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ABSTRACT

We characterize the power-law asymptotics of learning curves for Gaussian process
regression (GPR) under the assumption that the eigenspectrum of the prior and
the eigenexpansion coefficients of the target function follow a power law. Under
similar assumptions, we leverage the equivalence between GPR and kernel ridge
regression (KRR) to show the generalization error of KRR. Infinitely wide neural
networks can be related to GPR with respect to the neural network GP kernel and the
neural tangent kernel, which in several cases is known to have a power-law spectrum.
Hence our methods can be applied to study the generalization error of infinitely
wide neural networks. We present toy experiments demonstrating the theory.

1 INTRODUCTION

Gaussian processes (GPs) provide a flexible and interpretable framework for learning and adaptive
inference, and are widely used for constructing prior distributions in non-parametric Bayesian learning.
From an application perspective, one crucial question is how fast do GPs learn, i.e., how much training
data is needed to achieve a certain level of generalization performance. Theoretically, this is addressed
by analyzing so-called “learning curves”, which describe the generalization error as a function of
the training set size n. The rate at which the curve approaches zero determines the difficulty of
learning tasks and conveys important information about the asymptotic performance of GP learning
algorithms. In this paper, we study the learning curves for Gaussian process regression. Our main
result characterizes the asymptotics of the generalization error in cases where the eigenvalues of the
GP kernel and the coefficients of the eigenexpansion of the target function have a power-law decay. In
the remainder of this introductory section, we review related work and outline our main contributions.

Gaussian processes A GP model is a probabilistic model on an infinite-dimensional parameter space
(Williams and Rasmussen, 2006; Orbanz and Teh, 2010). In GP regression (GPR), for example, this
space can be the set of all continuous functions. Assumptions about the learning problem are encoded
by way of a prior distribution over functions, which gets transformed into a posterior distribution given
some observed data. The mean of the posterior is then used for prediction. The model uses only a finite
subset of the available parameters to explain the data and this subset can grow arbitrarily large as more
data are observed. In this sense, GPs are “non-parametric” and contrast with parametric models, where
there is a fixed number of parameters. For regression with Gaussian noise, a major appeal of the GP
formalism is that the posterior is analytically tractable. GPs are also one important part in learning with
kernel machines (Kanagawa et al., 2018) and modeling using GPs has recently gained considerable
traction in the neural network community.

Neural networks and kernel learning From a GP viewpoint, there exists a well known correspon-
dence between kernel methods and infinite neural networks (NNs) first studied by Neal (1996). Neal
showed that the outputs of a randomly initialized one-hidden layer neural network (with appropriate
scaling of the variance of the initialization distribution) converges to a GP over functions in the limit
of an infinite number of hidden units. Follow-up work extended this correspondence with analytical
expressions for the kernel covariance for shallow NNs by Williams (1997), and more recently for
deep fully-connected NNs (Lee et al., 2018; de G. Matthews et al., 2018), convolutional NNs with
many channels (Novak et al., 2019; Garriga-Alonso et al., 2019), and more general architectures
(Yang, 2019). The correspondence enables exact Bayesian inference in the associated GP model for
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infinite-width NNs on regression tasks and has led to some recent breakthroughs in our understanding
of overparameterized NNs (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019; Belkin et al., 2018;
Daniely et al., 2016; Yang and Salman, 2019; Bietti and Mairal, 2019). The most prominent kernels
associated with infinite-width NN are the Neural Network Gaussian Process (NNGP) kernel (Lee
etal., 2018; de G. Matthews et al., 2018), and the Neural Tangent Kernel (NTK) (Jacot et al., 2018).
Empirical studies have shown that inference with such infinite network kernels is competitive with
standard gradient descent-based optimization for fully-connected architectures (Lee et al., 2020).

Learning curves A large-scale empirical characterization of the generalization performance of
state-of-the-art deep NNs showed that the associated learning curves often follow a power law of the
form n~” with the exponent 3 ranging between 0.07 and 0.35 depending on the data and the algorithm
(Hestness et al., 2017; Spigler et al., 2020). Power-law asymptotics of learning curves have been
theoretically studied in early works for the Gibbs learning algorithm (Amari et al., 1992; Amari and
Murata, 1993; Haussler et al., 1996) that showed a generalization error scaling with exponent 5=0.5,
1 or 2 under certain assumptions. More recent results from statistical learning theory characterize
the shape of learning curves depending on the properties of the hypothesis class (Bousquet et al.,
2021). In the context of GPs, approximations and bounds on learning curves have been investigated
in several works (Sollich, 1999; Sollich and Halees, 2002; Sollich, 2001; Opper and Vivarelli, 1999;
Opper and Malzahn, 2002; Williams and Vivarelli, 2000; Malzahn and Opper, 2001a;b; Seeger et al.,
2008; Van Der Vaart and Van Zanten, 2011; Le Gratiet and Garnier, 2015), with recent extensions
to kernel regression from a spectral bias perspective (Bordelon et al., 2020; Canatar et al., 2021). For a
review on learning curves in relation to its shape and monotonicity, see Loog et al. (2019); Viering et al.
(2019); Viering and Loog (2021). A related but complementary line of work studies the convergence
rates and posterior consistency properties of Bayesian non-parametric models (Barron, 1998; Seeger
etal., 2008; Van Der Vaart and Van Zanten, 2011).

Power-law decay of the GP kernel eigenspectrum The rate of decay of the eigenvalues of the
GP kernel conveys important information about its smoothness. Intuitively, if a process is “rough”
with more power at high frequencies, then the eigenspectrum decays more slowly. On the other hand,
kernels that define smooth processes have a fast-decaying eigenspectrum (Stein, 2012; Williams and
Rasmussen, 2006). The precise eigenvalues (), ),>1 of the operators associated to many kernels and
input distributions are not known explicitly, except for a few special cases (Williams and Rasmussen,
2006). Often, however, the asymptotic properties are known. The asymptotic rate of decay of the
eigenvalues of stationary kernels for input distributions with bounded support is well understood
(Widom, 1963; Ritter et al., 1995). Ronen et al. (2019) showed that for inputs distributed uniformly on
a hypersphere, the eigenfunctions of the arc-cosine kernel are spherical harmonics and the eigenvalues
follow a power-law decay. The spectral properties of the NTK are integral to the analysis of training
convergence and generalization of NNs, and several recent works empirically justify and rely on a
power law assumption for the NTK spectrum (Bahri et al., 2021; Canatar et al., 2021; Lee et al., 2020;
Nitanda and Suzuki, 2021). Velikanov and Yarotsky (2021) showed that the asymptotics of the NTK
of infinitely wide shallow ReL.U networks follows a power-law that is determined primarily by the
singularities of the kernel and has the form A, ocp™ with =1+ é, where d is the input dimension.

Asymptotics of the generalization error of kernel ridge regression (KRR) There is a well known
equivalence between GPR and KRR with the additive noise in GPR playing the role of regularization
in KRR (Kanagawa et al., 2018). Analysis of the decay rates of the excess generalization error of
KRR has appeared in several works, e.g, in the noiseless case with constant regularization (Bordelon
etal., 2020; Spigler et al., 2020; Jun et al., 2019), and the noisy optimally regularized case (Caponnetto
and De Vito, 2007; Steinwart et al., 2009; Fischer and Steinwart, 2020) under the assumption that
the kernel eigenspectrum, and the eigenexpansion coefficients of the target function follow a power
law. These assumptions, which are often called resp. the capacity and source conditions are related
to the effective dimension of the problem and the difficulty of learning the target function (Caponnetto
and De Vito, 2007; Blanchard and Miicke, 2018). Cui et al. (2021) present a unifying picture of the
excess error decay rates under the capacity and source conditions in terms of the interplay between
noise and regularization illustrating their results with real datasets.

Contributions In this work, we characterize the asymptotics of the generalization error of GPR
and KRR under the capacity and source conditions. Our main contributions are as follows:
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* When the eigenspectrum of the prior decays with rate v and the eigenexpansion coefficients of
the target function decay with rate (3, we show that with high probability over the draw of n input

samples, the negative log-marginal likelihood behaves as @(nmax{# = ‘H}) (Theorem 7) and
the generalization error behaves as © (n™ax1 -1 }) (Theorem 9). In the special case that the
model is correctly specified, i.e., the GP prior is the true one from which the target functions are

actually generated, our result implies that the generalization error behaves as O(né ~1) recovering
as a special case a result due to Sollich and Halees (2002) (vide Remark 10).

* Under similar assumptions as in the previous item, we leverage the equivalence between GPR

o —2p
and KRR to show that the excess generalization error of KRR behaves as @(nmax{é*l* = })
(Theorem 12). In the noiseless case with constant regularization, our result implies that the

generalization error behaves as G(n%) recovering as a special case a result due to Bordelon et al.
(2020). Specializing to the case of KRR with Gaussian design, we recover as a special case a result
due to Cui et al. (2021) (vide Remark 14).

For the unrealizable case, i.e., when the target function is outside the span of the eigenfunctions
with positive eigenvalues, we show that the generalization error converges to a constant.

* We present a few toy experiments demonstrating the theory for GPR with arc-cosine kernel without bi-
ases (resp. with biases) which is the conjugate kernel of an infinitely wide shallow network with two in-
puts and one hidden layer without biases (resp. with biases) (Cho and Saul, 2009; Ronen et al., 2019).

2 BAYESIAN LEARNING AND GENERALIZATION ERROR FOR GPS

In GP regression, our goal is to learn a target function f : 2 — R between an input z € {2 and
output y € R based on training samples D,, = {(x;,y;)}~,. We consider an additive noise

model y; = f (xz) + €, where ¢; "X N (0,02.,.)- If p denotes the marginal density of the inputs
z;, then the pairs (xz, y;) are generated according to the density ¢(x,y) = p(x)q(y|z), where
q(y|z)=N(y|f(),02 ). We assume that there is a prior distribution ITp on f which is defined as a
zero-mean GP with continuous and bounded covariance function k: Q2 x Q =R, i.e., f ~ QP(O,k). This
means that for any finite set x = (21,...,2,,) 7, the random vector f(x) = (f(z1),-...f (z,))" follows
the multivariate normal distribution (0,4, ) with covariance matrix K, = (k(x;,2;))7';—; € R™*™.
By Bayes’ rule, the posterior distribution over f given the training data is given by

dHn(f|Dn): 7(D ( '|f(xi)7o'12nodel)dno(f)v

where I is the prior distribution, Z(D f [T, N yilf(z:),0 model)dHO (f) is the marginal
likelihood or model evidence and o ,04e1 1s the sample variance used in GPR. In practice, we do not
know the exact value of o, and so our choice of oy,04e1 can be different from o,y The GP prior
and the Gaussian noise assumption allows for exact Bayesian inference and the posterior distribution
over functions is again a GP with mean and covariance function given by

’I’?L(J,‘):KT (Kn+ar2‘(10dell )_1}71)69 (1)
k(za)=k(z,2)— KL (Kn+02oqaln) Ky 2,0' €Q, (2)

where Ky, = (k(z1 ,x),...,k(zn,x)) andy = (y1,...,yn )T €R™ (Williams and Rasmussen, 2006, Eqs.
2.23-24).

The performance of GPR depends on how well the posterior approximates f as the number of training
samples n tends to infinity. The distance of the posterior to the ground truth can be measured in various
ways. We consider two such measures, namely the Bayesian generalization error (Seeger et al., 2008;
Haussler and Opper, 1997; Opper and Vivarelli, 1999) and the excess mean squared error (Sollich
and Halees, 2002; Le Gratiet and Garnier, 2015; Bordelon et al., 2020; Cui et al., 2021).

Definition 1 (Bayesian generalization error). The Bayesian generalization error is defined as the
Kullback-Leibler dlvergence between the true density q(y|x) and the Bayesian predictive density

pn(y|x’D IN y‘f modcl)dH (le )

_ _alw)
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A related quantity of interest is the stochastic complexity (SC), also known as the free energy, which
is just the negative log-marginal likelihood. We shall primarily be concerned with a normalized version
of the stochastic complexity which is defined as follows:

Z(Dn) TN Wil f (21),0 3 0d0) A0 (f)
o =—log - .
HizlfI(%‘m) Hi:1Q(yi|xi)
The generalization error (3) can be expressed in terms of the normalized SC as follows (Watanabe,
2009, Theorem 1.2):

F%(D,)=—log “4)

G(‘D”):E(fﬁn+1yyn+1)FO(Dn+1)_FO<DH)7 @)
where D,, 11 =D, U{(Zn+1,Yn+1)} is obtained by augmenting D,, with a test point (2, 4+1,Yn+1)-

If we only wish to measure the performance of the mean of the Bayesian posterior, then we can use
the excess mean squared error:

Definition 2 (Excess mean squared error). The excess mean squared error is defined as
M(D,) :E(zn+1 Ynt1) (m(anrl) _yn+1)2 - Ut2rue :Ern+1 (m(rpy1)— f(anrl))Q' (6)

Proposition 3 (Normalized stochastic complexity for GPR). Assume that 02 ., =02, =0>. The
normalized SC F°(D,,) (4) for GPR with prior GP(0,k) is given as

FO(Dn)=3logdet(In+ 58 )+ oby (I +53) 'y — 5 (y = f(x) (y—f(x)), (D
where €= (e1,...,e,) . The expectation of the normalized SC w.r.t. the noise € is given as

EcF°(Dy) = $ogdet (I + ) ~ 3T (L~ (It £8) 1) 5 £ (007 (T

B) ' fx). ®)
This is a basic result and has applications in relation to model selection in GPR (Williams and
Rasmussen, 2006). For completeness, we give a proof of Proposition 3 in Appendix B. Seeger et al.
(2008, Theorem 1) gave an upper bound on the normalized stochastic complexity for the case when
f lies in the reproducing kernel Hilbert space (RKHS) of the GP prior. It is well known, however, that
sample paths of GP almost surely fall outside the corresponding RKHS (Van Der Vaart and Van Zanten,
2011) limiting the applicability of the result.

We next derive the asymptotics of E.F°(D,,), the expected generalization error E.G(D,,) =
EE( F%(D,,+1)—E.F°(D,), and the excess mean squared error E¢ M (D,,).

Tpg1,Ynt1)

3  ASYMPTOTIC ANALYSIS OF GP REGRESSION WITH POWER-LAW PRIORS

We begin by introducing some notations and assumptions. We assume that f € L?(Q,p). By the
generalization of Mercer’s theorem (Steinwart and Scovel, 2012, Corollary 3.2), the covariance
function of the GP prior can be decomposed as k(z1,72) = Y071 A\pdp(21)dp(z2) p-almost

surely, where (¢,(x)),>1 are the eigenfunctions of the operator Ly : L*(Q2, p) — L*(%, p);

(Lif)(x) = [ok(x,s) f(s)dp(s), and (X,)p>1 are the corresponding positive eigenvalues. We index
the sequence of eigenvalues in decreasing order, that is A\; > Ao > --- > 0. The target function f(z) is
decomposed into the orthonormal set (¢, (z)),>1 and its orthogonal complement {¢,, (z):p>1}+ as

F@)=> pdp(x)+podo(x) € L*(p), ©)

where gt = (10,441,--,f1p,-..) T are the coefficients of the decomposition, and ¢ (z) satisfies ||do(x)||2 =

1 and ¢o(z) € {¢p(x) : p > 1}*. For given sample inputs x, let ¢, (x) = (¢p(21),...,Pp(zn)) T,
D = (Po(x),01(X),...,¢p(%),...) and A = diag{0,A1,...,A\p,... }. Then the covariance matrix K, can

be written as K,, = ®A®T, and the function values on the sample inputs can be written as f(x) = ®pu.

We shall make the following assumptions in order to derive the power-law asymptotics of the
normalized stochastic complexity and the generalization error of GPR:

Assumption 4 (Power law decay of eigenvalues). The eigenvalues (\p),>1 follow the power law
Cap™ @ <A <Chp*,Vp>1 (10)

where C, C\\ and o are three positive constants which satisfy 0 < Ch <Cyanda>1.
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As mentioned in the introduction, this assumption, called the capacity condition, is fairly standard
in kernel learning and is adopted in many recent works (Bordelon et al., 2020; Canatar et al., 2021;
Junetal., 2019; Bietti et al., 2021; Cui et al., 2021). Velikanov and Yarotsky (2021) derived the exact
value of the exponent o when the kernel function has a homogeneous singularity on its diagonal, which
is the case for instance for the arc-cosine kernel.

Assumption 5 (Power law decay of coefficients of decomposition). Let C,,,C,, >0and 3>1/2 be
positive constants and let {p; };>1 be an increasing integer sequence such that sup;~, (pi+1—pi) < o0.
The coefficients () p>1 of the decomposition (9) of the target function follow the power law

il SCup ™, ¥p=1 and |y, |> Cupi ™ Wiz 1. (an

Since f € L?(1, p) we have Z;O oHa < 0o. The condition § > 1/2 in Assumption 5 ensures that
the sum "2 =0 112 does not diverge. When the orthonormal basis (¢;,()), is the Fourier basis or the

spherical harmonics basis, the coefficients (y,,), decay at least as fast as a power law so long as the
target function f(x) satisfies certain smoothness conditions (Bietti and Mairal, 2019). Velikanov
and Yarotsky (2021) gave examples of some natural classes of functions for which Assumption 5 is
satisfied, such as functions that have a bounded support with smooth boundary and are smooth on
the interior of this support, and derived the corresponding exponents /3.

Assumption 6 (Boundedness of eigenfunctions). The eigenfunctions (¢p,(x))p>0 satisfy
[¢olloc <Cy and ||¢plloc <Cyp™,p=1, (12)

where Cy and T are two positive constants which satisfy T < 0‘7*1

The second condition in (12) appears, for example, in Valdivia (2018, Hypothesis H;) and is less
restrictive than the assumption of uniformly bounded eigenfunctions that has appeared in several other
works in the GP literature, see, e.g., Braun (2006); Chatterji et al. (2019); Vakili et al. (2021).

Define

Ty(Dy) = Slogdet (I + 248" ) L Tv (In —(L+2287) 1) : (13)
To(Dy) = 5 10 (L+ 2397) ™ (), (14)
Gl(Dn):E(zn+1,yn+1)(T1(Dn+1) (Dn)) (15)
G2(Dn):E(mn,+1,yn+1)(T2(Dn+1) (Dn)) (16)

Using (8) and (5), we have E. F°(D,,) =T} (D,,) +T>(D,,) and E.G(D,,) = G1(D,,) +G2(D,,). Intu-
itively, G; corresponds to the effect of the noise on the generalization error irrespective of the target func-
tion f, whereas G5 corresponds to the ability of the model to fit the target function. As we will see next in
Theorems 9 and 11, if « is large, then the error associated with the noise is smaller. When f is contained
in the span of the eigenfunctions {¢,, } ,>1, G2 decreases with increasing n, but if f contains an orthogo-
nal component, then the error remains constant and GP regression is not able to learn the target function.

3.1 ASYMPTOTICS OF THE NORMALIZED STOCHASTIC COMPLEXITY

We derive the asymptotics of the normalized SC (8) for the following two cases: po =0 and g > 0.
When 119 =0, the target function f(z) lies in the span of all eigenfunctions with positive eigenvalues.

Theorem 7 (Asymptotics of the normalized SC, py = 0). Assume that po = 0 and

o2 02 = 0% = O(1). Under Assumptions 4, 5 and 6, with probability of at least

model —
1 —n~9 over sample inputs (x;)?_,, where 0 < ¢ < min{ (28— %z 1-27) , &= 1 27} the expected

normalized SC (8) has the asymptotic behavior:
E.F°(D,)=|31 logdet([+ A) Tr(I—(I+2%A) )+ 5% p” (I+%A) " ] (1+0(1))

— @(nmax{ E s

+1})- (17)

The complete proof of Theorem 7 is given in Appendix D.1. We give a sketch of the proof below. In
the sequel, we use the notations O and © to denote the standard mathematical orders and the notation

Oto suppress logarithmic factors.
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Proof sketch of Theorem 7. By (8), (13) and (14) we have E.F°(D,,) = T1(D,) + T2(D,,). In
order to analyze the terms T4 (D,,) and T»(D,,), we will consider truncated versions of these
quantities and bound the corresponding residual errors. Given a truncation parameter R € N, let
Dr = (¢o(x),01(x),...,¢r(x)) € R"*! be the truncated matrix of eigenfunctions evaluated at the
data points, Az = diag(0,A1,...,Ag) € REFDXEFD and pp = (g, 1., ) € REHL. We define
the truncated version of 77 (D,,) as follows:

Ty p(Dy)=1 logdet(l +M)—§ﬂ(l (1, + 2y - ) (18)

Similarly, define ®>r = (¢r41(X), Pri2(X), o, p(X), ...), Asp = diag(Ar+1, oy Ap, o),
fr@) = Sy mdp(@), fr(x) = (fr(@1), -, fr(@a))T, for(@) = f(z) = fr(x), and
f>r(x)=(f>r(z1),,f>r(zn))T. The truncated version of T (D,,) is then defined as

Ty r(Dy) = 5t fr(x) T (I, + 222820 ) =1 £ ()T (19)

The proof consists of three steps:

» Approximation step: In this step, we show that the asymptotics of 17 g resp. T5 r dominates that of
the residuals, |71 r(Dy) —T1(Dy)| resp. |To, r(Dy)— Tg( n)| (see Lemma 32). This builds upon

“ R'~%}) (see Lemma 25) and then
choosing R=n= 1" where 0 < k < when we have || <I>>RA>R<I> rll2=0(1). Intuitively, the
choice of the truncation parameter R is governed by the fact that \p =0 (R_O‘) =p-ttre=o(n1),

ﬁrstsh0w1ngthat|\<1>>RA>R<I> rlla=O(max{nR—° niR’
a— 1 27‘

* Decomposition step: In this step, we decompose T g into a term independent of ® i and a series

involving <I>§<I> r—nl R, and likewise for T5 g (see Lemma 34). This builds upon first showing using
the Woodbury matrix identity (Williams and Rasmussen, 2006, §A.3) that

Ti,r(Dy)=%logdet(Ip+ 5 AL PR) — 2 Tr®R(0° I+ AR®PLPR) ' AT, (20)
To,1(Dy) =52 u i PR PR(0° IR+ ARPLPR)  Lig, (21)

and then Taylor expanding the matrix inverse (02Ir + Ar®L®r)~! in (20) and (21) to
show that the ® r-independent terms in the decomposition of T g and T3 g are, respectively,
flogdet(IR—l— AR)—*’I‘I‘(IR (IR—F%AR) ) and nQI,LR(IR—i-UQAR) ll,LR.

* Concentration step: Finally, we use concentration inequalities to show that these ® p-independent
terms dominate the series involving <I>£<I> r—nlg (see Lemma 35) when we have

TLR(DH):(%logdet(IR—i—%AR)—%Tr(IR (IR-|- AR) ))(14‘0(1)):@(”%),

O(nmax{0 241}y £98 1,
O(logn), a=28-1.

T3,1(Dn) = (ggz i (Ir+ 5 AR) " 1r) (1+0(1) = {

The key idea is to consider the matrix A}?@ (I+2ZAp) V2L 0 p(1+ %AR)‘UQA}{? and show
that it concentrates around nAr (I + %)_1 (see Corollary 22). Note that an ordinary application
of the matrix Bernstein inequality to ®%® p —nlg yields | 9L ® p —nl| s =O(R+\/n), which is not
sufficient for our purposes, since this would give O(R+/n)=o0(n) only when a.> 2. In contrast, our
results are valid for o > 1 and cover cases of practical interest, e.g., the NTK of infinitely wide shallow
ReLU network (Velikanov and Yarotsky, 2021) and the arc-cosine kernels over high-dimensional
hyperspheres (Ronen et al., 2019) that have a =1+ O(é), where d is the input dimension. O

For 119 > 0, we note the following result:

Theorem 8 (Asymptotics of the normalized SC, pg > 0). Assume pg > 0 and
02 del = Okue = 02 = O(1). Under Assumptions 4, 5 and 6, with probability of at least
1—n"9 over sample inputs (z;)"_,, ‘min{ *5527 26121 }. the expected
normalized SC (8) has the asymptotic behavior: E.F°(D,,) = 555 pdn-+o(n).

The proof of Theorem 8 is given in Appendix D.1 and follows from showing that when po > 0,
To,r(Dy) = (Z=ph(Ip+2%AR) " pur)(1 4+ o(1)) = 5izpdn + o(n) (see Lemma 38), which
dominates T3 (D,,) and the residual |75, g (Dy,) —T(D,)|.
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3.2 ASYMPTOTICS OF THE BAYESIAN GENERALIZATION ERROR

In this section, we derive the asymptotics of the expected generalization error E.G(D,,) by analyzing
the asymptotics of the components G (D,,) and G2(D,,) inresp. (15) and (16) for the following two
cases: 1o =~0and po > 0. First, we consider the case 1o =0.

Theorem 9 (Asymptotics of the Bayesian generalization error, po =0). Let Assumptions 4, 5, and
6 hold. Assume that jio = 0 and o> 2 0% =0(nt) where 1 — Tie; <t <1 Thenwith

model = Ttrue =
probability of at least 1 —n~9 over sample inputs (x;)?_, where 0 < g < [o— (1+27)4(a12 ](26= 1), the
expectation of the Bayesian generalization error (3) w.r.t. the noise € has the asymptotic behavior:
EcG(Dn)= 55285 (Te(T+ 2 A) 7 A= [AV2(T+ 2 8) 7 3+ (T4 2 0) 7 )

202

{(17a()y(17t) 7 (1—2B{3(1—t)}

— %@(nmax ) (22)

The proof of Theorem 9 is given in Appendix D.2. Intuitively, for a given ¢, the exponent w in

t% captures
¢ 1=28)(1-1)

(22) captures the rate at which the model suppresses the noise, while the exponen
the rate at which the model learns the target function. A larger 3 implies that the exponen

is smaller and it is easier to learn the target. A larger o implies that the exponent % is smaller

and the error associated with the noise is smaller as well. A larger o, however, also implies that the

exponent O*HL& is larger (recall that « > 1 and 3 > 1/2 by Assumptions 4 and 5, resp.), which

means that it is harder to learn the target.

Remark 10. If f ~ GP(0, k), then using the Karhunen-Loéve expansion we have
= Z;il VApwpdp (), where (wp)o2, are iid. standard Gaussian variables. We can

bound w,, almost surely as |w,| < Clogp, where C = SUp,>1 1‘ 0;‘) is a finite constant. Comparing
with the expansion of f(x) in (9), we find that i, = \/Apw, = O(p~*/?logp) = O(p~*/?*¢) where
e >0 is arbitrarily small. Choosing =« /2—¢ in (22), we have EEG(Dn) =O(na 1%, This rate

matches that of an earlier result due to Sollich and Halees (2002), where it is shown that the asymptotic
learning curve (as measured by the expectation of the excess mean squared error, E ¢ M (D,,)) scales

as ns ' when the model is correctly specified, i.e., f is a sample from the same Gaussian process
GP(0,k), and the eigenvalues decay as a power law for large i, \; ~i%.

For 119 > 0, we note the following result:

Theorem 11 (Asymptotics of the Bayesian generalization error, 1o > 0). Let Assumptions 4, 5, and
6 hold. Assume that py > 0 and o> =02 . =02 =0(nt) where

model —

probability of at least 1 —n ™~ over sample inputs (x;)}_,, where 0 < g < [O‘ (1+27)4(1 t)](w ) , the

expectation of the Bayeszan generalization error (3) w.r.t. the noise € has the asymptotic behawor‘
EcG(Dy) = 55z ug+o(1).

In general, if 1o > 0, then the generalization error remains constant when n — co. This means that
if the target function contains a component in the kernel of the operator Ly, then GP regression is not
able to learn the target function. The proof of Theorem 11 is given in Appendix D.2.

3.3 ASYMPTOTICS OF THE EXCESS MEAN SQUARED ERROR

In this section we derive the asymptotics of the excess mean squared error in Definition 2.

Theorem 12 (Asymptotics of excess mean squared error). Let Assumptions 4, 5, and 6 hold. Assume
o2 O(n?) where 1— + <t < 1. Then with probability of at least 1 —n~? over sample inputs

model —

(), where 0<g¢< [o— (1+27)(12 9](26-1) , the excess mean squared error (6) has the asymptotic:

EEM<Dn>:<1+o<1>>[:“"e (Te(T+ 52— ) A=AV (15— A) )

model T model

P ,  lma—t (1=28)(1-1)
HT+ o) pl3| =0 (max{oBuen @ @}

when 110=0, and Ec M (D,,) = u+o(1), when 10> 0.
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The proof of Theorem 12 uses similar techniques as Theorem 9 and is given in Appendix D.3.

Remark 13 (Correspondence with kernel ridge regression). The kernel ridge regression (KRR)
estimator arises as a solution to the optimization problem

n

1
f=argmin= "(f(z:)—y:)*+ N fl3,, (23)

where the hypothesis space Hy, is chosen to be an RKHS, and )\ > 0 is a regularization parameter.
The solution to (23) is unique as a function, and is given by f(z) = KT (K, +nAl,) "'y, which
coincides with the posterior mean function m(x) of the GPR (1) if 02, 1; = n) (Kanagawa et al.,
2018, Proposition 3.6). Thus, the additive Gaussian noise in GPR plays the role of regularization
in KRR. Leveraging this well known equivalence between GPR and KRR we observe that Theorem 12

also describes the generalization error of KRR as measured by the excess mean squared error.
Remark 14. Cui et al. (2021) derived the asymptotics of the expected excess mean-squared error for
different regularization strengths and different scales of noise. In particular, for KRR with Gaussian

design where A}-{m(gzﬁl (2),...,0r(T))) is assumed to follow a Gaussian distribution N'(0,AR), and
regularization \=n'"1 where 1 —a <t, Cui et al. (2021, Eq. 10) showed that

l—a—t (1-28)(1—t)
E sy EeM(Dy) =0 (max{od,en "m0 }). 4

Let 6 = n™% where 0 < q < [a7(1+2T¥i;t)](2ﬂ71). By Markov’s inequalit(y, t/f”;s implies
—a— 1-2 1—t

that with probability of at least 1 — §, EcM (D) = O(3 max{o2,.n o ,n o )})

O(nfmax{c? .n = LR 1). Theorem 12 improves upon this by showing that with prob-
1—a—t (1-28)(1-1)

ability of at least 1—§, we have an optimal bound E.M (D,,) =0 (max{oZ n" o ,n .
Furthermore, in contrast to the approach by Cui et al. (2021), we have no requirement on the
distribution of ¢,,(x), and hence our result is more generally applicable. For example, Theorem 12
can be applied to KRR with the arc-cosine kernel when the Gaussian design assumption is not valid.
In the noiseless setting (oirue = 0) with constant regularization (t =0), Theorem 12 implies that the

mean squared error behaves as @(n% ). This recovers a result in Bordelon et al. (2020, §2.2).

Our upper bound in Theorem 12 matches with the ones derived in (Steinwart et al., 2009; Fischer
and Steinwart, 2020). Steinwart et al. (2009) and Fischer and Steinwart (2020) also derived algorithm
independent minmax lower bounds. In contrast to their results, our Theorem 12 gives lower bounds
for different regularization strengths \.

4 EXPERIMENTS

We illustrate our theory on a few toy experiments. We let the input x be uniformly distributed on a
unit circle, i.e., =S and p=U(S'). The points on S! can be represented by z = (cos,sinf) where

0 € [—m,m). We use the first order arc-cosine kernel function without bias, k‘(Nl/)o bins (T1,22) = L (simp+

(m—1))cosyy), where 1) = (x1,25) is the angle between 1 and x». Hence Assumption 4 is satisfied
with o =4. We consider the target functions in Table 1, which satisfy Assumption 5 with the indicated
B, and pg indicates whether the function lies in the span of eigenfunctions of the kernel. For each target
we conduct GPR 20 times and report the mean and standard deviation of the normalized SC and the
Bayesian generalization error in Figure 1, which agree with the asymptotics predicted in Theorems 7
and 9. The details of the experiments appear in Appendix A, where we also show more experiments
confirming our theory for zero- and second- order arc-cosine kernels, with and without biases.

5 CONCLUSION

We described the learning curves for GPR for the case that the kernel and target function follow a
power law. This setting is frequently encountered in kernel learning and relates to recent advances
on neural networks. Our approach is based on a tight analysis of the concentration of the inner product
of empirical eigenfunctions ®7'® around n1. This allowed us to obtain more general results with more
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function value B8 po | BeF° (Dn) | EcG(Dy)

f1 cos26 +oo | 0O o(n'/*) O(n=*")
fa 6? 2 | >0 O(n) o(1)

fs W—7/27° 2 [0 [ 6w’ [ewm

m/2—0, 0€[0,m) 3/4 —1/4

Fal Y Zr2m0, ocfomoy | 1| O | O | €W

Table 1: Target functions used in the experiments for the first order arc-cosine kernel without bias

kx()vl/)o biage their values of B and pg, and theoretical rates for the normalized SC and the Bayesian

generalization error from our theorems.

f _ f fs fa
R e 11.8262n0-19€0 Q 6.1735n0-9940 9 16.8976n02661 Q100
Do —+— Experiment values o 104 —+— Experiment values k] —+— Experiment values o
N .g .g‘_J 102 .g
E ax10t © ® ©
E E_, £ E o 21.3794n07529
S . 210 S e S +/+ Experiment values
102 103 102 103 102 103 102 103
Number of Samples Number of Samples Number of Samples Number of Samples
. fi s . fs 5 fa
5 - 5 g 510! 13.6951n-0-2308
2 2.0795n-0-787% s 2 3.6454n-0-6900 5 n-
5 2 § 14 S
H —— Experiment values 8, §10 1 + Experiment values ® ex1r + Experlment values
= ® =
£102 g : -
& ° 6.3946n-0-0117 & & 3%
5 § v - 5 §
g g —— Experiment values %10’2 g 2310
s 102 10° “ 102 103 ® 10 103 © 103
Number of Samples Number of Samples Number of Samples Number of Samples

Figure 1: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with the kernel

ksvl/)o bias and the target functions in Table 1. The orange curves show the linear regression fit for the

experimental values (in blue) of the log Bayesian generalization error as a function of log n.

realistic assumptions than previous works. In particular, we recovered some results on learning curves
for GPR and KRR previously obtained under more restricted settings (vide Remarks 10 and 14).

We showed that when 8 > /2, meaning that the target function has a compact representation in terms
of the eigenfunctions of the kernel, the learning rate is as good as in the correctly specified case. In
addition, our result allows us to interpret 5 from a spectral bias perspective. When % <p <G, the
larger the value of 3, the faster the decay of the generalization error. This implies that low-frequency
functions are learned faster in terms of the number of training data points.

By leveraging the equivalence between GPR and KRR, we obtained a result on the generalization
error of KRR. In the infinite-width limit, training fully-connected deep NNs with gradient descent
and infinitesimally small learning rate under least-squared loss is equivalent to solving KRR with
respect to the NTK (Jacot et al., 2018; Lee et al., 2019; Domingos, 2020), which in several cases is
known to have a power-law spectrum (Velikanov and Yarotsky, 2021). Hence our methods can be
applied to study the generalization error of infinitely wide neural networks. In future work, it would be
interesting to estimate the values of o and 3 for the NTK and the NNGP kernel of deep fully-connected
or convolutional NNs and real data distributions and test our theory in these cases. Similarly, it would
be interesting to consider extensions to finite width kernels.
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APPENDIX

A EXPERIMENTS FOR ARC-COSINE KERNELS OF DIFFERENT ORDERS

In our experiment, the input space and input distribution are = S* and p = U(S'), and we
use the first order arc-cosine kernel function. (Cho and Saul, 2009) showed that this kernel is
the conjugate kernel of an infinitely wide shallow ReL.U network with two inputs and no biases
in the hidden layer. GP regression with prior GP(0, k) corresponds to Bayesian training of this
network (Lee et al., 2018). Under this setting, the eigenvalues and eigenfunctions are \; = %,

Mo = X3 =1, Aap = Naps1 = maqrgyr—iyz P> 2 and 61 (0) = 1, ¢(0) = 2 cost, ¢3(0) = 2sind,
Pap(0) = gcos(pr 2)0,¢2p41(0) = gsin@pf 2)6, p > 2. Hence Assumption 4 is satisfied with
a =4, and the second part of Assumption 6 is satisfied with || ¢, || < g, p>1.

The training and test data are generated as follows: We independently sample training inputs
x1,...,T, and test input z,, 1 from U(S') and training outputs y;, i = 1,...,n from N (f(z;),02),
where we choose 0 = 0.1. The Bayesian predictive density conditioned on the test point 11
N(m(@nt1),k(Tpt1,20+1)) is obtained by (1) and (2). We compute the normalized SC by (7) and
the Bayesian generalization error by the Kullback-Leibler divergence between N(f(x,,11),02) and

N (A (@n41) 5 (@n41,8041))-

Next we present experiment results for arc-cosine kernels of different orders and arc-cosine kernels
with biases. Consider the first order arc-cosine kernel function with biases,

kévl/) bins (@1,22) = L (singp+ (m — 1) cosy) ), where ¢ =arccos (5 ((z1,22)+1)). (25)

Ronen et al. (2019) showed that this kernel is the conjugate kernel of an infinitely wide shallow ReLU
network with two inputs and one hidden layer with biases, whose eigenvalues satisfy Assumption 4
with « = 4. The eigenfunctions of this kernel are the same as that of the first-order arc-cosine

kernel without biases, k:‘gvl/)o bias in Section 4. We consider the target functions in Table 3, which

satisfy Assumption 5 with the indicated 3, and 1 indicates whether the function lies in the span
of eigenfunctions of the kernel. For each target we conduct GPR 20 times and report the mean and
standard deviation of the normalized SC and the Bayesian generalization error in Figure 3, which
agree with the asymptotics predicted in Theorems 7 and 9.

Table 2 summarizes all the different kernel functions that we consider in our experiments with pointers
to the corresponding tables and figures.

Summarizing the observations from these experiments, we see that the smoothness of the activation
function (which is controlled by the order of the arc-cosine kernel) influences the decay rate o of the

13
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kernel function « | activation function | bias pointer
k‘(Nl)o bias L (sing+ (m—)cosy) 4 max{0,z} no | Table 1/Figure 1
k‘(vl) bins L (singp+ (7w —)cosy)) 4 max{0,z} yes | Table 3/Figure 3
k‘(NZ bine | L (3singpcosy+(m—)(1+2cos’p)) | 6 (max{0,z})? no | Table4/Figure 4
kV(V2> ins | = (3simpeosyp+ (m—1p) (14-2cos’¢)) | 6 (max{0,z})? yes | Table 5/Figure 5
kzg))o bias L (singp+ (m—)cosy) 2 1(1+sign(z)) no | Table 6/Figure 6
kfvo/) bins L (singp+ (r—)cosy)) 2 1(1+sign(z)) yes | Table 7/Figure 7

Table 2: The different kernel functions used in our experiments, their values of «, the corresponding
neural network activation function along with a pointer to the tables showing the target functions used
for the kernels and the corresponding figures.

eigenvalues. In general, when the activation function is smoother, the decay rate v is larger. Theorem 9
then implies that smooth activation functions are more capable in suppressing noise but slower in
learning the target. We also observe that networks with biases are more capable at learning functions
compared to networks without bias. For example, the function cos(26) cannot be learned by the zero
order arc-cosine kernel without biases (see Table 6 and Figure 6), but it can be learned by the zero
order arc-cosine kernel with biases (see Table 7 and Figure 7).

function value I to | EcFO(D,) | EG(D,)

fi cos26 +oo | 0 om/% [ e(m 34

f2 9* 2 0 on7Yy | o(n=37%)

f l=/2) 2 [0 [ e’ [ ew
w/2—60, 0€[0,m) / )

fe {—w/z—e, bcl-ro) | | 0] O [ 8w

Table 3: Target functions used in the experiments for the first order arc-cosine kernel with bias,

e

w/ bias’

their values of 5 and g, and theoretical rates for the normalized SC and the Bayesian generalization

error from our theorems.

i

o

f3

fa

)

g 12.5464n0-2029 H ax10 8 15.6332n0-31%8 LUJ)
X 210t
2 sa0'| —— Experiment values T ° —+— Experiment values -
N N S N 10
T T o T =
E ax10 § 32.8235n0-3020 g 10 g 5.8299n0.7717
S 2 +/ —4— Experiment values 2 2 ¢~ —t— Experiment values
102 103 102 103 102 10° 102 103
Number of Samples Number of Samples Number of Samples Number of Samples
5 f 5 fy S fy 5 fa
£ £ £10°1 ] 0.1901
¢ 100 17.9018n-06993 107 Fk $10704 g 0.7374n"
B ~—— Experiment values 2 l = § + Experiment values
2 o 2 T
g §10-2 # g 10-2 %
5 H 5
°10-1 & 3.3806n-0.7149 s 3.0623n-0.7520 ;
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§ ‘ . 510,3 —— Experiment values g —— Experiment values g
8 103 8 g 8

102
Number of Samples

103
Number of Samples

10°
Number of Samples

102
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Figure 3: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel

b

w/ bias

and the target functions in Table 3. The orange curves show the linear regression fit for the

experimental values (in blue) of the log Bayesian generalization error as a function of log n.
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function value g po | E<FO(D,) | E.G(D,,)
fi cos20 +oo | 0 O(nt/%) | ©(n=5/%)
f2 sign(6) 1 0 O(n%%) | O(n=1/%)
f3 w/2—|0] 2 0 e(nt/?) | O(n=1/?)

w/2—0, 0€l0,m)
J1 {—7r/2—0, pelroy) | 1|70 ©W o)

Table 4: Target functions used in the experiments for the second order arc-cosine kernel without

bias, k:(2)

w /o bias’

generalization error from our theorems.

their values of 5 and 1, and theoretical rates for the normalized SC and the Bayesian

f f f3 fa

2 4 x100 105

b 15.2503n01312 910 7.1798n083%° e 9.6116n%4141 “1'g 14.2478n101%
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Figure 4: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel

(2)
k w /o bias

and the target functions in Table 4.

function value B | mo | E<F°(D,,) G(D,)

f1 cos20 +oo | O O(nt/") ( —5/6)

f2 0° 2 10| 6@’ |em 2

7, (0727 2 [0 [ 6 [6m 7)
w/2—0 0 0

f1 {—/73/2_79, 92&7,)0) L] o] e | em™)

Table 5: Target functions used in the experiments for the second order arc-cosine kernel with bias,

1@

w/ bias’

generalization error from our theorems.

their values of 8 and pg, and theoretical rates for the normalized SC and the Bayesian

f f fs fa
3
R oo 13.5420n01632 3 g1 10.5318n052% 7| Q
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s ~N 2.5265n-0-8563 g 7.0280n0:3945 s 10 8.0765n-0.5409 g 10!
2 —4— Experiment values § 100 —+— Experiment values 2 —+— Expenment values § |
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Figure 5: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel

(2
kw/ bias

and the target functions in Table 5
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function value g po | E<FO(D,) | E.G(D,,)
f1 cos26 +oo | >0 O(n) o(1)
f2 sign(6) 1 0 e(nt/?) | (n=1/?)
fs 7/2—10)] 2 0 o(n'/?) | o(n1/?)
w/2—0, 0€[0,m)
f4 {—7‘[‘/2—9, e [—T(’O) 1 >0 @(n) @(1)

Table 6: Target functions used in the experiments for the zero order arc-cosine kernel without bias,

1)

w /o bias’

generalization error from our theorems.

their values of 5 and (i, and theoretical rates for the normalized SC and the Bayesian
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Figure 6: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel

o)

w /o bias

and the target functions in Table 6.

function value B | uo | EeFO(D,) | EG(D,)

fi cos26 +oo | 0 O(n'/?) | O(n"1/?)

f2 62 2 0 e(nt/?) | 0(n=1/?)

7, (0727 2 [0 6w?) [en 7
w/2—0, 0€[0,m) _

f1 {—7r/2—9, bclmo) | ' | 0| O | 6w

Table 7: Target functions used in the experiments for the zero order arc-cosine kernel with bias,

1 ©

w/ bias’

generalization error from our theorems.

their values of 8 and pg, and theoretical rates for the normalized SC and the Bayesian

fi f2 f3 fa
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Figure 7: Normalized SC (top) and Bayesian generalization error (bottom) for GPR with kernel

(0)
kw/ bias

and the target functions in Table 7.
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B PROOFS RELATED TO THE MARGINAL LIKELTHOOD

Proof of Proposition 3. Lety = (ii1,...,7»)" be the outputs of the GP regression model on training
inputs x. Under the GP prior, the prior distribution of ¥ is A/(0,K,). Then the evidence of the model

is given as follows:
_Wi—y)? y1)2 1 15T pr—1g
52 —2Y K.Y v
o | ([l a0

(26)
1 16T (=14 1 nou 1 oT 1 T
= e 3V K45 Dy + 35y Y- 53y Y gy,
(2m)rondet(K,)Y/ /n
Letting K, ' =K, '+ % T and = 4 K, y, we have
1 1o T—1(5 T -1
7, = o3V KN (=)= 5y v+t Ky rdy
(2m)rondet (K, )1/2 /Rn
1 n o T K
:(27r)"a”det(K 172 (2m)"2det(K,) e 2 sy v+ R 27
det(Kn)l/Z *%YTY+%HTI~(—1M
T 2mn)2ondet (K12 '
The normalized evidence is
0_ Zn
" (Qﬁ)—n/zo.—ne—ﬁ(y—f(X))T(y—f(X)) 08)

7 1/2 ~
_ det(Ky) ; YTy BT R ey (y— £ 00) T (= £ ()
det(K,)1/2 '

So the normalized stochastic complexity is

FO(Dn) = _Ingg

1 ANV 12, Vo op 1 poy 1 T
:—ilogdet(Kn) / +§10gdet(Kn> / +ﬁy Y=g K, N—ﬁ(y—ﬂx)) (y—f(x))

1 11 1 o 1 a1
:—§logdet(Kn —&-;I) +§logdet(Kn)+@y Y= 551Y (K, +§I)

Ly ) (y— ()

202
K, 1 K 1

:%1ogdet(1+—2)+2—2yT(I+—§)*1y— (y—f(x)"(y—f(x).

202
1 K, K, 1 K, 1
=] ) - 1 T I ny—-1__ -~ T
S1080et (T )b f) (T4 )7 ) 5 €T (T4 2) e el
L 7 Kn —1
(29)
After taking the expectation over noises €, we get
1 K, 1 K K,
0 o n ny—1
This concludes the proof. O

C HELPER LEMMAS

Lemma 15. Assume that m — oo as n — oo. Given constants ay,a2,51,52 > 0, if s1 > 1 and
S983>81—1, we have that
R —S1 1—sy

; 1+a2mz 52) & =0(m ). @31
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If s1>1 and sas3 =51 — 1, we have that
R .

ait
> iy = O logm) @

i=1
If s1>1and sas3 < s1—1, we have that
R

Z((]’L:@(mfsz). (33)

2 (T agmi=—=)%
=

Overall, if s1>1 and m — oo,

1—s
ER: ai”* _ G(mmaX{_ss’#})a s2837# 51— 1, (34)
T Tsavss — 1osp
— (I+aami=*2)% | ©@(m = logm), s983=s51—1.
Proof of Lemma 15. First, when s1 > 1 and so83 > s1 — 1, we have that
R — —s1
ayt a ax
S et
Py (1—|—a2mz ‘2)(3 (1—|—a2m)‘5 [17+Oo](1_|_a2mx 2) 3

ay 1-sp a1(—5)"" x
= +m = e .
(14agm)* [1,400) (L a2 (5775 )752)%s  m?/=

mi/ez
a 1-sq ajxr 51
- (1+a21m)53 e /[1/m1/527+oo] (1—1—(1123:_52)53 dz
:@(ml:’j1 ).
On the other hand, we have
ER: a1~ %t >/ ajx” 5t da
— (14+agmi—s2)ss — [1,R+1] (14+agma—s2)ss

1-s3 al(ﬁ)_sl T

:m 59 . — . .
/[LR-H] (1+a2(m) ‘2)(3 ml/s2

1*51/ ajx = q
=m s2 B P
[1/m'/52 (R+1)/m/52) (1+a2$—52>83
1—s
=0(m 521),
Second, when s; >1 and sys3 =51 — 1, we have that
R . i N
at a1 Lo a1
; S +m =2 - —, P
; (I+agmi=s2)%s = (1+agm)® */[1/m1/s27+<>o] (1+agx—s2)s3
1—s
om)?
1—sq
=0(m =z logn).
On the other hand, we have
——e A x
=1 (1+a2mi_52)53 - [1,R+1] (1+a2mm—82)83
:m1;251/ al(mlw/%)i51 d x
[1,R+1] (1""_@2(%)_52)53 ml/sz2
—s —s
:mlszl ayxr "t dx

/[1/m1/52,(R+1)/m1/52] (1+a21'752)53
1—sy

=0O(m =2 logn).
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Third, when s1 > 1 and s5s3 < s1 —1, we have that

R c— 51 1—s —Ss1
Z ait . < a1 +m 321/ a1x dz
— (1+agmi—s2)%3 — (14-agm)%s [1/m1/52 o] (1+agz—52)%s
ai e -1 1—
< 2 O(m(~1/s2)(1—s1+s2s3)
~ (14agm)ss +m e O(m )
=O(m™").
On the other hand, we have
s at” St ay 1—sp Y
S L,
— (I+agmi—s2)%3 — (14-agm)ss [2/m1/52 (R41)/m1/2] (L+agz™52)s3
ai 1-sg _ _
< 2 Q(m(—1/s2)(1=si1+s2s3)
> (1+a2m)83 +m =2 (m )
=0(m™*).
Overall, if s >1,
R - max{—s3,1=51
Z a1~ _)O6(m {=s3,5; }), S983F#s1—1, (35)
— (1+agmi=*2)"s O(m~*%3logn), s283=s1—1.

O

1 . .
Lemma 16. Assume that R=m>>"" for k > 0. Given constants a1 ,az,51,52 >0, if s1 <1, we have
that
1

a
(I4agmi—s2)ss

R
=O(max{m ™3 R*"*1}). (36)

=1

Proof of Lemma 16. First, when s1 <1 and so53 > s1 — 1, we have that

—s1

e
(14+agmi=s2)ss = (14+agm)®s ~ Jjy gy (1-+agma=s2)ss

=1
D +m1:;1/ al(ﬁ)_a d <
R (

(14+azm)® Itas (o) 7o) ml/s
1—s —Ss1
;e / L R
(1+a2m)33 [1/ml/s2,R/ml/s2] (1—{-0,233_82)8
ai <, =5 .
=+ 0(m = ({5)'"")
(1+(12m) 3

=O(max{m ¢ ,R'71}).

Second, when s1 <1 and s953 < 51— 1, we have that

ul a5 a 1-sp a St
;(Ha;mrsz)ss < Tragm t™ /[1/m1/32,R/m1/32] T
< s T O (o)
=O(max{m 3, R'~*1}).
Overall, if s1 <1, .
Zlm;;iﬂss =O(max{m ™3, R1=*1}). 37
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Lemma 17. Assume that f € L*(Q,p). Consider the random vector f(x) = (f(z1),..., f(zn))%,
where T1,...,T, are drawn i.i.d from p. Then with probability of at least 1 — 61, we have

£ Hz—Zf ) =0((E+Dnlf13),
where || f|3= [,cqf*(x)dp(x).
Proof of Lemma 17. Given a positive number C' > || f||3, applying Markov’s inequality we have
P(f2(X)>0)< ST
Let A be the event that for all sample inputs (z;)"_, f?(x;) <C. Then
P(A) > 1-nB(f*(X) > C) > 1~ Sl fI} (38)

Define f*(x) = min{/*(z),C}. Then Ef*(X) < Ef*(X) = ||flI3. So[/*(X) - Ef*(X)| <
max{C,| f|3}= CSlnceO<f2( ) <C, we have

E(f4(X)) <CE(f*(X)) <CIIf13. (39)
So we have B - -
E|f(X)~Ef2(X)* <E(f (X)) <CIf]3. (40)
Applying Bernstein’s inequality, we have
— _ ) <
P(;f (z;)>t+nEf* (X)) <e p( (nIE|f2 f >>

SeXp( nCIIfIIz )

<
ﬂp( 4max{ncnfu%,0f )

Hence, with probability of at least 1 —d7 /2 we have

g J”Q(ﬂci)§17113@<{1/4010g(S nl f113, Clog52 }+nEf2(X)
i=1
2 2
<max 4Clog n\|f||2, logé +nl fll5.

When event A happens, f2(z;) = f2(x;) for all sample inputs. According to (38) and (41), with
probability at least 1 — L n| f||3—d1 /2, we have

n n -~ C
57w =3 (ws) <max{ y[1Cog 215 o > [+l
1=1 =1

Choosing C'= %n” f |3, with probability of at least 1 —d; we have

n n_o ] 2 B
ZfQ(wi)Zfz(xi)émaX{\/élog w455l Blog 5 }+n|f||30((§1+1)n||f||§)~
i=1 =1

O

(1), 7f(x7l)) ,
With probability of

(41)

Lemma 18. Assume that f € L?(Q,p). Consider the random vector f(x) =
where x1,...,&,, are drawn i.i.d from p. Assume that || f||co =sup,cq f(z) <C.

at least 1 — 91, we have
||f(X)||§O(\/02n||f|§+02) +nf113,

where || {13 = [,cqf*(x)dp().

(f

20



Published as a conference paper at ICLR 2022

Proof of Lemma 18. We have | f2(X)—Ef?(X)| <max{C?,||f||3} = C? Since 0 < f?(z) < C, we
have

E(f4(X)) <CE(f(X) <C?| fl5- (42)
So we have
E|f*(X)—Ef*(X)? <E(f*(X) <C?|If3- 43)
Applying Bernstein’s inequality, we have
o 2 B £
]P’(;f (x;)>t+nEf (X))Sexp< 2(n]Ef2(X)—Ef2(X)|2)+C;t)>

t2
<exp| — 3
( 2(nC2||f||%+%t)>

<

t2
<exp| — ‘ ’
( 4max{n02|f”%vc3zt}>

Hence, with probability of at least 1 —J; we have

n 2

Zf%xi)gmax{ 4021og1n|f||§,40log1}+nEf2<X>

i=1 0 3 o1
go(max{ c2n|f||%,02}>+n||f|§ (44)
gO( c2n||f||§+02>+n|f||§-

O

For the proofs in the reminder of this section, the definitions of the relevant quantities are given in
Section 3.

Corollary 19. With probability of at least 1 — 61, we have

1 f>rE)I3=0 (& +1)nR=2).

Proof of Corollary 19. The Ly norm of f r(z) is given by || fs |3 = Z:iR—H#Z < QElel’w.

Applying Lemma 17 we get the result. O
Corollary 20. For any v €RE, with probability of at least 1 — 6, we have

l@rv3=0((&+Dnlvi3).

Proof of Corollary 20. Let g(x) = Zleupdyp (). Then ® g = g(x). The Ly norm of g(x) is given
by |lgll3= 25:11/3 = ||v||3. Applying Lemma 17 we get the result. O

Next we consider the quantity, CI)E‘I) r—nl. The key tool that we use is the matrix Bernstein inequality
that describes the upper tail of a sum of independent zero-mean random matrices.

Lemma 21. Ler D = diag{ds, ..., dgr}, d1,....,dr > 0 and dmax = max{dy,...,dg}. Let
M= Inao({zgzod‘?J | Ppl|2 02 0x - Then with probability of at least 1—§, we have

|D(@L®r—nI)D|2 §max{ \ /ndgnaleogfg,Mlog?)}. (45)
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Proofof Lemma21. Let Y; = (¢1(x;), ..., dr(z;))T and Z; = DY;. It is easy to verify that
E(Z;Z] )= D?. Then the left hand side of (45)is _"_,[Z; Z] —E(Z; Z])]. We note that

12,27 ~B(Z; Z])l2 <max{[| Z; Z] ||2,1E(Z; Z] |2} < max{]| Z; |13, d5asc}-

For || Z;||3, we have

R R
1Zi13="> dodp(;) <Y d2|l6pl%, (46)
p=0 p=0
we have R
12;2] —B(Z; 2] )|la <max{d_ o d2||dpl|Z0 d%n}
On the other hand,
E((Z;Z] —-E(Z;Z]))*)=EllZ;|32; Z] | - (E(Z;Z]))*.
Since
EllZ;132;Z] 1< Zdzllépll2 Z;Z]], (by (46))
:Zdill%lliﬂ[zﬂf},
p:
we have

R
E[(Z; 2] —E(Z;Z]))*|ll2 <max{3,_ oz | 6p |13 EIZ; Z] 1l 2.0 ac}
R
S ma.X{pron H¢P||god1%nax7 max}

R
max X {35 0| 6p 120, d5as -
Using the matrix Bernstein inequality (Tropp, 2012, Theorem 6.1), we have

IIZ Z;2] ~B(Z; Z])ll2>1)

< Rexp

—¢2
tmax; || Z; Z] ~E(Z; Z])||
2(nl|E[(Z; 2] ~E(Z;2]))]|l2+ 3 =)

—¢2

<Rexp -
max d2
2(nd2 {1 2|20 82, } 4 2 oy |90 i)

—¢2
=Ttexp ( R 9 2 72 R 2 72 ) ’
O(max{ndmaxmax{z;nzodp H ¢P || o 7dmax}atmax{2p:0dp”¢p || [e’e] ’dmax}})
Then with probability of at least 1 — 4§, we have

IIZ 12,2} —E(Z; Z] )2

Smax{\/ndmaxma‘x{zR d2||¢PH2 d?nax}log B 7ma‘X{ZR d2||¢P||2 d2 ax}log o }

O

Corollary 22. Suppose that the eigenvalues (\p)p>1 satisfy Assumption 4, and the eigenfunctions

satisfy Assumption 6. Assume o> = O(n') where 1 — <t <1 Let vy be a positive number such

o7
that 1+a+2;;((11:2)r+2a)t <~y < 1. Then with probability of at least 1 —§, we have

|2 (T+ 2 AR) 2N (@F® g —nD) A} (T+ 5 AR) 2|
1+a+27—(1+274+2a)t 47
go(” Z )”(”)\/log?) !
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Proof of Corollary 22. Use the same notation as in Lemma 21. Let D = (I + % Ag)~"/ QAY%/ 2,
2 A p27T —yoat2r
Then . < 557 and 3,70 dl6pl% < T Clrtpmy = O((F) ™), where the

first inequality follows from Assumptions 4 and 6 and the last equality from Lemma 15. Then
l1—~ya+27

M =max{Y)" 1d2[|¢p%,,d2, } =O((Z) = ). Applying Lemma 21, we have

|2 (1+ 2 AR) 202 (5B R —nD) A} (I+ 2 Ag) 24

5 —at2r o\ A=yater
s;max{WziO«;z)l 20 log 2, 0((2) 2 >log§}
48
- (%(%)1‘235““*11%):0(\/@717“_2”“3?)“‘”+%7t) @9

Itat2r _ (14274200t o1
( log&n ™~ 2a 2a (1 t)>.

O

Corollary 23. Suppose that the eigenvalues (\,),>1 satisfy Assumption 4, and the eigenfunctions

sats, ssumption 0. Let \1 rp = d1a, s ALy s AR S ssume o- = n") where t < et eda
isfy Assumption 6. Let A1 g = diag{1,\1,...,Ar}. A 2=0(n') wheret <1 Lety b

positive number such that 2= < ~ < 1. Then with probability of at least 1 — 8, we have

[0

- ~ n 1
|(I+ %AR)*WQAM?(@ﬂ@anI)AY’/é(I+EAR)*VﬂHQ <0 <, [logZn2 ) . (49

Proof of Corollary 23. Use the same notation as in Lemma 21. Let D= (I+ 2 Agr) ™/ 2]\1/ . Then

R R Ap°T (A-yat2n@-y
d?..<1land szod%HgprQ SC’i—i—Zp:lC;m%%:Ci—&—O(n = )=0(1) where
the first inequality follows from Assumptions 4 and 6 and the second equality from Lemma 15. Then
M= max{zgzodg dpl|%,d2,0x } =O(1). Applying Lemma 21, we have

1T+ 2 Ag) 202 (@50 g —nD)AY > (I+ 2 A8) /%

gmax{ loglg’nO(l)leg?O(l)} (50)
1
:O( log?n2>.

Corollary 24. Suppose that the eigenvalues (\p),>1 satisfy Assumption 4, and the eigenfunctions
satisfy Assumption 6. Let Ppy1.6 = (0p+1(X),...,05(x)), and Ag11.s = (AR+1,...,As). Then with
probability of at least 1 — 0, we have

O

1—2a427

||A}Z/i1:S((D£+1:S(I)R+1CS_nI)A}?//QLSHZ§0(10g¥max{n%R 2 ’RliaJFQT})’ (51)

Proof of Corollary 24. Use the same notation as in Lemma 21. Let D = A}ﬁl: g- Then

d?,. . <C R *=0O(R™%) and ZI“?:RHCid?JpZT < Z§:R+1C£ap_ap27 =O(R'=2%27), where
the first inequality follows from Assumptions 4 and 6. Then M = max{zzf: r1Cop* A2} =

max
O(R'=2%27), Applying Lemma 21, we have

n _ n —
I+ 5 AR) PN (@ 2R —n DAY (T+ 5 AR) 7 2

< max{ \/log¥nO(R*a)O(R1*a+27),log%O(lea“T)) } (52)

1—2a+427

:O(logﬁmax{n%b’, > RITTITY).
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Lemma 25. Under the assumptions of Corollary 24, with probability of at least 1 — 0, we have

|5 rAs g ®L pllo=O(max{nR™*n*R 3 Rt}
Proof of Lemma 25. For S €N, we have
@5 5AssPLgll2 < Z [App (%) (%) [|2
p=S+1
Z Mollp (%)
p=S+1
< Z )\pnc2 27
p=S+1

=0(nS*~127),

Let S= Ra=1-27 . Then we get || @~ A~ s®L 4[|a=O(nR™%).
LetPri1.6=(0r+1(X),,05(X)), Agt1.9=(AR+1,---,As). We then have
@5 rAS RPL g2 <[|P>s5ASsPL S||2+||‘I’R+1 sMR11:5PR 1.5l

<O(mR™)+|[AK ) sPhins®rris ALyl

<O(R™*)+n|Arsvsl2+IAH s (@h 6@ rits —nD) A gll2

a

a1 — Cpeion
SO(”Rfa)JrO(nR*O‘)+O(log¥max{n%]{1 2542 (Rl
:O(max{an‘an%Rl 2a+27 Rl a+2‘r})
where in the fourth inequality we use Corollary 24. O

Corollary 26. Assume that 02 =©(1). If R=n="1" where 0 < 1 < 3(711_:2277), then with probability

of at least 1 —0, we have

T _1&pAapndl & gAsg®T A
||(I+¢R/;§¢R) 1%>r 0>2R >R||2SHWH2:O(

n=r)=o(1).

Proof of Corollary 26. By Lemma 25 and the assumption R = natr, we have

H([ <I>RA12?,<I’R) 1 >RA>2R >R,|| <H >RA>2R >1?,||
1— 2a+27'

<O(max{nR™*n*R 2 Rt}
=0(n=").
O

Lemma 27. Assume that || & (I+ 25 Ag)~"/2A}/*(@Ld g —nI) A} (I+ 2 Ag) /2|2 <1 where
2T <y <1. We then have

(I+5Ar2LPR) 1

= (I+2%AR)~ Z (L (T+2AR) " Ap(®5Br—nI)) (T+2Ag) "

Proof of Lemma 27. First note that
|2 (T4 2 AR) V2N (@R 0 g —nD) A (I+ & AR) 2,
<1 &I+ 2 AR) T 2AY 2 (@F @R —nD)AY (I+ B AR) /2|l < 1.
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Let ]\QR = diag{e,\1,...,Ar}. Since Ar =diag{0,\1,...,\gr}, we have that when e is sufficiently
small, | 5 (1 + & A )2 AVp (@58 R — n)AYE (I + %A g) /2|2 < 1. Since all diagonal
entries of 1~X6 R are positive, we have

(I+ LA r®hPR)™

(I+ Ae R+ Ae R((I)Rq)R TLI))
-1

=Ai,/1§(f+%As,R)*1/2[”%(H%f\e, )TV (@@ R —nD)A I+ B A R)” 1/2}
(I+ %R )" V2A_/?
:(I iAeR)_l

+Z

. ~ ~ ~ ~ J
DAL+ 2 A0n) 2 (&4 B A0n) A R (@F@r—nDA R (I+ 5 A 1) /?)

(I+ ;ZZ\E,R)WA;}{?]

Letting e — 0, we get
(I+5ArPLPR) !

=(I+%AR)~ Z ( (I+2%AR) ' AR(PFOR— nI))J(I—&—;LQAR)_l
This concludes the proof. O
Lemma 28. If||(I+q)R/;§¢’ ) 1@>RA;R¢>RH2<1 then we have
(0871 gty 5y (0 S et St
"~ (53)

a—1-27
a(l+27)"

T
at least 196, for sufficiently large n, we have || (I + (I)R/;’;@g )7t ¢>RA;2R¢)>R |l2 <1 and (53) holds.

In particular, assume that 0> =©(1). Let R= na "t where 0 < 1 < Then with probability of

Proof of Lemma 28. Define @~ = (¢r+1(X),0r+2(X),-...)s Asgp =diag(Ar+1,AR+2,..-). Then we
have

(4 BART )1 (14 Prdpthy 1

=(I+ 2a0pth y Bomiapin) ol (14 Dbyt

0'

- ((I+(I+ 2eAntl)-122nhsnPop ) - I) (I+222n%0)-1

o2 o2

PrARDE ) 1 q>>RA>R<I>
o2 o2

By Corollary 26, for sufficiently large n, || (1 +
atleast 1—0. Hence
(1+2287)=1_ (14 2rdn®h )1

o2

((I+(I+ GLBTLE SR ®>RA>R¢’£R) - —I) (14 2aln®h)—1

o2

>R ||y < 1 with probability of

o2 o2 o2

oo .
=3 (1) ((T+ 2edgTh )1 2mhon®in ) (4 Sulpth )
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Lemma 29. Assume that j10=0 and o> =0 (n') where 1— Tior

O<k< %w Then when n is sufficiently large, with probablllty of at least 1 —2§ we have
|(I—|-012‘I)RAR(I)£>_1JCR(X)|2=O( ( +1) max{ (1-1¢), a— 2ﬁ)(1 t)}) (54)

Proof of Lemma 29. Let A.p = diag{A\1, ... , Ar}, P1.r = (91(x), $1(x), ... , ¢r(X))

and p1.r = (1, ..., pr). Since o = 0, we have (I + LPrAR®L)'fr(x) =

(I+5®1.rA1LRPT ;) ' ®1.r 1. k. Using the Woodbury matrix identity, we have that
(I+5®1rA1LrPTR) ' Prrprr=[—PrLr(0* T+ ALRPT R P1.R) " ALRP]. ] PrRULR
=01 gp1.r— 1R (P T+ A1.RPL, R ®1.r) ' A1LRPT. R P1.Rp R

=01 r(I+ 5 A1rPT 5 P1R) 1R
(55)
Let A = (I + 2 A1.5)"2A)/ p(®F 1 @15 — nI)AY/A(I + 2 A1.g)~"/2.By Corollary 22, with

1— a+27— (1+27)t

probability of at least 1 — &, we have || O_LA”Q =/logfn 2"~ . When n is sufficiently large,
| 2z All2=0(1) is less than 1 because 1—

(I+2A1.rP] 5 P1R) "

1+2T <t<1.ByLemma?27, we have

=(T+2ZAr) "+ (1) (HT+ZA1r) " Ar(P] 01 —nD)) (T+ L A1LR) "
‘We then have

1 _
H(I+*A1:R‘I>{R‘I>1;R) Ypirlle

=H (I+5A1R)™ +Z v%I+%AI:R)_lAl:R(q){;R(I)I:R_nI))](I‘f'%Al:R)_l PR
2

IN

I+ 2 AvR)

(HU+ %AI:R)_lAl:R(q){:R(I)l:R_nI))J(I+ %Al:R)_lul:RHQ
j=1
(56)
By Lemma 15 and Assumption 5, assuming that sup; - pi+1—p; =h, we have

R
C2p—28 (-28)1-1)
I(I+2ZA1r) gl < Z(lJrnCt;p*a/a?)? = Q(nma{ = (=075 Hogh/2p),
p=1 —
L] 022-—2[3
_ sl — (1—p), (1=28)0=1)
||(I+%A1R) 1/"’113”22 (1+ C (hz) ) :(—)(n d-{ (1 t)7 T }logk/Qn)
=1 A
wherek:{(l)’ gz#gg 1’ Overall we have
1-28
H(I+ LA R) 1u1:R||2:@(n(lft)max{fl,iwx }logk/Qn). (57)

Using the fact that || A||27\/10?%n7173a+27*7(121ﬂt and || (T4 2 Ay.z) " Ay.glls <n~', we have

(H(UI+ %Al:R>_1Al:R(cI){;R(I)l:R_nI))J(I+ %A1;R)_1N1:RH2

1 1 ) 1 1
(I+2A1r) 2AL R (HA) (I+ 5 A1R) 2AL (58)

1 1
O(n™ T I H AW+ ZArr) 2 AL Zprll
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By Lemma 16 and the assumption R=n (& T%)(1=t),

R _

1 (Cap™) 102 28
T+2ALR)"2A; 2l < E:

||( +02 1-R) 1;R“’1.R||2_ 1+TLC)\p a/O—Q)

- (59)
(max{n_ 1_t)/2 R1/2_B+a/2})
=O(max{n~(179/2 p(G+Z25 +r(1/2=B+a/2) (A=D1
We then have
1 n —1 T . J n -1
’ (02 (I+ o2 AliR) Al:R((I)lzR(I)liR TLI)) (I+ o2 Al:R) IJJ1:RH2 (60)

—|| & A0 (max{n~ -9, nUza +r(1/2-B+a/2)(1-D)1)
By (56), (57) and (60), we have
H(I-i-ﬁALR(I’TR‘I’rR)_lNrRHQ

:e( (1—t)max{—1, B}logk/2 —|—ZHfA||]O(H1aX{TL (1— t) (1 )15 25+n(1 t)(1/2— B+o¢/2)})
1

1-28

Jj=
:G(n(l—t)max{—l,ﬁ}logk/Q ) O(

l-ator _ (42m)e

)O (max{n~ (=0 (=052 +r(1-0(1/2=B+a/2) )

(61)
By assumption x < %ﬂi;’%)t’ we have that
1—a+2r  (142n)t l—at2r (1420)t
k(1=t)(1/2-B+a/2)+ (;;r LN oo LR ;‘O:L ! J;QT) <0.

Using (61), we then get

1.1=28

[(I+ L ALr®] p®1ir) " prig ]2 = O (n—mead=1. 5 ogh/2)

R (62)
= 14 M) il

By Corollary 20, with probability of at least 1 — 4, we have

||(I>1:R(I+%AI:R(I){;R@LR)_HJ'I:RHQ:O( ( 1)n ||(I+ A1 r®T R ®1R) T airll2)

(63)

:O( ( —|—1)’fl n(l t)max{—1, 1 2 })
From (55), we get [|( + & ®1.rA 1. g ®L. 5) "1 @1.pprirll2 = O(/ (3 +1)n - n-Hmax{=1, .
This concludes the proof. O

1,
Lemma 30. Assume that j10 > 0 and 0> = ©(n') where 1 — <t<1 Let R=nat" where

O<K<a7172'r(j;(1+2'r)t

1+2T
. Then when n is sufficiently large, with probability of at least 1 — 20, we have

7+ 2 rn®h) fn0) =0/ (5 1)n ). (64)

Proof of Lemma 30. Using the Woodbury matrix identity, we have that
(I+5PrARPH) ' fr(x)=[I—Pr(c* I+ Ar®PLPR) 'AR®L| Prur
=Prpr—Pr(0* I+ ARPLPR) " ARPLPRLR (65)
=Pp(I+L5ArRPHPR) " pr.
Let pr1=(t0,0,...,0) and pr o= (0,1,...,pz). Then ptp = g 1 + 4 r,2. Then we have
I(I+ = ArPRE®R) urlla= I+ ARPEPR) a2+ ([+ 5 AR®RPR) 1NR,2||2(-
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According to (62) in the proof of Lemma 29, we have [|(I + LAr®PLPR) 'nreol: =
O (nmax{ = (1=, %=}y Next we estimate ||(I+ LARPLEOR) gl

Let
A:(I+%ALR)—W/QA}@@{R@LR—nJ)AW(IJr Ayg) /2

where {1 (1ta2r  (I82742000) o 1 Since 1 — Lo <t< 1, g (Lo - (2rt20)ty g

so the range for v is well-defined.By Corollary 22, with probability of at least 1 — 4, we have

A2 = (,/log an”T_(H%Hw_”(l_t)) =o0(1). When n is sufficiently large, || 5 Al|z is
less than 1 because 1— %5~ <t <1. By Lemma 27, we have

(I+5Ar®PL0R) 1
=(I+ 2 AR) '+ (1) (HI+ZAR) ' Ar(PFPr—nI)) (I+ZAR) "
j=1

We then have
[(I+5ArPLPR)  1ral2

:H (I+ Z . % I—|—%AR)_1AR(¢>£¢R—nI))](I—l—%AR)_l MR1
2
< I +2%AR)™ MR1||2+ZH (5 ( I+%AR)_1AR(¢'£¢R_TLI))J(I“v‘%AR)_lﬂRJH2
(67)
By Lemma 15,
R 2, -2
n Cap
I+—Ap)" ! < 2 K =0(1). 68
||( +02 R) “R,1||2— MO+Z(1+TLQP7Q/J2)2 ( ) (68)

Let AI,R = diag{l,)\l, ,)\R} and Iy p = (071,...,1). Then A = [N\l,RIO7R. Let B = (I +
%AR)_WQA”/Q((I)T(I)R —nI)AWz(I—i— 2 Ar)~"/2. According to Corollary 23, we have || B||s =

O(,/log%nﬁ Using the fact that || & A|[ =0 (/log £ 7“3327—7(”2;:2‘*”—7(1—&) . we have

(%(I—‘r %AR)ilAR(@géR—nI))j(I+%AR)71/,LR71H2

1 v 1-2 _ _N\J-1 a2
= | E AR A (AU 2 AR ART) T BU 2 AR) T s
2
1 v o N = . Noltad2r  (A42742a)t o4 1
Sp( p(—LF N G-D)A-0 5 log%n(J 1)(gd o Y(1-0)) /log?nélluRJHz
&, [at2r-(42ndG-1)
<n(TIHBA=0+t O (n e )\ log g1l
—O~( 14—+ L= a+27—(21+2-r)t](j71))
(69)
Since {1 (1rat2r  (127420)ty ) g — 1y Lo (Lrat2r  (F2r420)iy 1ot 0 we can let

7 be a little bit larger than 1 (19427 — (1+2;’(;i—2a) ) and make — + 2 (1—¢) <0 holds. By (67),
(68), (69), we have
I+ 5z Ar®E®R) BR .l

— ~ y [L-ot2r—(142m)t)(i=1)
§0(1)+20(n7%+5(17t)+ Lot 12 - ) (70)
j=1

<O(1)+0(1)=0(1).
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According to (66), we have ||(I + 5Ar®EPR) " ppls = O(nmax{=1-0; S h o0 =
O(1). By Corollary 20, with probability of at least 1 — ¢, we have

1R+ 5 ARPR®R) url2=0(\/GG+1)nl(I+ = Ar®EPR) krll2)
:O( (%—i—l)n).
From (65), we get ||(I+ 2 ®rAr®%) ™! fr(x) |2 :O( (%—i—l)n). This concludes the proof. [

Lemma 31. Assume that 0> = ©(1). Let R=n="1" where 0 < k < =127 Assume that g = 0.
Then when n is sufficiently large, with probability of at least 1 — 30 we have

(14 B25) 7 fr ()|l = Oy (% +1)nepmext=1 5500, (71)

Assume that jig > 0. Then when n is sufficiently large, with probability of at least 1 — 36 we have

I(7+2235) " f(x)[l2= O/ (3 +1)n). (72)

Proof of Lemma 31. We have
(I+2237) " fr(x)
= (1 202~ o)+ (14 2535) 71— (142258287 ) ()
When o =0, by Lemma 29, with probability of at least 1 —24, we have
[T+ BRAR®E)  fr(x) =0y (3 Do 1153),

Since < éz T < o (114_22:) , we apply Lemma 28 and Corollary 26 and get that with probability of at

least 1 —4, the second term in the right hand side of (73) is estimated as follows:

(724871 (14 252520 ) 1) ()

s ) T T N\J
=||Z<—1>ﬂ(<I+¢“?,?¢R>—1¢>RA;£¢>R) (I+ 222552 )71 f(x)

(73)

_ZH( @RAR<I>R) 1<I>>RAU>2R'I>>R)H ” ‘PRAR<I>R) 1fR( )HQ

1-28

Z 7]/{04 (%+1)n.nmax{—l, o })

1-28
=0 (%Jrl)n«nmax{_l’ﬂ}).

Overall, from (73), we have that with probability 1—34,

. 1-28
I(7+242) 7 fr(x) 2= O(y/ (3 +1n-n™ 7207,

When 9 > 0, using the same approach and Lemma 30, we can prove that || (14 =2 2ADT )L fR(X)|2=
O( (3+1)n). This concludes the proof. O

D PROOF OF THE MAIN RESULTS

D.1 PROOFS RELATED TO THE ASYMPTOTICS OF THE NORMALIZED STOCHASTIC COMPLEXITY

Lemma 32. Under Assumptions 4, 5 and 6, with probability of at least 1 — 26 we have, we have

\ILR(Dn)—Iauzgr:O(gguu#*a+n4ﬂf€*a+f+1§*a+%)) (74)
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If R = nat where k > 0, we have | Ty r(D,) —T1(D,)| = o(%ni). If we further assume that
O<Kk< M, po =0 and o* =©O(1), then for sufficiently large n with probability of at least 1 — 43
we have

ITQ,R(Dn)—Tg(DnN:O((%+1)nmax{<é+n>%”11#1—3‘%—“*2‘”“ —1ra, 141520

—m}). (75)

Proof of Lemma 32. Define ®~p = (¢pp11(X), ¢ri2(x), .. , &p(x), ...), and Asp =
diag(Ag+41,---,Ap,-..). We then have

1 1 1 1
|Ty (D) —T1.r(Dy)| = ilogdet(IJr—Q(I)A@T)fflogdet(I+—2<I>RAR<I>£)

T
+;‘T (I+¢A@ ) —Tr(I+ LrARDE

(76)

)~

2
As for the first term in the right hand side of (76), we have

1 1 1 1
—logdet(I+— ®APT) — ~logdet(I+ — PrARDPE)
2 o2 2 o2

1 1 1 1
- 21ogdet((1+2<1>RAR¢§)—1(1+2<I>RAR<1>§+02<I>>RA>R<1>§R)> ‘
(77)

1
:210gdet(f+ (I+ <I>RAR<I>T) 1<I>>RA>R<I>ZR>‘

1
Trlog([+ (I+ @RAchR) 1<I>>RA>R<I>§R).

Given a concave function h and a matrix B € R™*™ whose eigenvalues (1,...,(,, are all positive, we
) b 1

have that
Teh(B) =325, h(G) Snh(3 3051 G) <nh(;TrB), (78)
where we used Jensen’s inequality. Using h(z) =log(14x) in (78), with probability 1—J, we have
| Llogdet(I+ 2 ®ADT) — Flogdet(/+ L P rARDT)|

< Mog(14+ L Tr(L (14 2288250y 15 A 07 )
< Mog(14 Ly | (T+ 2222 ) 1|, T (Do g A~ 5T )
< Blog(1+ 72> 02 p Apllop(3) < 502 20 pia Anlldp ()13 (79)

=35 e (C2O (VP Il B4 ) +ull6,3)
:O(?”Zp:RJrl/\pJF” /2 Zp:R+1/\ppT+Zp:R+1>‘pp )
1
70( (an a+n1/2R1 Q+T+R1 a+27))0(012na>’

where in the second inequality we use the fact that TrAB < || A||oTr B when A and B are symmetric
positive definite matrices, and in the last inequality we use Lemma 18.

As for the second term in the right hand side of (76), let A= (I+ (%/;7’2@’2)’1/ 2. Then we have

3 Tr(r+ 2A0) 71 - T(r4 2u2p2E) 1

& gpAs g ®T
—1TrA {I(I+A(>R;2R>R)A)1]A‘

i (A
B (14 2TrA(Z2EA A0 4y =1y < (1 (14 Lp( 228050000y -1
<214 55 e Ml [3) ) < 55 5 Al By ()13

=0 (%(an_O‘—l—nl/QRl_a"'T—l—Rl_a"'QT)) :0(012n;> ,
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where in the first inequality we use the fact that || A||2 < 1 and TrABA < || A||3Tr B when A and B
are symmetric positive definite matrices, in the second inequality we use h(z)=1—1/(14z) in (78)
and in the last equality we use the last few steps of (79). This concludes the proof of the first statement.

As for |Ty(Dy) =T,z (Dy,)], we have
(To(Da) ~To, (Do) = | £o0)T (I+2585) 7 £30) = fr(x) T (I+ 2587) " 1fR<x>\
RGO (14 EAE0) 7 fr(x)— fr(x) (1 4+ 2020 ) 1 i x) .
For the first term on the right-hand side of (80), we have
FEOT(+2A85) 7 ()~ Fr(0)T (1+ 2587~ fr(x)|
<2| o m ()T (I+2585) 7 fa(x)|+ | fo n ()T (T+2587) 1 £ p()|
<201 OO 2| (T+2827) 7 Fr (o) 21 £ RGO 2| (T+257) ol /> () |2

T
2| f>rG) 2l (1+253=) " fr) 2+ > ()15
Applying Corollary 19 and Lemma 31, with probability of at least 1 —44, we have

[FOOT (4 2A85) 71 £ ()~ Fr ()T (14+2285) 7 f(x)|

(80)

1-28

W;man‘”)OM e T L0 )R

=20<(3§+1)n1 (Ll 28 | max{-1, 225})+O((§+1)n1+(;+n)(1Qﬁ))

<20

—2O<( +1) ( +K) ’BeraX{ b : 55}),

where the last equality holds because (£ +r) # < % when x> 0.

As for the second term on the right-hand side of (80), according to Lemma 28, Corollary 26 and
Lemma 29, we have

| FRGOT (14 2AE0) 7 f(x)— fr ()T (14 222428 ) 1 f(x)|
= Z(—l)f‘fR<x>T(<I+‘I’Rﬁf;‘l’%*%ﬂ;f‘b*)j<f+q’RAR‘I’R> ! fr(x)

j=1

> O rAs g®T
<D+ ) T R g (14 2008 ) T )] (8D
J=1
=3 0 )O((+ Dt T

j=1
:O((%_’_l)nH*max{fQ,1_0(2’6}7/@04)'

By (80), we have

~ — 2 ~ 1-2
[Ta(D0) = Ta (D) | =0 (bt #5500 ) (gt et -2 258

- 1— 2/3 (1—28)k 1-28
0<(§+1) mas{ () 122 1S e —m}>.

This concludes the proof of the second statement. O

In Lemma 32, we gave a bound for |Ts g(D,,) —T»(D,,)| when n& <R<nat"T For R>n,
we note the following lemma:
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Lemma 33. Let R = n® and 0 = n*. Assume that C > 1 and C(1 — a+27) —t < 0. Under
Assumptions 4, 5 and 6, for sufficiently large n and with probability of at least 1 — 3§ we have

‘TZR(DH)_TQ(D’H”:O~((%+1)%anaX{1/2—ﬂ,l—a+27}). (82)
Proofof Lemma 33. Define ®srp = (¢r+1(X), ¢ri2(x), .. , dp(x), ...), and Asp =
diag(Ag+1,---,Ap;-..). Then we have
@A@T @AfI)T
[Ta(D2) T (D) = 1007 (14 2557 1) 0 4+ ) )
‘I)A(I)T OrARDT (83)
+| R (T+— )71fR(X)—fR(X)T(I+%)71fR(X)-

For the first term on the right-hand side of (83), with probability 1 — 36§ we have

]f( 7 2 60 - a0 (14 2 i)
< o0 1+ 2220 o) | o 00 (4 22001 £ ()
<I>A<I>T <I>A<I>

<2 f>r(X)l2I(1+ )2l F RGO+ 1f> G2l (1 + )" 2l >R ()12

<2[|f>r(x)ll2ll fr(x )||2+||f>R(X)||3
<20 (\/(;—H)an—?B)O(\/(;+1)n~||f2)+O~(((1S+1)nR1_2ﬂ)

=0 (((15+1)n31/2—ﬁ>,

where we used Corollary 19 and Lemma 17 for the last inequality.

—a+27

The assumption C'(1 — a + 27) — t < 0 means that £
right-hand side of (83), by Lemmas 28 and 25, we have

T T
PAPT )1 ) (o) (14 LA

= 0(1). For the second term on the

frx)T(IT+ )" fr(x)

o2

oo

S (1) fr(0” (<I+ OrAr®r - ¢>RA>R@£R>j<I+ LLLLL) S

- 0'2 0'2 0—2
j=1

q)RAR‘I) 1 P RA R‘I)T ;
<ZH e e e ER FHCN] (89

Z RJ“ oren )0((5+1)n||f|\ )

1 1 —a+427

Using (83), we have

[12(D,)~Ten(D)] =0
o(<

Next we consider the asympototics of 71 g(D,,) and Ty g(D,,).

- <, 1 1 —a+2T1
+1)nR'/? ﬁ)+0((6+1)n02R1 +27)y

oﬂ>—~ | =

)nngax{l/Z—B,l—a-ﬂ—QT}) )
g
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Lemma 34. Let A = (I + 2 Ap)~/2A}/* (@505 — n)AY (I + 2 AR)~/2. Assume that
| Al|2 <1 where 32T <~ <1. Then we have

To,r(Dn)= g b+ 5 AR) r+53 2, (1) E;,
where

j—1

Ej=ph b (I+2%AR)  (@h0r—nI) (L (I + % Ar) 'AR(®ROr—nI))" (I+2%AR) ' ur.

Proof of Lemma 34. Let /~\€ r = diag{e,A1,...,Ar}. Since Ar = diag{0,A1,...,\r}, we have that
when ¢ is sufficiently small, | % (I+ %A, )~ 1/2A1/2(<I>T<I>R nI)Al/Q(I—i— LA )22 < 1.
Since all diagonal entries of Ae’ R are positive, we have

1 1 B _
ﬁﬂ%q’%(—r‘i‘ﬁ@m\eﬁq’%) 'oppr

1

:2 QFLR@T[I (PR(O' I-I-A R(I) ) 1A R(I)R Prur

1
5 NR(I)R(I)RNR 3 NR‘DT‘I)R( 21+Ae Rq’ R)™ 1Ae R‘I’R‘I’RHR

T2 20

2 (85)
= §NR¢£¢R(021+A6,R¢R¢R)_ KR

1 . -
:§N£A;}%A€7R¢%¢R(021+Ae R(I)ﬁq)R)_l[,LR

1 ~ 1 _
=§N£Ae,1lzliR QI'LRAeR(I+ A RORPR) " pr.

Using Lemma 27, we have

1 ;s 1 1 .
§H£Ae,}zﬂR 2#RAF}3(I+§A@R(I’£‘I>R) "pur

1 e 1 e n.
:fuﬁf\e }zuRfquAE,}a(HgAE,R) "ur

Letting e — 0, we get

Ty, r(Dy)= T‘I)T(I'i‘ (I)RARCI)R) 'oppr

952 M
= 272MR(1+7AR)_ KR

1 1 no.o_ it
+= Z{ IDERRYTES U+ AR) 1(<1>£<1>R—n1)(02(1+02AR) IAR(@gch—nI))

(I+ ;AR)_ll‘R
This concludes the proof. O

1
Lemma 35. Assume that 0> =0(1). Let R=na 1" where 0 < 1 < o127 Under Assumptions 4,
5 and 6, with probability of at least 1 — 0, we have

Ty (D)= (Rogdet (I + 2 Ag)— 3Tr(I1—(I+ 2 Ag)"Y))(1+0(1)=O(na).  (87)
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Furthermore, if we assume 11y =0, we have

1-28
max{0,1+——"} _
To.1(Dn) = (2 a1+ 2 Ar) " ) (140(1)) = O ) a# 281 (gg)
O(logn), a=28-1.
Proof of Lemma 35. Let
A= I+ 2 AR) 2N (@00 p —nD)AY (T + 2 Ap) /2 89
=([+—5Ar) r (Pr®r—nl)Ap"(I+—5Ar)"""%, (89)
where % <y <1. By Corollary 22, with probability of at least 1 — 4, we have

1—-2vata+2r

[Ao=0(n"" 2= ). (90)

=(I+ 2% AR) 2N *(@hO g —nI) Ay (1 +
) Using the Woodbury matrix identity, we

When n is sufficiently large,
o20=7) 1— a

ZAg)~'/2. Then [|B|s = Z=-[|Al2 = O (
compute 71 z(D,,) as follows:

Ty, r(Dy) = tlogdet(I+ L ARPLPR) — s Tr @R (0’ I+ ARPEPR) ' Ard],
= Logdet(I+ 2 A )+ Slogdet[T+ L (T+ & Ag) " /2A > (@5 —nD) A} (I+ 2% Ag) /7]
—1Tr(o’I+ADLDR) AP, Pp
:%logdet([—&—%ARH—%Tﬂog[H—iB]—lTr(I—o2(a2I+A<I>£<I)R)_1))

1logdet(I+ SAR)+ 1T1rz:(1 L B)/

i 11+ Z 17 (& (T4 2 ARr) " Ap(@50 5 —nl)) (I+ 2% Ag) "

= (Hlogdet(I+ )~ FTr(I—(I+ 25 Ap) ™)) + 3Ty — (G By’

oo
AT [ SO H I+ B AR) 2B (T4 5 AR) V2
j=1
on
where in the last equality we apply Lemma 27.

Let h(z)=log(1+z)—(1— ﬁ) It is easy to verify that A(x) is increasing on [0,+00). As for the
first term on the right hand side of (91), we have

slogdet(I+ 2 AR)— 5 Tr(I—(I+2%AR) ")

2Z(log 1+252,)—(1 1+aﬁ))

p=1
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where in the last equality we use the fact that f[o too] h(z~%)dx < co. On the other hand, we have

tlogdet(I+ 2 Ag)— 3 Tr(I—(I+%Agr)™")

:% 1/“/ h(#@x_“)dx
[1/nt/e (R+1)/nl/]

z@(nl/o‘).

Overall, we have 2logdet(I+ % Ag)—3Tr(I—(I+ 2% Ar)™1) =0 (n!/?).
As for the second term on the right hand side of (91), we have

o0 o0 o0
yie1 . . ~ j(1—a+271)
Ty EU— (LBY|<RY || LB[j=RY>_ &0m" = )

j=1 j=1 j=1

~ l1—a+2T1

=RO(n

)=O(natr+ 5,

As for the third term on the right hand side of (91), we have

Tr| D (1Y (I Zehr) ™ 2B (14 2 A) ™/

(T B AR)V2BI(T 4 A g) Hz
j=1

oo

S (I+ 25 00) 2B 1+ 5 00) 2
j=1

oo
<Y B, = On

1— a+2T

Then the asymptotics of T _g(D,,) is given by

~ 1 1—a+27 ~ 1 1—a+27

Ty r(Dy)=3logdet(I+ % Ap)—2Tr(I—(I+ZAg) ') +O0(na™ 22" )+ O0(ma™ 22"
1—a+21
—O(nY*) +O(na* s )

—6(n?),

. . . . 1 . ~ 1 l—a+271 | .
where in the last inequality we use the assumption that x < % Since O(n atrtieg ) is lower
order term compared to ©(n ), we further have

Ty r(Dy) = (Slogdet(I+ 2 Ag) S Tr(I—(I+ 2 AR) ™)) (1+0(1)).
This concludes the proof of the first statement.

Let Aj.g =diag{A1,... )\R ‘Pl R =(01(x),01(x),.. ,¢R(X)) and p1.r = (p1,...,ur)- Since pp =0,
we have T g(D,,) = Ugul R<I>1 r(I+ 5 P1.rRA1.RD, R)‘1<I>1 RM1:R. According to Lemma 34, we
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have
n n _
1o r(Dy)= ZﬁMiR(I‘F*ALR) Ypiir

1 1 n _ 7
+- Z INEARITE 7(I+ A1R) 1(¢¥:R(I)1:R—HI)((72(I+O_2A1:R) 1A1:R(@{R@113_n1)>

= 272N1:R(I+7A1:R>71/1’1:R

— n - it
+5 Z [ JH Nl R(I+ A1 R)” 1+7/2A1z’1§/2A((I+§A11R)71+VA}:R7A>

(I+ 7A1;R) LN P, R:|
o
(92)
where in the second to last equality we used the definition of A (89). As for the first term on the right
hand side of (92), by Lemma 15, Assumption 4 and Assumption 5, we have

R 2,.—283 1—28
C ub e max{0,1+—+} 281
20 2N1R(I+ A1R) H1R202zl+—{ (n ), a#2B-1,

—5C\p™@ O(logn), a=28-1.
On the other hand, by Assumption 5, assuming that SUP;>1Pi+1—Di= h, we have
Lil 2,728
n T n 1 n #pz
—pi.p(I+—A1. A=) ——
202#1.13( +02 1:R) PR Z 5 ;1+UZCAPZ
7] 02 —28
h
>S5 TR
20 1+ L C(hi)~
max{O 1+1= Zﬁ}) a#Qﬂ—l,
N logn a=28-1.

Overall, we have

n T n —1 _ max{O,l—Q—l:fB} k _ 07 04#26—1,
ﬁ”l:R(I_F;Al:R) p1:r=0(n log 71)7"\’}1@“3/@—{17 a=28-1.
By Lemma 16, we have
R 2,—203 —a\—y
n _ Cap~*P(Cap™®)
T4+ —A. 1+’Y/2A ’7/2 M
H( +O'2 1:R ) Hi: R||2—§:1( UQQP_Q)Q_
- 93)

=O(max{n~2t7 RI=28Far})

=O(nmax{-247 122ty +r(1-2B+am}y,

Using (90), the second term on the right hand side of (92) is computed as follows:

_ n _ A
Z[ D 2] N1 R(I+ A1 R)~ 1+7/2A1:7%/2A((I+§A1:R) 1+7A1:RVA)
HES——

iy | (=147 -1) n
- J 1+~/2 ’Y/
SV A () I+ 25 A 20 04)

IN

Tex 1 =, ja-2vataten) n\1+70G-1) - ax{ =247, 1228 4y r(1-2

= max{— e —2B4av)}

§ZO—QJO 2 (0.2) O(n K I “ )
=1

max%%w%,%er%M(l%/ﬂav)})

=0(n
=0(

nmax{_2+ 1+12v:—27- , 1—a2ﬁ+ 1+(2~;—27- +l€(1—2ﬁ+0¢'y)})
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Since 1HGH2T < LEat27 — ] we have —2-+ 1E2E2T < (. Also we have

a+1+27
1-28 14a+27
+

+r(1-28+av)

« 2a
1-2 l-a+2
= ﬂ—l—1—|— g T—|—f<:(1—2ﬂ—|—cw)
1-2p 1—a+27
< +1+ + Koy
« 2a
1-2
< ﬂ—l—l,
a
a— 1 27‘

where the last inequality holds because k < and v < 1. Hence we have

TM(Dn):ﬁﬂm(”*Al;R)_luLRJrO(nmaX{—“”33”v%+”;’$2’+n(1—2ﬁ+aw)})
=@ (nmax {01+ g0k ) 4 O (pmaxd —2H HEIEE ST BT Ha(1-2B e

_@( max{0,1+1=28 }log ’I’L)

wherek:{(l)’ a#gg 1’ Since O(n mx{_QJ’HSOHT’17"213+Urg:%Jm(l_QﬂJ’M)})islowerorder
, «

max{0,1+ 1- Qﬁ

term compared to ©(n Hog"n), we further have

To.r(Dn) = 5oz T p I+ 25 M) hrir) (1+0(1))
This concludes the proof of the second statement. O

Lemma 36. Under Assumptions 4, 5 and 6, with probability of at least 1 —56, we have
1 n 1 no, . _ 1
Ty (Dy)= (210gdet(1+021\) —5Tr (I— (I+5A) )) (1+0(1)=0(n*),  (96)

(28—1)(a—1-271)
402

Furthermore, let § =n~9 where 0 < ¢ <min{ , 2= 1 271 Ifwe assume o =0, we have
O(nm 0155 a£ 281,

O(logn), a=2p-1. Gn

Ty(D,) = (%HT(H%A)*N)(HO(U): {

Proof of Lemma 36. Let R=n=*" where 0< s < ©51527_ By Lemmas 32 and 35, with probability
of atleast 1 —59 we have

|T1,r(Dn) = T1(Dy)| = O (n= 0=, (98)

and

Ty, 1 (D) —Ts(Dyy)| = 0((5 )nmax{(i+n)1f’3=1+lf’3+“35)",—1—m,1+1j‘3—m}) (99)

as well as
1 1 1
TLR(Dn)<210gdet(I+Un2AR)2Tr([([+:2AR)1>>(1+0(1))@(na), (100)

and

1-28
«@

@(nmax{0,1+

To.r(Dy) = (g n” (I+258) 1) (1+0(1)) = {@(logn) 251

‘We then have
Tl(D )=T17(Dy)+T1,7(Dy) ~T1(Dy) =O(n=) +O(n= 1)) =0 (n

Q=

).

Since O(nat#(1=®)) is lower order term compared to ©(n= ), we further have

Q=

Tl(Dn):(élogdet(l—l—;;AR)—;TY(I—(I—&—:ZAR)_l))(1+o(1)):®(n )
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Besides, we have

logdet(I+ ﬁA) —logdet (I + EAR)

Z log( 1+ /\ % Z Ap< Z Cxp™ QZ%O(RPQ)

p=R+1 p=R+1 p=R+1
n 1
l-«a +K

zo(né).
Then we have log det(I + Z5Ag) = logdet(l + Z5A)(1 + o(1)). Similarly we can prove

Tr(I-(I+%A)"Y) = Tr(I—(I+2%Agr)"*)(1 + o(1)). This concludes the proof of the first
statement.

As for T5(D,,), we have
To(Dy,) =T, r(Dy)+To, r(Dy)—T2(Dy,)

:@( max{0,1+1=28 }log n)+0(( ) max{((%+l{)1—223 141=28 zﬁJr%’ l—ka,141=28 2/3 mx}>
)

:(_)( max{0, 141228 }IOg n)+0(nq+max{( -l‘f'ﬂ)1 28 1+1 2ﬁ+(17#,—1—m0¢,1+1;213—ma})

0, a#28-1
where weuse d=n"9, k= #26 7
1, a=28-1.
S1nce0<n<wand0<q<m1n{ (28— 14&321 27),0‘ 21(127—} wecanchooseﬁ<wandn

is arbitrarily close to 52T such that0<q<mm{w rar}. Then we have (£ + ) : 225 +¢<0,
—1-ra+q¢<0, (1=28)x 25) +q<0and —ka+q<0. So we have

Ty, 1(Dy) =0 (™01 = Hoghn).

. ~ 1 1-28 125 (1-28)k 1— ZB_ .
Since O((%+1)nma"{(a+“) D m}) is lower order term

12[3

max{0,14- =28

compared to ©(n Hog*n), we further have

n n
Ty(Dp) =Ta,r(Dy)(1+0(1) = ( 55 nr(I+—5Ar) " g ) (140(1)).
202 o2
Furthermore, we have
n n
MT(H*A)‘lu—uﬂ(H*AR)‘luR

oo oo

k= <Y <Ay i P=om )
p=R+1 a2 Ap) p=R+1 p=R+1
=0 (n1—29)(E+r))

:o(nl_o?/i ).

Then we have p” (I+ % A) "t p=ph(I+ 2% Ar) " pr(1+0(1)). This concludes the proof of the
second statement. O

Proof of Theorem 7. Using Lemma 36 and noting that é > (, with probability of atleast 1 — 56, we have
EFY(D,)=Ti(Dy,)+T2(Dy)

1 n 1 n 1
ilogdet(I—f— ;AR) - iTr (I— I+ ;AR) )

n n _
+ b+ T AR) 1uR}<1+o<1»

_p(max(E 24

Letting 6 = 56 , we get the result. ]
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In the case of o >0, we have the following lemma:

Lemma 37. Assume that 0> = ©(1). Let R=na"1" where 0 < k < =127 " Assume that ig > 0.
Under Assumptions 4, 5 and 6, for sufficiently large n with probability of at least 1 — 46 we have

T2, r(Dn) =T2(Dn, )—O(((15+1)nmax{1+<é+“>l 20 1= W) (102)

Proof of Lemma 37. As for |T5(D,,)—T5 r(Dy,)|, we have

<I>A<I>T

Tz(Dn)—Tz,R(Dn)IZ‘f( ) (I+ )= Fr()" (T+——5—) 7 fr(x)

<I>A<I>T

+fr(x)T(I+ )" fR(x)— fR)T(T+

For the first term on the right-hand side of (103), we have

T T
A )1 p0) — o (1 A2

<I>A<I>T

) fr(x)
<I>A(I>T

V@Fu+

) R+ [ fsr()T (T4 ) for(x)

<I>A4>T <I>A<I>T
)" R+ >Rl (T+—

2| for(x)T(I+

<2[|f>r()|2ll(1+ )2l >R ()12

<I>A<I>T

<2/ f> ()2l (T+ )~ RO+ 1 >R

Applying Corollary 19 and Lemma 31, with probability of at least 1 —44, we have

OADT DADT
2 2

) Hf(x) = frR()T(T+ ) fr(x)

Wufu+

\/(i—!—l)an—Qﬁ) O(\/((lS +1)n)+0((%+1)nR1_25)

As for the second term on the right-hand side of (80), according to Lemma 28, Corollary 26 and
Lemma 30, we have

PADT ®pARDT
2

o2

> SpAp®L Do pAopg®L N\ B pApdT
1P g (04 B ) (1 B

o2 o2 o2

fREOT I+ )" fr(x)— fr(0)T(T+ )~ fr(%)

<1>A<I> i A p®L PrARPE
<j£jn oAyt gt | TR 2EATR) g ) (1o

_ZO —J’m +1) )

~0((5

§+1)n1_’m).
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By (80), we have

(00T D=0 ( (1952 ) 0 Lo

o(<

Lemma 38. Assume that 2 = ©(1). Let R=n="1" where 0 < k < min{ 25527 25 2821% Assume
that pg > 0. Under Assumptions 4, 5 and 6, with probability of at least 1 — 6, we have

oﬂ»—‘ Q'z“—‘

)nmax{l-&-(é—i-n) 17225 ,1—504}) ]

O

T27R(D ) 2 2MO+O( max{1+7o¢+27 1+1 2/3}) (105)
Proof of Lemma 38. Let
n — 2 2 n -
A= (It 5 AR) PN (@@ n—nl) A (T+—5AR) %, (106)
where % << 1. By Corollary 22, with probability of at least 1 — 4§, we have
|Alla =0 (n =5, (107)

When n is sufficiently large, || A||2 is less than 1. Let pg 1 = (10,0,...,0) and pr 2 = (0,41,..., 4 R).
Then pur =MUR1tHR2. Let ALR:diag{l,)\l,...,)\R} and I()’R: (0,1,...,1). Then AR:ALRI(),R-
Let B = (I + %Ap) "/2A)/p(@5®R — nI)AY/2(I + % Ag)~/% By Corollary 23, we have

| B|2 :O(\/lo?%n%). By Lemma 34, we have

n n _
T r(Dy)= Qjﬂg(I-F*AR) 'pr

1 1 n. . i1
+= Z{ I EARITIN (I+ AR) 1(<I>§<I>Rnf)(02(1+02AR) 1AR(<1>§<I>RnI))

(I+ 02AR)_1NR:|
(108)
As for the first term on the right hand side of (108), by Lemma 15, we have

R 2, —28
n n C#P n oo = max{O 14 1= 2/3}
202" ( +02 )< <M0+p=11+:26’>\p_“> 202#0+O( )

We define Q)1 5, Q2,5 and Q3 ; by
1 1 qT 1 n —1 T i
Q1= ,“R1 (I+ AR) (PrPr—nl) ;(I+?AR) Ar(®PrPr—nl)
([JF;AR)ilNR,l
r 1 n 15T 1 n -1 T 7
Q2j=mp1—5 I+ —5Ar)" (PrPr—nl){ 5 (I+—5Ar)" Ar(PrPr—nl)
o o o o (109)
n _
(I+—Ar) "pr2
g
r 1 n —1/&T 1 n -1 T i
Qsj=pr2 5 U+ _5Ar)" (2RPr—nI)| I+ —5AR) Ar(®rPr—nI)

n _
(I+ EAR) YR
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The quantity @3 ; actually shows up in the case of ;1o = 0 in the proof of Lemma 35. By (92), (94)
and (95), we have that

o0
|Z(_ 1)HQs |_|Z 19 +10(n G=h=adtin) 1><;;‘*+2*>)O(nmax{o,u%}ﬂ:O(nmax{o,H%}).

(110)
For Q1,;, we have

1 n . n 42
Qm:E/LﬁJ(IJr;AR) HgB(IJF;AR) 1JrgﬂR,l

1 n A
< S5 lluralBI+ 5 AR) 2 3Bl

R
:O(Vlog—n%)7
)
where in the last equality we use || B|la=O(4 /log%n%). For j >2, we have

1 N _ j—2 B
Quj=—gHpa( +%AR)‘1+fB(<I + D AR) AL ”A) (I+—Ag) 7ML
ag ’ a ag ag
B(I+ %AR)_H_%IJRJ

1 noan - n
< MBI+ S Am) 43 BIBIBIAI 2N+ S5 Am) "4 A S

R (G—=2)(1—2yatat2r)
2c .

:O(loggnn n7(177)(j71))

(G=2)(A—a+27)
2a

:O(loggn“n

Then we have
R . > R (=2)(1—a+t2r) R
i1 1 = — =
\ g ) Q1,51 <O( log5n2)+j2=20(log5n7~n z )—O(log5n7) (111)

For ()2 ;, we have
1 n _ ~ n _ _ Jj—1 n +2 %
Q2,jzguﬁ,1(1+§AR) 1+2B<(I+§AR) AR WA) (I-I-;A) 2N RRR2

1 i1 n _ Ty pj—1 n +217-%
SE”UR,I”QHBHQHAH% I+ —54AR) AR H(I+§A) A Burale

R 1 G-na-at2n +217-1
:O(\lloggnf'”i)“(l"‘ A) TzA RNR2||2

Since ||( + %A)_H%JX;%“RQ ||2 is actually the case of 1o = 0, we can use (93) in the proof of
Lemma 35 and get

n LR 2 n 2
1T+ —58) 7 FAL fn 2|3 =((T+ 5 ArR) " H772AL W wrll3
— A (pmax{—2+7,228 4y tr(1-28+
=0 (nmax{=2+y Y+r(1-28+a7)} (112)
=0 (nmex{ =27, 222 +r+r(1-28+an)})

=o(n?),

where in the last equality we use k < 2?3;1
j+1 L4y M - E iy
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Choosing y= 3 (14 1H9+27) — 1430427 ] we have

n n
T2,R(Dn)=@ﬂg(—’+§/\ﬁ’ HR+Z Q1 +Q2,+Q3,5)
n ~ —28 R R ol
= S OO ) (0.1 L Olog ) oy flog )
= SO U )
a
max{lETat2T 14 1228
H0+O( s o« ).
T 202
O
Proofof Theorem 8. Let R = na=*" where 0 < & < min{e5527 28711 Since
0 < ¢ < min{22-1 o} - min{251527 2871} we can choose # < min{ 95527 2611 and 4

is arbitrarily close to £ < min{2 2104227 ,2821Y such that 0 < g < min{ @27 1% /fa}. Then we have
(a+ﬁ)%+q< 0, and —ka+¢<0. As for To (D), ), we have
15(Dy) <To,r(Dpn)+[T2,r(Dn) —T2(Dy)|

- QLQM(Z)-FON(nmaX{H'E’ia“T,l-&-%})_‘_O (( )n max{1+(§+n)%,1—ﬁa})
o
+

:%Mg+é(nmax{%,l+%}) O(nq+max{1+( 4r)1528 g Ka})
20

n
= ﬁuﬁﬂ)(n)-

By Lemma 36, we have Ti(D,) = O(n#). Hence E.F°(D,) = T1(D,) + To(D,)
n 2
3oz Mg +o(n).

o

D.2 PROOFS RELATED TO THE ASYMPTOTICS OF THE GENERALIZATION ERROR

Lemma 39. Assume 0° = ©(n') where 1 — 12%5- <t < 1. Let R = nGa T Under
Assumptions 4, 5 and 6, with probability of at least 1 — 6 over sample inputs (x;)?_,, we have
(1—a)(1-t)

G1(Dy) =S8 (Te(1+ 2 AR) ™ R—||A}{2<I+:2AR>1||%)=;2e(na ) (114)

Proof of Lemma 39. Let G1 r(Drn) = E(4,,, y.i1)(T1,R(Dny1) — T1,r(Dy)), where R = n¢ for
some constant C. By Lemma 32, we have that

|G1(Dn) = G1,r(Dy)| =B (a1 ,pmsn) [T (Dng1) =11, 5 (Drg1)] = [T1(Dn) = T1,r(Dn)]|
=|Ewnrpn ) O((n+1)R™*)|+|O(nR' )] (115)
=0(&nR'™).
Define nr = (o (2ni1),01 (Tni1),sOr(2ni1))T and ®p= (®%.mr)T. Asfor G1 r(D,,), we have
GLR(Dn) :]E(zn+1,yn+1) (TI,R(Dn+1) _Tl,R(Dn))

1 PrARdL . 1 OrARdT
_]E(I7L+17y71+1)<2logdet(l+U2R)2Tr(I(I+U2R) 1)

1 PrARPL 1 PrARPL
— | =logdet(/ + ——=)—=-Tr(I - ([ + ————=
(Gloscentr+ 222828) - s 1+ 22220 e
1 PrARDR PrARDY,
2<E(%+hyn+l)logdet(1+ 3 )—logdet(I+ = R)

1 drARdL PrARPL
2<]E(In+l7yn+1)Tr(I(I+R) 1)7Tr(17(1+7R) 1) M
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As for the first term in the right hand side (116), we have

1 &) A EIV)T dpA (I>T

3 <E<xn+1,yn+1>logdet(1 - %) logdet(I+ RRR)>

1 AR&)T(’iR ARq)T(I)R
<E(1n+1 yny)logdet(I+ Tg)—logdet(l—s-ilz)

AR@£®R+7IR77}€)

Ap®LD
—logdet(H—RRR))

E(ﬂin+17yn+1)logdet(l+ 72

o2

ARq)g(I)R)—l(I Ap®LoR ARURUR)>)

E($"L+1 Yn+1) logdet <(I+

AR®LE®r . Apnrnk
(E($,,L+1’y7L+l)10gdet <I+ (I—]— Ug ) 1 g R

1 ArdLd,
E(I7l+1,yn+1)log<1+0_277%([_'_R) 1AR77R

Let

A=(I+ %AR)—U?A}{?(@g%—nI)A;{Q(H %AR)‘”Q. (117)

According to Corollary 22, with probability of at least 1 — 4, we have |[LAll, =

0(\/@717“%2“7“2?”) — o(1).
Lemma 27, we have

L A2 is less than 1. By

Ap®L o
i (I+ 71%01; Y Apir
T n L 1 T ’ n -1
:nR(I—i—ﬁAR AR"?R"’Z 7 I—|— AR) AR((I)R(I)R—TLI) (I—F;AR) Agrng

n _ i n — 1/2 44 n — 1/2
=ni(I+—5AR) 1ARnR+Z(—1)Jﬁn£(I+EAR) 27}/ AV(I+—5AR) V20,

k(I +— S AR)” IARnR+Zn S AT+ S AR) VAN g3
j=1

Chp™® Cyp
<§ E LA E 2( —_—
¢ xn"!‘l 1+ C p a/0.2 + || || ¢ xn-‘,—l 1+ngp7a/0-2

—Q

A N T N
A A
< e S
_§1+TLCAP oz/o-2 ZH ||2Zl+nc’>\p a/O-Z
(1—at27)(1—t) a+27)(1 t) (1—a+27)(1—t)
<O(n = E H AIIJO @ )

(Q—a+f27)(1—t)

=0(n— =  )=o(1), W)
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where we use Lemma 15 in the last inequality. Next we have

1 E)RAR&)T (I)RAR(I’T
3 (E(:vn+1,yn+1)10gdet([+02R) —logdet (I +—"—-—1)

o2

_1 1 AR®LPR . _
(E(xn+lyyn+1)log(]‘+ T}R(I—i_o_ig) 1AR7]R
1 1, Ap®Ldg
) (E(xn+1,yn+1) <0_2nR(I+2
1 AR®Tdp
———)""Ar | (1+0(1)),

) A ) (1+0(1))

where in the last equality we use the fact that [ ) Rn£ =1I. By Lemma 27, we have

Tn+1,Yn+1

Ar®Ldp

Tr(I+ E—=)""Ag

g

J
=Tr(I+ S AR)” 1AR+Z JTr< 12(I+ZAR)-1AR(¢£@R—nI)) (I+—Ag) A
= ag g g

n _ > . 1 n _ . n _
=Te(I+ 3 AR) 1AR+Zl(—nm«ﬁ(uEAR) WA}{?AJ(H;AR) 127002,
J=

By Lemma 15, we have

R __

" AR)” Cap”® G-y

Tr(l+—Ap) A<y — X _ )

r( +Jz R) R_gllengp*"‘/ch O(n )

T(I+ ) an > S D g, e

o2 B R_p:11+n07/\p_a/02— .

Overall,

TH(I 4 g An) T AR=0(n" " ). (119)

Since || - Al|lJ=0(1), we have that the absolute values of diagonal entries of —4; AJ are at most o(1).
Let (A7 )p » denote the (p,p)-th entry of the matrix A7. Then we have

I+ " AR)” 1/2A}{2AJ(I+%AR)*1/2A}{2

023
(120)

_ ER: )‘pﬁ (Aj)p,p

R
A || —5= AH2 (1—a)(1—t) ~ j(l—a+27—(1427)t) .
= < o) « = 1 J/2
< 6 O log Ry ),

T 1+n),/0?

p=1
where in the last step we used (119). According to (119) and (120), we have

DAL DpARDL
W)logdet(I+R§R)>
o o

1
5 (IE(M+1 nin)logdet (1 +

12(T41+AR¢£©Ry4AR)u+ou»

20 o2

(121)

I
w"_‘
)

(n(l a)(l t) %i (= a)(l t) O( (1—a+272';(1+27')t) (logR)]/2)

1 (1—a)(1-1) 1 (-a)(1-1) (1-a)(1-1)
2

. @(nf)me(nf)om:;@(nf)

= o (T 2 A) AR ) (1-40(1))

44



Published as a conference paper at ICLR 2022

Using the Woodbury matrix identity, the second term in the right hand side (116) is given by

o2 o2

N —
/N

DA pdL P pApdL
E(xmynﬂﬁr(f—(um)l—Tra—(Hm)l)

1 ~ 1 o~ ~ 1 1 _
E (@ i1,yns1) T gq’R(I+7AR@£‘I’R) 1AR¢£—TY(7¢R(I+7AR@£@R) 1AR(I>£>

w\r—~ mm—\

1 1

<]E(acn+1,yn+1)Tr( (I+— AR‘I> Op) ' ARDHPR— Tr(—5 U+~ AR@ )IAR@E‘I’R>
1 .

=73 (E(wn+1,yn+1)Tr(1+(TQAR‘P£¢R)_1—TY(I+UgAR‘Pq}%q’R)_l)

1

1 1 _ 1 _
D) (E(In+l1yn+l)ﬂ<l+ ?AR(I)%(I)R‘F;ARang) F-Te(I+ ;AR‘I’%I’R) 1>

_1<E [+ : AR<1>Tq>R)—1ARan,§(I+ (}f_,ARd)%(DR)—l)
202\ (@nr1ns) 1+ Lnh(I+ 5 Ar®LdR) 1A rR ’

where the last equality uses the Sherman—Morrison formula. According to (118), we get

||A”2<I+ AfPeko A3

o2

1 (I+% AR<I>T<I>R)‘1AR77377£(I+ LARPLOR) !

5 2 E($"L+17yn+l)Tr T 1

20 1+[,2773(I+ s ARPRPR) T ARNR

1 _
<]E(tn+lvyn+1 TI'(I+ AR(I) ) 1AR77R7]17£(I+§AR(I>£(I)R) 1(1+0<1))>
1 1
J;Og )T (I+ ARq) RrR)” 1AR([+fARq)£‘I>R)71

_ J;g) A1/2(1+ APeLdpAN?) " 1A1/2(I+ SAR®EPR) !

- J; OFN Tr(I+— LAYeTe A1/2)‘1A1/2(I+—AR<I>£<I>R)‘1A}{2
L+o g) Tr(I+— A1/2<1>Tc1> rAY?)™ AR(I+— A1/2<I> Lo
1+0( )

(

1
)||A1/2<1+ M) ML S AT I S0

where in the penultlmate equality we use Tr(BBT)=||B||%, || B|| r is the Frobenius norm of A, and
in the last equality we use the definition of A (117). Then we have

1+ 1. _
O A1+ enm) 21 ) 1<I+ﬁAR> 2|z
1+
"( )||A1/2(I+ ARr)V3( I+Z I+ SAR) V2%
_ 1+o0(1) AYZ Ty = 1) 1 AY20 A V=172 40 10 T A 122
o2 [AR"( T R) JFJZ::I(* ) 27 MR ( T R) ( T2 rR) e
(122)
By Lemma 15, we have
A2 A 1< i Chp~® a-a)a-o
N g 2
AR ( +02 rR) r< ;(lJrnpra/az)z (n )
/ n - p~ -a)(-t
AT+ —=AR) Y|P > —O(n Ty,
AR5+ A e 2y D7 Hn@p 2 7g7y — O )
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Overall, we have

(—a)(1—t
K20+ o An) =05

Since || 5 All2=0(4/ loggnl_g% —C5278) — 0(1), we have

||—A1/2(I+ AR) 1/2AJ(I+%AR)*1/2||F

). (123)

<||A”2<I+ SAR)” 1/2||FH AN+ CAR) T2l (124)
:O(n(l a;;l f))O(nJ(l a+2;a(1+2r)t) (logR)J/2),

where in the first inequality we use the fact that || AB||z < ||A||r||B]|2 when B is symmetric. By
Lemma 15, we have

1 .
— ‘Tu\}{z(n %AR)*lA}{Q(IJr Z5AR) 2 (14 S AR) T

R 1 R j
)\p(( pp A || AH (1—a)(1—t) & ~ j(l—a+27—(1427)t) .
= ‘ = « = 1 i/?
Z(l—i—n)\ /02 )2 —Z:: 14+nA,/02)? =6(n )O(n 2 (logR)’/~),
(125)
According to (123), (124) and (125), we have
1 &)RAR&)E -1 (I)RARCI)g 1
9 E($71+17yn,+1)Tr(I7(I+72) *TT(I*(I+72)
2 o o
_1+4o0(1 1 _ 1 _
— 202 )Tr(I—&-;AR@ﬁ(I)R) 1AR(I+—AR<I>£<1>R) !
+ ) n B
( )||A1/2(I—‘r Ag Z 1/2(I+ A ) 1/2AJ(I+§AR) 1/2”%
1 1 4 2
IO (A2 (1 Ay A4 A ) V2 (1 ) 1
202 02 2 -

+2TeA (1 + %AR)_lz(—l)jﬁA}{Q(IjL %AR)_l/QAj(I—i— :QAR)—W)
=1

20'2 0'23
j=1

oo .
:1+o(1) <®(n<1a2¥<1t> )+Zi0(n(liazflit) )O(nj(l—au;;(lur)t) (logR)j/Q)

( a)( ) j(l—a+27—(1427)t) .
+2202 1—a)(1—t )O(nj +2r-(tan)e (lOgR)J/2))

(1-a)a-v 1—|—0( )

=5H0n o )= IR I+ A0 I
(126)
Combining (121) and (126) we get that Gy gr(D,) = %@(Tr([ + Z%AR)'Ar +
A2 + 2ZAR)7Y3) = ZOm™="). From (115) we have that Gy(D,) <
Gua(Da) + |Gi(Dn) = Gur(Da)l = HOM™") + O(nAR'"").  Choosing
R= n(a2<a711>+1)(1 2 we conclude the proof. O

Lemma 40. Assume 0> =0(n') where 1— Thor <t<l Let S= nP. Assume that ||£||o=1. When
n is sufficiently large, with probability of at least 1 —26 we have

[T+ L ®sAs®E) " PsAsé]a=0(/ (2 +1)n-n~ 07D, (127)
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Proof of Lemma 40. Using the Woodbury matrix identity, we have that

1
((I+§@SAS<I>§)*1<I>SAS£:[If<I>S(021+A5<I>£<I>S)*1AS<I>§]<I>SA5§
:(1)5/\557(1)5( 21+AS(I)£(I>S)71AS(I)£(I)SAS§ (128)
—(I)S(I+ As‘I)T(bs) 1AS£.

Let A= (I+ 2 As) /2Ny *(@F0s —nl)AY (I + 2 As) /2, where y > Hret2r (Lt 3ri2a)t,

1 27— (1427420a)t
+a+t27 é(;r T+2a) —'y(l—t)).

By Corollary 22, with probability of atleast 1—8, we have || 5 Al|2 = O(n
When n is sufficiently large, || 25 A2 is less than 1. By Lemma 27, we have

(I+§Asq>§q>s)—1
n J n _
:(I+§As Z ( I+ As) 1As(<1>§<1>s—nl)) (I+—5As) !

Then we have

[(I+5As®L@s) ' Asé2

H <I+:2As)‘1+Z<—1>J(02<I+:2As)—1As<¢£@s—nI>) (I+258s) 7 | Asg
j=1

J
n
( I+ AS) 1AS(<I>:§<I>S—nI)> (I+§As)*1AS§

<{ I+ Z5n0)" Asellat Y
Jj=1 2
(129)
For the first term in the right hand side of the last equation, we have
n -1 n -1 o’ —(1—t)
1T+ 25A8) M Asélla | (T+ 5 As) M Aslllélo < T =0 0=0). (30)
Using the fact that || & Al|y = O(n™™ 5= =71=0) and ||(T + 2 Ag) " Ags <n~!, we
have
1 T ! n 1
02([-‘,— As) As(q)sfbs—nf)) (I+§AS)_ As€
2

1 -2 _N\i-1 _a
= |+ 58 AL (A4 DA ALY AU e T A A
2

<=0 HFHEHNG=1) G (p a2 2 —in(1-0)) 1 4 %AS)—H%A;—%HQ
g

1—-2

*ll2ll€ll

(1—a427—(1427)t)j
(1,15)4’,%

N n o
:O(n 2 )||(I+;A ) 1Jr2/\

:O<n—%(1—t)+—(1""+272’,f”27)”" )O(n(~1+7/2)1-1))

).
Using (129), (130) and (131), we have

:O(ni(lit)+w
(131)

(142 AsPEPs)  Ast]l2
= O(n*(lft))+20(n71+(1_a+27T2_a(1+2ij)
= (132)
:(O(n—<1-t>)+o(n—1+
=0(n~(7Y),

1—a427—(1427)t
2c )
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By Corollary 20, with probability of at least 1 — 4, we have

- 1
1Ps(I+ 35 As 5 ®s)~ Ast]2 =0/ (5+ 1[I+ 2 As@5Ds) " Ast]lo)

~ 1
:O( (SJrl)nn*(l*t))
From (128) we get [|(I + 5®sAs®L) ! fs(x)|l2 = O(1/ (% +1)n-n~(1=9). This concludes the
proof. O
Lemma 41. Assume 02 = O(n') where 1 — ey <t <1 Letd =mn"9where( < q <

[a7(1+27)4(;;t)](2571). Under Assumptions 4, 5 and 6, assume that pg = 0. Let R = n(&+r)(1-1)

a—1—274(1427)t

where 0 < k < R 7Ty Then with probability of at least 1 —66 over sample inputs (x;)"_,,
we have G(D,,) = 05X (142 A g) =L |3 = L O (ol =20-0. S=2GE 00k 2y yphere
b 0, 2a#28-1,

L, 2a=23-1."

Proofof Lemma41. Let S = n”. Let G2.5(Dy) = ]E(zn_*_hyn_*_l)(TQ’S(Dn+1) —T5 5(Dy)). By
Lemma 33, when § > ™t @127} with probability of at least 1 — 34 we have that
|G2(Dn) = G2,5(Dn)|=E(z, 1,y 1) [T2(Dnt1) = T2,5(Dpg1)] = [12(Dn) = T2,5(Dy)]|

= [Enrm)O((§+1) (1) smxtl/2-8:120520 ) G ((§ 1) Lngmaxti/2-fi-astar))|

O(( +1) nSmaX{1/2 ,81 Ot+27’}> (133)

(134)

Let Aq.g = diag{\1,...,As}, D1 s = (¢1( ), 91 (x P ey 0g(x)) and py.s = (p1, ..., s). Since
o = 0, we have T2 S(D ) = 02 M. S’q) S’(I + CI)I:SAI:S(I)ES)_I(I)I:SI«'II:S' Define ny.s =

(61(Tns1)ses05(nt1)) T and ‘I>1:s = (<I>1:S,771:S)T. In the proof of Lemma 34, we showed that

1 1 -
Tz,s(Dn)=ﬁuisq’fsu*-;%:s/\m@{s) "0 5p1:5
1 B 1 _ 1 _
:5#?51\1;;#1;5—5#{51\1;%(1-*-;1\1;5‘1’{3@1:3) Ypis.
‘We have
Go,5(Dn)=E @z, 1 ynir)T2,5(Dny1) —T2,5(Dn))

1 _ 1 _ 1 ~p~
:E(1'1L+17y'rL+1)<2M¥:SA1:,1SM1:S_2M£SA1:1S(I+O_2A153©£¢)S) 1H1:S>

1 -~ 1 -~ 1
- <2“’,{:SA1:}9N1:3_2N¥—:SA1:}S‘(I+ ;Al:sq’f;sq’l $) s )

1 _ 1 _ 1 e
Z]E(zn,+1,yn+1)(QNT:SAL}@(H‘2A1:sq’{gq’1zs) Hi.5— 2#? Alzé(f-l-?/h:sq’gq’s) 1#1:5)

Al ScI) S(bl S) 1A1:S771:S77?;S(I+%Ale@{sq’l:S)ilM )>
1:S

Epi1yn N _
bnii) (2 2 S 1 S 1+T"71 S(I'i_%Al:Sq){Sq)l:S) 1A1:5'771:S
(1 i, 7 PTsPrsAus) ' snls([+ 5 ArsPlgPris) " pis )>
$1L+17yn+1 o2 1+02771 S(I+ Al S(I) 5@1 S) 1A1:S771:S
1+o(1) 1 T 1 T -1

]E(:cnﬂ,ynﬂ) 952 H1 s I+ ‘I>1 sPr.sA1s)” 771:3771:S(I+;Alzsq’hs@hs) H1:s
1+o0 1 _ _

= 2% g)uis(1+7®{S@I:SA1:S) 1(I+§A1:S(I)¥:S(I)1:S) 1“’1:5
140

o S SN 1

(135)
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where in the fourth to last equality we used the Sherman—Morrison formula, in the third inequality
we used (118) , and in the last equality we used the fact that E(, |, . \1:snf.g=1.

Let fi1.r = (t1,...,1tR,0,...,0) ER®. Then we have
1 _ 1 1. 1 _ N
H(I‘F;AI:S(I){;S(I)I:S) 1#1;s||2§||(f+§/\1:s‘1>£s‘1>1:s) 1HI:R||2+H(I‘i‘;/\lzsq){;sq)l:s) Ypis—fr) |2,

17+ g Ars @) sl N+ 5 Ars®s@rg) vl — T+ 5 Ares®hs® 1)~ (s — )l
(136)

Let R = n(at®0-) where 0 < k < %’W In Lemma 29, (62), we showed that with

probability of at least 1 —4,

1T+ & A1 @, 5 @1.0) " pan:pl2 = O (n{ = (1555 10gh 2

(137)
= (1ol (I+ 25 Arr) ™ el

2 26—1 . . .
(1)’ 2a 7 2§ 1’ . The same proof holds if we replace ®1.r with ®1.g, Aq.gr with Ay.g,
, 2a=28-1.

and p1.g with fi1.z. We have

where k= {

[ (1+ ﬁAlzs‘bis‘bl:S)_lﬂl:Mb =@(n(l_t)max{_l’%}logk/zn)

(138)
= (1+o(W)(I+ 5 Aws) ™ frrarll.

Next we bound ||(I + 5 A1.5®T ¢®1.5) " (1.5 — 11:r)||2. By Assumption 5, we have that

| 1.5 — fo1:Rll2 = O(R# ). For any £ € R® and ||¢||2 =1, using the Woodbury matrix identity, with
probability of at least 1 —2§ we have

& (1+ %M:s‘bis‘bl:s)_l(uhs —f1.R)|

=1¢" (I— %ALS(I){S(I"' 012<I’1:SA1:S‘I>ES)_1‘I>1:S> (1.5 —f1:R)]

=167 (1.5 —f1:r) — %gTAI:S(I){;s(I'F%(I)I:SAl:Sq)is)_lq)l:S(Nl:S_ﬂlzR)‘

< €]zl lasis — o+ €7 A s@T g (I 15 Ars®Tg) P (s —fin)|

1-28

1 1 N
<O(R )+§ H(I+p‘bms/\hsq’{s)_1‘1’1:51\1;55”2H‘I’LS(NLS—Nl:R)Hz

O )4 504+ Dnen= 1010 (4R )

—O((z+DR'F),

where in the second to last step we used Corollary 20 to show ||[®q1.5(p1.5 — f1.r)|2 =
O( (%—kl)nR%) with probability of at least 1 — 0, and Lemma 40 to show that

[(I + 5P1sA1sPlg) ' PrsArséls = O(/(5+1)n - n~') with probability of at least
1—4. Since R=n{a "=t we have
1 B . 1 (1-28)(1-t)  (1-28)(A=t)r
|§T(I+§A1:S‘I’{S‘I’1:5) 1(#1:S—H1:R)|=O((5+1)n T T2 )-
Since ¢ is arbitrary, we have |[(I + ZA1s®]¢®P1s) M(pus — fur)le = O((5 +
l)n(17223)‘(14)_’_(1—213)2(14%)' Since 0 < g < [a—(1+2r)4(a12—t)](25—1) and 0 < K < a—1-274(1427)t

2a%(1—1)  °
a—1-274+(1427)t : . . a—1-27+(1427)t
we can choose Kk < 502 (1-1) and « is arbitrarily close to kK < R 7T es

such that
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0<g< w Then we have W—Fq < 0. From (136) and (138), we have

(-28)1=t) , (1-28)(1-t)r
2a + 2

1 _ max{ —(1—¢) (=281 —1) 1
H(1+§A1:S‘I€S‘I’1:S) Yrs |2 =0 (nm@ =00 "= HNog"2n) + O((: +1)n

5
:@(nmaX{—(l—f/)v%}logk/zn) +0((n
—@ (e~ (-0, R o /2

g+ (172123()1(17& n (172B)2(17t)~

)

=o)L+ 5 A1) onrlla

=(1+0(V)|(I+ 25 Ar) ™ il
(139)
Hence Go (D) = 20 ||(1+ L A1.5074@1.5) 1.5 = L O(n(1-Hmax{~ F2p).
Then by (133), we have

1-28)(1—t ~ 1
GQ(DH):Ug@(nmaX{2(1t),(ll)()}logk/Qn)_i_O((d+1);5max{1/2ﬁ,lO¢+2'r}>.

1+q+min{2,28-1y

. max{ 1, o=y (e =ty +1) 10}
Choosing S=n { HamimEne (rt/zamizan) , we get the result. O

Proof of Theorem 9. From Lemmas 39 and 41 and é —1> —2, we have that with probability of at
least 1—74 s

1+0(1 n _ n _ n _
BeG(Dn) =Tt A (T4 oA ) A A2 A 4 I+ A ) i)
:% ( a- a)(l t)) L@( max{_Q(l_t)’%}logk/zn)
_L o(n max{ A=2(=0 (1-2)(= t>})
(140)
[0, 2a#28-1 L (Ar)(1-t)
wherek:—{17 2a:25_1,andR—n ,k>0.
Furthermore, we have
Tr(I+EA)’lA—Tr(H—ﬁAR)’lAR
- CAP i Z n 1—
= Z <D =S > O =—0(R"Y)
p= R+1 tozd T R+11+ 207 p=R+1 g
:O(n(l—@)(l—t)(g‘f‘“))
:O(n(l—ac)x(l—t,)).
Then we have n n
Tr(I+ﬁAR)’lAR:Tr(H—;A)’lA(H—o(l)). (141)
Similarly we can prove
1/2 n
IAK (I+—5Ar) " HIE= ||A1/2(I+ s A) T E(1+o(1)) (142)
n _ _
I(I+—Ar) 1NR||2:||(I+7A) tpll3(1+0(1)) (143)
o o
Letting 6 = 75, the proof is complete. O

In the case of 1y >0, we have the following lemma:

Lemma 42. Let 6 = n~ % where 0 < ¢ < o (HZT)(l A0 Under Assumptions 4, 5 and 6,
assume that g > 0. Then with probability of at least 1 — 60 over sample inputs (x;)}_,, we have

G2 (D)= gaz g +o(1).
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Proof of Lemma 42. Let S = n”. Let G2.5(Dy) = E(mn_*_l’yn_*_l)(TQ’S(Dn+1) — Ty 5(Dy)). By
Lemma 33, when S > ™1 =127 Y with probability of at least 1 — 38 we have that

G2(Dn) =Ga,5(Dn)| = E(w, 1,y 40) [T2(Dnt1) = 12,8 (Dnt1)] = [To(Dp) = 12,5 (D)
:‘E(fﬂn,+1,yn+1)o(( +1) (n+1)Smdx{l/2 B,1— a+27}) O(( +1) Smax{1/2 B,1— a+27’})’

= (( +1) ngmax{1/2-p,1- a+2’r}>

Let As = diag{A1,..., As}, 5 = (¢1(x), ¢1(X), ..., #s(x)) and ps = (u1, ..., ps). Define
ns = (¢o(Tnt1),1(Tnt1)see s b5 (Tn1))” and @g = (% ,ns)”. By the same technique as in the
proof of Lemma 34, we replace A p by /NXE’R =diag{e,\1,...,Ar}, let e— 0 and show the counterpart
of the result (135) in the proof of Lemma 41:

G2,5(Dn) =K, 1,0 1) (12,8(Dn+1) —T2,5(Dn))
_E < 1 HS(I-l- (I)Tq)sAs) 1175'77%:(1-1— ;gAs@g@S)_lus)>
(Enswnsi) | 952 14+ 250 (I+ 5 As®EPg) T Agns

1+0(1) B 1 B
:Emﬂvynm(2021‘5(”02‘1’?%/\3) nsng (I+—5As®5Ps) 1us>

1+o0(1 1 _ 1 _
= 20_2 )H§(1+§¢£®SAS) 1([4’;/\5@5@5) 1/1,5
1+0(1)

1 _
= o2 ||(I+§As¢£q’s) "pslf3,

(144)
where in the fourth to last equality we used the Sherman—Morrison formula, in the third inequality
we used (118) , and in the last equality we used the fact that B, ., .\ 7:s1l.g=1.

Let fig = ({10,411t R,0,-..,0) €R. Then we have
1 _ 1 . 1 _ N
H(I+§AS‘I’§¢’S) 1HS||2SH(I+§AS‘I’§¢S) 1NR||2+||(I+§AS‘1’§‘I’S) Yps—ig)l2

1+ g As@E0s) " > (1 + 5 As@EDs) ™ funllo— (I 5 As®h0s)~ (15— o

(145)

Choose R=n{x %170 where 0 < ;< “=+37E0200 n Lemma 29, (62), we showed that with
probability of at least 1 —4,

[(I+ 5 AT 5 ®1.r)  pr.g|l2 =0 (nt 7 Hmax{= L4522 }logk/Qn)

B (146)

:(1+0(1))H(I+§A1R) NI:R||27
0, 2a#28-1
1, 2a=25-1.
and p1. g with f11. . We have

where k = { ’. The same proof holds if we replace ®1.r with ®;.5, Ay.g with Ay.g,

[(I+ 75 A sPTsP1.s)” 1ﬂ1;R||2:@(n(l_t)max{_l’%}logk/Qn)

n L (147)
=(1Fo(MIT+—5A1s) " fr:zlla.
So we have
—1 —1)max 1 Zﬂ
I+ 5 As®E®s)  furlla=po+O (M1 75 ogh 2 (148)
=po+o(1).
Next we bound [|(I + HAs®L®s) '(ms — ftp)|2. By Assumption 5, we have that

s — ferle = O(R™=7). For any & € RS and ||¢[|s = 1, using the Woodbury matrix
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identity, with probability of at least 1 —2§ we have

1 _ N
|§T(I+§AS‘P£@S) Ypus—pr)|
1 1 .
:|€T(I—JQAS‘I’E(I‘*‘JQ‘I’SAS‘I’?)A‘PS)(Hs—uR)|
. 1 1 _ N
:|€T(H5—HR)—;fTAS‘I’T(I+*‘I’SAS‘I’£) "Og(pus—fr)|

1 .
<lI€ll2llpes — MR||2+ |€TA5<1>T(I+ sPsAsPE) s (s —fur)l

1 .
<O(R )+§||(I+;‘PSAS@@A@SAS&MH‘I’S(HS*MR)HQ
=O(R*#*)+ 0/ G+ Dnn =00 (5 + 1R )

o? 5 5
1 1-28
=O((G+)R™Z),

2/3)
with probability of at least 1 — &, and Lemma 40 to show that || ([ + 5 ®sAs®L) 1 PgAsé|2 =
O(y/(2+1)n-n~(=1) with probability of at least 1 —4. Since R=n= +"‘)(1 t), we have

where in the second to last step we used Corollary 20 to show | P s (g5 — ;lR) [2=0(/(5+1)

1 _ . 1 (1-28)(1—t) , (1-28)(1-t)r
|§T(I+§Asq’£q’s) 1(#5—HR)|=O((5+1)" T

).

Since ¢ is arbitrary, we have [|(I + HAs®LPs)'(ns — pr)l2 = O3 +

1)n(172l25’2l<17t)+(1726)2<17t)~). Since 0 < ¢ < [a—(1+20)A-D]2B-1) o014 () « fo « @=l=2rH(1427)1

4a2 2a2(1—t) ’
we can choose k < %ﬁ%)t and k is arbitrarily close to Kk < %ﬁ%)t such that

0<q< EEDUZ0E Then we have (=2800=0% 4 o (. From (145) and (148), we have

_ max 1 (1-26)(1-t) | (1-28)(1-t)x
1T+ 5 As®T@s) " pusllz =po+O (n(-Omax{=1. 55 }10gk/2n)+0((5+1)” mo )
=g+ O (nDmax{=1. 5280k /2 )

=po+o(1).
(149)
Hence G2 s(D,) = 1+o(1)|\( + LAs®L0s)tus|3 = 5543 + o(1). Then by (144),
GQ(Dn):#M(QrFO( )+O((% )nSmaX{l/Qfﬁ,lfa}).

1+q+mln{2 }

: max o — T min o — T +1>(1_t)}
Choosing S=n { et 2)< Tt , we get the result. O

Proof of Theorem 11. According to Lemma 42, G2(D,,) = 555114 + 0(1). By Lemma 39, we have
(EESTeR
G1(D,)=0(n ) Then E.G(D,,) =G1(Dy)+G2(Dy) = 5z g +o(1). O
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D.3 PROOFS RELATED TO THE EXCESS MEAN SQUARED GENERALIZATION ERROR

Proof of Theorem 12. For pg =0, we can show that
EEM(D) EE@CTL+1[ (xn+1) f(anrl)]Q

=EcEq,, Ko, ix (Kot 0hoaaln) 'y = f(2n41)]
:E5E$7L+1[ TA(I)T[(I)A(I)T+Ur2rlodeIIn)_1(q),u‘f'e)_nTﬂ]Q
=Bl [nTA(I)T((I)A(I)T+Ur2node1[n>71€}2

+]Ern+1 [UT (A(I)T(CDA(I)T—’_UIznodCIIH)il ¢— I) /”L] ’
= ofl.ueTrA@T(fI)Aq)T+or2nodell )T2DA

1
y (1+ <1>T<1>A) (1+ A<I>T<I>) @
modcl modcl
— e ([ AT )TN Ty(74 AT )T+ (T4 - ASTR) T 3.
T model T model T model mo el

According to (139) from the proof of Lemma 41, the truncation procedure (133) and (143), with
probability of at least 1 —¢& we have

(1-28)(1—t)
|4 52— ABT )~ u|F= @ ({200 Nogh/2) = (1-+40(1) | (T+ 52— A) a3
0, 2a#28-1,
1, 2a=28-1.
According to (121) and (126) from the proof of Lemma 39, the truncation procedure (115), (141) and
(142), with probability of at least 1 —§ we have

Te([+ 2252 ) "I\ Tr([+ ART2) =27

model model

= (Tl + 2= 2) 718 ) (Lo(1) = A2 (T4 2= 2) 7} (1+0(1))

T model T model

where k= {

(1—a)(1-t)
:@(n 67

Combining the above two equations we get

EeM(Dy) =(1+0(1)) (5 (Tr(T+ 2= ) A= [AV2(T+ 2= ) %)+ 11T+ 22— A) 7wl

model model
(1-—o)(1-t) (1-2B)(1-t)

— U;me @(nf)_ke(nmax{—%l—t),

- Hogh/n)
(= )(1 t)

model

l1—a—t

=02,.0(n o )+0 prax{=201-1), }logk/2n)
l—a—t (1-28)(1-t)
=0 (max{afruen a n a }>

When g4 > 0, according to (149) in the proof of Lemma 42 and the truncation procedure (133), with
probability of at least 1 —J we have

E.M(D,)=0(n" 5 )+ u3+o(1)

=ug+o(1).
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