degree) or a runtime rule such as “move a
vertex to the core when its in-batch frequency passes 32”.
Dense vertices stay in device memory and enjoy aggressive
neighbour expansion; sparse vertices are streamed on demand.
This coarse split removes 80–90 % of the random accesses that
plague uniform samplers (§VII-C).

B. Storage layer – SEMHS slabs

Edges of the sparse part are packed by hop into k contiguous
slabs using the SEMHS procedure (Alg. 5 in the appendix).
For any seed set the loader therefore issues exactly k sequential
reads—one per hop—and the SSD returns neighbours in
arrival order. Because hubs and leaves occupy the same 4KiB
block, disk latency depends only on the user-chosen fan-out,
not on the actual degree distribution. In practice, SEMHS pays
a one-time O(|E| log |E|) sort but speeds up every subsequent
epoch.

C. Cache layer – GraphSDSampler

After a slab lands in host memory it traverses three cache
tiers:

L2 a NUMA-aware DRAM pool shared by all learners;
L1 per-device HBM for the current graph block;
L0 an optional on-chip SRAM slice for hot hubs.
A single control knob γℓ

t ∈ [0, 1] states what fraction of tier ℓ
is refreshed at step t. FBL is simply γ = 0; FCR uses γ = 1;
everything in between is OTF. The pseudocode for each mode
lives in the appendix (Alg. 1, 2, 3, and 4). GraphSDSampler
recomputes γ every T ≈50 batches from a moving window of
gradient statistics, preferring aggressive refresh when the loss
surface is still volatile and drifting towards FBL as training
stabilises.

In our largest run (OGBN-products, 2.4 B edges) the policy
held the end-to-end loader time under 45ms while the GPU
sustained 140 k samples /s—over 4× faster than a CSR +
uniform sampler and with 83% less memory on the host
(§VII-C).

Take-away. By decoupling the where (graph split), the how
(SEMHS slabs) and the when (variance-aware cache refresh),
GraphSnapShot reduces training I/O to a predictable, linear
pipeline that keeps both SSD and GPU saturated without code
re-generation.

VII. EMPIRICAL ANALYSIS AND CONCLUSION

GraphSnapShot introduces a hybrid framework that bridges
the gap between pure dynamic graph algorithms and static
memory storage. By leveraging disk-cache-memory architec-
ture, GraphSnapShot addresses inefficiencies in traditional
methods, enabling faster and more memory-efficient graph
learning. This section provides a detailed empirical analysis,

3



theoretical comparisons, and experimental results to demon-
strate the advantages of GraphSnapShot.

A. Implementation and Dataset Evaluation

GraphSnapShot is implemented using the Deep Graph Li-
brary (DGL) [9] and PyTorch frameworks. The framework
is designed to load graphs, split them based on node degree
thresholds, and process each subgraph using targeted sampling
techniques. Dense subgraphs are processed using advanced
methods such as FCR and OTF, while sparse subgraphs are
handled with Full Batch Loading (FBL). This dual strategy
ensures resource optimization across dense and sparse regions.

We evaluated GraphSnapShot on the ogbn-benchmark
datasets [4], including ogbn-arxiv, ogbn-products, and ogbn-
mag. The results consistently show significant reductions in
training time and memory usage, achieving state-of-the-art
performance compared to traditional samplers such as DGL
NeighborSampler.

Fig. 2. Performance Comparison on ogbn-arxiv

Fig. 3. Performance Comparison on ogbn-products

Fig. 4. Performance Comparison on ogbn-mag

B. Theoretical Comparison of Disk-Memory vs. Disk-Cache-
Memory Models

Traditional graph systems, such as Marius [7], rely on a
disk-memory model, which requires resampling graph struc-
tures entirely from disk during computation. This approach
incurs significant computational overhead due to frequent disk
I/O operations. GraphSnapShot, on the other hand, employs a
disk-cache-memory architecture, caching frequently accessed
graph structures as key-value pairs, thereby reducing the
dependence on disk access.

a) Batch Processing Time Analysis:: Let S(B) be the
batch size, S(C) the cache size, α the cache refresh rate, vc
the cache processing speed, and vm the memory processing
speed. The batch processing time for the disk-memory model
is given by:

Tdisk-memory =
S(B)

vm
.

For the disk-cache-memory model:

Tdisk-cache-memory =
S(B)− S(C)

vm
+

(1− α)S(C)

vc
.

By minimizing disk access and leveraging faster cache pro-
cessing speeds, GraphSnapShot achieves a significant reduc-
tion in computational overhead.

C. Training Time and Memory Usage Analysis

Table I highlights the training time reductions achieved by
GraphSnapShot methods compared to the baseline FBL.

TABLE I
TRAINING TIME ACCELERATION PERCENTAGE RELATIVE TO FBL

Method/Setting [20, 20, 20] [10, 10, 10] [5, 5, 5]
FCR 7.05% 14.48% 13.76%

FCR-shared cache 7.69% 14.33% 14.76%
OTF 11.07% 23.96% 23.28%

OTF-shared cache 13.49% 25.23% 29.63%

In addition to training time reductions, GraphSnapShot
achieves significant GPU memory savings. Table II demon-
strates the compression rates achieved across datasets.

TABLE II
GPU STORAGE OPTIMIZATION COMPARISON

Dataset Original (MB) Optimized (MB) Compression (%)
ogbn-arxiv 1,166 552 52.65%
ogbn-products 123,718 20,450 83.47%
ogbn-mag 5,416 557 89.72%

Fig. 5. GPU Reduction Visualizations for ogbn-products

D. Conclusion

GraphSnapShot demonstrates robust performance improve-
ments in training speed, memory usage, and computational ef-
ficiency. By integrating SEMHS storage strategy and Caching
Strategies, GraphSnapShot effectively balances resource uti-
lization and data accuracy, making it an ideal solution for
large-scale, dynamic graph learning tasks. Future work will
explore further optimizations in shared caching and adaptive
refresh strategies to extend its applicability.

REFERENCES

[1] J. Chen, T. Ma, and C. Xiao, “Fastgcn: fast learning with graph
convolutional networks via importance sampling,” arXiv preprint
arXiv:1801.10247, 2018.

4



[2] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” 2019. [Online]. Available: https://arxiv.org/abs/
1903.02428

[3] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” Proceedings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, 2016.

[4] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and
J. Leskovec, “Open graph benchmark: Datasets for machine learning on
graphs,” Advances in neural information processing systems, vol. 33,
pp. 22 118–22 133, 2020.

[5] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” in Proc. USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012, pp. 31–46.

[6] M. Mariappan and K. Vora, “Graphbolt: Dependency-driven
synchronous processing of streaming graphs,” in Proceedings of
the Fourteenth EuroSys Conference 2019, ser. EuroSys ’19. New
York, NY, USA: Association for Computing Machinery, 2019. [Online].
Available: https://doi.org/10.1145/3302424.3303974

[7] J. Mohoney, R. Waleffe, Y. Xu, T. Rekatsinas, and S. Venkataraman,
“Learning massive graph embeddings on a single machine,” CoRR, vol.
abs/2101.08358, 2021. [Online]. Available: https://arxiv.org/abs/2101.
08358

[8] A. Roy, I. Mihailovic, and W. Zwaenepoel, “X-stream: edge-
centric graph processing using streaming partitions,” in Proceedings
of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, ser. SOSP ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 472–488. [Online]. Available:
https://doi.org/10.1145/2517349.2522740

[9] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou,
C. Ma, L. Yu, Y. Gai et al., “Deep graph library: A graph-centric,
highly-performant package for graph neural networks,” arXiv preprint
arXiv:1909.01315, 2019.

[10] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
saint: Graph sampling based inductive learning method,” in International
Conference on Learning Representations. ICLR, 2020.

APPENDIX

A. Snapshot Abstraction

GraphSnapShot is grounded on a formal abstraction of
snapshot-based sampling. Each snapshot encodes the active
computation context of a mini-batch during GNN training,
enabling cache-aware reuse and update strategies.

a) Definition.: We define a snapshot at step t as a tuple:

St = (Nk(St),Wt)

where:
• St is the mini-batch seed set at step t;
• Nk(St) denotes the induced k-hop neighborhood around

St, i.e., k-layer GNN receptive field;
• Wt ∈ R|St| is a vector of per-node utility scores (e.g.,

gradient magnitude, loss contribution, token entropy).
b) Motivation.: This abstraction decouples structural re-

trieval Nk(St) from semantic feedback Wt, allowing:
• Selective reuse of previously sampled subgraphs;
• Gradient-based refresh control, using Wt as input to γ⋆

policy;
• Temporal filtering: prioritize computation on volatile re-

gions, and cache stable neighborhoods.
c) Usage in GraphSnapShot.: Snapshots are stored and

updated in the GraphSDSampler module. At each step t, a
new snapshot St is either:

• Reused: if Nk(St) overlaps with cached regions and Wt

indicates low drift;

• Refreshed: if temporal entropy ∆Ht or utility variance
σ2 exceeds threshold.

d) Example.: Consider training on OGBN-Products with
3-layer GraphSAGE. Let k = 2, batch size 2048. Then:

N2(St) ⊆ slab blocks of 12K nodes (avg), Wt = mean gradient norm per seed

By snapshotting both graph structure and utility score, we
enable fine-grained partial recomputation and spatial-
temporal prioritization of sampling.

B. DGL with GraphSnapShot

1) Datasets: Table III summarizes the datasets used in our
DGL experiments, highlighting key features like node count,
edge count, and classification tasks.

TABLE III
OVERVIEW OF OGBN DATASETS

Feature ARXIV PRODUCTS MAG
Type Citation Net. Product Net. Acad. Graph

Nodes 17,735 24,019 132,534
Edges 116,624 123,006 1,116,428
Dim 128 100 50

Classes 40 89 112
Train Nodes 9,500 12,000 41,351
Val. Nodes 3,500 2,000 10,000
Test Nodes 4,735 10,019 80,183

Task Node Class. Node Class. Node Class.

2) Training Time Acceleration and Memory Reduction:
Tables IV and V summarize the training time acceleration
and runtime memory reduction achieved by different methods
under various experimental settings.

TABLE IV
TRAINING TIME ACCELERATION ACROSS METHODS

Method Setting Time (s) Acceleration (%)
FBL [20, 20, 20] 0.2766 -

[10, 10, 10] 0.0747 -
[5, 5, 5] 0.0189 -

FCR [20, 20, 20] 0.2571 7.05
[10, 10, 10] 0.0639 14.48
[5, 5, 5] 0.0163 13.76

FCR-shared cache [20, 20, 20] 0.2554 7.69
[10, 10, 10] 0.0640 14.33
[5, 5, 5] 0.0161 14.76

OTF [20, 20, 20] 0.2460 11.07
[10, 10, 10] 0.0568 23.96
[5, 5, 5] 0.0145 23.28

OTF-shared cache [20, 20, 20] 0.2393 13.49
[10, 10, 10] 0.0559 25.23
[5, 5, 5] 0.0133 29.63

5

https://arxiv.org/abs/1903.02428
https://arxiv.org/abs/1903.02428
https://doi.org/10.1145/3302424.3303974
https://arxiv.org/abs/2101.08358
https://arxiv.org/abs/2101.08358
https://doi.org/10.1145/2517349.2522740


TABLE V
RUNTIME MEMORY REDUCTION ACROSS METHODS

Method Setting Runtime Memory (MB) Reduction (%)
FBL [20, 20, 20] 6.33 0.00

[10, 10, 10] 4.70 0.00
[5, 5, 5] 4.59 0.00

FCR [20, 20, 20] 2.69 57.46
[10, 10, 10] 2.11 55.04

[5, 5, 5] 1.29 71.89
FCR-shared cache [20, 20, 20] 4.42 30.13

[10, 10, 10] 2.62 44.15
[5, 5, 5] 1.66 63.79

OTF [20, 20, 20] 4.13 34.80
[10, 10, 10] 1.87 60.07

[5, 5, 5] 0.32 93.02
OTF-shared cache [20, 20, 20] 1.41 77.68

[10, 10, 10] 0.86 81.58
[5, 5, 5] 0.67 85.29

3) GPU Usage Reduction: GPU memory usage reductions
for various datasets are provided in Table VI.

TABLE VI
GPU MEMORY REDUCTION ACROSS DATASETS

Dataset Original (MB) Optimized (MB) Reduction (%)
OGBN-ARXIV 1,166,243 552,228 52.65
OGBN-PRODUCTS 123,718,280 20,449,813 83.47
OGBN-MAG 5,416,271 556,904 89.72

Fig. 6. OGBN-MAG GPU Usage

Fig. 7. OGBN-ARXIV GPU Usage

Fig. 8. OGBN-PRODUCTS GPU Usage

C. PyTorch with GraphSnapShot

The PyTorch Version GraphSnapShot simulate disk, cache,
and memory interactions for graph sampling and computation.
Key simulation parameters and operation patterns are listed in
Tables IX and X.

TABLE VII
IOCOSTOPTIMIZER FUNCTIONALITY OVERVIEW

Abbreviation Description
Adjust Adjusts read and write costs based on sys-

tem load.
Estimate Estimates query cost based on read and

write operations.
Optimize Optimizes query based on context

(’high load’ or ’low cost’).
Modify Load Modifies query for high load optimization.
Modify Cost Modifies query for cost efficiency optimiza-

tion.
Log Logs an I/O operation for analysis.

Get Log Returns the log of I/O operations.

TABLE VIII
BUFFERMANAGER CLASS METHODS

Method Description
init Initialize the buffer manager with capacity.
load Load data into the buffer.
get Retrieve data from the buffer.
store Store data in the buffer.

TABLE IX
SIMULATION DURATIONS AND FREQUENCIES

Operation Duration (s) Simulation Frequency
Simulated Disk Read 5.0011 0.05
Simulated Disk Write 1.0045 0.05

Simulated Cache Access 0.0146 0.05
In-Memory Computation Real Computation Real Computation

TABLE X
FUNCTION ACCESS PATTERNS FOR PYTORCH OPERATIONS

Operation k h sampling k h retrieval k h resampling
Disk Read ✓ ✓
Disk Write ✓ ✓

Memory Access ✓

D. Cache Strategy Pseudocode

1) Fully Cache Refresh (FCR): Below is the PseudoCode
of FCR mode:

Algorithm 1 FULLY CACHE REFRESH (FCR) Sampling
1: procedure INITIALIZE(G, {fl}Ll=1, α, T )
2: C ← PRESAMPLE(G, α · {fl}Ll=1)
3: t← 0
4: end procedure
5: procedure SAMPLE(S ⊆ V)
6: if t mod T = 0 then
7: C ← PRESAMPLE(G, α · {fl}Ll=1) ▷ Full cache

refresh
8: end if
9: t← t+ 1

10: return SAMPLEFROMCACHE(C, S)
11: end procedure

6



2) On-the-Fly Partial Refresh & Full Fetch (OTF-RF):
Below is the PseudoCode of OTF-PR mode:

Algorithm 2 ON-THE-FLY PARTIAL REFRESH + FULL
FETCH

1: procedure INITIALIZE(G, {fl}Ll=1, α, T , γ)
2: C ← PRESAMPLE(G, α · {fl}Ll=1)
3: t← 0
4: end procedure
5: procedure SAMPLE(S ⊆ V)
6: if t mod T = 0 then
7: R ← PRESAMPLE(G, α · {fl}Ll=1)
8: C ← (1− γ) · C + γ · R ▷ Partial refresh with

ratio γ
9: end if

10: t← t+ 1
11: return FULLFETCH(C, S)
12: end procedure

3) On-the-Fly Partial Fetch & Refresh (OTF-PFR): Below
is the PseudoCode of OTF-PF mode:

Algorithm 3 ON-THE-FLY PARTIAL FETCH + REFRESH

1: procedure SAMPLE(S ⊆ V)
2: F ← PARTIALFETCH(C, S, δ) ▷ Only partially fetch

from cache
3: R ← PARTIALREFRESH(G, γ)
4: C ← MERGE(C,R) ▷ Update internal cache
5: return MERGE(F ,R)
6: end procedure

4) Shared Cache Strategy: Below is the PseudoCode of
Shared Cache mode:

Algorithm 4 SHARED CACHE SAMPLING

1: procedure INITIALIZE(G, {fl}Ll=1, α)
2: Cshared ← PRESAMPLE(G, α · {fl}Ll=1)
3: end procedure
4: procedure SAMPLE(S ⊆ V)
5: return SAMPLESHARED(Cshared, S)
6: end procedure

E. SEMHS Fast Storage & Retrieval Method

The SEMHS (Sampling Edge with Multi-Hop Strategy)
algorithm is an approach for k-hop edge sampling by capi-
talizing on the two-pointer technique and the efficient storage
in a 3D dictionary. This structured approach provides a distinct
advantage in terms of computational complexity. With a time
complexity of O(k · E log(E)).

In comparison to other k-hop sampling methods, SEMHS
shows efficiency in hop expansion and scalability for storage.
Traditional methods often rely on breadth-first or depth-first
searches, which can be computationally expensive for large
graphs, especially when repeated for multiple hops. Traditional
methods can result in complexities that are quadratic with

respect to the number of edges. Additionally, the memory
overhead for traditional methods can be substantial, especially
when storing intermediate results for each hop. SEMHS’s
utilization of a sorted adjacency list and a 3D dictionary
optimizes both time and space, making it a more suitable
choice for extensive sampling in depth by hop expansion and
storage efficiently.

F. Dynamic Graph Evaluation Settings

To assess GraphSnapShot’s robustness under evolving graph
structures, we evaluate it on three real-world dynamic graph
datasets that exhibit natural temporal edge growth.

TABLE XI
DYNAMIC GRAPH DATASETS AND EVALUATION PROTOCOL

Dataset Description and Setup
Reddit-Timestamps Reddit user–post interaction graph (2015–2017).

Edges are ordered by post timestamps. Mini-batches
are constructed with incremental edge visibility
(weekly granularity).

MAG240M-Snapshot Citation subgraphs from MAG-240M. We partition
yearly snapshots (2011–2020) and progressively load
new citation edges per epoch.

Yelp-CF (Temporal) Yelp user–business rating graph sorted by review
time. Each training window reveals newer user-item
interactions.

a) Cache Controller Configuration.: Each experiment
uses the following strategies:

• FCR: Fully refreshes all tiers every T = 50 steps.
• OTF: Refreshes proportionally to gradient variance.
• OTF-Shared: Enhances OTF with L0 shared SRAM

cache.

We apply the adaptive refresh rule:

γℓ = min
(
1, κ · σ2

ℓ

)
, where σ2

ℓ = V[∇θL]

We set κ = 0.05 unless specified otherwise. The variance is
computed over a sliding window of 5 steps.

b) Evaluation Metrics.: We record:

• Cache hit rate before and after edge arrivals;
• Loader throughput in k-samples/sec;
• Validation accuracy at final epoch.

TABLE XII
CACHE HIT RATE (%) BEFORE AND AFTER EDGE UPDATES

Dataset Strategy Before After Drop

Reddit-Timestamps
FCR 97.3 95.8 1.5
OTF 94.9 90.7 4.2

OTF-Shared 93.5 88.2 5.3

MAG240M-Snapshot
FCR 96.1 93.6 2.5
OTF 93.2 87.4 5.8

OTF-Shared 91.8 85.9 5.9

Yelp-CF
FCR 95.4 93.5 1.9
OTF 92.7 88.8 3.9

OTF-Shared 90.2 86.1 4.1

7



Algorithm 5 SEMHS Implementation
Require: Graph G(V,E); Sampling depth k; Sampling number per hop N ; Adjacency List: AL; //pairs of (src, dst); Sampling

Factor: α
Ensure: NGH //K-hop Sampling Storage, a 3D dictionary

1: ALsrc ← Sorted(AL, by = {src})
2: NGH[0][:]← AL
3: ALcomp ← AL
4: for i = 2, . . . ,K do
5: ALdst ← Sorted(ALcomp, by = {dst})
6: P1, P2 = 0, 0 //two pointers
7: while (ALdst[P1][0] < ALsrc[P2][1])&(P1 < Length(ALdst)) do
8: P1← P1 + 1
9: while (ALdst[P1][0] > ALsrc[P2][1])&(P2 < Length(ALsrc)) do

10: P2← P2 + 1
11: end while
12: if ALdst[P1][0] == ALsrc[P2][1] then
13: pivot← ALdst[P1][0]
14: SETsrc ← {}
15: SETdst ← {}
16: end if
17: while ALdst[P1][1] == pivot do
18: SETdst ← SETdst ∪ALdst[P1]
19: P1← P1 + 1
20: end while
21: while ALdst[P2][0] == pivot do
22: SETsrc ← SETsrc ∪ALsrc[P2]
23: P2← P2 + 1
24: end while
25: NGH[i][:]← Link(SETdst, SETsrc, α)
26: end while
27: end for
28: return NGH

TABLE XIII
SAMPLING THROUGHPUT (K SAMPLES/SEC)

Dataset FCR OTF OTF-Shared
Reddit-Timestamps 102.6 123.4 134.7
MAG240M-Snapshot 87.5 109.2 117.8
Yelp-CF 91.3 111.1 120.2

TABLE XIV
VALIDATION ACCURACY (%) AT FINAL EPOCH

Dataset FCR OTF OTF-Shared
Reddit-Timestamps 71.2 70.6 70.3
MAG240M-Snapshot 68.4 67.8 67.5
Yelp-CF 64.5 64.3 64.0

G. Component-wise Ablation
We conduct detailed ablation experiments to disentangle the

contributions of the two core modules in GraphSnapShot:
• SEMHS: Slab-Encoded Multi-Hop Storage, responsible

for layout-aware memory compression and locality-aware
access.

• GraphSDSampler: Cache controller with adaptive re-
fresh based on gradient variance.

We compare the following configurations:

• Full (Ours): GraphSnapShot with both SEMHS and
GraphSDSampler.

• No Cache: Uses SEMHS but disables GraphSDSampler,
reverting to fixed buffer loader.

• No SEMHS: Uses GraphSDSampler on standard CSR
format.

• Baseline: CSR + FBL (fixed buffer), standard PyG-style
configuration.

TABLE XV
LOADER TIME REDUCTION (% VS. BASELINE)

Dataset Full No Cache No SEMHS Baseline
OGBN-Products -63.4 -35.2 -29.7 0.0
Reddit-Timestamps -58.7 -31.4 -26.3 0.0
MAG240M-Snapshot -49.5 -27.0 -24.1 0.0

1) Loader Time Reduction (%):

8



TABLE XVI
GPU MEMORY REDUCTION (% VS. BASELINE)

Dataset Full No Cache No SEMHS Baseline
OGBN-Products -73.2 -41.0 -34.7 0.0
Reddit-Timestamps -69.6 -37.4 -30.2 0.0
MAG240M-Snapshot -65.1 -33.8 -28.9 0.0

2) GPU Memory Reduction (%):

TABLE XVII
ACCURACY DROP (% RELATIVE TO FULL)

Dataset Full No Cache No SEMHS Baseline
OGBN-Products 0.00 -0.15 -0.08 -0.20
Reddit-Timestamps 0.00 -0.21 -0.09 -0.27
MAG240M-Snapshot 0.00 -0.18 -0.11 -0.24

3) Accuracy Drop (% vs. Full):
a) Observations.:

• SEMHS consistently reduces GPU memory usage by
30–40% alone, and up to 70% with GraphSDSampler.

• GraphSDSampler offers loader latency benefits across
datasets even without SEMHS, validating its generality.

• The full configuration achieves the best balance across
all dimensions—speed, memory, and accuracy.

H. Baseline Comparisons with PyG, Quiver, Marius and Oth-
ers

We expand the baseline comparison with additional systems
to demonstrate GraphSnapShot’s consistent advantages across
throughput, memory, and reuse ratio:

TABLE XVIII
MEMORY AND THROUGHPUT COMPARISON ON OGBN-PRODUCTS

System GPU Mem (MB) Throughput (k/s) Init Time (s) Reuse Ratio (%)
GraphSnapShot 20450 140.2 3.1 87.4
PyG ClusterLoader 38800 90.6 25.7 63.5
Quiver 23500 107.3 5.8 72.1
Marius 42100 55.2 15.6 58.2
DGL-BatchSampler 36700 92.1 12.3 60.9
NeuGraph 24600 108.5 6.2 70.3
AliGraph Hybrid 30100 111.4 18.5 68.7

a) Key Takeaways.:

• GraphSnapShot consistently achieves top throughput with
lowest memory.

• PyG and DGL suffer from large static buffers and slow
preprocessing (e.g., clustering).

• Quiver, NeuGraph, and AliGraph perform reasonably
well, but lack explicit reuse control and do not support
adaptive cache refresh.

• Marius has poor reuse ratio due to disk-bound latency
and minimal overlap across epochs.

I. Theoretical and Empirical I/O Analysis

We analyze GraphSnapShot’s I/O behavior from both a
theoretical and empirical perspective. Our goal is to understand
how slab-based memory layout (SEMHS) reduces disk access
frequency and latency during node sampling.

1) Theoretical I/O Derivation: Let a sampled batch consist
of |S| seed nodes, each expanding to k neighbors. In traditional
CSR storage, retrieving each node’s neighbors requires:

TCSR =
∑
v∈S

deg(v)

which scales poorly when deg(v) is large or highly skewed
(e.g., power-law graphs).

a) Slab-Based SEMHS Model.: We define a **slab**
as a coalesced memory block of B consecutive node IDs.
SEMHS encodes neighbor lists in slab indices. Then the total
number of disk I/O operations reduces to:

TSEMHS =
k · |S| ·B

β
(16)

Where:
• k: neighborhood fanout per seed node;
• B: average slab size (e.g., 32–64 nodes per block);
• β: reuse ratio, defined as the proportion of accessed slabs

already resident in cache.
b) Theoretical Advantage.: Unlike CSR where T grows

with deg(v), SEMHS provides bounded I/O complexity per
batch:

E[TSEMHS] = O
(
|S|
β

)
vs E[TCSR] = O (|S| · E[deg(v)])

This ensures stability across datasets with extreme skew in
degree distribution.

2) Empirical Validation on Real Datasets: We conduct
direct disk trace profiling on three large-scale benchmarks.
We record:

• Number of slab fetches per batch;
• Wall-clock access time (ms);
• Relative speedup vs. PyG-style CSR access.

TABLE XIX
I/O COMPARISON: CSR VS SEMHS (ACCESS PER BATCH)

Dataset Format Slab Reads Access Time (ms) Speedup

OGBN-Products CSR 4730 54.2 1.00×
SEMHS 1221 15.6 3.47×

MAG240M CSR 7120 66.3 1.00×
SEMHS 1784 20.5 3.23×

Reddit-Timestamps CSR 2630 31.7 1.00×
SEMHS 733 10.1 3.14×

a) Interpretation.: In all datasets, SEMHS reduces both
the number of I/O operations and access time by over 3×,
consistent with the theoretical prediction in Equation 16.
Profiling confirms that larger slab size B and higher reuse ratio
β both directly lower I/O overhead, validating the functional
form of our model.

b) Key Insight.: Our analysis shows that SEMHS trans-
forms I/O cost from degree-sensitive to batch-size-sensitive,
making performance more predictable and easier to optimize.
This theoretical advantage translates to substantial runtime
benefits, particularly in large-scale or skewed graphs.

9


	Introduction
	Background and Motivation
	Graph Storage in the External–Memory Era
	Local-Structure Caching for GNNs
	Why We Need GraphSnapShot

	Model Construction
	Storage with SEMHS
	Cache with GraphSDSampler

	GraphSnapShot Architecture
	SEMHS: one-burst storage
	GraphSDSampler: variance-adaptive cache
	Dataflow in one iteration

	System Design
	Unified fetch–refresh model
	Variance–aware cache scheduling
	End-to-end latency bound

	GraphSnapShot Overview
	Graph–level split (who goes where?)
	Storage layer – SEMHS slabs
	Cache layer – GraphSDSampler

	Empirical Analysis and Conclusion
	Implementation and Dataset Evaluation
	Theoretical Comparison of Disk-Memory vs. Disk-Cache-Memory Models
	Training Time and Memory Usage Analysis
	Conclusion

	References
	Appendix
	Snapshot Abstraction
	DGL with GraphSnapShot
	Datasets
	Training Time Acceleration and Memory Reduction
	GPU Usage Reduction

	PyTorch with GraphSnapShot
	Cache Strategy Pseudocode
	Fully Cache Refresh (FCR)
	On-the-Fly Partial Refresh & Full Fetch (OTF-RF)
	On-the-Fly Partial Fetch & Refresh (OTF-PFR)
	Shared Cache Strategy

	SEMHS Fast Storage & Retrieval Method
	Dynamic Graph Evaluation Settings
	Component-wise Ablation
	Loader Time Reduction (%)
	GPU Memory Reduction (%)
	Accuracy Drop (% vs. Full)

	Baseline Comparisons with PyG, Quiver, Marius and Others
	Theoretical and Empirical I/O Analysis
	Theoretical I/O Derivation
	Empirical Validation on Real Datasets



