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ABSTRACT

We characterize the power-law asymptotics of learning curves for Gaussian process
regression (GPR) under the assumption that the eigenspectrum of the prior and
the eigenexpansion coefficients of the target function follow a power law. Under
similar assumptions, we leverage the equivalence between GPR and kernel ridge
regression (KRR) to show the generalization error of KRR. Infinitely wide neural
networks can be related to GPR with respect to the neural network GP kernel and the
neural tangent kernel, which in several cases is known to have a power-law spectrum.
Hence our methods can be applied to study the generalization error of infinitely
wide neural networks. We present toy experiments demonstrating the theory.

1 INTRODUCTION

Gaussian processes (GPs) provide a flexible and interpretable framework for learning and adaptive
inference, and are widely used for constructing prior distributions in non-parametric Bayesian learning.
From an application perspective, one crucial question is how fast do GPs learn, i.e., how much training
data is needed to achieve a certain level of generalization performance. Theoretically, this is addressed
by analyzing so-called “learning curves”, which describe the generalization error as a function of
the training set size n. The rate at which the curve approaches zero determines the difficulty of
learning tasks and conveys important information about the asymptotic performance of GP learning
algorithms. In this paper, we study the learning curves for Gaussian process regression. Our main
result characterizes the asymptotics of the generalization error in cases where the eigenvalues of the
GP kernel and the coefficients of the eigenexpansion of the target function have a power-law decay. In
the remainder of this introductory section, we review related work and outline our main contributions.

Gaussian processes A GP model is a probabilistic model on an infinite-dimensional parameter space
(Williams and Rasmussen, 2006; Orbanz and Teh, 2010). In GP regression (GPR), for example, this
space can be the set of all continuous functions. Assumptions about the learning problem are encoded
by way of a prior distribution over functions, which gets transformed into a posterior distribution given
some observed data. The mean of the posterior is then used for prediction. The model uses only a finite
subset of the available parameters to explain the data and this subset can grow arbitrarily large as more
data are observed. In this sense, GPs are “non-parametric” and contrast with parametric models, where
there is a fixed number of parameters. For regression with Gaussian noise, a major appeal of the GP
formalism is that the posterior is analytically tractable. GPs are also one important part in learning with
kernel machines (Kanagawa et al., 2018) and modeling using GPs has recently gained considerable
traction in the neural network community.

Neural networks and kernel learning From a GP viewpoint, there exists a well known correspon-
dence between kernel methods and infinite neural networks (NNs) first studied by Neal (1996). Neal
showed that the outputs of a randomly initialized one-hidden layer neural network (with appropriate
scaling of the variance of the initialization distribution) converges to a GP over functions in the limit
of an infinite number of hidden units. Follow-up work extended this correspondence with analytical
expressions for the kernel covariance for shallow NNs by Williams (1997), and more recently for
deep fully-connected NNs (Lee et al., 2018; de G. Matthews et al., 2018), convolutional NNs with
many channels (Novak et al., 2019; Garriga-Alonso et al., 2019), and more general architectures
(Yang, 2019). The correspondence enables exact Bayesian inference in the associated GP model for
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infinite-width NNs on regression tasks and has led to some recent breakthroughs in our understanding
of overparameterized NNs (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019; Belkin et al., 2018;
Daniely et al., 2016; Yang and Salman, 2019; Bietti and Mairal, 2019). The most prominent kernels
associated with infinite-width NNs are the Neural Network Gaussian Process (NNGP) kernel (Lee
et al., 2018; de G. Matthews et al., 2018), and the Neural Tangent Kernel (NTK) (Jacot et al., 2018).
Empirical studies have shown that inference with such infinite network kernels is competitive with
standard gradient descent-based optimization for fully-connected architectures (Lee et al., 2020).

Learning curves A large-scale empirical characterization of the generalization performance of
state-of-the-art deep NNs showed that the associated learning curves often follow a power law of the
form n−β with the exponent β ranging between 0.07 and 0.35 depending on the data and the algorithm
(Hestness et al., 2017; Spigler et al., 2020). Power-law asymptotics of learning curves have been
theoretically studied in early works for the Gibbs learning algorithm (Amari et al., 1992; Amari and
Murata, 1993; Haussler et al., 1996) that showed a generalization error scaling with exponent β=0.5,
1 or 2 under certain assumptions. More recent results from statistical learning theory characterize
the shape of learning curves depending on the properties of the hypothesis class (Bousquet et al.,
2021). In the context of GPs, approximations and bounds on learning curves have been investigated
in several works (Sollich, 1999; Sollich and Halees, 2002; Sollich, 2001; Opper and Vivarelli, 1999;
Opper and Malzahn, 2002; Williams and Vivarelli, 2000; Malzahn and Opper, 2001a;b; Seeger et al.,
2008; Van Der Vaart and Van Zanten, 2011; Le Gratiet and Garnier, 2015), with recent extensions
to kernel regression from a spectral bias perspective (Bordelon et al., 2020; Canatar et al., 2021). For a
review on learning curves in relation to its shape and monotonicity, see Loog et al. (2019); Viering et al.
(2019); Viering and Loog (2021). A related but complementary line of work studies the convergence
rates and posterior consistency properties of Bayesian non-parametric models (Barron, 1998; Seeger
et al., 2008; Van Der Vaart and Van Zanten, 2011).

Power-law decay of the GP kernel eigenspectrum The rate of decay of the eigenvalues of the
GP kernel conveys important information about its smoothness. Intuitively, if a process is “rough”
with more power at high frequencies, then the eigenspectrum decays more slowly. On the other hand,
kernels that define smooth processes have a fast-decaying eigenspectrum (Stein, 2012; Williams and
Rasmussen, 2006). The precise eigenvalues (λp)p≥1 of the operators associated to many kernels and
input distributions are not known explicitly, except for a few special cases (Williams and Rasmussen,
2006). Often, however, the asymptotic properties are known. The asymptotic rate of decay of the
eigenvalues of stationary kernels for input distributions with bounded support is well understood
(Widom, 1963; Ritter et al., 1995). Ronen et al. (2019) showed that for inputs distributed uniformly on
a hypersphere, the eigenfunctions of the arc-cosine kernel are spherical harmonics and the eigenvalues
follow a power-law decay. The spectral properties of the NTK are integral to the analysis of training
convergence and generalization of NNs, and several recent works empirically justify and rely on a
power law assumption for the NTK spectrum (Bahri et al., 2021; Canatar et al., 2021; Lee et al., 2020;
Nitanda and Suzuki, 2021). Velikanov and Yarotsky (2021) showed that the asymptotics of the NTK
of infinitely wide shallow ReLU networks follows a power-law that is determined primarily by the
singularities of the kernel and has the form λp∝p−α with α=1+ 1

d , where d is the input dimension.

Asymptotics of the generalization error of kernel ridge regression (KRR) There is a well known
equivalence between GPR and KRR with the additive noise in GPR playing the role of regularization
in KRR (Kanagawa et al., 2018). Analysis of the decay rates of the excess generalization error of
KRR has appeared in several works, e.g, in the noiseless case with constant regularization (Bordelon
et al., 2020; Spigler et al., 2020; Jun et al., 2019), and the noisy optimally regularized case (Caponnetto
and De Vito, 2007; Steinwart et al., 2009; Fischer and Steinwart, 2020) under the assumption that
the kernel eigenspectrum, and the eigenexpansion coefficients of the target function follow a power
law. These assumptions, which are often called resp. the capacity and source conditions are related
to the effective dimension of the problem and the difficulty of learning the target function (Caponnetto
and De Vito, 2007; Blanchard and Mücke, 2018). Cui et al. (2021) present a unifying picture of the
excess error decay rates under the capacity and source conditions in terms of the interplay between
noise and regularization illustrating their results with real datasets.

Contributions In this work, we characterize the asymptotics of the generalization error of GPR
and KRR under the capacity and source conditions. Our main contributions are as follows:
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• When the eigenspectrum of the prior decays with rate α and the eigenexpansion coefficients of
the target function decay with rate β, we show that with high probability over the draw of n input
samples, the negative log-marginal likelihood behaves as Θ(nmax{ 1

α ,
1−2β
α +1}) (Theorem 7) and

the generalization error behaves as Θ(nmax{ 1
α−1, 1−2β

α }) (Theorem 9). In the special case that the
model is correctly specified, i.e., the GP prior is the true one from which the target functions are
actually generated, our result implies that the generalization error behaves asO(n

1
α−1) recovering

as a special case a result due to Sollich and Halees (2002) (vide Remark 10).
• Under similar assumptions as in the previous item, we leverage the equivalence between GPR

and KRR to show that the excess generalization error of KRR behaves as Θ(nmax{ 1
α−1, 1−2β

α })
(Theorem 12). In the noiseless case with constant regularization, our result implies that the
generalization error behaves as Θ(n

1−2β
α ) recovering as a special case a result due to Bordelon et al.

(2020). Specializing to the case of KRR with Gaussian design, we recover as a special case a result
due to Cui et al. (2021) (vide Remark 14).
For the unrealizable case, i.e., when the target function is outside the span of the eigenfunctions
with positive eigenvalues, we show that the generalization error converges to a constant.

• We present a few toy experiments demonstrating the theory for GPR with arc-cosine kernel without bi-
ases (resp. with biases) which is the conjugate kernel of an infinitely wide shallow network with two in-
puts and one hidden layer without biases (resp. with biases) (Cho and Saul, 2009; Ronen et al., 2019).

2 BAYESIAN LEARNING AND GENERALIZATION ERROR FOR GPS

In GP regression, our goal is to learn a target function f : Ω 7→ R between an input x ∈ Ω and
output y ∈ R based on training samples Dn = {(xi, yi)}ni=1. We consider an additive noise
model yi = f(xi) + εi, where εi

i.i.d.∼ N (0,σ2
true). If ρ denotes the marginal density of the inputs

xi, then the pairs (xi, yi) are generated according to the density q(x, y) = ρ(x)q(y|x), where
q(y|x)=N (y|f(x),σ2

true). We assume that there is a prior distribution Π0 on f which is defined as a
zero-mean GP with continuous and bounded covariance function k :Ω×Ω→R, i.e., f∼GP(0,k). This
means that for any finite set x=(x1,...,xn)T , the random vector f(x)=(f(x1),...,f(xn))T follows
the multivariate normal distributionN (0,Kn) with covariance matrixKn=(k(xi,xj))

n
i,j=1∈Rn×n.

By Bayes’ rule, the posterior distribution over f given the training data is given by

dΠn(f |Dn)=
1

Z(Dn)

n∏
i=1

N (yi|f(xi),σ
2
model)dΠ0(f),

where Π0 is the prior distribution, Z(Dn) =
∫ ∏n

i=1N (yi|f(xi),σ
2
model)dΠ0(f) is the marginal

likelihood or model evidence and σmodel is the sample variance used in GPR. In practice, we do not
know the exact value of σtrue and so our choice of σmodel can be different from σtrue. The GP prior
and the Gaussian noise assumption allows for exact Bayesian inference and the posterior distribution
over functions is again a GP with mean and covariance function given by

m̄(x)=KT
xx(Kn+σ2

modelIn)−1y,x∈Ω (1)

k̄(x,x′)=k(x,x′)−KT
xx(Kn+σ2

modelIn)−1Kxx′ ,x,x
′∈Ω, (2)

whereKxx=(k(x1,x),...,k(xn,x))
T and y=(y1,...,yn)T ∈Rn (Williams and Rasmussen, 2006, Eqs.

2.23-24).

The performance of GPR depends on how well the posterior approximates f as the number of training
samples n tends to infinity. The distance of the posterior to the ground truth can be measured in various
ways. We consider two such measures, namely the Bayesian generalization error (Seeger et al., 2008;
Haussler and Opper, 1997; Opper and Vivarelli, 1999) and the excess mean squared error (Sollich
and Halees, 2002; Le Gratiet and Garnier, 2015; Bordelon et al., 2020; Cui et al., 2021).
Definition 1 (Bayesian generalization error). The Bayesian generalization error is defined as the
Kullback-Leibler divergence between the true density q(y|x) and the Bayesian predictive density
pn(y|x,Dn)=

∫
N (y|f(x),σ2

model)dΠn(f |Dn),

G(Dn)=

∫
q(x,y)log

q(y|x)

pn(y|x,Dn)
dxdy. (3)
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A related quantity of interest is the stochastic complexity (SC), also known as the free energy, which
is just the negative log-marginal likelihood. We shall primarily be concerned with a normalized version
of the stochastic complexity which is defined as follows:

F 0(Dn)=−log
Z(Dn)∏n
i=1q(yi|xi)

=−log

∫∏n
i=1N (yi|f(xi),σ

2
model)dΠ0(f)∏n

i=1q(yi|xi)
. (4)

The generalization error (3) can be expressed in terms of the normalized SC as follows (Watanabe,
2009, Theorem 1.2):

G(Dn)=E(xn+1,yn+1)F
0(Dn+1)−F 0(Dn), (5)

whereDn+1 =Dn∪{(xn+1,yn+1)} is obtained by augmentingDn with a test point (xn+1,yn+1).

If we only wish to measure the performance of the mean of the Bayesian posterior, then we can use
the excess mean squared error:
Definition 2 (Excess mean squared error). The excess mean squared error is defined as

M(Dn)=E(xn+1,yn+1)(m̄(xn+1)−yn+1)2−σ2
true =Exn+1

(m̄(xn+1)−f(xn+1))2. (6)

Proposition 3 (Normalized stochastic complexity for GPR). Assume that σ2
model =σ2

true =σ2. The
normalized SC F 0(Dn) (4) for GPR with prior GP(0,k) is given as

F 0(Dn)= 1
2 logdet(In+Kn

σ2 )+ 1
2σ2y

T (In+Kn
σ2 )−1y− 1

2σ2 (y−f(x))T (y−f(x)), (7)

where ε=(ε1,...,εn)T . The expectation of the normalized SC w.r.t. the noise ε is given as

EεF 0(Dn)= 1
2 logdet

(
In+Kn

σ2

)
− 1

2Tr
(
In−

(
In+Kn

σ2

)−1
)

+ 1
2σ2 f(x)T

(
In+Kn

σ2

)−1
f(x). (8)

This is a basic result and has applications in relation to model selection in GPR (Williams and
Rasmussen, 2006). For completeness, we give a proof of Proposition 3 in Appendix B. Seeger et al.
(2008, Theorem 1) gave an upper bound on the normalized stochastic complexity for the case when
f lies in the reproducing kernel Hilbert space (RKHS) of the GP prior. It is well known, however, that
sample paths of GP almost surely fall outside the corresponding RKHS (Van Der Vaart and Van Zanten,
2011) limiting the applicability of the result.

We next derive the asymptotics of EεF 0(Dn), the expected generalization error EεG(Dn) =
EεE(xn+1,yn+1)F

0(Dn+1)−EεF 0(Dn), and the excess mean squared error EεM(Dn).

3 ASYMPTOTIC ANALYSIS OF GP REGRESSION WITH POWER-LAW PRIORS

We begin by introducing some notations and assumptions. We assume that f ∈ L2(Ω,ρ). By the
generalization of Mercer’s theorem (Steinwart and Scovel, 2012, Corollary 3.2), the covariance
function of the GP prior can be decomposed as k(x1, x2) =

∑∞
p=1 λpφp(x1)φp(x2) ρ-almost

surely, where (φp(x))p≥1 are the eigenfunctions of the operator Lk : L2(Ω, ρ) 7→ L2(Ω, ρ);
(Lkf)(x)=

∫
Ω
k(x,s)f(s)dρ(s), and (λp)p≥1 are the corresponding positive eigenvalues. We index

the sequence of eigenvalues in decreasing order, that is λ1≥λ2≥···>0. The target function f(x) is
decomposed into the orthonormal set (φp(x))p≥1 and its orthogonal complement {φp(x) :p≥1}⊥ as

f(x)=

∞∑
p=1

µpφp(x)+µ0φ0(x)∈L2(Ω,ρ), (9)

whereµ=(µ0,µ1,...,µp,...)
T are the coefficients of the decomposition, andφ0(x) satisfies ‖φ0(x)‖2 =

1 and φ0(x) ∈ {φp(x) : p ≥ 1}⊥. For given sample inputs x, let φp(x) = (φp(x1), ... ,φp(xn))T ,
Φ = (φ0(x),φ1(x),...,φp(x),...) and Λ = diag{0,λ1,...,λp,...}. Then the covariance matrixKn can
be written asKn=ΦΛΦT , and the function values on the sample inputs can be written as f(x)=Φµ.

We shall make the following assumptions in order to derive the power-law asymptotics of the
normalized stochastic complexity and the generalization error of GPR:
Assumption 4 (Power law decay of eigenvalues). The eigenvalues (λp)p≥1 follow the power law

Cλp
−α≤λp≤Cλp−α, ∀p≥1 (10)

whereCλ,Cλ and α are three positive constants which satisfy 0<Cλ≤Cλ and α>1.
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As mentioned in the introduction, this assumption, called the capacity condition, is fairly standard
in kernel learning and is adopted in many recent works (Bordelon et al., 2020; Canatar et al., 2021;
Jun et al., 2019; Bietti et al., 2021; Cui et al., 2021). Velikanov and Yarotsky (2021) derived the exact
value of the exponent αwhen the kernel function has a homogeneous singularity on its diagonal, which
is the case for instance for the arc-cosine kernel.
Assumption 5 (Power law decay of coefficients of decomposition). Let Cµ,Cµ>0 and β>1/2 be
positive constants and let {pi}i≥1 be an increasing integer sequence such that supi≥1(pi+1−pi)<∞.
The coefficients (µp)p≥1 of the decomposition (9) of the target function follow the power law

|µp|≤Cµp−β , ∀p≥1 and |µpi |≥Cµpi−β , ∀i≥1. (11)

Since f ∈L2(Ω,ρ), we have
∑∞
p=0µ

2
p <∞. The condition β > 1/2 in Assumption 5 ensures that

the sum
∑∞
p=0µ

2
p does not diverge. When the orthonormal basis (φp(x))p is the Fourier basis or the

spherical harmonics basis, the coefficients (µp)p decay at least as fast as a power law so long as the
target function f(x) satisfies certain smoothness conditions (Bietti and Mairal, 2019). Velikanov
and Yarotsky (2021) gave examples of some natural classes of functions for which Assumption 5 is
satisfied, such as functions that have a bounded support with smooth boundary and are smooth on
the interior of this support, and derived the corresponding exponents β.
Assumption 6 (Boundedness of eigenfunctions). The eigenfunctions (φp(x))p≥0 satisfy

‖φ0‖∞≤Cφ and ‖φp‖∞≤Cφpτ , p≥1, (12)

whereCφ and τ are two positive constants which satisfy τ < α−1
2 .

The second condition in (12) appears, for example, in Valdivia (2018, Hypothesis H1) and is less
restrictive than the assumption of uniformly bounded eigenfunctions that has appeared in several other
works in the GP literature, see, e.g., Braun (2006); Chatterji et al. (2019); Vakili et al. (2021).

Define

T1(Dn)= 1
2 logdet

(
In+ ΦΛΦT

σ2

)
− 1

2Tr

(
In−

(
In+ ΦΛΦT

σ2

)−1
)
, (13)

T2(Dn)= 1
2σ2 f(x)T

(
In+ ΦΛΦT

σ2

)−1

f(x), (14)

G1(Dn)=E(xn+1,yn+1)(T1(Dn+1)−T1(Dn)), (15)

G2(Dn)=E(xn+1,yn+1)(T2(Dn+1)−T2(Dn)). (16)

Using (8) and (5), we haveEεF 0(Dn)=T1(Dn)+T2(Dn) andEεG(Dn)=G1(Dn)+G2(Dn). Intu-
itively,G1 corresponds to the effect of the noise on the generalization error irrespective of the target func-
tion f , whereasG2 corresponds to the ability of the model to fit the target function. As we will see next in
Theorems 9 and 11, ifα is large, then the error associated with the noise is smaller. When f is contained
in the span of the eigenfunctions {φp}p≥1,G2 decreases with increasingn, but if f contains an orthogo-
nal component, then the error remains constant and GP regression is not able to learn the target function.

3.1 ASYMPTOTICS OF THE NORMALIZED STOCHASTIC COMPLEXITY

We derive the asymptotics of the normalized SC (8) for the following two cases: µ0 = 0 and µ0>0.
When µ0 =0, the target function f(x) lies in the span of all eigenfunctions with positive eigenvalues.
Theorem 7 (Asymptotics of the normalized SC, µ0 = 0). Assume that µ0 = 0 and
σ2

model = σ2
true = σ2 = Θ(1). Under Assumptions 4, 5 and 6, with probability of at least

1−n−q over sample inputs (xi)
n
i=1, where 0 ≤ q < min{ (2β−1)(α−1−2τ)

4α2 , α−1−2τ
2α }, the expected

normalized SC (8) has the asymptotic behavior:
EεF 0(Dn)=

[
1
2 logdet(I+ n

σ2 Λ)− 1
2Tr
(
I−(I+ n

σ2 Λ)−1
)
+ n

2σ2µ
T (I+ n

σ2 Λ)−1µ
]
(1+o(1))

=Θ(nmax{ 1
α ,

1−2β
α +1}). (17)

The complete proof of Theorem 7 is given in Appendix D.1. We give a sketch of the proof below. In
the sequel, we use the notationsO and Θ to denote the standard mathematical orders and the notation
Õ to suppress logarithmic factors.
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Proof sketch of Theorem 7. By (8), (13) and (14) we have EεF 0(Dn) = T1(Dn) + T2(Dn). In
order to analyze the terms T1(Dn) and T2(Dn), we will consider truncated versions of these
quantities and bound the corresponding residual errors. Given a truncation parameter R ∈ N, let
ΦR = (φ0(x),φ1(x),...,φR(x))∈Rn×R be the truncated matrix of eigenfunctions evaluated at the
data points, ΛR = diag(0,λ1,...,λR)∈R(R+1)×(R+1) and µR = (µ0,µ1,...,µR)∈RR+1. We define
the truncated version of T1(Dn) as follows:

T1,R(Dn)= 1
2 logdet

(
In+

ΦRΛRΦTR
σ2

)
− 1

2Tr
(
In−(In+

ΦRΛRΦTR
σ2 )−1

)
. (18)

Similarly, define Φ>R = (φR+1(x), φR+2(x), ... , φp(x), ...), Λ>R = diag(λR+1, ... , λp, ...),
fR(x) =

∑R
p=1 µpφp(x), fR(x) = (fR(x1), ... , fR(xn))T , f>R(x) = f(x) − fR(x), and

f>R(x)=(f>R(x1),...,f>R(xn))T . The truncated version of T2(Dn) is then defined as

T2,R(Dn)= 1
2σ2 fR(x)T (In+

ΦRΛRΦTR
σ2 )−1fR(x)T . (19)

The proof consists of three steps:

• Approximation step: In this step, we show that the asymptotics of T1,R resp. T2,R dominates that of
the residuals, |T1,R(Dn)−T1(Dn)| resp. |T2,R(Dn)−T2(Dn)| (see Lemma 32). This builds upon
first showing that ‖Φ>RΛ>RΦT>R‖2 =Õ(max{nR−α,n 1

2R
1−2α

2 ,R1−α}) (see Lemma 25) and then
choosingR=n

1
α+κ where 0<κ< α−1−2τ

2α2 when we have ‖Φ>RΛ>RΦT>R‖2 =o(1). Intuitively, the
choice of the truncation parameterR is governed by the fact that λR=Θ(R−α)=n−1+κα=o(n−1).

• Decomposition step: In this step, we decompose T1,R into a term independent of ΦR and a series
involving ΦTRΦR−nIR, and likewise for T2,R (see Lemma 34). This builds upon first showing using
the Woodbury matrix identity (Williams and Rasmussen, 2006, §A.3) that

T1,R(Dn)= 1
2 logdet(IR+ 1

σ2 ΛRΦTRΦR)− 1
2TrΦR(σ2IR+ΛRΦTRΦR)−1ΛRΦTR, (20)

T2,R(Dn)= 1
2σ2µ

T
RΦTRΦR(σ2IR+ΛRΦTRΦR)−1µR, (21)

and then Taylor expanding the matrix inverse (σ2IR + ΛRΦTRΦR)−1 in (20) and (21) to
show that the ΦR-independent terms in the decomposition of T1,R and T2,R are, respectively,
1
2 logdet(IR+ n

σ2 ΛR)− 1
2Tr
(
IR−(IR+ n

σ2 ΛR)−1
)
, and n

2σ2µ
T
R(IR+ n

σ2 ΛR)−1µR.

• Concentration step: Finally, we use concentration inequalities to show that these ΦR-independent
terms dominate the series involving ΦTRΦR−nIR (see Lemma 35) when we have

T1,R(Dn)=
(

1
2 logdet(IR+ n

σ2 ΛR)− 1
2Tr
(
IR−(IR+ n

σ2 ΛR)−1
))

(1+o(1))=Θ(n
1
α ),

T2,R(Dn)=
(
n

2σ2µ
T
R(IR+ n

σ2 ΛR)−1µR
)
(1+o(1))=

{
Θ(nmax{0, 1−2β

α +1}), α 6=2β−1,

Θ(logn), α=2β−1.

The key idea is to consider the matrix Λ
1/2
R (I+ n

σ2 ΛR)−1/2ΦTRΦR(I+ n
σ2 ΛR)−1/2Λ

1/2
R and show

that it concentrates around nΛR(I+ n
σ2 )−1 (see Corollary 22). Note that an ordinary application

of the matrix Bernstein inequality to ΦTRΦR−nIR yields ‖ΦTRΦR−nI‖2 =O(R
√
n), which is not

sufficient for our purposes, since this would giveO(R
√
n)=o(n) only when α>2. In contrast, our

results are valid forα>1 and cover cases of practical interest, e.g., the NTK of infinitely wide shallow
ReLU network (Velikanov and Yarotsky, 2021) and the arc-cosine kernels over high-dimensional
hyperspheres (Ronen et al., 2019) that have α=1+O( 1

d ), where d is the input dimension.

For µ0>0, we note the following result:
Theorem 8 (Asymptotics of the normalized SC, µ0 > 0). Assume µ0 > 0 and
σ2

model = σ2
true = σ2 = Θ(1). Under Assumptions 4, 5 and 6, with probability of at least

1−n−q over sample inputs (xi)
n
i=1, where 0≤q<min{ 2β−1

2 ,α}·min{α−1−2τ
2α2 , 2β−1

α2 }. the expected
normalized SC (8) has the asymptotic behavior: EεF 0(Dn)= 1

2σ2µ
2
0n+o(n).

The proof of Theorem 8 is given in Appendix D.1 and follows from showing that when µ0 > 0,
T2,R(Dn) =

(
n

2σ2µ
T
R(IR+ n

σ2 ΛR)−1µR
)
(1 + o(1)) = 1

2σ2µ
2
0n + o(n) (see Lemma 38), which

dominates T1(Dn) and the residual |T2,R(Dn)−T2(Dn)|.
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3.2 ASYMPTOTICS OF THE BAYESIAN GENERALIZATION ERROR

In this section, we derive the asymptotics of the expected generalization error EεG(Dn) by analyzing
the asymptotics of the componentsG1(Dn) andG2(Dn) in resp. (15) and (16) for the following two
cases: µ0 =0 and µ0>0. First, we consider the case µ0 =0.
Theorem 9 (Asymptotics of the Bayesian generalization error, µ0 = 0). Let Assumptions 4, 5, and
6 hold. Assume that µ0 = 0 and σ2

model = σ2
true = σ2 = Θ(nt) where 1− α

1+2τ < t < 1. Then with

probability of at least 1−n−q over sample inputs (xi)
n
i=1 where 0≤ q < [α−(1+2τ)(1−t)](2β−1)

4α2 , the
expectation of the Bayesian generalization error (3) w.r.t. the noise ε has the asymptotic behavior:

EεG(Dn)= 1+o(1)
2σ2

(
Tr(I+ n

σ2 Λ)−1Λ−‖Λ1/2(I+ n
σ2 Λ)−1‖2F +‖(I+ n

σ2 Λ)−1µ‖22
)

= 1
σ2 Θ(nmax{ (1−α)(1−t)

α ,
(1−2β)(1−t)

α }). (22)

The proof of Theorem 9 is given in Appendix D.2. Intuitively, for a given t, the exponent (1−α)(1−t)
α in

(22) captures the rate at which the model suppresses the noise, while the exponent (1−2β)(1−t)
α captures

the rate at which the model learns the target function. A larger β implies that the exponent (1−2β)(1−t)
α

is smaller and it is easier to learn the target. A larger α implies that the exponent (1−α)(1−t)
α is smaller

and the error associated with the noise is smaller as well. A larger α, however, also implies that the
exponent (1−2β)(1−t)

α is larger (recall that α>1 and β>1/2 by Assumptions 4 and 5, resp.), which
means that it is harder to learn the target.
Remark 10. If f ∼ GP(0, k), then using the Karhunen-Loève expansion we have
f(x) =

∑∞
p=1

√
λpωpφp(x), where (ωp)

∞
p=1 are i.i.d. standard Gaussian variables. We can

bound ωp almost surely as |ωp| ≤ C logp, where C = supp≥1
|ωp|
logp is a finite constant. Comparing

with the expansion of f(x) in (9), we find that µp =
√
λpωp =O(p−α/2logp) =O(p−α/2+ε) where

ε>0 is arbitrarily small. Choosing β=α/2−ε in (22), we have EεG(Dn)=O(n
1
α−1+ 2ε

α ). This rate
matches that of an earlier result due to Sollich and Halees (2002), where it is shown that the asymptotic
learning curve (as measured by the expectation of the excess mean squared error, EfM(Dn)) scales
as n

1
α−1 when the model is correctly specified, i.e., f is a sample from the same Gaussian process

GP(0,k), and the eigenvalues decay as a power law for large i, λi∼ iα.

For µ0>0, we note the following result:
Theorem 11 (Asymptotics of the Bayesian generalization error, µ0>0). Let Assumptions 4, 5, and
6 hold. Assume that µ0 > 0 and σ2

model = σ2
true = σ2 = Θ(nt) where 1− α

1+2τ < t < 1. Then with

probability of at least 1−n−q over sample inputs (xi)
n
i=1, where 0≤ q< [α−(1+2τ)(1−t)](2β−1)

4α2 , the
expectation of the Bayesian generalization error (3) w.r.t. the noise ε has the asymptotic behavior:
EεG(Dn)= 1

2σ2µ
2
0+o(1).

In general, if µ0> 0, then the generalization error remains constant when n→∞. This means that
if the target function contains a component in the kernel of the operatorLk, then GP regression is not
able to learn the target function. The proof of Theorem 11 is given in Appendix D.2.

3.3 ASYMPTOTICS OF THE EXCESS MEAN SQUARED ERROR

In this section we derive the asymptotics of the excess mean squared error in Definition 2.
Theorem 12 (Asymptotics of excess mean squared error). Let Assumptions 4, 5, and 6 hold. Assume
σ2

model =Θ(nt) where 1− α
1+2τ <t<1. Then with probability of at least 1−n−q over sample inputs

(xi)
n
i=1, where 0≤q< [α−(1+2τ)(1−t)](2β−1)

4α2 , the excess mean squared error (6) has the asymptotic:

EεM(Dn)=(1+o(1))

[
σ2

true

σ2
model

(
Tr(I+ n

σ2
model

Λ)−1Λ−‖Λ1/2(I+ n
σ2

model
Λ)−1‖2F

)
+‖(I+ n

σ2
model

Λ)−1µ‖22
]

=Θ

(
max{σ2

truen
1−α−t
α ,n

(1−2β)(1−t)
α }

)
when µ0 =0, and EεM(Dn)=µ2

0+o(1), when µ0>0.
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The proof of Theorem 12 uses similar techniques as Theorem 9 and is given in Appendix D.3.

Remark 13 (Correspondence with kernel ridge regression). The kernel ridge regression (KRR)
estimator arises as a solution to the optimization problem

f̂=argmin
f∈Hk

1

n

n∑
i=1

(f(xi)−yi)2
+λ‖f‖2Hk , (23)

where the hypothesis spaceHk is chosen to be an RKHS, and λ > 0 is a regularization parameter.
The solution to (23) is unique as a function, and is given by f̂(x) = KT

xx(Kn +nλIn)−1y, which
coincides with the posterior mean function m̄(x) of the GPR (1) if σ2

model = nλ (Kanagawa et al.,
2018, Proposition 3.6). Thus, the additive Gaussian noise in GPR plays the role of regularization
in KRR. Leveraging this well known equivalence between GPR and KRR we observe that Theorem 12
also describes the generalization error of KRR as measured by the excess mean squared error.

Remark 14. Cui et al. (2021) derived the asymptotics of the expected excess mean-squared error for
different regularization strengths and different scales of noise. In particular, for KRR with Gaussian
design where Λ

1/2
R (φ1(x),...,φR(x))) is assumed to follow a Gaussian distributionN (0,ΛR), and

regularization λ=nt−1 where 1−α≤ t, Cui et al. (2021, Eq. 10) showed that

E{xi}ni=1
EεM(Dn)=O

(
max{σ2

truen
1−α−t
α ,n

(1−2β)(1−t)
α }

)
. (24)

Let δ = n−q, where 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 . By Markov’s inequality, this implies

that with probability of at least 1 − δ, EεM(Dn) = O( 1
δ max{σ2

truen
1−α−t
α , n

(1−2β)(1−t)
α }) =

O(nqmax{σ2
truen

1−α−t
α ,n

(1−2β)(1−t)
α }). Theorem 12 improves upon this by showing that with prob-

ability of at least 1−δ, we have an optimal bound EεM(Dn)=Θ(max{σ2
truen

1−α−t
α ,n

(1−2β)(1−t)
α }).

Furthermore, in contrast to the approach by Cui et al. (2021), we have no requirement on the
distribution of φp(x), and hence our result is more generally applicable. For example, Theorem 12
can be applied to KRR with the arc-cosine kernel when the Gaussian design assumption is not valid.
In the noiseless setting (σtrue =0) with constant regularization (t=0), Theorem 12 implies that the
mean squared error behaves as Θ(n

1−2β
α ). This recovers a result in Bordelon et al. (2020, §2.2).

Our upper bound in Theorem 12 matches with the ones derived in (Steinwart et al., 2009; Fischer
and Steinwart, 2020). Steinwart et al. (2009) and Fischer and Steinwart (2020) also derived algorithm
independent minmax lower bounds. In contrast to their results, our Theorem 12 gives lower bounds
for different regularization strengths λ.

4 EXPERIMENTS

We illustrate our theory on a few toy experiments. We let the input x be uniformly distributed on a
unit circle, i.e., Ω=S1 and ρ=U(S1). The points on S1 can be represented by x=(cosθ,sinθ) where
θ∈ [−π,π). We use the first order arc-cosine kernel function without bias, k(1)

w/o bias(x1,x2)= 1
π (sinψ+

(π−ψ)cosψ), where ψ= 〈x1,x2〉 is the angle between x1 and x2. Hence Assumption 4 is satisfied
with α=4. We consider the target functions in Table 1, which satisfy Assumption 5 with the indicated
β, and µ0 indicates whether the function lies in the span of eigenfunctions of the kernel. For each target
we conduct GPR 20 times and report the mean and standard deviation of the normalized SC and the
Bayesian generalization error in Figure 1, which agree with the asymptotics predicted in Theorems 7
and 9. The details of the experiments appear in Appendix A, where we also show more experiments
confirming our theory for zero- and second- order arc-cosine kernels, with and without biases.

5 CONCLUSION

We described the learning curves for GPR for the case that the kernel and target function follow a
power law. This setting is frequently encountered in kernel learning and relates to recent advances
on neural networks. Our approach is based on a tight analysis of the concentration of the inner product
of empirical eigenfunctions ΦTΦ around nI . This allowed us to obtain more general results with more
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function value β µ0 EεF
0(Dn) EεG(Dn)

f1 cos2θ +∞ 0 Θ(n1/4) Θ(n−3/4)
f2 θ2 2 >0 Θ(n) Θ(1)

f3 (|θ|−π/2)2 2 0 Θ(n1/4) Θ(n−3/4)

f4

{
π/2−θ, θ∈ [0,π)

−π/2−θ, θ∈ [−π,0)
1 0 Θ(n3/4) Θ(n−1/4)

Table 1: Target functions used in the experiments for the first order arc-cosine kernel without bias
k

(1)
w/o bias, their values of β and µ0, and theoretical rates for the normalized SC and the Bayesian

generalization error from our theorems.

Figure 1: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with the kernel
k

(1)
w/o bias and the target functions in Table 1. The orange curves show the linear regression fit for the

experimental values (in blue) of the log Bayesian generalization error as a function of log n.

realistic assumptions than previous works. In particular, we recovered some results on learning curves
for GPR and KRR previously obtained under more restricted settings (vide Remarks 10 and 14).

We showed that when β≥α/2, meaning that the target function has a compact representation in terms
of the eigenfunctions of the kernel, the learning rate is as good as in the correctly specified case. In
addition, our result allows us to interpret β from a spectral bias perspective. When 1

2 <β ≤
α
2 , the

larger the value of β, the faster the decay of the generalization error. This implies that low-frequency
functions are learned faster in terms of the number of training data points.

By leveraging the equivalence between GPR and KRR, we obtained a result on the generalization
error of KRR. In the infinite-width limit, training fully-connected deep NNs with gradient descent
and infinitesimally small learning rate under least-squared loss is equivalent to solving KRR with
respect to the NTK (Jacot et al., 2018; Lee et al., 2019; Domingos, 2020), which in several cases is
known to have a power-law spectrum (Velikanov and Yarotsky, 2021). Hence our methods can be
applied to study the generalization error of infinitely wide neural networks. In future work, it would be
interesting to estimate the values of α and β for the NTK and the NNGP kernel of deep fully-connected
or convolutional NNs and real data distributions and test our theory in these cases. Similarly, it would
be interesting to consider extensions to finite width kernels.
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APPENDIX

A EXPERIMENTS FOR ARC-COSINE KERNELS OF DIFFERENT ORDERS

In our experiment, the input space and input distribution are Ω = S1 and ρ = U(S1), and we
use the first order arc-cosine kernel function. (Cho and Saul, 2009) showed that this kernel is
the conjugate kernel of an infinitely wide shallow ReLU network with two inputs and no biases
in the hidden layer. GP regression with prior GP(0, k) corresponds to Bayesian training of this
network (Lee et al., 2018). Under this setting, the eigenvalues and eigenfunctions are λ1 = 4

π2 ,
λ2 =λ3 = 1

4 , λ2p=λ2p+1 = 4
π2((2p−2)2−1)2 , p≥2 and φ1(θ) = 1, φ2(θ) =

√
2

2 cosθ, φ3(θ) =
√

2
2 sinθ,

φ2p(θ) =
√

2
2 cos(2p−2)θ,φ2p+1(θ) =

√
2

2 sin(2p−2)θ, p≥ 2. Hence Assumption 4 is satisfied with
α=4, and the second part of Assumption 6 is satisfied with ‖φp‖≤

√
2

2 , p≥1.

The training and test data are generated as follows: We independently sample training inputs
x1, ... ,xn and test input xn+1 from U(S1) and training outputs yi, i = 1, ... ,n from N (f(xi),σ

2),
where we choose σ = 0.1. The Bayesian predictive density conditioned on the test point xn+1

N (m̄(xn+1),k̄(xn+1,xn+1)) is obtained by (1) and (2). We compute the normalized SC by (7) and
the Bayesian generalization error by the Kullback-Leibler divergence betweenN (f(xn+1),σ2) and
N (m̄(xn+1),k̄(xn+1,xn+1)).

Next we present experiment results for arc-cosine kernels of different orders and arc-cosine kernels
with biases. Consider the first order arc-cosine kernel function with biases,

k
(1)
w/ bias(x1,x2)= 1

π (sinψ̄+(π−ψ̄)cosψ̄),where ψ̄=arccos
(

1
2 (〈x1,x2〉+1)

)
. (25)

Ronen et al. (2019) showed that this kernel is the conjugate kernel of an infinitely wide shallow ReLU
network with two inputs and one hidden layer with biases, whose eigenvalues satisfy Assumption 4
with α = 4. The eigenfunctions of this kernel are the same as that of the first-order arc-cosine
kernel without biases, k(1)

w/o bias in Section 4. We consider the target functions in Table 3, which
satisfy Assumption 5 with the indicated β, and µ0 indicates whether the function lies in the span
of eigenfunctions of the kernel. For each target we conduct GPR 20 times and report the mean and
standard deviation of the normalized SC and the Bayesian generalization error in Figure 3, which
agree with the asymptotics predicted in Theorems 7 and 9.

Table 2 summarizes all the different kernel functions that we consider in our experiments with pointers
to the corresponding tables and figures.

Summarizing the observations from these experiments, we see that the smoothness of the activation
function (which is controlled by the order of the arc-cosine kernel) influences the decay rate α of the
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kernel function α activation function bias pointer
k
(1)

w/o bias
1
π

(sinψ+(π−ψ)cosψ) 4 max{0,x} no Table 1/Figure 1

k
(1)

w/ bias
1
π

(sinψ̄+(π−ψ̄)cosψ̄) 4 max{0,x} yes Table 3/Figure 3

k
(2)

w/o bias
1
π

(3sinψcosψ+(π−ψ)(1+2cos2ψ)) 6 (max{0,x})2 no Table 4/Figure 4

k
(2)

w/ bias
1
π

(3sinψ̄cosψ̄+(π−ψ̄)(1+2cos2ψ̄)) 6 (max{0,x})2 yes Table 5/Figure 5

k
(0)

w/o bias
1
π

(sinψ+(π−ψ)cosψ) 2 1
2
(1+sign(x)) no Table 6/Figure 6

k
(0)

w/ bias
1
π

(sinψ̄+(π−ψ)cosψ̄) 2 1
2
(1+sign(x)) yes Table 7/Figure 7

Table 2: The different kernel functions used in our experiments, their values of α, the corresponding
neural network activation function along with a pointer to the tables showing the target functions used
for the kernels and the corresponding figures.

eigenvalues. In general, when the activation function is smoother, the decay rate α is larger. Theorem 9
then implies that smooth activation functions are more capable in suppressing noise but slower in
learning the target. We also observe that networks with biases are more capable at learning functions
compared to networks without bias. For example, the function cos(2θ) cannot be learned by the zero
order arc-cosine kernel without biases (see Table 6 and Figure 6), but it can be learned by the zero
order arc-cosine kernel with biases (see Table 7 and Figure 7).

function value β µ0 EεF 0(Dn) EεG(Dn)

f1 cos2θ +∞ 0 Θ(n1/4) Θ(n−3/4)

f2 θ2 2 0 Θ(n1/4) Θ(n−3/4)

f3 (|θ|−π/2)2 2 0 Θ(n1/4) Θ(n−3/4)

f4

{
π/2−θ, θ∈ [0,π)

−π/2−θ, θ∈ [−π,0)
1 0 Θ(n3/4) Θ(n−1/4)

Table 3: Target functions used in the experiments for the first order arc-cosine kernel with bias, k(1)
w/ bias,

their values of β and µ0, and theoretical rates for the normalized SC and the Bayesian generalization
error from our theorems.

Figure 3: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel
k

(1)
w/ bias and the target functions in Table 3. The orange curves show the linear regression fit for the

experimental values (in blue) of the log Bayesian generalization error as a function of log n.
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function value β µ0 EεF 0(Dn) EεG(Dn)

f1 cos2θ +∞ 0 Θ(n1/6) Θ(n−5/6)

f2 sign(θ) 1 0 Θ(n5/6) Θ(n−1/6)

f3 π/2−|θ| 2 0 Θ(n1/2) Θ(n−1/2)

f4

{
π/2−θ, θ∈ [0,π)

−π/2−θ, θ∈ [−π,0)
1 >0 Θ(n) Θ(1)

Table 4: Target functions used in the experiments for the second order arc-cosine kernel without
bias, k(2)

w/o bias, their values of β and µ0, and theoretical rates for the normalized SC and the Bayesian
generalization error from our theorems.

Figure 4: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel
k

(2)
w/o bias and the target functions in Table 4.

function value β µ0 EεF 0(Dn) EεG(Dn)

f1 cos2θ +∞ 0 Θ(n1/6) Θ(n−5/6)

f2 θ2 2 0 Θ(n1/2) Θ(n−1/2)

f3 (|θ|−π/2)2 2 0 Θ(n1/2) Θ(n−1/2)

f4

{
π/2−θ, θ∈ [0,π)

−π/2−θ, θ∈ [−π,0)
1 0 Θ(n5/6) Θ(n−1/6)

Table 5: Target functions used in the experiments for the second order arc-cosine kernel with bias,
k

(2)
w/ bias, their values of β and µ0, and theoretical rates for the normalized SC and the Bayesian

generalization error from our theorems.

Figure 5: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel
k

(2)
w/ bias and the target functions in Table 5.
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function value β µ0 EεF 0(Dn) EεG(Dn)
f1 cos2θ +∞ >0 Θ(n) Θ(1)

f2 sign(θ) 1 0 Θ(n1/2) Θ(n−1/2)

f3 π/2−|θ| 2 0 Θ(n1/2) Θ(n−1/2)

f4

{
π/2−θ, θ∈ [0,π)

−π/2−θ, θ∈ [−π,0)
1 >0 Θ(n) Θ(1)

Table 6: Target functions used in the experiments for the zero order arc-cosine kernel without bias,
k

(0)
w/o bias, their values of β and µ0, and theoretical rates for the normalized SC and the Bayesian

generalization error from our theorems.

Figure 6: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel
k

(0)
w/o bias and the target functions in Table 6.

function value β µ0 EεF 0(Dn) EεG(Dn)

f1 cos2θ +∞ 0 Θ(n1/2) Θ(n−1/2)

f2 θ2 2 0 Θ(n1/2) Θ(n−1/2)

f3 (|θ|−π/2)2 2 0 Θ(n1/2) Θ(n−1/2)

f4

{
π/2−θ, θ∈ [0,π)

−π/2−θ, θ∈ [−π,0)
1 0 Θ(n1/2) Θ(n−1/2)

Table 7: Target functions used in the experiments for the zero order arc-cosine kernel with bias,
k

(0)
w/ bias, their values of β and µ0, and theoretical rates for the normalized SC and the Bayesian

generalization error from our theorems.

Figure 7: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel
k

(0)
w/ bias and the target functions in Table 7.
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B PROOFS RELATED TO THE MARGINAL LIKELIHOOD

Proof of Proposition 3. Let ȳ = (ȳ1,...,ȳn)T be the outputs of the GP regression model on training
inputs x. Under the GP prior, the prior distribution of ȳ isN (0,Kn). Then the evidence of the model
is given as follows:

Zn=

∫
Rn

(
n∏
i=1

1√
2πσ

e−
(ȳi−yi)

2

2σ2

)
1

(2π)n/2det(Kn)1/2
e−

1
2 ȳ

TK−1
n ȳdȳ

=
1

(2π)nσndet(Kn)1/2

∫
Rn
e−

1
2 ȳ

T (K−1
n + 1

σ2 I)ȳ+ 1
σ2 ȳTy− 1

2σ2 yTydȳ.

(26)

Letting K̃−1
n =K−1

n + 1
σ2 I and µ= 1

σ2 K̃ny, we have

Zn=
1

(2π)nσndet(Kn)1/2

∫
Rn
e−

1
2 (ȳ−µ)T K̃−1

n (ȳ−µ)− 1
2σ2 yTy+ 1

2µ
T K̃−1

n µdȳ

=
1

(2π)nσndet(Kn)1/2
(2π)n/2det(K̃n)1/2e−

1
2σ2 yTy+ 1

2µ
T K̃−1

n µ

=
det(K̃n)1/2

(2π)n/2σndet(Kn)1/2
e−

1
2σ2 yTy+ 1

2µ
T K̃−1

n µ.

(27)

The normalized evidence is

Z0
n=

Zn

(2π)−n/2σ−ne−
1

2σ2 (y−f(x))T (y−f(x))

=
det(K̃n)1/2

det(Kn)1/2
e−

1
2σ2 yTy+ 1

2µ
T K̃−1

n µ+ 1
2σ2 (y−f(x))T (y−f(x)).

(28)

So the normalized stochastic complexity is

F 0(Dn)=−logZ0
n

=−1

2
logdet(K̃n)1/2+

1

2
logdet(Kn)1/2+

1

2σ2
yTy− 1

2
µT K̃−1

n µ− 1

2σ2
(y−f(x))T (y−f(x))

=−1

2
logdet(K−1

n +
1

σ2
I)−1+

1

2
logdet(Kn)+

1

2σ2
yTy− 1

2σ4
yT (K−1

n +
1

σ2
I)−1y

− 1

2σ2
(y−f(x))T (y−f(x))

=
1

2
logdet(I+

Kn

σ2
)+

1

2σ2
yT (I+

Kn

σ2
)−1y− 1

2σ2
(y−f(x))T (y−f(x)).

=
1

2
logdet(I+

Kn

σ2
)+

1

2σ2
f(x)T (I+

Kn

σ2
)−1f(x)+

1

2σ2
εT (I+

Kn

σ2
)−1ε− 1

2σ2
εT ε

+
1

2σ2
εT (I+

Kn

σ2
)−1f(x)

.
(29)

After taking the expectation over noises ε, we get

EεF 0(Dn)=
1

2
logdet(I+

Kn

σ2
)+

1

2σ2
f(x)T (I+

Kn

σ2
)−1f(x)− 1

2
Tr(I−(I+

Kn

σ2
)−1). (30)

This concludes the proof.

C HELPER LEMMAS

Lemma 15. Assume that m → ∞ as n → ∞. Given constants a1, a2, s1, s2 > 0, if s1 > 1 and
s2s3>s1−1 , we have that

R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=Θ(m

1−s1
s2 ). (31)
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If s1>1 and s2s3 =s1−1, we have that
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=Θ(m−s3 logm). (32)

If s1>1 and s2s3<s1−1, we have that
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=Θ(m−s3). (33)

Overall, if s1>1 andm→∞,
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=

{
Θ(mmax{−s3, 1−s1s2

}), s2s3 6=s1−1,

Θ(m
1−s1
s2 logm), s2s3 =s1−1.

(34)

Proof of Lemma 15. First, when s1>1 and s2s3>s1−1, we have that
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≤ a1

(1+a2m)s3
+

∫
[1,+∞]

a1x
−s1

(1+a2mx−s2)s3
dx

=
a1

(1+a2m)s3
+m

1−s1
s2

∫
[1,+∞]

a1( x
m1/s2

)−s1

(1+a2( x
m1/s2

)−s2)s3
d

x

m1/s2

=
a1

(1+a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,+∞]

a1x
−s1

(1+a2x−s2)s3
dx

=Θ(m
1−s1
s2 ).

On the other hand, we have
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≥
∫

[1,R+1]

a1x
−s1

(1+a2mx−s2)s3
dx

=m
1−s1
s2

∫
[1,R+1]

a1( x
m1/s2

)−s1

(1+a2( x
m1/s2

)−s2)s3
d

x

m1/s2

=m
1−s1
s2

∫
[1/m1/s2 ,(R+1)/m1/s2 ]

a1x
−s1

(1+a2x−s2)s3
dx

=Θ(m
1−s1
s2 ).

Second, when s1>1 and s2s3 =s1−1, we have that
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≤ a1

(1+a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,+∞]

a1x
−s1

(1+a2x−s2)s3
dx

≤ a1

(1+a2m)s3
+m

1−s1
s2 O(logm(1/s2))

=Θ(m
1−s1
s2 logn).

On the other hand, we have
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≥
∫

[1,R+1]

a1x
−s1

(1+a2mx−s2)s3
dx

=m
1−s1
s2

∫
[1,R+1]

a1( x
m1/s2

)−s1

(1+a2( x
m1/s2

)−s2)s3
d

x

m1/s2

=m
1−s1
s2

∫
[1/m1/s2 ,(R+1)/m1/s2 ]

a1x
−s1

(1+a2x−s2)s3
dx

=Θ(m
1−s1
s2 logn).
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Third, when s1>1 and s2s3<s1−1, we have that

R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≤ a1

(1+a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,+∞]

a1x
−s1

(1+a2x−s2)s3
dx

≤ a1

(1+a2m)s3
+m

1−s1
s2 Θ(m(−1/s2)(1−s1+s2s3))

=Θ(m−s3).

On the other hand, we have

R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≤ a1

(1+a2m)s3
+m

1−s1
s2

∫
[2/m1/s2 ,(R+1)/m1/s2 ]

a1x
−s1

(1+a2x−s2)s3
dx

≤ a1

(1+a2m)s3
+m

1−s1
s2 Θ(m(−1/s2)(1−s1+s2s3))

=Θ(m−s3).

Overall, if s1>1,

R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=

{
Θ(mmax{−s3, 1−s1s2

}), s2s3 6=s1−1,

Θ(m−s3 logn), s2s3 =s1−1.
(35)

Lemma 16. Assume thatR=m
1
s2 +κ for κ>0. Given constants a1,a2,s1,s2>0 , if s1≤1, we have

that
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=Õ(max{m−s3 ,R1−s1}). (36)

Proof of Lemma 16. First, when s1≤1 and s2s3>s1−1, we have that

R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≤ a1

(1+a2m)s3
+

∫
[1,R]

a1x
−s1

(1+a2mx−s2)s3
dx

=
a1

(1+a2m)s3
+m

1−s1
s2

∫
[1,R]

a1( x
m1/s2

)−s1

(1+a2( x
m1/s2

)−s2)s3
d

x

m1/s2

=
a1

(1+a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,R/m1/s2 ]

a1x
−s1

(1+a2x−s2)s3
dx

=
a1

(1+a2m)s3
+Õ(m

1−s1
s2 ( R

m1/s2
)1−s1)

=Õ(max{m−s3 ,R1−s1}).

Second, when s1≤1 and s2s3≤s1−1, we have that

R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
≤ a1

(1+a2m)s3
+m

1−s1
s2

∫
[1/m1/s2 ,R/m1/s2 ]

a1x
−s1

(1+a2x−s2)s3
dx

≤ a1

(1+a2m)s3
+m

1−s1
s2 Õ(m(−1/s2)(1−s1+s2s3)+( R

m1/s2
)1−s1)

=Õ(max{m−s3 ,R1−s1}).

Overall, if s1≤1,
R∑
i=1

a1i
−s1

(1+a2mi−s2)s3
=Õ(max{m−s3 ,R1−s1}). (37)
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Lemma 17. Assume that f ∈ L2(Ω,ρ). Consider the random vector f(x) = (f(x1), ... ,f(xn))T ,
where x1,...,xn are drawn i.i.d from ρ. Then with probability of at least 1−δ1, we have

‖f(x)‖22 =

n∑
i=1

f2(xi)=Õ
(

( 1
δ1

+1)n‖f‖22
)
,

where ‖f‖22 =
∫
x∈Ω

f2(x)dρ(x).

Proof of Lemma 17. Given a positive numberC≥‖f‖22, applying Markov’s inequality we have

P(f2(X)>C)≤ 1

C
‖f‖22.

LetA be the event that for all sample inputs (xi)
n
i=1, f2(xi)≤C. Then

P(A)≥1−nP(f2(X)>C)≥1− 1

C
n‖f‖22. (38)

Define f̄2(x) = min{f2(x),C}. Then Ef̄2(X) ≤ Ef2(X) = ‖f‖22. So |f̄2(X) − Ef̄2(X)| ≤
max{C,‖f‖22}=C Since 0≤ f̄2(x)≤C, we have

E(f̄4(X))≤CE(f̄2(X))≤C‖f‖22. (39)

So we have
E|f̄2(X)−Ef̄2(X)|2≤E(f̄4(X))≤C‖f‖22. (40)

Applying Bernstein’s inequality, we have

P(

n∑
i=1

f̄2(xi)>t+nEf̄2(X))≤exp

(
− t2

2(nE|f̄2(X)−Ef̄2(X)|2)+ Ct
3 )

)

≤exp

(
− t2

2(nC‖f‖22+ Ct
3 )

)

≤exp

(
− t2

4max{nC‖f‖22,Ct3 }

)
.

Hence, with probability of at least 1−δ1/2 we have
n∑
i=1

f̄2(xi)≤max

{√
4Clog

2

δ1
n‖f‖22,

4C

3
log

2

δ1

}
+nEf̄2(X)

≤max

{√
4Clog

2

δ1
n‖f‖22,

4C

3
log

2

δ1

}
+n‖f‖22.

(41)

When event A happens, f2(xi) = f̄2(xi) for all sample inputs. According to (38) and (41), with
probability at least 1− 1

Cn‖f‖
2
2−δ1/2, we have

n∑
i=1

f2(xi)=

n∑
i=1

f̄2(xi)≤max

{√
4Clog

2

δ1
n‖f‖22,

4C

3
log

2

δ1

}
+n‖f‖22.

ChoosingC= 2
δ1
n‖f‖22, with probability of at least 1−δ1 we have

n∑
i=1

f2(xi)=

n∑
i=1

f̄2(xi)≤max

{√
8

δ1
log

2

δ1
n2‖f‖42,

8

3δ1
n‖f‖22log

2

δ1

}
+n‖f‖22 =Õ

(
( 1
δ1

+1)n‖f‖22
)
.

Lemma 18. Assume that f ∈ L2(Ω,ρ). Consider the random vector f(x) = (f(x1), ... ,f(xn))T ,
where x1,...,xn are drawn i.i.d from ρ. Assume that ‖f‖∞= supx∈Ωf(x)≤C. With probability of
at least 1−δ1, we have

‖f(x)‖22 =Õ

(√
C2n‖f‖22+C2

)
+n‖f‖22,

where ‖f‖22 =
∫
x∈Ω

f2(x)dρ(x).
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Proof of Lemma 18. We have |f2(X)−Ef2(X)|≤max{C2,‖f‖22}=C2 Since 0≤ f2(x)≤C, we
have

E(f4(X))≤C2E(f2(X))≤C2‖f‖22. (42)

So we have
E|f2(X)−Ef2(X)|2≤E(f4(X))≤C2‖f‖22. (43)

Applying Bernstein’s inequality, we have

P(

n∑
i=1

f2(xi)>t+nEf2(X))≤exp

(
− t2

2(nE|f2(X)−Ef2(X)|2)+ C2t
3 )

)

≤exp

(
− t2

2(nC2‖f‖22+ C2t
3 )

)

≤exp

(
− t2

4max{nC2‖f‖22,C
2t
3 }

)
.

Hence, with probability of at least 1−δ1 we have

n∑
i=1

f2(xi)≤max

{√
4C2log

1

δ1
n‖f‖22,

4C2

3
log

1

δ1

}
+nEf2(X)

≤Õ
(

max

{√
C2n‖f‖22,C2

})
+n‖f‖22

≤Õ
(√

C2n‖f‖22+C2

)
+n‖f‖22.

(44)

For the proofs in the reminder of this section, the definitions of the relevant quantities are given in
Section 3.

Corollary 19. With probability of at least 1−δ1, we have

‖f>R(x)‖22 =Õ
(

( 1
δ1

+1)nR1−2β
)
.

Proof of Corollary 19. The L2 norm of f>R(x) is given by ‖f>R‖22 =
∑∞
p=R+1µ

2
p ≤

Cµ
2β−1R

1−2β .
Applying Lemma 17 we get the result.

Corollary 20. For any ν∈RR, with probability of at least 1−δ1 we have

‖ΦRν‖22 =Õ
(

( 1
δ1

+1)n‖ν‖22
)
.

Proof of Corollary 20. Let g(x)=
∑R
p=1νpφp(x). Then ΦRν=g(x). The L2 norm of g(x) is given

by ‖g‖22 =
∑R
p=1ν

2
p =‖ν‖22. Applying Lemma 17 we get the result.

Next we consider the quantity, ΦTRΦR−nI . The key tool that we use is the matrix Bernstein inequality
that describes the upper tail of a sum of independent zero-mean random matrices.

Lemma 21. Let D = diag{d1, ... , dR}, d1, ... , dR > 0 and dmax = max{d1, ... , dR}. Let
M=max{

∑R
p=0d

2
p‖φp‖2∞,d2

max}. Then with probability of at least 1−δ, we have

‖D(ΦTRΦR−nI)D‖2≤max

{√
nd2

maxM logRδ ,M logRδ )

}
. (45)
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Proof of Lemma 21. Let Yj = (φ1(xj), ... , φR(xj))
T and Zj = DYj . It is easy to verify that

E(ZjZ
T
j )=D2. Then the left hand side of (45) is

∑n
j=1[ZjZ

T
j −E(ZjZ

T
j )]. We note that

‖ZjZTj −E(ZjZ
T
j )‖2≤max{‖ZjZTj ‖2,‖E(ZjZ

T
j )‖2}≤max{‖Zj‖22,d2

max}.

For ‖Zj‖22, we have

‖Zj‖22 =

R∑
p=0

d2
pφ

2
p(xj)≤

R∑
p=0

d2
p‖φp‖2∞, (46)

we have
‖ZjZTj −E(ZjZ

T
j )‖2≤max{

∑R
p=0d

2
p‖φp‖2∞,d2

max}.
On the other hand,

E[(ZjZ
T
j −E(ZjZ

T
j ))2]=E[‖Zj‖22ZjZTj ]−(E(ZjZ

T
j ))2.

Since

E[‖Zj‖22ZjZTj ]4E[

R∑
p=0

d2
p‖φp‖2∞ZjZTj ], (by (46))

=

R∑
p=0

d2
p‖φp‖2∞E[ZjZ

T
j ],

we have
‖E[(ZjZ

T
j −E(ZjZ

T
j ))2]‖2≤max{

∑R
p=0d

2
p‖φp‖2∞‖E[ZjZ

T
j ]‖2,d4

max}

≤max{
∑R
p=0d

2
p‖φp‖2∞d2

max,d
4
max}

≤d2
maxmax{

∑R
p=0d

2
p‖φp‖2∞,d2

max}.
Using the matrix Bernstein inequality (Tropp, 2012, Theorem 6.1), we have

P(‖
n∑
j=1

[ZjZ
T
j −E(ZjZ

T
j )]‖2>t)

≤Rexp

 −t2

2(n‖E[(ZjZTj −E(ZjZTj ))2]‖2+
tmaxj‖ZjZTj −E(ZjZTj )‖2

3 )


≤Rexp

 −t2

2(nd2
maxmax{

∑R
p=0d

2
p‖φp‖2∞,d2

max}+
tmax{

∑R
p=0d

2
p‖φp‖2∞,d2

max}
3 )


=Rexp

(
−t2

O(max{nd2
maxmax{

∑R
p=0d

2
p‖φp‖2∞,d2

max},tmax{
∑R
p=0d

2
p‖φp‖2∞,d2

max}})

)
.

Then with probability of at least 1−δ, we have

‖
n∑
j=1

[ZjZ
T
j −E(ZjZ

T
j )]‖2

≤max

{√
nd2

maxmax{
∑R
p=0d

2
p‖φp‖2∞,d2

max}logRδ ,max
{∑R

p=0d
2
p‖φp‖2∞,d2

max

}
logRδ

}
.

Corollary 22. Suppose that the eigenvalues (λp)p≥1 satisfy Assumption 4, and the eigenfunctions
satisfy Assumption 6. Assume σ2 = Θ(nt) where 1− α

1+2τ < t< 1 Let γ be a positive number such

that 1+α+2τ−(1+2τ+2α)t
2α(1−t) <γ≤1. Then with probability of at least 1−δ, we have

‖ 1
σ2 (I+ n

σ2 ΛR)−γ/2Λ
γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+ n

σ2 ΛR)−γ/2‖2

≤O
(
n

1+α+2τ−(1+2τ+2α)t
2α −γ(1−t)

√
logRδ

)
.

(47)
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Proof of Corollary 22. Use the same notation as in Lemma 21. Let D = (I + n
σ2 ΛR)−γ/2Λ

γ/2
R .

Then d2
max ≤ σ2γ

nγ and
∑R
p=0 d

2
p‖φp‖2∞ ≤

∑R
p=0 C

2
φ

λγpp
2τ

(1+ n
σ2 λp)γ = O(( nσ2 )

1−γα+2τ
α ), where the

first inequality follows from Assumptions 4 and 6 and the last equality from Lemma 15. Then
M=max{

∑R
p=0d

2
p‖φp‖2∞,d2

max}=O(( nσ2 )
1−γα+2τ

α ). Applying Lemma 21, we have

‖ 1
σ2 (I+ n

σ2 ΛR)−γ/2Λ
γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+ n

σ2 ΛR)−γ/2‖2

≤ 1
σ2 max

{√
nσ

2γ

nγ O(( nσ2 )
1−γα+2τ

α )logRδ ,O(( nσ2 )
1−γα+2τ

α )logRδ

}
=O( 1

σ2 ( nσ2 )
1−2γα+2τ

2α n
1
2 )=O(

√
logRδ n

(1−2γα+2τ)(1−t)
2α + 1

2−t)

=O

(√
logRδ n

1+α+2τ
2α − (1+2τ+2α)t

2α −γ(1−t)
)
.

(48)

Corollary 23. Suppose that the eigenvalues (λp)p≥1 satisfy Assumption 4, and the eigenfunctions
satisfy Assumption 6. Let Λ̃1,R = diag{1,λ1,...,λR}. Assume σ2 = Θ(nt) where t < 1 Let γ be a
positive number such that 1+2τ

α <γ≤1. Then with probability of at least 1−δ, we have

‖(I+ n
σ2 ΛR)−γ/2Λ̃

γ/2
1,R(ΦTRΦR−nI)Λ̃

γ/2
1,R(I+

n

σ2
ΛR)−γ/2‖2≤O

(√
logRδ n

1
2

)
. (49)

Proof of Corollary 23. Use the same notation as in Lemma 21. LetD=(I+ n
σ2 ΛR)−γ/2Λ̃

γ/2
1,R . Then

d2
max≤1 and

∑R
p=0d

2
p‖φp‖2∞≤C2

φ+
∑R
p=1C

2
φ

λγpp
2τ

(1+ n
σ2 λp)γ =C2

φ+O(n
(1−γα+2τ)(1−t)

α )=O(1) where
the first inequality follows from Assumptions 4 and 6 and the second equality from Lemma 15. Then
M=max{

∑R
p=0d

2
p‖φp‖2∞,d2

max}=O(1). Applying Lemma 21, we have

‖(I+ n
σ2 ΛR)−γ/2Λ

γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+ n

σ2 ΛR)−γ/2‖2

≤max

{√
logRδ nO(1),logRδ O(1)

}
=O

(√
logRδ n

1
2

)
.

(50)

Corollary 24. Suppose that the eigenvalues (λp)p≥1 satisfy Assumption 4, and the eigenfunctions
satisfy Assumption 6. Let ΦR+1:S = (φR+1(x),...,φS(x)), and ΛR+1:S = (λR+1,...,λS). Then with
probability of at least 1−δ, we have

‖Λ1/2
R+1:S(ΦTR+1:SΦR+1:S−nI)Λ

1/2
R+1:S‖2≤O

(
logS−Rδ max{n 1

2R
1−2α+2τ

2 ,R1−α+2τ}
)
. (51)

Proof of Corollary 24. Use the same notation as in Lemma 21. Let D = Λ
1/2
R+1:S . Then

d2
max≤CλR−α=O(R−α) and

∑S
p=R+1C

2
φd

2
pp

2τ ≤
∑S
p=R+1C

2
φCλp

−αp2τ =O(R1−α+2τ ), where

the first inequality follows from Assumptions 4 and 6. ThenM=max{
∑S
p=R+1C

2
φd

2
pp

2τ ,d2
max}=

O(R1−α+2τ ). Applying Lemma 21, we have

‖(I+
n

σ2
ΛR)−γ/2Λ

γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+

n

σ2
ΛR)−γ/2‖2

≤max

{√
logS−Rδ nO(R−α)O(R1−α+2τ ),logS−Rδ O(R1−α+2τ ))

}
=O

(
logS−Rδ max{n 1

2R
1−2α+2τ

2 ,R1−α+2τ}
)
.

(52)
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Lemma 25. Under the assumptions of Corollary 24, with probability of at least 1−δ, we have

‖Φ>RΛ>RΦT>R‖2 =Õ(max{nR−α,n 1
2R

1−2α+2τ
2 ,R1−α+2τ}).

Proof of Lemma 25. For S∈N, we have

‖Φ>SΛ>SΦT>S‖2≤
∞∑

p=S+1

‖Λpφp(x)φp(x)T ‖2

=

∞∑
p=S+1

λp‖φp(x)‖22

≤
∞∑

p=S+1

λpnC
2
φp

2τ

=O(nS1−α+2τ ).

Let S=R
α

α−1−2τ . Then we get ‖Φ>SΛ>SΦT>S‖2 =O(nR−α).

Let ΦR+1:S=(φR+1(x),...,φS(x)), ΛR+1:S=(λR+1,...,λS). We then have

‖Φ>RΛ>RΦT>R‖2≤‖Φ>SΛ>SΦT>S‖2+‖ΦR+1:SΛR+1:SΦTR+1:S‖2
≤O(nR−α)+‖Λ1/2

R+1:SΦTR+1:SΦR+1:SΛ
1/2
R+1:S‖2

≤O(nR−α)+n‖ΛR+1:S‖2+‖Λ1/2
R+1:S(ΦTR+1:SΦR+1:S−nI)Λ

1/2
R+1:S‖2

≤O(nR−α)+O(nR−α)+O(log
R

α
α−1−R
δ

max{n 1
2R

1−2α+2τ
2 ,R1−α+2τ})

=Õ(max{nR−α,n 1
2R

1−2α+2τ
2 ,R1−α+2τ}),

where in the fourth inequality we use Corollary 24.

Corollary 26. Assume that σ2 = Θ(1). If R=n
1
α+κ where 0<κ< α−1−2τ

α(1+2τ) , then with probability
of at least 1−δ, we have

‖(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2 ‖2≤‖

Φ>RΛ>RΦT>R
σ2 ‖2 =Õ(n−κα)=o(1).

Proof of Corollary 26. By Lemma 25 and the assumptionR=n
1
α+κ, we have

‖(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2 ‖2≤‖

Φ>RΛ>RΦT>R
σ2 ‖2

≤Õ(max{nR−α,n 1
2R

1−2α+2τ
2 ,R1−α+2τ})

=Õ(n−κα).

Lemma 27. Assume that ‖ 1
σ2 (I+ n

σ2 ΛR)−γ/2Λ
γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+ n

σ2 ΛR)−γ/2‖2<1 where
1+2τ
α <γ≤1. We then have

(I+ 1
σ2 ΛRΦTRΦR)−1

=(I+ n
σ2 ΛR)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)
)j

(I+ n
σ2 ΛR)−1.

Proof of Lemma 27. First note that

‖ 1
σ2 (I+ n

σ2 ΛR)−1/2Λ
1/2
R (ΦTRΦR−nI)Λ

1/2
R (I+ n

σ2 ΛR)−1/2‖2
<‖ 1

σ2 (I+ n
σ2 ΛR)−γ/2Λ

γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+ n

σ2 ΛR)−γ/2‖2<1.
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Let Λ̃ε,R = diag{ε,λ1,...,λR}. Since ΛR = diag{0,λ1,...,λR}, we have that when ε is sufficiently
small, ‖ 1

σ2 (I + n
σ2 Λ̃ε,R)−1/2Λ̃

1/2
ε,R(ΦTRΦR − nI)Λ̃

1/2
ε,R(I + n

σ2 Λ̃ε,R)−1/2‖2 < 1. Since all diagonal
entries of Λ̃ε,R are positive, we have

(I+ 1
σ2 Λ̃ε,RΦTRΦR)−1

=(I+ n
σ2 Λ̃ε,R+ 1

σ2 Λ̃ε,R(ΦTRΦR−nI))−1

=Λ̃
1/2
ε,R(I+ n

σ2 Λ̃ε,R)−1/2
[
I+ 1

σ2 (I+ n
σ2 Λ̃ε,R)−1/2Λ̃

1/2
ε,R(ΦTRΦR−nI)Λ̃

1/2
ε,R(I+ n

σ2 Λ̃ε,R)−1/2
]−1

(I+ n
σ2 Λ̃ε,R)−1/2Λ̃

−1/2
ε,R

=(I+ n
σ2 Λ̃ε,R)−1

+

∞∑
j=1

[
(−1)jΛ̃

1/2
ε,R(I+ n

σ2 Λ̃ε,R)−1/2
(

1
σ2 (I+ n

σ2 Λ̃ε,R)−1/2Λ̃
1/2
ε,R(ΦTRΦR−nI)Λ̃

1/2
ε,R(I+ n

σ2 Λ̃ε,R)−1/2
)j

(I+ n
σ2 Λ̃ε,R)−1/2Λ̃

−1/2
ε,R

]

=(I+ n
σ2 Λ̃ε,R)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 Λ̃ε,R)−1Λ̃ε,R(ΦTRΦR−nI)
)j

(I+ n
σ2 Λ̃ε,R)−1.

Letting ε→0, we get

(I+ 1
σ2 ΛRΦTRΦR)−1

=(I+ n
σ2 ΛR)−1+

∞∑
j=1

(−1)j
(

1

σ2
(I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)

)j
(I+ n

σ2 ΛR)−1.

This concludes the proof.

Lemma 28. If ‖(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2 ‖2<1, then we have

(I+ ΦΛΦT

σ2 )−1−(I+
ΦRΛRΦTR

σ2 )−1 =

∞∑
j=1

(−1)j
(

(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2

)j
(I+

ΦRΛRΦTR
σ2 )−1.

(53)

In particular, assume that σ2 =Θ(1). LetR=n
1
α+κ where 0<κ< α−1−2τ

α(1+2τ) . Then with probability of

at least 1−δ, for sufficiently large n, we have ‖(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2 ‖2<1 and (53) holds.

Proof of Lemma 28. Define Φ>R=(φR+1(x),φR+2(x),...), Λ>R=diag(λR+1,λR+2,...). Then we
have

(I+ ΦΛΦT

σ2 )−1−(I+
ΦRΛRΦTR

σ2 )−1

=(I+
ΦRΛRΦTR

σ2 +
Φ>RΛ>RΦT>R

σ2 )−1−(I+
ΦRΛRΦTR

σ2 )−1

=

((
I+(I+

ΦRΛRΦTR
σ2 )−1 Φ>RΛ>RΦT>R

σ2

)−1

−I
)

(I+
ΦRΛRΦTR

σ2 )−1.

By Corollary 26, for sufficiently large n, ‖(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2 ‖2< 1 with probability of

at least 1−δ. Hence

(I+ ΦΛΦT

σ2 )−1−(I+
ΦRΛRΦTR

σ2 )−1

=

((
I+(I+

ΦRΛRΦTR
σ2 )−1 Φ>RΛ>RΦT>R

σ2

)−1

−I
)

(I+
ΦRΛRΦTR

σ2 )−1

=

∞∑
j=1

(−1)j
(

(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2

)j
(I+

ΦRΛRΦTR
σ2 )−1.
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Lemma 29. Assume that µ0 =0 and σ2 =Θ(nt) where 1− α
1+2τ <t<1. LetR=n( 1

α+κ)(1−t) where

0<κ< α−1−2τ+(1+2τ)t
α2(1−t) . Then when n is sufficiently large, with probability of at least 1−2δ we have

‖(I+ 1
σ2 ΦRΛRΦTR)−1fR(x)‖2 =Õ

(√
( 1
δ +1)n·nmax{−(1−t), (1−2β)(1−t)

2α }
)
. (54)

Proof of Lemma 29. Let Λ1:R = diag{λ1, ... , λR}, Φ1:R = (φ1(x), φ1(x), ... , φR(x))
and µ1:R = (µ1, ... , µR). Since µ0 = 0, we have (I + 1

σ2 ΦRΛRΦTR)−1fR(x) =

(I+ 1
σ2 Φ1:RΛ1:RΦT1:R)−1Φ1:Rµ1:R. Using the Woodbury matrix identity, we have that

(I+ 1
σ2 Φ1:RΛ1:RΦT1:R)−1Φ1:Rµ1:R=

[
I−Φ1:R(σ2I+Λ1:RΦT1:RΦ1:R)−1Λ1:RΦT1:R

]
Φ1:Rµ1:R

=Φ1:Rµ1:R−Φ1:R(σ2I+Λ1:RΦT1:RΦ1:R)−1Λ1:RΦT1:RΦ1:Rµ1:R

=Φ1:R(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R.

(55)
Let A = (I + n

σ2 Λ1:R)−1/2Λ
1/2
1:R(ΦT1:RΦ1:R − nI)Λ

1/2
1:R(I + n

σ2 Λ1:R)−1/2.By Corollary 22, with

probability of at least 1−δ, we have ‖ 1
σ2A‖2 =

√
logRδ n

1−α+2τ
2α − (1+2τ)t

2α . When n is sufficiently large,

‖ 1
σ2A‖2 =o(1) is less than 1 because 1− α

1+2τ <t<1. By Lemma 27, we have

(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1

=(I+ n
σ2 Λ1:R)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 Λ1:R)−1Λ1:R(ΦT1:RΦ1:R−nI)
)j

(I+ n
σ2 Λ1:R)−1.

We then have

‖(I+
1

σ2
Λ1:RΦT1:RΦ1:R)−1µ1:R‖2

=

∥∥∥∥∥∥
(I+ n

σ2 Λ1:R)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 Λ1:R)−1Λ1:R(ΦT1:RΦ1:R−nI)
)j

(I+ n
σ2 Λ1:R)−1

µ1:R

∥∥∥∥∥∥
2

≤

‖(I+ n
σ2 Λ1:R)−1µ1:R‖2+

∞∑
j=1

∥∥∥( 1
σ2 (I+ n

σ2 Λ1:R)−1Λ1:R(ΦT1:RΦ1:R−nI)
)j

(I+ n
σ2 Λ1:R)−1µ1:R

∥∥∥
2

.
(56)

By Lemma 15 and Assumption 5, assuming that supi≥1pi+1−pi=h, we have

‖(I+ n
σ2 Λ1:R)−1µ1:R‖2≤

√√√√ R∑
p=1

C2
µp
−2β

(1+nCλp−α/σ2)2
=Θ(nmax{−(1−t), (1−2β)(1−t)

2α }logk/2n),

‖(I+ n
σ2 Λ1:R)−1µ1:R‖2≥

√√√√bRh c∑
i=1

C2
µi
−2β

(1+ n
σ2Cλ(hi)−α)2

=Θ(nmax{−(1−t), (1−2β)(1−t)
2α }logk/2n)

where k=

{
0, 2α 6=2β−1,

1, 2α=2β−1.
. Overall we have

‖(I+ n
σ2 Λ1:R)−1µ1:R‖2 =Θ(n(1−t)max{−1,

1−2β
2α }logk/2n). (57)

Using the fact that ‖ 1
σ2A‖2 =

√
logRδ n

1−α+2τ
2α − (1+2τ)t

2α and ‖(I+ n
σ2 Λ1:R)−1Λ1:R‖2≤n−1, we have∥∥∥( 1

σ2 (I+ n
σ2 Λ1:R)−1Λ1:R(ΦT1:RΦ1:R−nI)

)j
(I+ n

σ2 Λ1:R)−1µ1:R

∥∥∥
2

=

∥∥∥∥(I+ n
σ2 Λ1:R)−

1
2 Λ

1
2

1:R( 1
σ2A)j(I+ n

σ2 Λ1:R)−
1
2 Λ

1
2
1:Rµ1:R

∥∥∥∥
2

≤Õ(n−
1−t

2 )‖ 1
σ2A‖j2‖(I+ n

σ2 Λ1:R)−
1
2 Λ
− 1

2
1:Rµ1:R‖2

(58)
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By Lemma 16 and the assumptionR=n( 1
α+κ)(1−t),

‖(I+ n
σ2 Λ1:R)−

1
2 Λ
− 1

2

1:Rµ1:R‖2≤

√√√√ R∑
p=1

(Cλp−α)−1C2
µp
−2β

(1+nCλp−α/σ2)1

=Õ(max{n−(1−t)/2,R1/2−β+α/2})

=Õ(max{n−(1−t)/2,n( 1
2 + 1−2β

2α +κ(1/2−β+α/2))(1−t)})

(59)

We then have ∥∥∥( 1
σ2 (I+ n

σ2 Λ1:R)−1Λ1:R(ΦT1:RΦ1:R−nI)
)j

(I+ n
σ2 Λ1:R)−1µ1:R

∥∥∥
2

=‖ 1
σ2A‖j2Õ(max{n−(1−t),n( 1−2β

2α +κ(1/2−β+α/2))(1−t)})
(60)

By (56), (57) and (60), we have

‖(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R‖2

=Θ(n(1−t)max{−1, 1−2β
2α }logk/2n)+

∞∑
j=1

‖ 1

σ2
A‖j2Õ(max{n−(1−t),n(1−t) 1−2β

2α +κ(1−t)(1/2−β+α/2)})

=Θ(n(1−t)max{−1, 1−2β
2α }logk/2n)+Õ(n

1−α+2τ
2α − (1+2τ)t

2α )Õ(max{n−(1−t),n(1−t) 1−2β
2α +κ(1−t)(1/2−β+α/2)}).

(61)
By assumption κ< α−1−2τ+(1+2τ)t

α2(1−t) , we have that

κ(1−t)(1/2−β+α/2)+
1−α+2τ

2α
− (1+2τ)t

2α
<κα(1−t)/2+

1−α+2τ

2α
− (1+2τ)t

2α
<0.

Using (61), we then get

‖(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R‖2 =Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)

=
1+o(1)

σ2
‖(I+

n

σ2
Λ1:R)−1µ1:R‖2.

(62)

By Corollary 20, with probability of at least 1−δ, we have

‖Φ1:R(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R‖2 =Õ(

√
( 1
δ +1)n‖(I+ 1

σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R‖2)

=Õ(
√

( 1
δ +1)n·n(1−t)max{−1, 1−2β

2α }).
(63)

From (55), we get ‖(I + 1
σ2 Φ1:RΛ1:RΦT1:R)−1Φ1:Rµ1:R‖2 = Õ(

√
( 1
δ +1)n ·n(1−t)max{−1, 1−2β

2α }).
This concludes the proof.

Lemma 30. Assume that µ0 > 0 and σ2 = Θ(nt) where 1− α
1+2τ < t < 1. Let R = n

1
α+κ where

0<κ< α−1−2τ+(1+2τ)t
α2 . Then when n is sufficiently large, with probability of at least 1−2δ, we have

‖(I+ 1
σ2 ΦRΛRΦTR)−1fR(x)‖2 =Õ

(√
( 1
δ +1)n

)
. (64)

Proof of Lemma 30. Using the Woodbury matrix identity, we have that

(I+ 1
σ2 ΦRΛRΦTR)−1fR(x)=

[
I−ΦR(σ2I+ΛRΦTRΦR)−1ΛRΦTR

]
ΦRµR

=ΦRµR−ΦR(σ2I+ΛRΦTRΦR)−1ΛRΦTRΦRµR

=ΦR(I+ 1
σ2 ΛRΦTRΦR)−1µR.

(65)

Let µR,1 =(µ0,0,...,0) and µR,2 =(0,µ1,...,µR). Then µR=µR,1+µR,2. Then we have

‖(I+ 1
σ2 ΛRΦTRΦR)−1µR‖2 =‖(I+ 1

σ2 ΛRΦTRΦR)−1µR,1‖2+‖(I+ 1
σ2 ΛRΦTRΦR)−1µR,2‖2.

(66)
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According to (62) in the proof of Lemma 29, we have ‖(I + 1
σ2 ΛRΦTRΦR)−1µR,2‖2 =

Õ(nmax{−(1−t), (1−t)(1−2β)
2α }). Next we estimate ‖(I+ 1

σ2 ΛRΦTRΦR)−1µR,1‖2.

Let
A=(I+

n

σ2
Λ1:R)−γ/2Λ

γ/2
1:R(ΦT1:RΦ1:R−nI)Λ

γ/2
1:R(I+

n

σ2
Λ1:R)−γ/2

where 1
1−t (

1+α+2τ
2α − (1+2τ+2α)t

2α )<γ< 1. Since 1− α
1+2τ <t< 1, 1

1−t (
1+α+2τ

2α − (1+2τ+2α)t
2α )< 1

so the range for γ is well-defined.By Corollary 22, with probability of at least 1 − δ, we have

‖ 1
σ2A‖2 = Õ(

√
logRδ n

1+α+2τ
2α − (1+2τ+2α)t

2α −γ(1−t)) = o(1). When n is sufficiently large, ‖ 1
σ2A‖2 is

less than 1 because 1− α
1+2τ <t<1. By Lemma 27, we have

(I+ 1
σ2 ΛRΦTRΦR)−1

=(I+ n
σ2 ΛR)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)
)j

(I+ n
σ2 ΛR)−1.

We then have

‖(I+ 1
σ2 ΛRΦTRΦR)−1µR,1‖2

=

∥∥∥∥∥∥
(I+ n

σ2 ΛR)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)
)j

(I+ n
σ2 ΛR)−1

µR,1

∥∥∥∥∥∥
2

≤

‖(I+ n
σ2 ΛR)−1µR,1‖2+

∞∑
j=1

∥∥∥( 1
σ2 (I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)
)j

(I+ n
σ2 ΛR)−1µR,1

∥∥∥
2

.
(67)

By Lemma 15,

‖(I+
n

σ2
ΛR)−1µR,1‖2≤

√√√√µ2
0+

R∑
p=1

C2
µp
−2β

(1+nCλp−α/σ2)2
=O(1). (68)

Let Λ̃1,R = diag{1, λ1, ... , λR} and I0,R = (0, 1, ... , 1). Then ΛR = Λ̃1,RI0,R. Let B = (I +
n
σ2 ΛR)−γ/2Λ̃

γ/2
1,R(ΦTRΦR−nI)Λ̃

γ/2
1,R(I+ n

σ2 ΛR)−γ/2. According to Corollary 23, we have ‖B‖2 =

O
(√

logRδ n
1
2

)
. Using the fact that ‖ 1

σ2A‖2 =Õ
(√

logRδ n
1+α+2τ

2α − (1+2τ+2α)t
2α −γ(1−t)) , we have∥∥∥( 1

σ2 (I+ n
σ2 ΛR)−1ΛR(ΦTRΦR−nI)

)j
(I+ n

σ2 ΛR)−1µR,1

∥∥∥
2

=
1

σ2j

∥∥∥∥(I+ n
σ2 ΛR)−1+

γ
2 Λ

1−γ2
R

(
A(I+ n

σ2 ΛR)−1+γΛ1−γ
R

)j−1

B(I+ n
σ2 ΛR)−1+

γ
2 µR,1

∥∥∥∥
2

≤ 1

σ2
(n(−1+ γ

2 +(−1+γ)(j−1))(1−t)Õ(
√

logRδ n
(j−1)( 1+α+2τ

2α − (1+2τ+2α)t
2α −γ(1−t)))

√
logRδ n

1
2 ‖µR,1‖2

≤n(−1+ γ
2 )(1−t)+ 1

2−tÕ(n
[1−α+2τ−(1+2τ)t](j−1)

2α )
√

logRδ ‖µR,1‖2

=Õ(n−
1
2 + γ

2 (1−t)+ [1−α+2τ−(1+2τ)t](j−1)
2α ).

(69)
Since 1

1−t (
1+α+2τ

2α − (1+2τ+2α)t
2α )<γ<1 and− 1

2 + 1
1−t (

1+α+2τ
2α − (1+2τ+2α)t

2α ) 1−t
2 <0, we can let

γ be a little bit larger than 1
1−t (

1+α+2τ
2α − (1+2τ+2α)t

2α ) and make− 1
2 + γ

2 (1−t)< 0 holds. By (67),
(68), (69), we have

‖(I+ 1
σ2 ΛRΦTRΦR)−1µR,1‖2

≤O(1)+

∞∑
j=1

Õ(n−
1
2 + γ

2 (1−t)+ [1−α+2τ−(1+2τ)t](j−1)
2α )

≤O(1)+o(1)=O(1).

(70)
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According to (66), we have ‖(I+ 1
σ2 ΛRΦTRΦR)−1µR‖2 = Õ(nmax{−(1−t), (1−t)(1−2β)

2α }) +O(1) =
O(1). By Corollary 20, with probability of at least 1−δ, we have

‖ΦR(I+ 1
σ2 ΛRΦTRΦR)−1µR‖2 =Õ(

√
( 1
δ +1)n‖(I+ 1

σ2 ΛRΦTRΦR)−1µR‖2)

=Õ

(√
( 1
δ +1)n

)
.

From (65), we get ‖(I+ 1
σ2 ΦRΛRΦTR)−1fR(x)‖2 =Õ

(√
( 1
δ +1)n

)
. This concludes the proof.

Lemma 31. Assume that σ2 = Θ(1). Let R= n
1
α+κ where 0<κ< α−1−2τ

α2 . Assume that µ0 = 0.
Then when n is sufficiently large, with probability of at least 1−3δ we have

‖(I+ ΦΛΦT

σ2 )−1fR(x)‖2 =Õ(
√

( 1
δ +1)n·nmax{−1, 1−2β

2α }). (71)

Assume that µ0>0. Then when n is sufficiently large, with probability of at least 1−3δ we have

‖(I+ ΦΛΦT

σ2 )−1fR(x)‖2 =Õ(
√

( 1
δ +1)n). (72)

Proof of Lemma 31. We have

(I+ ΦΛΦT

σ2 )−1fR(x)

=(I+
ΦRΛRΦTR

σ2 )−1fR(x)+
(

(I+ ΦΛΦT

σ2 )−1−(I+
ΦRΛRΦTR

σ2 )−1
)
fR(x).

(73)

When µ0 =0, by Lemma 29, with probability of at least 1−2δ, we have

‖(I+ 1
σ2 ΦRΛRΦTR)−1fR(x)‖2 =Õ(

√
( 1
δ +1)n·nmax{−1, 1−2β

2α }).

Since α−1−2τ
α2 < α−1−2τ

α(1+2τ) , we apply Lemma 28 and Corollary 26 and get that with probability of at
least 1−δ, the second term in the right hand side of (73) is estimated as follows:

‖
(

(I+ ΦΛΦT

σ2 )−1−(I+
ΦRΛRΦTR

σ2 )−1
)
fR(x)‖2

=‖
∞∑
j=1

(−1)j
(

(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2

)j
(I+

ΦRΛRΦTR
σ2 )−1fR(x)‖2

=

∞∑
j=1

∥∥∥((I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2

)∥∥∥j
2
‖(I+

ΦRΛRΦTR
σ2 )−1fR(x)‖2

=
∞∑
j=1

Õ(n−jκα)Õ(
√

( 1
δ +1)n·nmax{−1,

1−2β
2α })

=o(
√

( 1
δ +1)n·nmax{−1,

1−2β
2α }).

Overall, from (73), we have that with probability 1−3δ,

‖(I+ ΦΛΦT

σ2 )−1fR(x)‖2 =Õ(
√

( 1
δ +1)n·nmax{−1,

1−2β
2α }).

When µ0>0, using the same approach and Lemma 30, we can prove that ‖(I+ ΦΛΦT

σ2 )−1fR(x)‖2 =

Õ(
√

( 1
δ +1)n). This concludes the proof.

D PROOF OF THE MAIN RESULTS

D.1 PROOFS RELATED TO THE ASYMPTOTICS OF THE NORMALIZED STOCHASTIC COMPLEXITY

Lemma 32. Under Assumptions 4, 5 and 6, with probability of at least 1−2δ we have, we have

|T1,R(Dn)−T1(Dn)|=Õ
(

1
σ2 (nR1−α+n1/2R1−α+τ+R1−α+2τ )

)
(74)
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If R= n
1
α+κ where κ > 0, we have |T1,R(Dn)−T1(Dn)|= o

(
1
σ2n

1
α

)
. If we further assume that

0<κ< α−1−2τ
α2 , µ0 =0 and σ2 =Θ(1), then for sufficiently large nwith probability of at least 1−4δ

we have

|T2,R(Dn)−T2(Dn)|=Õ
(

( 1
δ +1)nmax{( 1

α+κ) 1−2β
2 ,1+ 1−2β

α +
(1−2β)κ

2 ,−1−κα,1+ 1−2β
α −κα}

)
. (75)

Proof of Lemma 32. Define Φ>R = (φR+1(x), φR+2(x), ... , φp(x), ...), and Λ>R =
diag(λR+1,...,λp,...). We then have

|T1(Dn)−T1,R(Dn)|=
∣∣∣∣12 logdet(I+

1

σ2
ΦΛΦT )− 1

2
logdet(I+

1

σ2
ΦRΛRΦTR)

∣∣∣∣
+

1

2

∣∣∣∣Tr(I+
ΦΛΦT

σ2
)−1−Tr(I+

ΦRΛRΦTR
σ2

)−1

∣∣∣∣. (76)

As for the first term in the right hand side of (76), we have∣∣∣∣12 logdet(I+
1

σ2
ΦΛΦT )− 1

2
logdet(I+

1

σ2
ΦRΛRΦTR)

∣∣∣∣
=

∣∣∣∣12 logdet

(
(I+

1

σ2
ΦRΛRΦTR)−1(I+

1

σ2
ΦRΛRΦTR+

1

σ2
Φ>RΛ>RΦT>R)

)∣∣∣∣
=

∣∣∣∣12 logdet

(
I+

1

σ2
(I+

1

σ2
ΦRΛRΦTR)−1Φ>RΛ>RΦT>R

)∣∣∣∣
=

1

2

∣∣∣∣Trlog

(
I+

1

σ2
(I+

1

σ2
ΦRΛRΦTR)−1Φ>RΛ>RΦT>R

)∣∣∣∣.
(77)

Given a concave function h and a matrixB∈Rn×n whose eigenvalues ζ1,...,ζn are all positive, we
have that

Trh(B)=
∑n
p=1h(ζi)≤nh( 1

n

∑n
p=1ζi)≤nh( 1

nTrB), (78)
where we used Jensen’s inequality. Using h(x)=log(1+x) in (78), with probability 1−δ, we have∣∣ 1

2 logdet(I+ 1
σ2 ΦΛΦT )− 1

2 logdet(I+ 1
σ2 ΦRΛRΦTR)

∣∣
≤ n

2 log(1+ 1
nTr( 1

σ2 (I+
ΦRΛRΦTR

σ2 )−1Φ>RΛ>RΦT>R))

≤ n
2 log(1+ 1

nσ2 ‖(I+
ΦRΛRΦTR

σ2 )−1‖2Tr(Φ>RΛ>RΦT>R))

≤ n
2 log(1+ 1

nσ2

∑∞
p=R+1λp‖φp(x)‖22)≤ 1

2σ2

∑∞
p=R+1λp‖φp(x)‖22

= 1
2σ2

∑∞
p=R+1λp

(
C2
φÕ
(√

p2τn‖φp‖22+p2τ
)

+n‖φp‖22
)

=Õ( 1
σ2n

∑∞
p=R+1λp+n1/2

∑∞
p=R+1λpp

τ+
∑∞
p=R+1λpp

2τ )

=Õ
(

1
σ2 (nR1−α+n1/2R1−α+τ+R1−α+2τ )

)
=o

(
1
σ2n

1
α

)
,

(79)

where in the second inequality we use the fact that TrAB≤‖A‖2TrB whenA andB are symmetric
positive definite matrices, and in the last inequality we use Lemma 18.

As for the second term in the right hand side of (76), letA=(I+
ΦRΛRΦTR

σ2 )−1/2. Then we have

1
2

∣∣∣Tr(I+ ΦΛΦT

σ2 )−1−Tr(I+
ΦRΛRΦTR

σ2 )−1
∣∣∣

= 1
2

∣∣∣∣TrA

[
I−(I+A(

Φ>RΛ>RΦT>R
σ2

)A)−1

]
A

∣∣∣∣
≤ 1

2Tr
[
I−(I+A(

Φ>RΛ>RΦT>R
σ2 )A)−1

]
≤ n

2 (1−(1+ 1
nTrA(

Φ>RΛ>RΦT>R
σ2 )A)−1)≤ n

2 (1−(1+ 1
nTr(

Φ>RΛ>RΦT>R
σ2 ))−1)

≤ n
2 (1−(1+ 1

nσ2

∑∞
p=R+1λp‖φp(x)‖22))−1)≤ 1

2σ2

∑∞
p=R+1λp‖φp(x)‖22

=Õ
(

1
σ2 (nR1−α+n1/2R1−α+τ+R1−α+2τ )

)
=o

(
1
σ2n

1
α

)
,
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where in the first inequality we use the fact that ‖A‖2< 1 and TrABA≤‖A‖22TrB when A and B
are symmetric positive definite matrices, in the second inequality we use h(x)=1−1/(1+x) in (78)
and in the last equality we use the last few steps of (79). This concludes the proof of the first statement.

As for |T2(Dn)−T2,R(Dn)|, we have

|T2(Dn)−T2,R(Dn)|=
∣∣∣f(x)T (I+ ΦΛΦT

σ2 )−1f(x)−fR(x)T (I+ ΦΛΦT

σ2 )−1fR(x)
∣∣∣

+
∣∣∣fR(x)T (I+ ΦΛΦT

σ2 )−1fR(x)−fR(x)T (I+
ΦRΛRΦTR

σ2 )−1fR(x)
∣∣∣. (80)

For the first term on the right-hand side of (80), we have∣∣∣f(x)T (I+ ΦΛΦT

σ2 )−1f(x)−fR(x)T (I+ ΦΛΦT

σ2 )−1fR(x)
∣∣∣

≤2
∣∣∣f>R(x)T (I+ ΦΛΦT

σ2 )−1fR(x)
∣∣∣+∣∣∣f>R(x)T (I+ ΦΛΦT

σ2 )−1f>R(x)
∣∣∣

≤2‖f>R(x)‖2‖(I+ ΦΛΦT

σ2 )−1fR(x)‖2+‖f>R(x)‖2‖(I+ ΦΛΦT

σ2 )−1‖2‖f>R(x)‖2
≤2‖f>R(x)‖2‖(I+ ΦΛΦT

σ2 )−1fR(x)‖2+‖f>R(x)‖22.

Applying Corollary 19 and Lemma 31, with probability of at least 1−4δ, we have∣∣∣f(x)T (I+ ΦΛΦT

σ2 )−1f(x)−fR(x)T (I+ ΦΛΦT

σ2 )−1fR(x)
∣∣∣

≤2Õ

(√
( 1
δ +1)nR1−2β

)
Õ(
√

( 1
δ +1)n·nmax{−1,

1−2β
2α })+Õ(( 1

δ +1)nR1−2β)

=2Õ

(
( 1
δ +1)n1+(

1
α+κ)

1−2β
2 +max{−1,

1−2β
2α }

)
+Õ(( 1

δ +1)n1+(
1
α+κ)(1−2β))

=2Õ

(
( 1
δ +1)n1+(

1
α+κ)

1−2β
2 +max{−1,

1−2β
2α }

)
,

where the last equality holds because ( 1
α+κ) 1−2β

2 < 1−2β
2α when κ>0.

As for the second term on the right-hand side of (80), according to Lemma 28, Corollary 26 and
Lemma 29, we have∣∣∣fR(x)T (I+ ΦΛΦT

σ2 )−1fR(x)−fR(x)T (I+
ΦRΛRΦTR

σ2 )−1fR(x)
∣∣∣

=

∣∣∣∣∣∣
∞∑
j=1

(−1)jfR(x)T
(

(I+
ΦRΛRΦTR

σ2 )−1 Φ>RΛ>RΦT>R
σ2

)j
(I+

ΦRΛRΦTR
σ2 )−1fR(x)

∣∣∣∣∣∣
≤
∞∑
j=1

‖(I+
ΦRΛRΦTR

σ2 )−1‖j−1
2 ·‖

Φ>RΛ>RΦT>R
σ2

‖j2 ·‖(I+
ΦRΛRΦTR

σ2 )−1fR(x)‖22

=

∞∑
j=1

Õ(n−jκα)Õ(( 1
δ +1)n1+max{−2,

1−2β
α })

=Õ(( 1
δ +1)n1+max{−2,

1−2β
α }−κα).

(81)

By (80), we have

|T2(Dn)−T2,R(Dn)|=Õ

(
( 1
δ +1)n1+(

1
α+κ)

1−2β
2 +max{−1,

1−2β
2α }

)
+Õ

(
( 1
δ +1)n1+max{−2,

1−2β
α }−κα

)
=Õ

(
( 1
δ +1)nmax{( 1

α+κ) 1−2β
2 ,1+

1−2β
α +

(1−2β)κ
2 ,−1−κα,1+

1−2β
α −κα}

)
.

This concludes the proof of the second statement.

In Lemma 32, we gave a bound for |T2,R(Dn)−T2(Dn)| when n
1
α <R<n

1
α+α−1−2τ

α2 . For R>n,
we note the following lemma:
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Lemma 33. Let R = nC and σ2 = nt. Assume that C ≥ 1 and C(1− α+ 2τ)− t < 0. Under
Assumptions 4, 5 and 6, for sufficiently large n and with probability of at least 1−3δ we have

|T2,R(Dn)−T2(Dn)|=Õ
(

( 1
δ +1) 1

σ2nR
max{1/2−β,1−α+2τ}

)
. (82)

Proof of Lemma 33. Define Φ>R = (φR+1(x), φR+2(x), ... , φp(x), ...), and Λ>R =
diag(λR+1,...,λp,...). Then we have

|T2(Dn)−T2,R(Dn)|=
∣∣∣∣f(x)T (I+

ΦΛΦT

σ2
)−1f(x)−fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
+

∣∣∣∣fR(x)T (I+
ΦΛΦT

σ2
)−1fR(x)−fR(x)T (I+

ΦRΛRΦTR
σ2

)−1fR(x)

∣∣∣∣. (83)

For the first term on the right-hand side of (83), with probability 1−3δ we have∣∣∣∣f(x)T (I+
ΦΛΦT

σ2
)−1f(x)−fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
≤2

∣∣∣∣f>R(x)T (I+
ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣+∣∣∣∣f>R(x)T (I+
ΦΛΦT

σ2
)−1f>R(x)

∣∣∣∣
≤2‖f>R(x)‖2‖(I+

ΦΛΦT

σ2
)−1‖2‖fR(x)‖2+‖f>R(x)‖2‖(I+

ΦΛΦT

σ2
)−1‖2‖f>R(x)‖2

≤2‖f>R(x)‖2‖fR(x)‖2+‖f>R(x)‖22

≤2Õ

(√
(
1

δ
+1)nR1−2β

)
Õ(

√
(
1

δ
+1)n·‖f‖2)+Õ((

1

δ
+1)nR1−2β)

=Õ

(
(
1

δ
+1)nR1/2−β

)
,

where we used Corollary 19 and Lemma 17 for the last inequality.

The assumption C(1− α+ 2τ)− t < 0 means that R
1−α+2τ

σ2 = o(1). For the second term on the
right-hand side of (83), by Lemmas 28 and 25, we have∣∣∣∣fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)−fR(x)T (I+

ΦRΛRΦTR
σ2

)−1fR(x)

∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=1

(−1)jfR(x)T
(

(I+
ΦRΛRΦTR

σ2
)−1 Φ>RΛ>RΦT>R

σ2

)j
(I+

ΦRΛRΦTR
σ2

)−1fR(x)

∣∣∣∣∣∣
≤
∞∑
j=1

‖(I+
ΦRΛRΦTR

σ2
)−1‖j+1

2 ·‖
Φ>RΛ>RΦT>R

σ2
‖j2 ·‖fR(x)‖22

=

∞∑
j=1

Õ(
1

σ2
Rj(1−α+2τ))Õ((

1

δ
+1)n‖f‖22)

=Õ((
1

δ
+1)

1

σ2
nR1−α+2τ ).

(84)

Using (83), we have

|T2(Dn)−T2,R(Dn)|=Õ

(
(
1

δ
+1)nR1/2−β

)
+Õ((

1

δ
+1)n

1

σ2
R1−α+2τ )

=Õ

(
(
1

δ
+1)n

1

σ2
Rmax{1/2−β,1−α+2τ}

)
.

Next we consider the asympototics of T1,R(Dn) and T2,R(Dn).
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Lemma 34. Let A = (I + n
σ2 ΛR)−γ/2Λ

γ/2
R (ΦTRΦR − nI)Λ

γ/2
R (I + n

σ2 ΛR)−γ/2. Assume that
‖A‖2<1 where 1+2τ

α <γ≤1. Then we have

T2,R(Dn)= n
2σ2µ

T
R(I+ n

σ2 ΛR)−1µR+ 1
2

∑∞
j=1(−1)j+1Ej ,

where

Ej=µTR
1
σ2 (I+ n

σ2 ΛR)−1(ΦTRΦR−nI)
(

1
σ2 (I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)
)j−1

(I+ n
σ2 ΛR)−1µR.

Proof of Lemma 34. Let Λ̃ε,R = diag{ε,λ1,...,λR}. Since ΛR = diag{0,λ1,...,λR}, we have that
when ε is sufficiently small, ‖ 1

σ2 (I+ n
σ2 Λ̃ε,R)−1/2Λ̃

1/2
ε,R(ΦTRΦR−nI)Λ̃

1/2
ε,R(I+ n

σ2 Λ̃ε,R)−1/2‖2 < 1.
Since all diagonal entries of Λ̃ε,R are positive, we have

1

2σ2
µTRΦTR(I+

1

σ2
ΦRΛ̃ε,RΦTR)−1ΦRµR

=
1

2σ2
µTRΦTR

[
I−ΦR(σ2I+Λ̃ε,RΦTRΦR)−1Λ̃ε,RΦTR

]
ΦRµR

=
1

2σ2
µTRΦTRΦRµR−

1

2σ2
µTRΦTRΦR(σ2I+Λ̃ε,RΦTRΦR)−1Λ̃ε,RΦTRΦRµR

=
1

2
µTRΦTRΦR(σ2I+Λ̃ε,RΦTRΦR)−1µR

=
1

2
µTRΛ̃−1

ε,RΛ̃ε,RΦTRΦR(σ2I+Λ̃ε,RΦTRΦR)−1µR

=
1

2
µTRΛ̃−1

ε,RµR−
1

2
µTRΛ̃−1

ε,R(I+
1

σ2
Λ̃ε,RΦTRΦR)−1µR.

(85)

Using Lemma 27, we have
1

2
µTRΛ̃−1

ε,RµR−
1

2
µTRΛ̃−1

ε,R(I+
1

σ2
Λ̃ε,RΦTRΦR)−1µR

=
1

2
µTRΛ̃−1

ε,RµR−
1

2
µTRΛ̃−1

ε,R(I+
n

σ2
Λ̃ε,R)−1µR

+
1

2

∞∑
j=1

(−1)j+1µTRΛ̃−1
ε,R

(
1

σ2
(I+

n

σ2
Λ̃ε,R)−1Λ̃ε,R(ΦTRΦR−nI)

)j
(I+

n

σ2
Λ̃ε,R)−1µR

=
n

2σ2
µTR(I+

n

σ2
Λ̃ε,R)−1µR

+
1

2

∞∑
j=1

(−1)j+1µTR
1

σ2
(I+

n

σ2
Λ̃ε,R)−1(ΦTRΦR−nI)

(
1

σ2
(I+

n

σ2
Λ̃ε,R)−1Λ̃ε,R(ΦTRΦR−nI)

)j−1

(I+
n

σ2
Λ̃ε,R)−1µR

(86)
Letting ε→0, we get

T2,R(Dn)=
1

2σ2
µTRΦTR(I+

1

σ2
ΦRΛRΦTR)−1ΦRµR

=
n

2σ2
µTR(I+

n

σ2
ΛR)−1µR

+
1

2

∞∑
j=1

[
(−1)j+1µTR

1

σ2
(I+

n

σ2
ΛR)−1(ΦTRΦR−nI)

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j−1

(I+
n

σ2
ΛR)−1µR

]
This concludes the proof.

Lemma 35. Assume that σ2 = Θ(1). LetR=n
1
α+κ where 0<κ< α−1−2τ

2α2 . Under Assumptions 4,
5 and 6, with probability of at least 1−δ, we have

T1,R(Dn)=
(

1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
))

(1+o(1))=Θ(n
1
α ). (87)
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Furthermore, if we assume µ0 =0, we have

T2,R(Dn)=
(
n

2σ2µ
T
R(I+ n

σ2 ΛR)−1µR
)
(1+o(1))=

{
Θ(nmax{0,1+

1−2β
α }), α 6=2β−1,

Θ(logn), α=2β−1.
(88)

Proof of Lemma 35. Let

A=(I+
n

σ2
ΛR)−γ/2Λ

γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+

n

σ2
ΛR)−γ/2, (89)

where 1+α+2τ
2α <γ≤1. By Corollary 22, with probability of at least 1−δ, we have

‖A‖2 =Õ(n
1−2γα+α+2τ

2α ). (90)

When n is sufficiently large, ‖A‖2 is less than 1. LetB=(I+ n
σ2 ΛR)−1/2Λ

1/2
R (ΦTRΦR−nI)Λ

1/2
R (I+

n
σ2 ΛR)−1/2. Then ‖B‖2 = σ2(1−γ)

n1−γ ‖A‖2 = Õ(n
1−α+2τ

2α ). Using the Woodbury matrix identity, we
compute T1,R(Dn) as follows:

T1,R(Dn)= 1
2 logdet(I+ 1

σ2 ΛRΦTRΦR)− 1
2TrΦR(σ2I+ΛRΦTRΦR)−1ΛRΦTR

= 1
2 logdet(I+ n

σ2 ΛR)+ 1
2 logdet[I+ 1

σ2 (I+ n
σ2 ΛR)−1/2Λ

1/2
R (ΦTRΦR−nI)Λ

1/2
R (I+ n

σ2 ΛR)−1/2]

− 1
2Tr(σ2I+ΛΦTRΦR)−1ΛΦTRΦR

= 1
2 logdet(I+ n

σ2 ΛR)+ 1
2Trlog[I+ 1

σ2B]− 1
2Tr(I−σ2(σ2I+ΛΦTRΦR)−1))

= 1
2 logdet(I+

n

σ2
ΛR)+ 1

2Tr

∞∑
j=1

(−1)j−1

j ( 1
σ2B)j

− 1
2Tr

I−(I+ n
σ2 ΛR)−1+

∞∑
j=1

(−1)j
(

1
σ2 (I+ n

σ2 ΛR)−1ΛR(ΦTRΦR−nI)
)j

(I+ n
σ2 ΛR)−1


=
(

1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
))

+ 1
2Tr

∞∑
j=1

(−1)j−1

j ( 1
σ2B)j

− 1
2Tr

 ∞∑
j=1

(−1)j 1
σ2j (I+ n

σ2 ΛR)−1/2Bj(I+ n
σ2 ΛR)−1/2

,
(91)

where in the last equality we apply Lemma 27.

Let h(x) = log(1+x)−(1− 1
1+x ). It is easy to verify that h(x) is increasing on [0,+∞). As for the

first term on the right hand side of (91), we have

1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
)

= 1
2

R∑
p=1

(
log(1+ n

σ2λp)−(1− 1
1+ n

σ2 λp
)
)

= 1
2

R∑
p=1

h( nσ2λp)≤ 1
2

R∑
p=1

h(
n

σ2
Cλp

−α)

≤ 1
2h( nσ2Cλ)+ 1

2

∫
[1,R]

h( nσ2Cλx
−α)dx

= 1
2h(

n

σ2
Cλ)+ 1

2n
1/α

∫
[1/n1/α,R/n1/α]

h(Cλσ2 x
−α)dx

=Θ(n1/α),
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where in the last equality we use the fact that
∫

[0,+∞]
h(x−α)dx<∞. On the other hand, we have

1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
)

= 1
2

R∑
p=1

h( nσ2λp)≥ 1
2

R∑
p=1

h( nσ2Cλp
−α)

≥ 1
2

∫
[1,R+1]

h( nσ2Cλx
−α)dx

= 1
2n

1/α

∫
[1/n1/α,(R+1)/n1/α]

h( 1
σ2Cλx

−α)dx

=Θ(n1/α).

Overall, we have 1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
)

=Θ(n1/α).

As for the second term on the right hand side of (91), we have∣∣∣∣∣∣Tr

∞∑
j=1

(−1)j−1

j ( 1
σ2B)j

∣∣∣∣∣∣≤R
∞∑
j=1

‖ 1
σ2B‖j2 =R

∞∑
j=1

1
σ2j Õ(n

j(1−α+2τ)
2α )

=RÕ(n
1−α+2τ

2α )=Õ(n
1
α+κ+ 1−α+2τ

2α ).

As for the third term on the right hand side of (91), we have∣∣∣∣∣∣Tr

 ∞∑
j=1

(−1)j 1
σ2j (I+ n

σ2 ΛR)−1/2Bj(I+ n
σ2 ΛR)−1/2

∣∣∣∣∣∣
≤
∞∑
j=1

∣∣∣Tr
(

1
σ2j (I+ n

σ2 ΛR)−1/2Bj(I+ n
σ2 ΛR)−1/2

)∣∣∣
≤R

∞∑
j=1

∥∥∥ 1
σ2j (I+ n

σ2 ΛR)−1/2Bj(I+ n
σ2 ΛR)−1/2

∥∥∥
2

≤R
∞∑
j=1

∥∥∥ 1
σ2j (I+ n

σ2 ΛR)−1/2Bj(I+ n
σ2 ΛR)−1/2

∥∥∥
2

≤R
∞∑
j=1

∥∥ 1
σ2jB

j
∥∥

2
=Õ(n

1
α+κ+

1−α+2τ
2α ).

Then the asymptotics of T1,R(Dn) is given by

T1,R(Dn)= 1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
)
+Õ(n

1
α+κ+

1−α+2τ
2α )+Õ(n

1
α+κ+

1−α+2τ
2α )

=Θ(n1/α)+Õ(n
1
α+κ+

1−α+2τ
2α )

=Θ(n
1
α ),

where in the last inequality we use the assumption that κ< α−1−2τ
2α . Since Õ(n

1
α+κ+ 1−α+2τ

2α ) is lower
order term compared to Θ(n

1
α ), we further have

T1,R(Dn)=
(

1
2 logdet(I+ n

σ2 ΛR)− 1
2Tr
(
I−(I+ n

σ2 ΛR)−1
))

(1+o(1)).

This concludes the proof of the first statement.

Let Λ1:R=diag{λ1,...,λR}, Φ1:R=(φ1(x),φ1(x),...,φR(x)) and µ1:R=(µ1,...,µR). Since µ0 =0,
we have T2,R(Dn)= 1

2σ2µ
T
1:RΦT1:R(I+ 1

σ2 Φ1:RΛ1:RΦT1:R)−1Φ1:Rµ1:R. According to Lemma 34, we
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have
T2,R(Dn)=

n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R

+
1

2

∞∑
j=1

(−1)j+1µT1:R

1

σ2
(I+

n

σ2
Λ1:R)−1(ΦT1:RΦ1:R−nI)

(
1

σ2
(I+

n

σ2
Λ1:R)−1Λ1:R(ΦT1:RΦ1:R−nI)

)j−1

=
n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R

+
1

2

∞∑
j=1

[
(−1)j+1 1

σ2j
µT1:R(I+

n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R A

(
(I+

n

σ2
Λ1:R)−1+γΛ1−γ

1:R A
)j−1

(I+
n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R µ1:R

]
(92)

where in the second to last equality we used the definition ofA (89). As for the first term on the right
hand side of (92), by Lemma 15, Assumption 4 and Assumption 5, we have

n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R≤

n

2σ2

R∑
p=1

C2
µp
−2β

1+ n
σ2Cλp−α

=

{
Θ(nmax{0,1+ 1−2β

α }), α 6=2β−1,

Θ(logn), α=2β−1.

On the other hand, by Assumption 5, assuming that supi≥1pi+1−pi=h, we have

n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R≥

n

2σ2

bRh c∑
i=1

C2
µp
−2β
i

1+ n
σ2Cλp

−α
i

≥ n

2σ2

bRh c∑
i=1

C2
µi
−2β

1+ n
σ2Cλ(hi)−α

=

{
Θ(nmax{0,1+ 1−2β

α }), α 6=2β−1,

Θ(logn), α=2β−1.

Overall, we have
n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R=Θ(nmax{0,1+ 1−2β

α }logkn),where k=

{
0, α 6=2β−1,

1, α=2β−1.

By Lemma 16, we have

‖(I+
n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R µ1:R‖22≤

R∑
p=1

C2
µp
−2β(Cλp

−α)−γ

(1+ n
σ2Cλp−α)2−γ

=Õ(max{n−2+γ ,R1−2β+αγ})

=Õ(nmax{−2+γ, 1−2β
α +γ+κ(1−2β+αγ)}).

(93)

Using (90), the second term on the right hand side of (92) is computed as follows:

1

2

∞∑
j=1

[
(−1)j+1 1

σ2j
µT1:R(I+

n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R A

(
(I+

n

σ2
Λ1:R)−1+γΛ1−γ

1:R A
)j−1

(I+
n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R µ1:R

]
≤1

2

∞∑
j=1

1

σ2j
‖A‖j

( n
σ2

)(−1+γ)(j−1)

‖(I+
n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R µ1:R‖22

≤1

2

∞∑
j=1

1

σ2j
Õ(n

j(1−2γα+α+2τ)
2α )

( n
σ2

)(−1+γ)(j−1)

Õ(nmax{−2+γ, 1−2β
α +γ+κ(1−2β+αγ)})

=Õ(nmax{−2+γ+ 1−2γα+α+2τ
2α , 1−2β

α +γ+ 1−2γα+α+2τ
2α +κ(1−2β+αγ)})

=Õ(nmax{−2+ 1+α+2τ
2α , 1−2β

α + 1+α+2τ
2α +κ(1−2β+αγ)}).

(94)
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Since 1+α+2τ
2α < 1+α+2τ

α+1+2τ =1, we have−2+ 1+α+2τ
2α <0.Also we have

1−2β

α
+

1+α+2τ

2α
+κ(1−2β+αγ)

=
1−2β

α
+1+

1−α+2τ

2α
+κ(1−2β+αγ)

≤1−2β

α
+1+

1−α+2τ

2α
+καγ

<
1−2β

α
+1,

(95)

where the last inequality holds because κ< α−1−2τ
2α2 and γ≤1. Hence we have

T2,R(Dn)=
n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R+Õ(nmax{−2+ 1+α+2τ

2α , 1−2β
α + 1+α+2τ

2α +κ(1−2β+αγ)})

=Θ(nmax{0,1+ 1−2β
α }logkn)+Õ(nmax{−2+ 1+α+2τ

2α , 1−2β
α + 1+α+2τ

2α +κ(1−2β+αγ)})

=Θ(nmax{0,1+ 1−2β
α }logkn).

where k=

{
0, α 6=2β−1,

1, α=2β−1.
. Since Õ(nmax{−2+ 1+α+2τ

2α , 1−2β
α + 1+α+2τ

2α +κ(1−2β+αγ)}) is lower order

term compared to Θ(nmax{0,1+ 1−2β
α }logkn), we further have

T2,R(Dn)=
( n

2σ2
µT1:R(I+

n

σ2
Λ1:R)−1µ1:R

)
(1+o(1))

This concludes the proof of the second statement.

Lemma 36. Under Assumptions 4, 5 and 6, with probability of at least 1−5δ, we have

T1(Dn)=

(
1

2
logdet(I+

n

σ2
Λ)− 1

2
Tr
(
I−(I+

n

σ2
Λ)−1

))
(1+o(1))=Θ(n

1
α ), (96)

Furthermore, let δ=n−q where 0≤q<min{ (2β−1)(α−1−2τ)
4α2 ,α−1−2τ

2α }. If we assume µ0 =0, we have

T2(Dn)=
( n

2σ2
µT (I+

n

σ2
Λ)−1µ

)
(1+o(1))=

{
Θ(nmax{0,1+ 1−2β

α }), α 6=2β−1,

Θ(logn), α=2β−1.
(97)

Proof of Lemma 36. LetR=n
1
α+κ where 0≤κ< α−1−2τ

2α2 . By Lemmas 32 and 35, with probability
of at least 1−5δ we have

|T1,R(Dn)−T1(Dn)|=Õ(n
1
α+κ(1−α)), (98)

and

|T2,R(Dn)−T2(Dn)|=Õ

(
(
1

δ
+1)nmax{( 1

α+κ) 1−2β
2 ,1+ 1−2β

α +
(1−2β)κ

2 ,−1−κα,1+ 1−2β
α −κα}

)
(99)

as well as

T1,R(Dn)=

(
1

2
logdet(I+

n

σ2
ΛR)− 1

2
Tr
(
I−(I+

n

σ2
ΛR)−1

))
(1+o(1))=Θ(n

1
α ), (100)

and

T2,R(Dn)=
( n

2σ2
µT (I+

n

σ2
Λ)−1µ

)
(1+o(1))=

{
Θ(nmax{0,1+ 1−2β

α }), α 6=2β−1,

Θ(logn), α=2β−1.
(101)

We then have

T1(Dn)=T1,R(Dn)+T1,R(Dn)−T1(Dn)=Θ(n
1
α )+Õ(n

1
α+κ(1−α))=Θ(n

1
α ).

Since Õ(n
1
α+κ(1−α)) is lower order term compared to Θ(n

1
α ), we further have

T1(Dn)=

(
1

2
logdet(I+

n

σ2
ΛR)− 1

2
Tr
(
I−(I+

n

σ2
ΛR)−1

))
(1+o(1))=Θ(n

1
α )
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Besides, we have

logdet(I+
n

σ2
Λ)−logdet(I+

n

σ2
ΛR)

=

∞∑
p=R+1

log(1+
n

σ2
λp)≤

n

σ2

∞∑
p=R+1

λp≤
n

σ2

∞∑
p=R+1

Cλp
−α=

n

σ2
O(R1−α)

=
n

σ2
O(n(1−α)( 1

α+κ))

=o(n
1
α ).

Then we have log det(I + n
σ2 ΛR) = log det(I + n

σ2 Λ)(1 + o(1)). Similarly we can prove
Tr
(
I−(I+ n

σ2 Λ)−1
)

= Tr
(
I−(I+ n

σ2 ΛR)−1
)
(1 + o(1)). This concludes the proof of the first

statement.

As for T2(Dn), we have
T2(Dn)=T2,R(Dn)+T2,R(Dn)−T2(Dn)

=Θ(nmax{0,1+ 1−2β
α }logkn)+Õ

(
(
1

δ
+1)nmax{( 1

α+κ) 1−2β
2 ,1+ 1−2β

α +
(1−2β)κ

2 ,−1−κα,1+ 1−2β
α −κα}

)
=Θ(nmax{0,1+ 1−2β

α }logkn)+Õ
(
nq+max{( 1

α+κ) 1−2β
2 ,1+ 1−2β

α +
(1−2β)κ

2 ,−1−κα,1+ 1−2β
α −κα}

)
where we use δ=n−q , k=

{
0, α 6=2β−1,

1, α=2β−1.
.

Since 0≤κ< α−1−2τ
2α2 and 0≤q<min{ (2β−1)(α−1−2τ)

4α2 ,α−1−2τ
2α }, we can choose κ< α−1−2τ

2α2 and κ
is arbitrarily close to α−1−2τ

2α2 such that 0≤q<min{ (2β−1)κ
2 ,κα}. Then we have ( 1

α+κ) 1−2β
2 +q<0,

−1−κα+q<0, (1−2β)κ
2 +q<0 and−κα+q<0. So we have

T2,R(Dn)=Θ(nmax{0,1+ 1−2β
α }logkn).

Since Õ
(

( 1
δ +1)nmax{( 1

α+κ) 1−2β
2 ,1+ 1−2β

α +
(1−2β)κ

2 ,−1−κα,1+ 1−2β
α −κα}

)
is lower order term

compared to Θ(nmax{0,1+ 1−2β
α }logkn), we further have

T2(Dn)=T2,R(Dn)(1+o(1))=
( n

2σ2
µTR(I+

n

σ2
ΛR)−1µR

)
(1+o(1)).

Furthermore, we have

µT (I+
n

σ2
Λ)−1µ−µTR(I+

n

σ2
ΛR)−1µR

=

∞∑
p=R+1

µ2
p

(1+ n
σ2λp)

≤
∞∑

p=R+1

µ2
p≤

n

σ2

∞∑
p=R+1

C2
µp
−2β=O(R1−2β)

=O(n(1−2β)( 1
α+κ))

=o(n
1−2β
α ).

Then we have µT (I+ n
σ2 Λ)−1µ=µTR(I+ n

σ2 ΛR)−1µR(1+o(1)). This concludes the proof of the
second statement.

Proof of Theorem 7. Using Lemma 36 and noting that 1
α>0, with probability of at least 1−5δ̃, we have

EεF 0(Dn)=T1(Dn)+T2(Dn)

=

[
1

2
logdet(I+

n

σ2
ΛR)− 1

2
Tr
(
I−(I+

n

σ2
ΛR)−1

)
+

n

2σ2
µTR(I+

n

σ2
ΛR)−1µR

]
(1+o(1))

=Θ(nmax{ 1
α ,

1−2β
α +1})

Letting δ=5δ̃, we get the result.
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In the case of µ0>0, we have the following lemma:

Lemma 37. Assume that σ2 = Θ(1). Let R= n
1
α+κ where 0<κ< α−1−2τ

α2 . Assume that µ0 > 0.
Under Assumptions 4, 5 and 6, for sufficiently large nwith probability of at least 1−4δ we have

|T2,R(Dn)−T2(Dn)|=Õ

(
(
1

δ
+1)nmax{1+( 1

α+κ) 1−2β
2 ,1−κα}

)
.. (102)

Proof of Lemma 37. As for |T2(Dn)−T2,R(Dn)|, we have

|T2(Dn)−T2,R(Dn)|=
∣∣∣∣f(x)T (I+

ΦΛΦT

σ2
)−1f(x)−fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
+

∣∣∣∣fR(x)T (I+
ΦΛΦT

σ2
)−1fR(x)−fR(x)T (I+

ΦRΛRΦTR
σ2

)−1fR(x)

∣∣∣∣.
(103)

For the first term on the right-hand side of (103), we have∣∣∣∣f(x)T (I+
ΦΛΦT

σ2
)−1f(x)−fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
≤2

∣∣∣∣f>R(x)T (I+
ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣+∣∣∣∣f>R(x)T (I+
ΦΛΦT

σ2
)−1f>R(x)

∣∣∣∣
≤2‖f>R(x)‖2‖(I+

ΦΛΦT

σ2
)−1fR(x)‖2+‖f>R(x)‖2‖(I+

ΦΛΦT

σ2
)−1‖2‖f>R(x)‖2

≤2‖f>R(x)‖2‖(I+
ΦΛΦT

σ2
)−1fR(x)‖2+‖f>R(x)‖22.

Applying Corollary 19 and Lemma 31, with probability of at least 1−4δ, we have∣∣∣∣f(x)T (I+
ΦΛΦT

σ2
)−1f(x)−fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)

∣∣∣∣
≤2Õ

(√
(
1

δ
+1)nR1−2β

)
Õ(

√
(
1

δ
+1)n)+Õ((

1

δ
+1)nR1−2β)

=2Õ

(
(
1

δ
+1)n1+( 1

α+κ) 1−2β
2

)
+Õ((

1

δ
+1)n1+( 1

α+κ)(1−2β))

=2Õ

(
(
1

δ
+1)n1+( 1

α+κ) 1−2β
2

)
.

As for the second term on the right-hand side of (80), according to Lemma 28, Corollary 26 and
Lemma 30, we have∣∣∣∣fR(x)T (I+

ΦΛΦT

σ2
)−1fR(x)−fR(x)T (I+

ΦRΛRΦTR
σ2

)−1fR(x)

∣∣∣∣
=

∣∣∣∣∣∣
∞∑
j=1

(−1)jfR(x)T
(

(I+
ΦRΛRΦTR

σ2
)−1 Φ>RΛ>RΦT>R

σ2

)j
(I+

ΦRΛRΦTR
σ2

)−1fR(x)

∣∣∣∣∣∣
≤
∞∑
j=1

‖(I+
ΦRΛRΦTR

σ2
)−1‖j−1

2 ·‖
Φ>RΛ>RΦT>R

σ2
‖j2 ·‖(I+

ΦRΛRΦTR
σ2

)−1fR(x)‖22

=

∞∑
j=1

Õ(n−jκα)Õ((
1

δ
+1)n)

=Õ((
1

δ
+1)n1−κα).

(104)
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By (80), we have

|T2(Dn)−T2,R(Dn)|=Õ

(
(
1

δ
+1)n1+( 1

α+κ) 1−2β
2

)
+Õ((

1

δ
+1)n1−κα)

=Õ

(
(
1

δ
+1)nmax{1+( 1

α+κ) 1−2β
2 ,1−κα}

)
.

Lemma 38. Assume that σ2 = Θ(1). Let R= n
1
α+κ where 0<κ<min{α−1−2τ

2α2 , 2β−1
α2 }. Assume

that µ0>0. Under Assumptions 4, 5 and 6, with probability of at least 1−δ, we have

T2,R(Dn)=
n

2σ2
µ2

0+Õ(nmax{ 1+7α+2τ
8α ,1+ 1−2β

α }). (105)

Proof of Lemma 38. Let

A=(I+
n

σ2
ΛR)−γ/2Λ

γ/2
R (ΦTRΦR−nI)Λ

γ/2
R (I+

n

σ2
ΛR)−γ/2, (106)

where 1+α+2τ
2α <γ≤1. By Corollary 22, with probability of at least 1−δ, we have

‖A‖2 =Õ(n
1−2γα+α+2τ

2α ). (107)

When n is sufficiently large, ‖A‖2 is less than 1. Let µR,1 = (µ0,0,...,0) and µR,2 = (0,µ1,...,µR).
Then µR=µR,1+µR,2. Let Λ̃1,R=diag{1,λ1,...,λR} and I0,R=(0,1,...,1). Then ΛR=Λ̃1,RI0,R.
Let B = (I + n

σ2 ΛR)−1/2Λ̃
1/2
1,R(ΦTRΦR − nI)Λ̃

1/2
1,R(I + n

σ2 ΛR)−1/2. By Corollary 23, we have

‖B‖2 =O(
√

logRδ n
1
2 ). By Lemma 34, we have

T2,R(Dn)=
n

2σ2
µTR(I+

n

σ2
ΛR)−1µR

+
1

2

∞∑
j=1

[
(−1)j+1µTR

1

σ2
(I+

n

σ2
ΛR)−1(ΦTRΦR−nI)

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j−1

(I+
n

σ2
ΛR)−1µR

]
(108)

As for the first term on the right hand side of (108), by Lemma 15, we have

n

2σ2
µT (I+

n

σ2
Λ)−1µ≤ n

2σ2

(
µ2

0+
R∑
p=1

C2
µp
−2β

1+ n
σ2Cλp−α

)
=

n

2σ2
µ2

0+Õ(nmax{0,1+ 1−2β
α }).

We defineQ1,j ,Q2,j andQ3,j by

Q1,j=µTR,1
1

σ2
(I+

n

σ2
ΛR)−1(ΦTRΦR−nI)

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j−1

(I+
n

σ2
ΛR)−1µR,1

Q2,j=µTR,1
1

σ2
(I+

n

σ2
ΛR)−1(ΦTRΦR−nI)

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j−1

(I+
n

σ2
ΛR)−1µR,2

Q3,j=µTR,2
1

σ2
(I+

n

σ2
ΛR)−1(ΦTRΦR−nI)

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j−1

(I+
n

σ2
ΛR)−1µR,2

(109)
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The quantity Q3,j actually shows up in the case of µ0 = 0 in the proof of Lemma 35. By (92), (94)
and (95), we have that

|
∞∑
j=1

(−1)j+1Q3,j |= |
∞∑
j=1

(−1)j+1Õ(n
(j−1)(1−α+2τ)

2α )o(nmax{0,1+ 1−2β
α })|=o(nmax{0,1+ 1−2β

α }).

(110)
ForQ1,j , we have

Q1,1 =
1

σ2j
µTR,1(I+

n

σ2
ΛR)−1+ γ

2B(I+
n

σ2
ΛR)−1+ γ

2 µR,1

≤ 1

σ2j
‖µR,1‖22‖(I+

n

σ2
ΛR)−1+ γ

2 ‖22‖B‖2

=O(

√
log

R

δ
n

1
2 ),

where in the last equality we use ‖B‖2 =O(
√

logRδ n
1
2 ). For j≥2, we have

Q1,j=
1

σ2j
µTR,1(I+

n

σ2
ΛR)−1+ γ

2B
(

(I+
n

σ2
ΛR)−1+γΛ1−γ

R A
)j−2

(I+
n

σ2
ΛR)−1+γΛ1−γ

R

B(I+
n

σ2
ΛR)−1+ γ

2 µR,1

≤ 1

σ2j
‖µR,1‖22‖(I+

n

σ2
ΛR)−1+ γ

2 ‖22‖B‖22‖A‖
j−2
2 ‖(I+

n

σ2
ΛR)−1+γΛ1−γ

R ‖j−1
2

=O(log
R

δ
n·n

(j−2)(1−2γα+α+2τ)
2α ·n−(1−γ)(j−1))

=O(log
R

δ
nγ ·n

(j−2)(1−α+2τ)
2α ).

Then we have

|
∞∑
j=1

(−1)j+1Q1,j |≤O(

√
log

R

δ
n

1
2 )+

∞∑
j=2

O(log
R

δ
nγ ·n

(j−2)(1−α+2τ)
2α )=O(log

R

δ
nγ) (111)

ForQ2,j , we have

Q2,j=
1

σ2j
µTR,1(I+

n

σ2
ΛR)−1+ γ

2B
(

(I+
n

σ2
ΛR)−1+γΛ1−γ

R A
)j−1

(I+
n

σ2
Λ)−1+ γ

2 Λ̃
− γ2
1,RµR,2

≤ 1

σ2j
‖µR,1‖2‖B‖2‖A‖j−1

2 ‖(I+
n

σ2
ΛR)−1+γΛ1−γ

R ‖j−1
2 ‖(I+

n

σ2
Λ)−1+ γ

2 Λ̃
− γ2
1,RµR,2‖2

=O(

√
log

R

δ
n

1
2 ·n

(j−1)(1−α+2τ)
2α )‖(I+

n

σ2
Λ)−1+ γ

2 Λ̃
− γ2
1,RµR,2‖2.

Since ‖(I+ n
σ2 Λ)−1+ γ

2 Λ̃
− γ2
1,RµR,2‖2 is actually the case of µ0 = 0, we can use (93) in the proof of

Lemma 35 and get

‖(I+
n

σ2
Λ)−1+ γ

2 Λ̃
− γ2
1,RµR,2‖

2
2 =‖(I+

n

σ2
Λ1:R)−1+γ/2Λ

−γ/2
1:R µ1:R‖22

=Õ(nmax{−2+γ, 1−2β
α +γ+κ(1−2β+αγ)}

=Õ(nmax{−2+γ, 1−2β
α +γ+κ(1−2β+αγ)})

=o(nγ),

(112)

where in the last equality we use κ< 2β−1
α2 . Then we have

|
∞∑
j=1

(−1)j+1Q2,j |≤
∞∑
j=1

o(

√
log

R

δ
n

1+γ
2 ·n

(j−1)(1−α+2τ)
2α )=o(

√
log

R

δ
n

1+γ
2 ) (113)

41



Published as a conference paper at ICLR 2022

Choosing γ= 1
2 (1+ 1+α+2τ

2α )= 1+3α+2τ
4α <1, we have

T2,R(Dn)=
n

2σ2
µTR(I+

n

σ2
ΛR)−1µR+

∞∑
j=1

(−1)j+1(Q1,j+Q2,j+Q3,j)

=
n

2σ2
µ2

0+Õ(nmax{0,1+ 1−2β
α })+o(nmax{0,1+ 1−2β

α })+O(log
R

δ
nγ)+o(

√
log

R

δ
n

1+γ
2 )

=
n

2σ2
µ2

0+Õ(nmax{ 1+γ
2 ,1+ 1−2β

α })

=
n

2σ2
µ2

0+Õ(nmax{ 1+7α+2τ
8α ,1+ 1−2β

α }).

Proof of Theorem 8. Let R = n
1
α+κ where 0 < κ < min{α−1−2τ

2α2 , 2β−1
α2 }. Since

0 ≤ q < min{ 2β−1
2 , α} · min{α−1−2τ

2α2 , 2β−1
α2 }, we can choose κ < min{α−1−2τ

2α2 , 2β−1
α2 } and κ

is arbitrarily close to κ<min{α−1−2τ
2α2 , 2β−1

α2 } such that 0≤ q <min{ (2β−1)κ
2 ,κα}. Then we have

( 1
α+κ) 1−2β

2 +q<0, and−κα+q<0. As for T2(Dn), we have

T2(Dn)≤T2,R(Dn)+|T2,R(Dn)−T2(Dn)|

=
n

2σ2
µ2

0+Õ(nmax{ 1+7α+2τ
8α ,1+ 1−2β

α })+Õ
(

( 1
δ +1)nmax{1+( 1

α+κ) 1−2β
2 ,1−κα}

)
=

n

2σ2
µ2

0+Õ(nmax{ 1+7α+2τ
8α ,1+ 1−2β

α })+Õ
(
nq+max{1+( 1

α+κ) 1−2β
2 ,1−κα}

)
=

n

2σ2
µ2

0+o(n).

By Lemma 36, we have T1(Dn) = O(n
1
α ). Hence EεF 0(Dn) = T1(Dn) + T2(Dn) =

n
2σ2µ

2
0+o(n).

D.2 PROOFS RELATED TO THE ASYMPTOTICS OF THE GENERALIZATION ERROR

Lemma 39. Assume σ2 = Θ(nt) where 1 − α
1+2τ < t < 1. Let R = n( 2α−1

α(α−1)
+1)(1−t). Under

Assumptions 4, 5 and 6, with probability of at least 1−δ over sample inputs (xi)
n
i=1, we have

G1(Dn)= 1+o(1)
2σ2

(
Tr(I+ n

σ2 ΛR)−1ΛR−‖Λ1/2
R (I+ n

σ2 ΛR)−1‖2F
)

= 1
σ2 Θ

(
n

(1−α)(1−t)
α

)
. (114)

Proof of Lemma 39. Let G1,R(Dn) = E(xn+1,yn+1)(T1,R(Dn+1)− T1,R(Dn)), where R = nC for
some constant C. By Lemma 32, we have that

|G1(Dn)−G1,R(Dn)|=
∣∣E(xn+1,yn+1)[T1(Dn+1)−T1,R(Dn+1)]−[T1(Dn)−T1,R(Dn)]

∣∣
=
∣∣E(xn+1,yn+1)O((n+1)R1−α)

∣∣+∣∣O(nR1−α)]
∣∣

=O( 1
σ2nR

1−α).

(115)

Define ηR=(φ0(xn+1),φ1(xn+1),...,φR(xn+1))T and Φ̃R=(ΦTR,ηR)T . As forG1,R(Dn), we have

G1,R(Dn)=E(xn+1,yn+1)(T1,R(Dn+1)−T1,R(Dn))

=E(xn+1,yn+1)

(
1

2
logdet(I+

Φ̃RΛRΦ̃TR
σ2

)− 1

2
Tr(I−(I+

Φ̃RΛRΦ̃TR
σ2

)−1)

)

−
(

1

2
logdet(I+

ΦRΛRΦTR
σ2

)− 1

2
Tr(I−(I+

ΦRΛRΦTR
σ2

)−1)

)

=
1

2

(
E(xn+1,yn+1)logdet(I+

Φ̃RΛRΦ̃R
T

σ2
)−logdet(I+

ΦRΛRΦTR
σ2

)

)

− 1

2

(
E(xn+1,yn+1)Tr(I−(I+

Φ̃RΛRΦ̃TR
σ2

)−1)−Tr(I−(I+
ΦRΛRΦTR

σ2
)−1)

)
.

(116)
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As for the first term in the right hand side (116), we have

1

2

(
E(xn+1,yn+1)logdet(I+

Φ̃RΛRΦ̃TR
σ2

)−logdet(I+
ΦRΛRΦTR

σ2
)

)

=
1

2

(
E(xn+1,yn+1)logdet(I+

ΛRΦ̃TRΦ̃R
σ2

)−logdet(I+
ΛRΦTRΦR

σ2
)

)

=
1

2

(
E(xn+1,yn+1)logdet(I+

ΛRΦTRΦR+ηRη
T
R

σ2
)−logdet(I+

ΛRΦTRΦR
σ2

)

)
=

1

2

(
E(xn+1,yn+1)logdet

(
(I+

ΛRΦTRΦR
σ2

)−1(I+
ΛRΦTRΦR

σ2
+

ΛRηRη
T
R

σ2
)

))
=

1

2

(
E(xn+1,yn+1)logdet

(
I+(I+

ΛRΦTRΦR
σ2

)−1 ΛRηRη
T
R

σ2

))
=

1

2

(
E(xn+1,yn+1)log

(
1+

1

σ2
ηTR(I+

ΛRΦTRΦR
σ2

)−1ΛRηR

))

Let

A=(I+
n

σ2
ΛR)−1/2Λ

1/2
R (ΦTRΦR−nI)Λ

1/2
R (I+

n

σ2
ΛR)−1/2. (117)

According to Corollary 22, with probability of at least 1 − δ, we have ‖ 1
σ2A‖2 =

O(
√

logRδ n
1−α+2τ

2α − (1+2τ)t
2α ) = o(1). When n is sufficiently large, ‖ 1

σ2A‖2 is less than 1. By
Lemma 27, we have

ηTR(I+
ΛRΦTRΦR

σ2
)−1ΛRηR

=ηTR(I+
n

σ2
ΛR)−1ΛRηR+

∞∑
j=1

(−1)jηTR

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j
(I+

n

σ2
ΛR)−1ΛRηR

=ηTR(I+
n

σ2
ΛR)−1ΛRηR+

∞∑
j=1

(−1)j
1

σ2j
ηTR(I+

n

σ2j
ΛR)−1/2Λ

1/2
R Aj(I+

n

σ2
ΛR)−1/2Λ

1/2
R ηR

≤ηTR(I+
n

σ2
ΛR)−1ΛRηR+

∞∑
j=1

‖ 1

σ2
A‖j2‖(I+

n

σ2
ΛR)−1/2Λ

1/2
R ηR‖22

≤
R∑
p=1

φ2
p(xn+1)

Cλp
−α

1+nCλp−α/σ2
+

∞∑
j=1

‖ 1

σ2
A‖j2

R∑
p=1

φ2
p(xn+1)

Cλp
−α

1+nCλp−α/σ2

≤
R∑
p=1

Cλp
−αp2τ

1+nCλp−α/σ2
+

∞∑
j=1

‖ 1

σ2
A‖j2

R∑
p=1

Cλp
−αp2τ

1+nCλp−α/σ2

≤O(n
(1−α+2τ)(1−t)

α )+

∞∑
j=1

‖ 1

σ2
A‖j2O(n

(1−α+2τ)(1−t)
α )

=O(n
(1−α+2τ)(1−t)

α )=o(1),
(118)
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where we use Lemma 15 in the last inequality. Next we have

1

2

(
E(xn+1,yn+1)logdet(I+

Φ̃RΛRΦ̃TR
σ2

)−logdet(I+
ΦRΛRΦTR

σ2
)

)

=
1

2

(
E(xn+1,yn+1)log

(
1+

1

σ2
ηTR(I+

ΛRΦTRΦR
σ2

)−1ΛRηR

))
=

1

2

(
E(xn+1,yn+1)

(
1

σ2
ηTR(I+

ΛRΦTRΦR
σ2

)−1ΛRηR

)
(1+o(1))

)
=

1

2σ2

(
Tr(I+

ΛRΦTRΦR
σ2

)−1ΛR

)
(1+o(1)),

where in the last equality we use the fact that E(xn+1,yn+1)ηRη
T
R=I . By Lemma 27, we have

Tr(I+
ΛRΦTRΦR

σ2
)−1ΛR

=Tr(I+
n

σ2
ΛR)−1ΛR+

∞∑
j=1

(−1)jTr

(
1

σ2
(I+

n

σ2
ΛR)−1ΛR(ΦTRΦR−nI)

)j
(I+

n

σ2
ΛR)−1ΛR

=Tr(I+
n

σ2
ΛR)−1ΛR+

∞∑
j=1

(−1)jTr
1

σ2j
(I+

n

σ2
ΛR)−1/2Λ

1/2
R Aj(I+

n

σ2
ΛR)−1/2Λ

1/2
R .

By Lemma 15, we have

Tr(I+
n

σ2
ΛR)−1ΛR≤

R∑
p=1

Cλp
−α

1+nCλp−α/σ2
=Θ(n

(1−α)(1−t)
α )

Tr(I+
n

σ2
ΛR)−1ΛR≥

R∑
p=1

Cλp
−α

1+nCλp−α/σ2
=Θ(n

(1−α)(1−t)
α ).

Overall,

Tr(I+
n

σ2
ΛR)−1ΛR=Θ(n

(1−α)(1−t)
α ). (119)

Since ‖ 1
σ2A‖j2 =o(1), we have that the absolute values of diagonal entries of 1

σ2jA
j are at most o(1).

Let (Aj)p,p denote the (p,p)-th entry of the matrixAj . Then we have∣∣∣∣Tr
1

σ2j
(I+

n

σ2
ΛR)−1/2Λ

1/2
R Aj(I+

n

σ2
ΛR)−1/2Λ

1/2
R

∣∣∣∣
=

∣∣∣∣∣
R∑
p=1

λp
1
σ2j (Aj)p,p

1+nλp/σ2

∣∣∣∣∣≤
R∑
p=1

λp‖ 1
σ2jA‖j2

1+nλp/σ2
=Θ(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2),

(120)

where in the last step we used (119). According to (119) and (120), we have

1

2

(
E(xn+1,yn+1)logdet(I+

Φ̃RΛRΦ̃TR
σ2

)−logdet(I+
ΦRΛRΦTR

σ2
)

)

=
1

2σ2

(
Tr(I+

ΛRΦTRΦR
σ2

)−1ΛR

)
(1+o(1))

= 1
σ2 Θ(n

(1−α)(1−t)
α )+ 1

σ2

∞∑
j=1

Θ(n
(1−α)(1−t)

α )Õ(n
j(1−α+2τ−(1+2τ)t)

2α (logR)j/2)

= 1
σ2 Θ(n

(1−α)(1−t)
α )+ 1

σ2 Θ(n
(1−α)(1−t)

α )o(1)= 1
σ2 Θ(n

(1−α)(1−t)
α )

=
1

2σ2

(
Tr(I+

n

σ2
ΛR)−1ΛR

)
(1+o(1)).

(121)
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Using the Woodbury matrix identity, the second term in the right hand side (116) is given by

1

2

(
E(xn+1,yn+1)Tr(I−(I+

Φ̃RΛRΦ̃TR
σ2

)−1−Tr(I−(I+
ΦRΛRΦTR

σ2
)−1

)

=
1

2

(
E(xn+1,yn+1)Tr(

1

σ2
Φ̃R(I+

1

σ2
ΛRΦ̃TRΦ̃R)−1ΛRΦ̃TR−Tr(

1

σ2
ΦR(I+

1

σ2
ΛRΦTRΦR)−1ΛRΦTR

)
=

1

2

(
E(xn+1,yn+1)Tr(

1

σ2
(I+

1

σ2
ΛRΦ̃TRΦ̃R)−1ΛRΦ̃TRΦ̃R−Tr(

1

σ2
(I+

1

σ2
ΛRΦTRΦR)−1ΛRΦTRΦR

)
=−1

2

(
E(xn+1,yn+1)Tr(I+

1

σ2
ΛRΦ̃TRΦ̃R)−1−Tr(I+

1

σ2
ΛRΦTRΦR)−1

)
=−1

2

(
E(xn+1,yn+1)Tr(I+

1

σ2
ΛRΦTRΦR+

1

σ2
ΛRηRη

T
R)−1−Tr(I+

1

σ2
ΛRΦTRΦR)−1

)
=

1

2σ2

(
E(xn+1,yn+1)Tr

(I+ 1
σ2 ΛRΦTRΦR)−1ΛRηRη

T
R(I+ 1

σ2 ΛRΦTRΦR)−1

1+ 1
σ2 ηTR(I+ 1

σ2 ΛRΦTRΦR)−1ΛRηR

)
,

where the last equality uses the Sherman–Morrison formula. According to (118), we get

1

2σ2

(
E(xn+1,yn+1)Tr

(I+ 1
σ2 ΛRΦTRΦR)−1ΛRηRη

T
R(I+ 1

σ2 ΛRΦTRΦR)−1

1+ 1
σ2 ηTR(I+ 1

σ2 ΛRΦTRΦR)−1ΛRηR

)
=

1

2σ2

(
E(xn+1,yn+1)Tr(I+

1

σ2
ΛRΦTRΦR)−1ΛRηRη

T
R(I+

1

σ2
ΛRΦTRΦR)−1(1+o(1))

)
=

1+o(1)

2σ2
Tr(I+

1

σ2
ΛRΦTRΦR)−1ΛR(I+

1

σ2
ΛRΦTRΦR)−1

=
1+o(1)

2σ2
TrΛ

1/2
R (I+

1

σ2
Λ

1/2
R ΦTRΦRΛ

1/2
R )−1Λ

1/2
R (I+

1

σ2
ΛRΦTRΦR)−1

=
1+o(1)

2σ2
Tr(I+

1

σ2
Λ

1/2
R ΦTRΦRΛ

1/2
R )−1Λ

1/2
R (I+

1

σ2
ΛRΦTRΦR)−1Λ

1/2
R

=
1+o(1)

2σ2
Tr(I+

1

σ2
Λ

1/2
R ΦTRΦRΛ

1/2
R )−1ΛR(I+

1

σ2
Λ

1/2
R ΦTRΦRΛ

1/2
R )−1

=
1+o(1)

2σ2
‖Λ1/2

R (I+
1

σ2
Λ

1/2
R ΦTRΦRΛ

1/2
R )−1‖2F

=
1+o(1)

2σ2
‖Λ1/2

R (I+
n

σ2
ΛR)−1/2(I+

1

σ2
A)−1(I+

n

σ2
ΛR)−1/2‖2F ,

where in the penultimate equality we use Tr(BBT )=‖B‖2F , ‖B‖F is the Frobenius norm ofA, and
in the last equality we use the definition ofA (117). Then we have

1+o(1)

2σ2
‖Λ1/2

R (I+
n

σ2
ΛR)−1/2(I+

1

σ2
A)−1(I+

n

σ2
ΛR)−1/2‖2F

=
1+o(1)

2σ2
‖Λ1/2

R (I+
n

σ2
ΛR)−1/2(I+

∞∑
j=1

(−1)j
1

σ2j
Aj)(I+

n

σ2
ΛR)−1/2‖2F

=
1+o(1)

2σ2
‖Λ1/2

R (I+
n

σ2
ΛR)−1+

∞∑
j=1

(−1)j
1

σ2j
Λ

1/2
R (I+

n

σ2
ΛR)−1/2Aj(I+

n

σ2
ΛR)−1/2‖2F .

(122)
By Lemma 15, we have

‖Λ1/2
R (I+

n

σ2
ΛR)−1‖F ≤

√√√√ R∑
p=1

Cλp−α

(1+nCλp−α/σ2)2
=Θ(n

(1−α)(1−t)
2α )

‖Λ1/2
R (I+

n

σ2
ΛR)−1‖F ≥

√√√√ R∑
p=1

Cλp−α

(1+nCλp−α/σ2)2
=Θ(n

(1−α)(1−t)
2α ).
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Overall, we have

‖Λ1/2
R (I+

n

σ2
ΛR)−1‖F =Θ(n

(1−α)(1−t)
2α ). (123)

Since ‖ 1
σ2A‖2 =O(

√
logRδ n

1−α+2τ
2α − (1+2τ)t

2α )=o(1), we have

‖ 1

σ2j
Λ

1/2
R (I+

n

σ2
ΛR)−1/2Aj(I+

n

σ2
ΛR)−1/2‖F

≤‖Λ1/2
R (I+

n

σ2
ΛR)−1/2‖F ‖

1

σ2
A‖j2‖(I+

n

σ2
ΛR)−1/2‖2

=O(n
(1−α)(1−t)

2α )Õ(n
j(1−α+2τ−(1+2τ)t)

2α (logR)j/2),

(124)

where in the first inequality we use the fact that ‖AB‖F ≤ ‖A‖F ‖B‖2 when B is symmetric. By
Lemma 15, we have

1

σ2j

∣∣∣TrΛ
1/2
R (I+

n

σ2
ΛR)−1Λ

1/2
R (I+

n

σ2
ΛR)−1/2Aj(I+

n

σ2
ΛR)−1/2

∣∣∣
=

∣∣∣∣∣
R∑
p=1

λp((
1
σ2A)j)p,p

(1+nλp/σ2)2

∣∣∣∣∣≤
R∑
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λp‖ 1
σ2A‖j2

(1+nλp/σ2)2
=Θ(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2),

(125)
According to (123), (124) and (125), we have

1

2

(
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Φ̃RΛRΦ̃TR
σ2

)−1−Tr(I−(I+
ΦRΛRΦTR
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)−1

)

=
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2σ2
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1
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1
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ΛRΦTRΦR)−1

=
1+o(1)
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‖Λ1/2

R (I+
n

σ2
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∞∑
j=1

(−1)j
1

σ2j
Λ

1/2
R (I+

n

σ2
ΛR)−1/2Aj(I+

n

σ2
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=
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2σ2
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R (I+
n

σ2
ΛR)−1‖2F +

∞∑
j=1

∥∥∥∥ 1

σ2j
Λ

1/2
R (I+

n

σ2
ΛR)−1/2Aj(I+

n

σ2
ΛR)−1/2

∥∥∥∥2

F

+2TrΛ
1/2
R (I+

n

σ2
ΛR)−1

∞∑
j=1

(−1)j
1

σ2j
Λ

1/2
R (I+

n

σ2
ΛR)−1/2Aj(I+

n

σ2
ΛR)−1/2

)

=
1+o(1)

2σ2

(
Θ(n

(1−α)(1−t)
α )+

∞∑
j=1

1

σ2j
O(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2)

+2

∞∑
j=1

1

σ2j
Θ(n

(1−α)(1−t)
α )Õ(n

j(1−α+2τ−(1+2τ)t)
2α (logR)j/2)

)
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σ2 Θ(n

(1−α)(1−t)
α )=
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2σ2
‖Λ1/2
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n
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(126)
Combining (121) and (126) we get that G1,R(Dn) = 1+o(1)

2σ2 (Tr(I + n
σ2 ΛR)−1ΛR +

‖Λ1/2
R (I + n

σ2 ΛR)−1‖2F ) = 1
σ2 Θ(n

(1−α)(1−t)
α ). From (115) we have that G1(Dn) ≤

G1,R(Dn) + |G1(Dn) − G1,R(Dn)| = 1
σ2 Θ(n

(1−α)(1−t)
α ) + O(n 1

σ2R
1−α). Choosing

R=n( 2α−1
α(α−1)

+1)(1−t) we conclude the proof.

Lemma 40. Assume σ2 =Θ(nt) where 1− α
1+2τ <t<1. Let S=nD. Assume that ‖ξ‖2 =1. When

n is sufficiently large, with probability of at least 1−2δ we have

‖(I+ 1
σ2 ΦSΛSΦTS )−1ΦSΛSξ‖2 =O(

√
( 1
δ +1)n·n−(1−t)). (127)
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Proof of Lemma 40. Using the Woodbury matrix identity, we have that

((I+
1

σ2
ΦSΛSΦTS )−1ΦSΛSξ=

[
I−ΦS(σ2I+ΛSΦTSΦS)−1ΛSΦTS

]
ΦSΛSξ

=ΦSΛSξ−ΦS(σ2I+ΛSΦTSΦS)−1ΛSΦTSΦSΛSξ

=ΦS(I+ 1
σ2 ΛSΦTSΦS)−1ΛSξ.

(128)

Let A= (I+ n
σ2 ΛS)−γ/2Λ

γ/2
S (ΦTSΦS−nI)Λ

γ/2
S (I+ n

σ2 ΛS)−γ/2, where γ > 1+α+2τ−(1+2τ+2α)t
2α(1−t) .

By Corollary 22, with probability of at least 1−δ, we have ‖ 1
σ2A‖2 =Õ(n

1+α+2τ−(1+2τ+2α)t
2α −γ(1−t)).

When n is sufficiently large, ‖ 1
σ2A‖2 is less than 1. By Lemma 27, we have

(I+
1

σ2
ΛSΦTSΦS)−1

=(I+
n

σ2
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∞∑
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(−1)j
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1
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(I+

n

σ2
ΛS)−1ΛS(ΦTSΦS−nI)
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n

σ2
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=

∥∥∥∥∥∥
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n
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1
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n
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(I+

n

σ2
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ΛSξ

∥∥∥∥∥∥
2

≤
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n

σ2
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∞∑
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∥∥∥∥∥
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1
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(I+

n
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(I+

n

σ2
ΛS)−1ΛSξ

∥∥∥∥∥
2

.
(129)

For the first term in the right hand side of the last equation, we have

‖(I+
n

σ2
ΛS)−1ΛSξ‖2≤‖(I+

n

σ2
ΛS)−1ΛS‖2‖ξ‖2≤

σ2

n
=O(n−(1−t)). (130)

Using the fact that ‖ 1
σ2A‖2 = Õ(n

1+α+2τ−(1+2τ+2α)t
2α −γ(1−t)) and ‖(I+ n

σ2 ΛS)−1ΛS‖2 ≤ n−1, we
have∥∥∥∥∥
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1
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n
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n
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∥∥∥∥∥
2
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1

σ2j
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n
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2 Λ
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S

(
A(I+

n

σ2
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S
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n

σ2
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2 Λ
− γ2
S ΛSξ

∥∥∥∥
2

≤n(1−t)(−1+ γ
2 +(−1+γ)(j−1))Õ(n

j(1+α+2τ−(1+2τ+2α)t)
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n
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1− γ2
S ξ‖2

=Õ(n−
γ
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2α )‖(I+
n

σ2
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2 Λ
1− γ2
S ‖2‖ξ‖2

=Õ(n−
γ
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2α )O(n(−1+γ/2)(1−t))
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2α ).

(131)
Using (129), (130) and (131), we have

‖(I+ 1
σ2 ΛSΦTSΦS)−1ΛSξ‖2

=

Õ(n−(1−t))+

∞∑
j=1

Õ(n−1+
(1−α+2τ−(1+2τ)t)j

2α )


=
(
Õ(n−(1−t))+Õ(n−1+

1−α+2τ−(1+2τ)t
2α )

)
=Õ(n−(1−t)).

(132)
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By Corollary 20, with probability of at least 1−δ, we have

‖ΦS(I+ 1
σ2 ΛSΦTSΦS)−1ΛSξ‖2 =Õ(

√
(
1

δ
+1)n‖(I+ 1

σ2 ΛSΦTSΦS)−1ΛSξ‖2)

=Õ(

√
(
1

δ
+1)n·n−(1−t)).

From (128) we get ‖(I + 1
σ2 ΦSΛSΦTS )−1fS(x)‖2 = Õ(

√
( 1
δ +1)n ·n−(1−t)). This concludes the

proof.

Lemma 41. Assume σ2 = Θ(nt) where 1 − α
1+2τ < t < 1. Let δ = n−q where 0 ≤ q <

[α−(1+2τ)(1−t)](2β−1)
4α2 . Under Assumptions 4, 5 and 6, assume that µ0 = 0. Let R = n( 1

α+κ)(1−t)

where 0<κ< α−1−2τ+(1+2τ)t
2α2(1−t) . Then with probability of at least 1−6δ over sample inputs (xi)

n
i=1,

we haveG2(Dn)= (1+o(1))
2σ2 ‖(I+ n

σ2 ΛR)−1µR‖22 = 1
σ2 Θ(nmax{−2(1−t), (1−2β)(1−t)

α }logk/2n), where

k=

{
0, 2α 6=2β−1,

1, 2α=2β−1.
.

Proof of Lemma 41. Let S = nD. Let G2,S(Dn) = E(xn+1,yn+1)(T2,S(Dn+1) − T2,S(Dn)). By

Lemma 33, when S>nmax{1, −t
(α−1−2τ)

} with probability of at least 1−3δ we have that
|G2(Dn)−G2,S(Dn)|= |E(xn+1,yn+1)[T2(Dn+1)−T2,S(Dn+1)]−[T2(Dn)−T2,S(Dn)]|

=
∣∣∣E(xn+1,yn+1)Õ

(
( 1
δ +1) 1

σ2 (n+1)Smax{1/2−β,1−α+2τ}
)
−Õ

(
( 1
δ +1) 1

σ2nS
max{1/2−β,1−α+2τ}

)∣∣∣
=Õ

(
( 1
δ +1) 1

σ2nS
max{1/2−β,1−α+2τ}

)
(133)

(134)
Let Λ1:S = diag{λ1, ... , λS}, Φ1:S = (φ1(x), φ1(x), ... , φS(x)) and µ1:S = (µ1, ... , µS). Since
µ0 = 0, we have T2,S(Dn) = 1

2σ2µ
T
1:SΦT1:S(I + 1

σ2 Φ1:SΛ1:SΦT1:S)−1Φ1:Sµ1:S . Define η1:S =

(φ1(xn+1),...,φS(xn+1))T and Φ̃1:S=(ΦT1:S ,η1:S)T . In the proof of Lemma 34, we showed that

T2,S(Dn)=
1

2σ2
µT1:SΦT1:S(I+

1

σ2
Φ1:SΛ1:SΦT1:S)−1Φ1:Sµ1:S

=
1

2
µT1:SΛ−1

1:Sµ1:S−
1

2
µT1:SΛ−1

1:S(I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S .

We have
G2,S(Dn)=E(xn+1,yn+1)(T2,S(Dn+1)−T2,S(Dn))

=E(xn+1,yn+1)

(
1

2
µT1:SΛ−1

1:Sµ1:S−
1

2
µT1:SΛ−1

1:S(I+
1

σ2
Λ1:SΦ̃TS Φ̃S)−1µ1:S

)
−
(

1

2
µT1:SΛ−1

1:Sµ1:S−
1

2
µT1:SΛ−1

1:S(I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S)

)
=E(xn+1,yn+1)

(
1

2
µT1:SΛ−1

1:S(I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S−

1

2
µT1:SΛ−1

1:S(I+
1

σ2
Λ1:SΦ̃TS Φ̃S)−1µ1:S

)
=E(xn+1,yn+1)

(
1

2σ2
µT1:SΛ−1

1:S

(I+ 1
σ2 Λ1:SΦT1:SΦ1:S)−1Λ1:Sη1:Sη

T
1:S(I+ 1

σ2 Λ1:SΦT1:SΦ1:S)−1

1+ 1
σ2 ηT1:S(I+ 1

σ2 Λ1:SΦT1:SΦ1:S)−1Λ1:Sη1:S

µ1:S)

)
=E(xn+1,yn+1)

(
1

2σ2

µT1:S(I+ 1
σ2 ΦT1:SΦ1:SΛ1:S)−1η1:Sη

T
1:S(I+ 1

σ2 Λ1:SΦT1:SΦ1:S)−1µ1:S

1+ 1
σ2 ηT1:S(I+ 1

σ2 Λ1:SΦT1:SΦ1:S)−1Λ1:Sη1:S

)

)
=E(xn+1,yn+1)

(
1+o(1)

2σ2
µT1:S(I+

1

σ2
ΦT1:SΦ1:SΛ1:S)−1η1:Sη

T
1:S(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S

)
=

1+o(1)

2σ2
µT1:S(I+

1

σ2
ΦT1:SΦ1:SΛ1:S)−1(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S

=
1+o(1)

2σ2
‖(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S‖22,

(135)
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where in the fourth to last equality we used the Sherman–Morrison formula, in the third inequality
we used (118) , and in the last equality we used the fact that E(xn+1,yn+1)η1:Sη

T
1:S=I .

Let µ̂1:R=(µ1,...,µR,0,...,0)∈RS . Then we have

‖(I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S‖2≤‖(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1µ̂1:R‖2+‖(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1(µ1:S−µ̂1:R)‖2,

‖(I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S‖2≥‖(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1µ̂1:R‖2−‖(I+

1

σ2
Λ1:SΦT1:SΦ1:S)−1(µ1:S−µ̂1:R)‖2.

(136)
Let R = n( 1

α+κ)(1−t) where 0 < κ < α−1−2τ+(1+2τ)t
2α2(1−t) . In Lemma 29, (62), we showed that with

probability of at least 1−δ,

‖(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R‖2 =Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)

=(1+o(1))‖(I+
n

σ2
Λ1:R)−1µ1:R‖2,

(137)

where k=

{
0, 2α 6=2β−1,

1, 2α=2β−1.
. The same proof holds if we replace Φ1:R with Φ1:S , Λ1:R with Λ1:S ,

and µ1:R with µ̂1:R. We have

‖(I+ 1
σ2 Λ1:SΦT1:SΦ1:S)−1µ̂1:R‖2 =Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)

=(1+o(1))‖(I+
n

σ2
Λ1:S)−1µ̂1:R‖2.

(138)

Next we bound ‖(I + 1
σ2 Λ1:SΦT1:SΦ1:S)−1(µ1:S − µ̂1:R)‖2. By Assumption 5, we have that

‖µ1:S−µ̂1:R‖2 =O(R
1−2β

2 ). For any ξ∈RS and ‖ξ‖2 =1, using the Woodbury matrix identity, with
probability of at least 1−2δ we have

|ξT (I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1(µ1:S−µ̂1:R)|

= |ξT
(
I− 1

σ2
Λ1:SΦT1:S(I+

1

σ2
Φ1:SΛ1:SΦT1:S)−1Φ1:S

)
(µ1:S−µ̂1:R)|

= |ξT (µ1:S−µ̂1:R)− 1

σ2
ξTΛ1:SΦT1:S(I+

1

σ2
Φ1:SΛ1:SΦT1:S)−1Φ1:S(µ1:S−µ̂1:R)|

≤‖ξ‖2‖µ1:S−µ̂1:R‖2+
1

σ2
|ξTΛ1:SΦT1:S(I+

1

σ2
Φ1:SΛ1:SΦT1:S)−1Φ1:S(µ1:S−µ̂1:R)|

≤O(R
1−2β

2 )+
1

σ2
‖(I+

1

σ2
Φ1:SΛ1:SΦT1:S)−1Φ1:SΛ1:Sξ‖2‖Φ1:S(µ1:S−µ̂1:R)‖2

=O(R
1−2β

2 )+
1

σ2
O(

√
(
1

δ
+1)n·n−(1−t))O(

√
(
1

δ
+1)nR

1−2β
2 )

=O((
1

δ
+1)R

1−2β
2 ),

where in the second to last step we used Corollary 20 to show ‖Φ1:S(µ1:S − µ̂1:R)‖2 =

O(
√

( 1
δ +1)nR

1−2β
2 ) with probability of at least 1 − δ, and Lemma 40 to show that

‖(I + 1
σ2 Φ1:SΛ1:SΦT1:S)−1Φ1:SΛ1:Sξ‖2 = O(

√
( 1
δ +1)n · n−1) with probability of at least

1−δ. SinceR=n( 1
α+κ)(1−t), we have

|ξT (I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1(µ1:S−µ̂1:R)|=O((

1

δ
+1)n

(1−2β)(1−t)
2α +

(1−2β)(1−t)κ
2 ).

Since ξ is arbitrary, we have ‖(I + 1
σ2 Λ1:SΦT1:SΦ1:S)−1(µ1:S − µ̂1:R)‖2 = O(( 1

δ +

1)n
(1−2β)(1−t)

2α +
(1−2β)(1−t)κ

2 ). Since 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 and 0 < κ < α−1−2τ+(1+2τ)t

2α2(1−t) ,

we can choose κ < α−1−2τ+(1+2τ)t
2α2(1−t) and κ is arbitrarily close to κ < α−1−2τ+(1+2τ)t

2α2(1−t) such that
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0≤q< (2β−1)(1−t)κ
2 . Then we have (1−2β)(1−t)κ

2 +q<0. From (136) and (138), we have

‖(I+
1

σ2
Λ1:SΦT1:SΦ1:S)−1µ1:S‖2 =Θ(nmax{−(1−t), (1−2β)(1−t)

2α }logk/2n)+O((
1

δ
+1)n

(1−2β)(1−t)
2α +

(1−2β)(1−t)κ
2 )

=Θ(nmax{−(1−t), (1−2β)(1−t)
2α }logk/2n)+O((nq+

(1−2β)(1−t)
2α +

(1−2β)(1−t)κ
2 )

=Θ(nmax{−(1−t), (1−2β)(1−t)
2α }logk/2n)

=(1+o(1))‖(I+
n

σ2
Λ1:S)−1µ̂1:R‖2

=(1+o(1))‖(I+
n

σ2
ΛR)−1µR‖2.

(139)
Hence G2,S(Dn) = 1+o(1)

2σ2 ‖(I+ 1
σ2 Λ1:SΦT1:SΦ1:S)−1µ1:S‖22 = 1

σ2 Θ(n(1−t)max{−2, 1−2β
α } logk/2n).

Then by (133), we have

G2(Dn)= 1
σ2 Θ(nmax{−2(1−t), (1−2β)(1−t)

α }logk/2n)+Õ

(
(
1

δ
+1)

n

σ2
Smax{1/2−β,1−α+2τ}

)
.

Choosing S=n
max

{
1, −t

(α−1−2τ)
,

(
1+q+min{2, 2β−1

α
}

min{β−1/2,α−1−2τ}+1

)
(1−t)

}
, we get the result.

Proof of Theorem 9. From Lemmas 39 and 41 and 1
α −1>−2, we have that with probability of at

least 1−7δ̃,

EεG(Dn)=
1+o(1)

2σ2
(Tr(I+

n

σ2
ΛR)−1ΛR−‖Λ1/2

R (I+
n

σ2
ΛR)−1‖2F +‖(I+

n

σ2
ΛR)−1µR‖22)

= 1
σ2 Θ(n

(1−α)(1−t)
α )+ 1

σ2 Θ(nmax{−2(1−t), (1−2β)(1−t)
α }logk/2n)

= 1
σ2 Θ(nmax{ (1−α)(1−t)

α ,
(1−2β)(1−t)

α })
(140)

where k=

{
0, 2α 6=2β−1

1, 2α=2β−1
, andR=n( 1

α+κ)(1−t), κ>0.

Furthermore, we have

Tr(I+
n

σ2
Λ)−1Λ−Tr(I+

n

σ2
ΛR)−1ΛR

=

∞∑
p=R+1

λp
1+ n

σ2λp
≤

∞∑
p=R+1

Cλp
−α

1+ n
σ2Cλp−α

≤
∞∑

p=R+1

Cλp
−α=

n

σ2
O(R1−α)

=O(n(1−α)(1−t)( 1
α+κ))

=o(n
(1−α)(1−t)

α ).

Then we have
Tr(I+

n

σ2
ΛR)−1ΛR=Tr(I+

n

σ2
Λ)−1Λ(1+o(1)). (141)

Similarly we can prove

‖Λ1/2
R (I+

n

σ2
ΛR)−1‖2F =‖Λ1/2(I+

n

σ2
Λ)−1‖2F (1+o(1)) (142)

‖(I+
n

σ2
ΛR)−1µR‖22 =‖(I+

n

σ2
Λ)−1µ‖22(1+o(1)) (143)

Letting δ=7δ̃, the proof is complete.

In the case of µ0>0, we have the following lemma:

Lemma 42. Let δ = n−q where 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 . Under Assumptions 4, 5 and 6,

assume that µ0 > 0. Then with probability of at least 1− 6δ over sample inputs (xi)
n
i=1, we have

G2(Dn)= 1
2σ2µ

2
0+o(1).
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Proof of Lemma 42. Let S = nD. Let G2,S(Dn) = E(xn+1,yn+1)(T2,S(Dn+1) − T2,S(Dn)). By

Lemma 33, when S>nmax{1, −t
(α−1−2τ)

}, with probability of at least 1−3δ we have that

|G2(Dn)−G2,S(Dn)|= |E(xn+1,yn+1)[T2(Dn+1)−T2,S(Dn+1)]−[T2(Dn)−T2,S(Dn)]|

=
∣∣∣E(xn+1,yn+1)Õ

(
( 1
δ +1) 1

σ2 (n+1)Smax{1/2−β,1−α+2τ}
)
−Õ

(
( 1
δ +1) 1

σ2nS
max{1/2−β,1−α+2τ}

)∣∣∣
=Õ

(
( 1
δ +1) 1

σ2nS
max{1/2−β,1−α+2τ}

)
Let ΛS = diag{λ1, ... , λS}, ΦS = (φ1(x), φ1(x), ... , φS(x)) and µS = (µ1, ... , µS). Define
ηS = (φ0(xn+1),φ1(xn+1),...,φS(xn+1))T and Φ̃S = (ΦTS ,ηS)T . By the same technique as in the
proof of Lemma 34, we replace ΛR by Λ̃ε,R=diag{ε,λ1,...,λR}, let ε→0 and show the counterpart
of the result (135) in the proof of Lemma 41:

G2,S(Dn)=E(xn+1,yn+1)(T2,S(Dn+1)−T2,S(Dn))

=E(xn+1,yn+1)

(
1

2σ2

µTS (I+ 1
σ2 ΦTSΦSΛS)−1ηSη

T
S (I+ 1

σ2 ΛSΦTSΦS)−1µS

1+ 1
σ2 ηTS (I+ 1

σ2 ΛSΦTSΦS)−1ΛSηS
)

)
=E(xn+1,yn+1)

(
1+o(1)

2σ2
µTS (I+

1

σ2
ΦTSΦSΛS)−1ηSη

T
S (I+

1

σ2
ΛSΦTSΦS)−1µS

)
=

1+o(1)

2σ2
µTS (I+

1

σ2
ΦTSΦSΛS)−1(I+

1

σ2
ΛSΦTSΦS)−1µS

=
1+o(1)

2σ2
‖(I+

1

σ2
ΛSΦTSΦS)−1µS‖22,

(144)
where in the fourth to last equality we used the Sherman–Morrison formula, in the third inequality
we used (118) , and in the last equality we used the fact that E(xn+1,yn+1)η1:Sη

T
1:S=I .

Let µ̂R=(µ0,µ1,...,µR,0,...,0)∈RS . Then we have

‖(I+
1

σ2
ΛSΦTSΦS)−1µS‖2≤‖(I+

1

σ2
ΛSΦTSΦS)−1µ̂R‖2+‖(I+

1

σ2
ΛSΦTSΦS)−1(µS−µ̂R)‖2,

‖(I+
1

σ2
ΛSΦTSΦS)−1µS‖2≥‖(I+

1

σ2
ΛSΦTSΦS)−1µ̂R‖2−‖(I+

1

σ2
ΛSΦTSΦS)−1(µS−µ̂R)‖2.

(145)
ChooseR=n( 1

α+κ)(1−t) where 0<κ< α−1−2τ+(1+2τ)t
α2(1−t) . In Lemma 29, (62), we showed that with

probability of at least 1−δ,

‖(I+ 1
σ2 Λ1:RΦT1:RΦ1:R)−1µ1:R‖2 =Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)

=(1+o(1))‖(I+
n

σ2
Λ1:R)−1µ1:R‖2,

(146)

where k=

{
0, 2α 6=2β−1,

1, 2α=2β−1.
. The same proof holds if we replace Φ1:R with Φ1:S , Λ1:R with Λ1:S ,

and µ1:R with µ̂1:R. We have

‖(I+ 1
σ2 Λ1:SΦT1:SΦ1:S)−1µ̂1:R‖2 =Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)

=(1+o(1))‖(I+
n

σ2
Λ1:S)−1µ̂1:R‖2.

(147)

So we have

‖(I+ 1
σ2 ΛSΦTSΦS)−1µ̂R‖2 =µ0+Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)

=µ0+o(1).
(148)

Next we bound ‖(I + 1
σ2 ΛSΦTSΦS)−1(µS − µ̂R)‖2. By Assumption 5, we have that

‖µS − µ̂R‖2 = O(R
1−2β

2 ). For any ξ ∈ RS and ‖ξ‖2 = 1, using the Woodbury matrix
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identity, with probability of at least 1−2δ we have

|ξT (I+
1

σ2
ΛSΦTSΦS)−1(µS−µ̂R)|

= |ξT
(
I− 1

σ2
ΛSΦTS (I+

1

σ2
ΦSΛSΦTS )−1ΦS

)
(µS−µ̂R)|

= |ξT (µS−µ̂R)− 1

σ2
ξTΛSΦTS (I+

1

σ2
ΦSΛSΦTS )−1ΦS(µS−µ̂R)|

≤‖ξ‖2‖µS−µ̂R‖2+
1

σ2
|ξTΛSΦTS (I+

1

σ2
ΦSΛSΦTS )−1ΦS(µS−µ̂R)|

≤O(R
1−2β

2 )+
1

σ2
‖(I+

1

σ2
ΦSΛSΦTS )−1ΦSΛSξ‖2‖ΦS(µS−µ̂R)‖2

=O(R
1−2β

2 )+
1

σ2
O(

√
(
1

δ
+1)n·n−(1−t))O(

√
(
1

δ
+1)nR

1−2β
2 )

=O((
1

δ
+1)R

1−2β
2 ),

where in the second to last step we used Corollary 20 to show‖ΦS(µS−µ̂R)‖2 =O(
√

( 1
δ +1)nR

1−2β
2 )

with probability of at least 1− δ, and Lemma 40 to show that ‖(I + 1
σ2 ΦSΛSΦTS )−1ΦSΛSξ‖2 =

O(
√

( 1
δ +1)n·n−(1−t)) with probability of at least 1−δ. SinceR=n( 1

α+κ)(1−t), we have

|ξT (I+
1

σ2
ΛSΦTSΦS)−1(µS−µ̂R)|=O((

1

δ
+1)n

(1−2β)(1−t)
2α +

(1−2β)(1−t)κ
2 ).

Since ξ is arbitrary, we have ‖(I + 1
σ2 ΛSΦTSΦS)−1(µS − µ̂R)‖2 = O(( 1

δ +

1)n
(1−2β)(1−t)

2α +
(1−2β)(1−t)κ

2 ). Since 0 ≤ q < [α−(1+2τ)(1−t)](2β−1)
4α2 and 0 < κ < α−1−2τ+(1+2τ)t

2α2(1−t) ,

we can choose κ < α−1−2τ+(1+2τ)t
2α2(1−t) and κ is arbitrarily close to κ < α−1−2τ+(1+2τ)t

2α2(1−t) such that

0≤q< (2β−1)(1−t)κ
2 . Then we have (1−2β)(1−t)κ

2 +q<0. From (145) and (148), we have

‖(I+ 1
σ2 ΛSΦTSΦS)−1µS‖2 =µ0+Θ(n(1−t)max{−1, 1−2β

2α }logk/2n)+O((
1

δ
+1)n

(1−2β)(1−t)
2α +

(1−2β)(1−t)κ
2 )

=µ0+Θ(n(1−t)max{−1, 1−2β
2α }logk/2n)

=µ0+o(1).
(149)

Hence G2,S(Dn) = 1+o(1)
2σ2 ‖(I + 1

σ2 ΛSΦTSΦS)−1µS‖22 = 1
2σ2µ

2
0 + o(1). Then by (144),

G2(Dn)= 1
2σ2µ

2
0+o(1)+Õ

(
( 1
δ +1)nSmax{1/2−β,1−α}).

Choosing S=n
max

{
1, −t

(α−1−2τ)
,

(
1+q+min{2, 2β−1

α
}

min{β−1/2,α−1−2τ}+1

)
(1−t)

}
, we get the result.

Proof of Theorem 11. According to Lemma 42, G2(Dn) = 1
2σ2µ

2
0 +o(1). By Lemma 39, we have

G1(Dn)=Θ(n
(1−α)(1−t)

α ). Then EεG(Dn)=G1(Dn)+G2(Dn)= 1
2σ2µ

2
0+o(1).
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D.3 PROOFS RELATED TO THE EXCESS MEAN SQUARED GENERALIZATION ERROR

Proof of Theorem 12. For µ0 =0, we can show that

EεM(Dn)=EεExn+1 [m̄(xn+1)−f(xn+1)]2

=EεExn+1
[Kxn+1x(Kn+σ2

modelIn)−1y−f(xn+1)]2

=EεExn+1
[ηTΛΦT [ΦΛΦT +σ2

modelIn)−1(Φµ+ε)−ηTµ]2

=EεExn+1
[ηTΛΦT (ΦΛΦT +σ2

modelIn)−1ε]2

+Exn+1

[
ηT
(
ΛΦT (ΦΛΦT +σ2

modelIn)−1Φ−I
)
µ
]2

=σ2
trueTrΛΦT (ΦΛΦT +σ2

modelIn)−2ΦΛ

+µT
(
I+ 1

σ2
model

ΦTΦΛ
)−1(

I+ 1
σ2

model
ΛΦTΦ

)−1

µ

=
σ2

true

σ2
model

Tr(I+ ΛΦTΦ
σ2

model
)−1Λ−Tr(I+ ΛΦTΦ

σ2
model

)−2Λ+‖(I+ 1
σ2

model
ΛΦTΦ)−1µ‖22.

According to (139) from the proof of Lemma 41, the truncation procedure (133) and (143), with
probability of at least 1−δ we have

‖(I+ 1
σ2

model
ΛΦTΦ)−1µ‖22 =Θ(nmax{−2(1−t),

(1−2β)(1−t)
α }logk/2n)=(1+o(1))‖(I+ n

σ2
model

Λ)−1µ‖22,

where k=

{
0, 2α 6=2β−1,

1, 2α=2β−1.
.

According to (121) and (126) from the proof of Lemma 39, the truncation procedure (115), (141) and
(142), with probability of at least 1−δ we have

Tr(I+ ΛΦTΦ
σ2

model
)−1Λ−Tr(I+ ΛΦTΦ

σ2
model

)−2Λ

=
(

Tr(I+ n
σ2

model
Λ)−1Λ

)
(1+o(1))−‖Λ1/2(I+ n

σ2
model

Λ)−1‖2F (1+o(1))

=Θ(n
(1−α)(1−t)

α ).

Combining the above two equations we get

EεM(Dn)=(1+o(1))
(
σ2

true

σ2
model

(
Tr(I+ n

σ2
model

Λ)−1Λ−‖Λ1/2(I+ n
σ2

model
Λ)−1‖2F

)
+‖(I+ n

σ2
model

Λ)−1µ‖22
)

=
σ2

true

σ2
model

Θ(n
(1−α)(1−t)

α )+Θ(nmax{−2(1−t),
(1−2β)(1−t)

α }logk/2n)

=σ2
trueΘ(n

1−α−t
α )+Θ(nmax{−2(1−t),

(1−2β)(1−t)
α }logk/2n)

=Θ

(
max{σ2

truen
1−α−t
α ,n

(1−2β)(1−t)
α }

)
When µ0>0, according to (149) in the proof of Lemma 42 and the truncation procedure (133), with
probability of at least 1−δ we have

EεM(Dn)=Θ(n
(1−α)(1−t)

α )+µ2
0+o(1)

=µ2
0+o(1).
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