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Abstract

Graph convolutional networks (GCNs) are powerful frameworks for learning em-
beddings of graph-structured data. GCNs are traditionally studied through the lens
of Euclidean geometry. Recent works find that non-Euclidean Riemannian man-
ifolds provide specific inductive biases for embedding hierarchical or spherical
data. However, they cannot align well with data of mixed graph topologies. We
consider a larger class of pseudo-Riemannian manifolds that generalize hyper-
boloid and sphere. We develop new geodesic tools that allow for extending neu-
ral network operations into geodesically disconnected pseudo-Riemannian mani-
folds. As a consequence, we derive a pseudo-Riemannian GCN that models data
in pseudo-Riemannian manifolds of constant nonzero curvature in the context
of graph neural networks. Our method provides a geometric inductive bias that
is sufficiently flexible to model mixed heterogeneous topologies like hierarchi-
cal graphs with cycles. We demonstrate the representational capabilities of this
method by applying it to the tasks of graph reconstruction, node classification and
link prediction on a series of standard graphs with mixed topologies. Empirical
results demonstrate that our method outperforms Riemannian counterparts when
embedding graphs of complex topologies.

1 Introduction

Learning from graph-structured data is a pivotal task in machine learning, for which graph con-
volutional networks (GCNs) [} 2, 3| 4] have emerged as powerful graph representation learning
techniques. GCNs exploit both features and structural properties in graphs, which makes them well-
suited for a wide range of applications. For this purpose, graphs are usually embedded in Riemannian
manifolds equipped with a positive definite metric. Euclidean geometry is a special case of Rieman-
nian manifolds of constant zero curvature that can be understood intuitively and has well-defined
operations. However, the representation power of Euclidean space is limited [3]], especially when
embedding complex graphs exhibiting hierarchical structures [6]. Non-Euclidean Riemannian man-
ifolds of constant curvatures provide an alternative to accommodate specific graph topologies. For
example, hyperbolic manifold of constant negative curvature has exponentially growing volume and
is well suited to represent hierarchical structures such as tree-like graphs [7, 8,19, |10} [11]]. Similarly,
spherical manifold of constant positive curvature is suitable for embedding spherical data in vari-
ous fields [12} 13 [14] including graphs with cycles. Some recent works [[15} 16} 17} (18} [19] have
extended GCNs to such non-Euclidean manifolds and have shown substantial improvements.
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Figure 1: The different submanifolds of a four-dimensional pseudo-hyperboloid of curvature —1

with two time dimensions. By fixing one time dimension x(, the induced submanifolds include (a)
an one-sheet hyperboloid, (b) the double cone, and (c) a two-sheet hyperboloid.

The topologies in real-world graphs [6], however, usually exhibit highly heterogeneous topological
structures, which are best represented by different geometrical curvatures. A globally homogeneous
geometry lacks the flexibility for modeling complex graphs [20]. Instead of using a single manifold,
product manifolds 21]] combining multiple Riemannian manifolds have shown advantages when
embedding graphs of mixed topologies. However, the curvature distribution of product manifolds is
the same at each point, which limits the capability of embedding topologically heterogeneous graphs.
Furthermore, Riemannian manifolds are equipped with a positive definite metric disallowing for the
faithful representation of the negative eigen-spectrum of input similarities [22]].

Going beyond Riemannian manifolds, pseudo-Riemannian manifolds equipped with indefinite met-
rics constitute a larger class of geometries, pseudo-Riemannian manifolds of constant nonzero cur-
vature do not only generalize the hyperbolic and spherical manifolds, but also contain their subman-
ifolds (Cf. Fig.[I), thus providing inductive biases specific to these geometries. Pseudo-Riemannian
geometry with constant zero curvature (i.e. Lorentzian spacetime) was applied to manifold learn-
ing for preserving local information of non-metric data [5] and embedding directed acyclic graph
[23]]. To model complex graphs containing both hierarchies and cycles, pseudo-Riemannian man-
ifolds with constant nonzero curvature have recently been applied into graph embeddings using
non-parametric learning [26]], but the representation power of these works is not on par with
the Riemannian counterparts yet, mostly because of the absence of geodesic tools to extend neural
network operations into pseudo-Riemannian geometry.

In this paper, we take the first step to extend GCNs into pseudo-Riemannian manifolds foregoing the
requirement to have a positive definite metric. Exploiting pseudo-Riemannian geometry for GCNSs is
non-trivial because of the geodesical disconnectedness in pseudo-Riemannian geometry. There exist
broken points that cannot be smoothly connected by a geodesic, leaving necessary geodesic tools un-
defined. To deal with it, we develop novel geodesic tools that empower manipulating representations
in geodesically disconnected pseudo-Riemannian manifolds. We make it by finding diffeomorphic
manifolds that provide alternative geodesic operations that smoothly avoid broken cases. Subse-
quently, we generalize GCNs to learn representations of complex graphs in pseudo-Riemannian
geometry by defining corresponding operations such as linear transformation and tangential ag-
gregation. Different from previous works, the initial features of GCN could be fully defined in the
Euclidean space. Thanks to the diffeomorphic operation that is bijective and differentiable, the stan-
dard gradient descent algorithm can be exploited to perform optimization.

To summarize, our main contributions are as follows: 1) We present neural network opera-
tions in pseudo-Riemannian manifolds with novel geodesic tools, to stimulate the applications of
pseudo-Riemannian geometry in geometric deep learning. 2) We present a principled framework,
pseudo-Riemannian GCN, which generalizes GCNs into pseudo-Riemannian manifolds with in-
definite metrics, providing more flexible inductive biases to accommodate complex graphs with
mixed topologies. 3) Extensive evaluations on three standard tasks demonstrate that our model
outperforms baselines that operate in Riemannian manifolds. Source code is open available at
https://github.com/xiongbo010/QGCN.



2 Preliminaries

2.1 Pseudo-Riemannian manifolds

A pseudo-Riemannian manifold [27] (M, g) is a smooth manifold M equipped with a nondegen-
erate and indefinite metric tensor g. Nondegeneracy means that for a given & € T, M, for any
¢ € TxM we have gx(&,¢) = 0, then & = 0. The metric tensor g induces a scalar product on the
tangent space TxM for each point x € M such that g« : TxM X TxM — R, where the tangent
space TxM can be seen as the first order local approximation of M around point x. The elements of
TxM are called tangent vectors. Indefinity means that the metric tensor could be of arbitrary signs.
A principal special case is the Riemannian geometry, where the metric tensor is positive definite (i.e.

V€ € TxM, gx(€,€) > 0iff £ # 0).

Pseudo-hyperboloid By analogy with hyperboloid and sphere in Euclidean space. Pseudo-
hyperboloids are defined as the submanifolds in the ambient pseudo-Euclidean space R***! with
the dimensionality of d = s + t + 1 that uses the scalar product as Vx,y € R (x y), =

— ZE:O xiyi + ngﬂ x;y;. The scalar product induces a norm ||x||? = (x,x); that can be used
to define a pseudo-hyperboloid QZ’t = {x = (20,21, Teyy) € RS |x||2 = ﬁ}, where

[ is a nonzero real number parameter of curvature. QZ’t is called pseudo-sphere when 8 > 0 and

pseudo-hyperboloid when < 0. Since QZ’t is interchangeable with Qtjﬁl’kl, we consider the

pseudo-hyperbololid here. Following the terminology of special relativity, a point in QZ"t can be

interpreted as an event [S]], where the first £ + 1 dimensions are time dimensions and the last s
dimensions are space dimensions. Hyperbolic H and spherical S manifolds can be defined as the
special cases of pseudo-hyperboloids by setting all time dimensions except one to be zero and set-

ting all space dimensions to be zero, respectively, i.e. Hg = Q;’l, S_g= Qg’t.

2.2 Geodesic tools of pseudo-hyperboloid

Geodesic A generalization of a straight-line in the Euclidean space to a manifold is called the
geodesic [15, 28]. Formally, a geodesic ~ is defined as a constant speed curve v : 7 — (1) €
M, 1 € |[0,1] joining two points x,y € M that minimizes the length, where the length of a curve

is given by L(v) = fol \ /H%’Y(T)H»Y(T)dt' The geodesic holds that v* = arg min,, L(-y), such that
v(0) = x,v(1) = y, and H%v(r)“w(ﬂ = 1. By the means of the geodesic, the distance between
X,y € Q;’t is defined as the arc length of geodesic (7).

Exponential and logarithmic maps The connections between manifolds and fangent space are
established by the differentiable exponential map and logarithmic map. The exponential map at x is
defined as exp, (&) = (1), which gives a way to project a vector € € Ty M to a point exp, (§) € M
on the manifold. The logarithmic map log,, : M — T M is defined as the inverse of the exponential
map (i.e. log, = exp;!). Note that since QZ’t is a geodesically complete manifold, the domain of

the exponential map D, is hence defined on the entire tangent space, i.e. D, = 7§(Q2’t. However,
as we will explain later, the logarithmic map log, (y) is only defined when there exists a a length-
minimizing geodesic between X,y € Q‘;’t. More details can be found in the Appendix

Geodesical connectedness A pseudo-Riemannian manifold M is connected iff any two points of
M can be joined by a piecewise (broken) geodesic with each piece being a smooth geodesic. The
manifold is geodesically connected (or g-connected) iff any two points can be smoothly connected
by a geodesic, where the two points are called g-connected, otherwise called g-disconnected. Differ-
ent from Riemannian manifolds in which the geodesical completeness implies the g-connectedness
(Hopf-Rinow theorem [29]]), pseudo-hyperboloid is a geodesically complete but not g-connected
manifold where there exist points that cannot be smoothly connected by a geodesic [30]]. For-
mally, in the pseudo-hyperboloid, two points x,y € Qg’t are g-connected iff (x,y): < |B].

The set of g-comnected points of x € Qg’t is denoted as its normal neighborhood Uy =



{y € Qg’t S (x,y) < \6|} For g-disconnected points x,y € Q;’t, there does not exist a tan-

gent vector ¢ such that y = exp? (&), which implies that its inverse log” (-) is only defined in
the normal neighborhood of x. In a nutshell, the geodesic tools for the g-disconnected cases are not
well-defined, making it impossible to define corresponding vector operations.

3 Pseudo-Riemannian GCNs

In this section, we first describe how to tackle the g-disconnectedness in pseudo-Riemannian mani-
folds. Then we present the pseudo-Riemannian GCNs based on the proposed geodesic tools.

3.1 Diffeomorphic geodesic tools

One standard way to tackle the g-disconnectedness in differential geometry is to introduce diffeo-
morphic manifolds in which the operations are well-defined. A diffeomorphic manifold can be de-
rived from a diffeomorphism, defined as follows.

Definition 1 (Diffeomorphism [27]]). Given two manifolds M and M’, a smoothmap 1) : M — M’
is called a diffeomorphism if 1 is bijective and its inverse 1~ is smooth as well. If a diffeomorphism
between M and M’ exists, we call them diffeomorphic and write M ~ M’.

For pseudo-Riemannian manifolds, the following diffeomorphism [24] decomposes pseudo-
hyperboloid into the product manifolds of an unit sphere and the Euclidean space.
Theorem 1 (Theorem 4.1 in [24]). For any point x € Qz’t, there exists a diffeomorphism ) :

Qsﬁ’t — SY x R® that maps x into the product manifolds of an unit sphere and the Euclidean space.

The diffeomorphism is given in the Appendix In light of this, we introduce a new diffeomor-
phism that maps x to the product manifolds of sphere with curvature —1/3 and the Euclidean space.
Theorem 2. For any point x € Qg’t, there exists a diffeomorphism 1) : Qg’t — S' 5 xR® that maps
x into the product manifolds of a sphere and the Euclidean space (proof in the Appendix|D.2).

Compared with Theorem([I] this diffeomorphism preserves the curvatures in the diffeomorphic com-
ponents, making it satisfy some geometric properties, e.g. the mapped point x; € St s still lies on the
surface of the pseudo-hyperboloid, making moving the tangent vectors from the pseudo-hyperboloid
to the diffeomorphic manifold easy as we explained later. We call v as the spherical projection.

Exponential and logarithmic maps. Considering that pseudo-hyperboloid Qg’t is g-
disconnected, we propose to transfer the logmap and expmap into the diffeomorphic manifold
P Qg’t — St 5 % R, since the product manifold St 5 % R® is g-connected. To map tangent

vectors between tangent space of QZ’t and St 5 X R?, we exploit pushforward that induce a linear

approximation of smooth maps on tangent spaces.

Definition 2 (Pushforward). Suppose that 1) : M — M’ is a smooth map, then the differential of
W: di at point X is a linear map from the tangent space of M at x to the tangent space of M’ at
Y(x). Namely, dip : Te M — Ty M’

Si

Intuitively, pushforward can be used to push tangent vectors on 7,Q 5 t forward to tangent vectors
on %(I)SE 5 < R®. Based on this, the new logmap and its inverse expmap can be defined by Eq. (lll)

g gzt (x) = ¥ (logsr | wpe (W(X))), SFoye(€) = ¥ expae e (6(€), (D

where 1)(+) is the spherical projection and ¥»~1(-) is the inverse. The mapping of tangent vectors is
achieved by pushforward operations. The operations logg: xRS (+) and expg: xR (+) in the product

manifolds can be defined as the concatenation of corresponding operations in different components.
loger e (') = loger () [[logee (x)),  expge_cxe(€) = expge (&) || exppe (€). (@)
where || denotes the concatenation, x' = 15(x) consists of spherical features x; € S* ;5 and Eu-

clidean features x/, € R®. £ is the tangent vector induced by x on Qg’t.

We choose points where space dimension s = 0 as the reference points due to the following property.



Theorem 3. For any reference point x = ( t ) e Q¥ 5 with space dimension s = 0, the induced

tangent space of Qg’t is equal to the tangent space of its diffeomorphic manifold St 5 %X R?, namely,
Tx(S' 5 x R?) = 7;Q2’t. (proof in the Appendix .

The intuition of proof is that if space dimension s = 0, the pushforward (differential) function
just influences time dimension, for which the mapping is just an identity function (see Appendix
D.2). In this way, although we transfer logmap and expmap to the diffeomorphic manifold S g X

R, the diffeomorphic operations log, () and éxp, (-) are still bijective functions from the pseudo-
hyperboloid to the tangent space of the manifold itself. Hence, our final operations are actually still
defined in the tangent space of the pseudo-hyperboloid. Note that such property only holds when
our Theorem [2is applied and the special reference points with space dimension s = 0 are chosen.

By leveraging the new logmap and expmap, we further formulate the diffeomorphic version of tan-
gential operations as follows.

Tangential operations. For function f : R¢ — R?', the pseudo-hyperboloid version f® : Qg’t

Q;:’t/ with s+t = d and s’ + ¢ = d’ can be defined by the means of E)Tgx( ) and exp. (-) as Eq.
—~p
72() =55 (f (logx (1)) 3)

where x is the reference point. Note that this function is a morphism (i.e. (f 0 ¢)® = f® o ¢%)
and direction preserving (i.e. fEC)/IfCCN = fC)/I1f¢)|D [15], making it a natural way to de-
fine pseudo-hyperboloid version of vector operations such like scalar multiplication, matrix-vector
multiplication, tangential aggregation and point-wise non-linearity and so on.

Parallel transport. Parallel transport is the generalization of Euclidean translation into manifolds.
Formally, for any two points x and y connected by a geodesic, parallel transport P _)y(é ) TxM —
Ty M is an isomorphism between two tangent spaces by moving one tangent vector { € T, M
with tangent direction £ € 7,M to another tangent space 7y M. The parallel transport in pseudo-
hyperboloid can be defined as the combination of Riemannian parallel transport [31]. However, the
parallel transport has not been defined when there does not exist a geodesic between x and y. i.e.,
the tangent vector ¢ induced by x can not be transported to the tangent space of points outside of
the normal neighborhood . Intuitively, the normal neighborhoods satisfy the following property.

Theorem 4. For any point x € o5t g the union of the normal neighborhood of x and the normal

neighborhood of its antipodal point —x cover the entire manifold. Namely, Uy UU_ = Q%" g (proof
in the Appendix[D.4).

This theorem ensures that if a point y ¢ U, its antipodal point —y € Ux. Besides, Ty, M is parallel
to 7_yM. Hence, P/ _,y can be alternatively defined as Pf _,_y for broken points. This result is
crucial to define the pseudo-hyperbolic addition, such as bias translation, detailed in section[3.2]

Broken geodesic distance. By the means of geodesic, the induced distance between x and

y in pseudo-hyperboloid is defined as the arc length of geodesic v(7), given by d,(x,y) =
||logx(y)||? . For broken cases in which log, (y) is not defined, one approach is to use approx-

imation like [24]. Different from that, we define following closed-form distance, given by Eq. ().

4 (x,y), if (x,y): < I8
Dy(x,y) = {mﬁ+d —y), i (x.y) > |6 @

The intuition is that when x,y € QZ’t are g-disconnected, we consider the distance as d., (x,y) =
dy(x,—x) + dy(—x,y) ord,(x,y) = dy(x,—y) + dy(—y,y). Since d (x, —x) = d, (—-y,y) =
/|| is a constant and d., (—x,y) = d,(x, —y), the distance between broken points can be calcu-
lated as d (x,y) = /|6 + dy(x, —y).

To clarify theoretical contributions, our Theorem [2|is nessasary for our Theorem |3| while Theorem
is nessasary for transforming the GCN operations directly into the tangent space of the pseudo-
hyperboloid. Besides, we are the first to formulate the diffeomorphic expmap, logmap and tangential



operations of pseudo-hyperboloid to avoid broken cases. The theoretical properties of parallel trans-
port and geodesic distance are discussed in the literature [24,31]]. However, we re-formulate parallel
transport with Theorem |4f to avoid broken issues and propose a new distance measure using the
broken geodesic (EqH]), which is different from the approximated distance in [24].

3.2 Model architecture

GCNs can be interpreted as performing neighborhood aggregation after a linear transformation on
node features of each layer. We present pseudo-Riemannian GCNs (Q-GCN) by deriving corre-

sponding operations with the developed geodesic tools in the Qg’t.

Feature initialization. We first map the features from Euclidean space to pseudo-hyperboloid,
considering that the input features of nodes usually live in Euclidean space. Following the feature
transformation from Euclidean space to pseudo-hyperboloid in [24], we initialize the node features
by performing a differentiable mapping ¢ : RiFt x RS — QZ’t that can be implemented by a
double projection [24] based on Theorem [2| i.e. ¢ = ="' o 7). The intuition is that we first map
the Euclidean features into diffeomorphic manifolds St g X R® via 1(+), and then map them into the

pseudo-hyperboloid Q;’t via ¢~1(-), where the mapping functions are given by Eq. .

w|L \/\5\+HV||2u
voo = (VI ) = (v ) ®
v
where x = (t,s)' € Qg’t witht € Rt ands € R®.z = (u,v)' € St 5 x R® withu € S* 5 and
v e R’

Tangential aggregation. The linear combination of neighborhood features is lifted to the tangent
space, which is an intrinsic operation in differential manifolds [32}|16]. Specifically, Q-GCN aggre-
gates neighbours’ embeddings in the tangent space of the reference point o before passing through
a tangential activation function, and then projects the updated representation back to the manifold.
Formally, at each layer /, the updated features of each node i are defined as Eq. (6).

h{* — ape (( > g (W't m e bz)))’ ”

JEN (B)U{i}
where o(-) is the activation function, 8, and Sy are two layer-wise curvatures, A/ (i) denotes
the one-hop neighborhoods of node i, and the ®, @ denote two basic operations, i.e. tangential
transformation and bias translation, respectively.

Tangential transformation. We perform Euclidean transformations on the tangent space by lever-
aging the expmap and logmap in Eq. (I). Specifically, we first project the hidden feature into the
tangent space of south pole o = [|f),0,,...,0] using logmap and then perform Euclidean matrix
multiplication. Afterwards, the transformed features are mapped back to the manifold using expmap.
Formally, at each layer /, the tangential transformation is given by W*‘®”h? := e/ﬁg (Welo/\gf (h?)),
where ®” denotes the pseudo-hyperboloid tangential multiplication, and W* & R %4 denotes the
layer-wise learnable matrix in Euclidean space.

Bias translation. It is noteworthy that simply stacking multiple layers of the tangential trans-
formation would collapse the composition [32, [13], i.e. exp? ...(W™ log? (exp (W0 log? (z)))) =
expZ (WO x W' x ... x log?(x)), which means that these multiplications can simply be per-
formed in Euclidean space except the first logmap and last expmap. To avoid model collapsing , we
perform bias translation after the tangential transformation. By the means of pseudo-hyperboloid
parallel transport, the bias translation can be performed by parallel transporting a tangent vector

b’ ¢ %Q;’t to the tangent space of the point of interest. Finally, the transported tangent vector
is mapped back to the manifold with expmap. Considering that exp(-) is only defined at point
X € Qg’t with the space dimension x; = 0, we perform the original exp Q;,t(-) at the point of
interest. The bias translation is formally given by:

B8 &l ¢ . ~0
h @f b = { expr, (Po—>f12 (b )) , if (0,h?), < |8

N @)
—expéﬁg (PB (b‘f)) , if (o,h"); > |8

o——h?



where h! = W’ P h’, ®° denotes the pseudo-hyperboloid addition. For the broken cases where
(0,h'); > ||, the parallel transport PfH . is not defined. In this case, we parallel transport b’ to the

tangent space of the antipodal point —h*, and then perform exp/i ;o to map it back to the manifold.

Note that the case (o, h’); = |3| occurs if and only if h = —o, in which case Pf_}_ﬁe (") =
P, o (b') =—b.

3.3 Model training

Having introduced all the building blocks, Q-GCN stacks multiple pseudo-Riemannian GCN layers
and the final embeddings at the last layer can then be used to perform downstream tasks. For graph
reconstruction, the objective is to map all nodes into a low-dimensional space such that the con-
nected nodes are closer than unconnected nodes. Following [20, [24]], we minimize the loss function
e—d(uw)
ﬁ(@) = Z(u,v)E'D log m
E(u) = {v|(u,v) ¢ D,v # u} is the set of negative examples for node u, d(-) is the distance
function defined in Eq. (). For node classification, we map the output of the last layer of Q-GCN
to the tangent space, and then perform Euclidean multinomial logistic regression. For link predic-
tion, we utilize the Fermi-Dirac decoder [8] to compute probability scores for edges, formally given
by Plews € €|©) = —amw=m7» Where r and ¢ are hyperparameters, d(u, v) is the distance
function in the embedding space. We then train Q-GCN by minimizing the cross-entropy loss using
negative sampling.

under the set of connected relations D in the graph, where

Optimization. Although the model is built in Q;’t, the trainable parameters are all defined in Eu-
clidean space through the diffeomorphic mappings. Following the standard tangential optimization
strategy [32], the parameters can be optimized via Euclidean optimization by applying layer-wise
diffeomorphic expmap and logmap. One optional strategy is to use dedicated optimization like [24],
which we left for our future work.

Complexity analysis. The time complexity is the same as a vanilla GCN given by O(|V|dd'+|E|d’),
where |V | and | E| are the number of nodes and edges, d and d’ are the dimension of input and hidden
features. The computation can be parallelized across all nodes. Similar to other non-Euclidean GCNs
[32, 133} [17], the mapping from manifolds to the tangent space consume additional computation
resources, compared with Euclidean GCNs, which is within the acceptable limits.

4 Experiments

We evaluate the effectiveness of Q-GCN on graph reconstruction, node classification and link pre-
diction. Firstly, we study the geometric properties of the used datasets including the graph sectional
curvature [20] and the §-hyperbolicity [[7]. Fig.[4]in the Appendix shows the histograms of sectional
curvature and the mean sectional curvature for all datasets. It can be seen that all datasets have
both positive and negative sectional curvatures, showcasing that all graphs contain mixed graph
topologies. To further analyze the degree of the hierarchy, we apply J-hyperbolicity to identify
the tree-likeness, as shown in Table [0]in the Appendix. We conjecture that the datasets with pos-
itive graph sectional curvature or larger J-hyperbolicity should be suitable for pseudo-hyperboloid
with a smaller time dimension, while datasets with negative graph sectional curvature or smaller
d-hyperbolicity should be aligned well with pseudo-hyperboloid with a larger time dimension.

4.1 Graph reconstruction

Datasets and baselines. We benchmark graph reconstruction on four real-world graphs including
1) Web-Edu [34]: a web network consisting of the .edu domain; 2) Power [35]: a power grid dis-
tribution network with backbone structure; 3) Bio-Worm [36]]: a worms gene network; 4) Facebook
[37]: a dense social network from Facebook. We compare our method with Euclidean GCN [2], hy-
perbolic GCN (HGCN) [32], spherical GCN, and product manifold GCNs (x-GCN) [33]] with three
signatures (i.e. H? x H®, H® x S? and S® x S°). Besides, five variants of our model are implemented
with different time dimension in [1, 3, 5, 7, 10] for comparison.



Table 2: ROC AUC (%) for Link Prediction (LP) and F1 score for Node Classification (NC).

Dataset Airport Pubmed CiteSeer Cora
d-hyperbolicity 1.0 35 4.5 11.0
Method LP NC LP NC LP NC LP NC
GCN 89.24+0.21 81.54+0.60 91.31+1.68 79.30+0.60 85.48+1.75 72.27+0.64 88.52+0.85 81.90+0.41
GAT 90.35£0.30  81.55+0.53 87.45+0.00 78.30+0.00 87.24+0.00 71.10+0.00 85.73+0.01  83.05+0.08
SAGE 89.86+0.52  82.79+0.17 90.70+0.07 77.30+0.09 90.71+0.20 69.20+0.10 87.52+0.22  74.90+0.07
SGC 89.80+0.34 80.69+0.23 90.54+0.07 78.60+0.30 89.61+0.23 71.60+0.03 89.42+0.11 81.60+0.43

HGCN (H®) 96.03+0.26  90.57+0.36  96.08+0.21  80.50+1.23  96.31+0.41 68.90+0.63 91.62+0.33  79.90+0.18
k-GCN (H!6) 96.35£0.62  87.92+1.33  96.60+0.32  77.96+0.36 95.34+0.16 73.25+0.51 94.04+0.34  79.80+0.50
k-GCN (S16) 90.38+0.32  81.94+0.58 94.84+0.13 78.80+£0.49 95.79+0.24 72.13+0.51 93.20+0.48 81.08+1.45
k-GCN (H® x S%)  93.10£0.49  81.93+0.45 94.89£0.19 79.20£0.65 93.44+0.31 73.05£0.59 92.22+0.48  79.30+0.81

Q-GCN (Q™>1)  96.30+0.22 89.72+0.52 95.42+0.22 80.50+0.26 94.76+1.49 72.67+0.76 93.14+0.30  80.57+0.20
Q-GCN (Q'*2)  94.37+0.44 84.40+0.35 96.86+0.37 81.34+1.54 94.78+0.17 73.43+0.58 93.4120.57 81.62+0.21
Q-GCN (Q'33)  92.53+0.17 82.38+1.53 96.20+0.34 80.94+0.45 94.54+0.16 74.13x1.41 93.56x0.18 79.91+0.42
O-GCN (Q%™)  90.0320.12 81.14+1.32 94.30+1.09 78.40£0.39 94.80+0.08 72.72+0.47 94.17+0.38 83.10+0.35
O-GCN (Q11%)  89.07+0.58 81.24+0.34 94.66+0.18 78.11x1.38 97.01+0.30 73.19+1.58 94.81+0.27  83.72+0.43
Q-GCN (Q%16)  89.01+0.61 80.91+0.65 94.49+0.28 77.90+0.80 96.21+0.38 72.54+0.27 95.16x1.25 82.5120.32

Experimental settings. Following Table 1: The graph reconstruction results in mAP (%), top
(20, 24, 133]], we use one-hot embed- three results are highlighted. Standard deviations are rela-
dings as initial node features. To avoid  tively small (in range [0, 1.2 x 10~2]) and are omitted.

the time dimensions being 0, we uni-

formly perturb each dimension with Model Web-Edu Power Bio-Worm  Facebook
a small random value in the interval Curvature -0.6 0.3 0.0 0.1
[—€, €], where e = 0.02 in practice. GCN (E1%) 83.66  86.61 90.19 81.73
In addition, the same 10-dimensional HGCN (H'%) 8833  93.80 93.12 83.40
embedding and 2 hidden layers are GCN (81%) 8272 9273 88.98 81.04
used for all baselines to ensure a fair ~ #-GCN (H> x H*) ~ 89.21  94.40 94.00 84.94
comparison. The learning rate is setto ~ #GCN(S?xS%) 8670 9458 90.36 84.56
0.01, the learning rate of curvature is OGN xS 8796 9582 9474 87.73
.. 9-GCN (Q71) 87.03 94.35 92.83 81.60
set to 0.0001. Q-GCN is implemented O-GCN (Q7%) 99.67  100.00 97.23 $7.74
with the Adam optimizer. We repeat Q-GCN (Q°) 9849  100.00 9575 87.03
the experiments 10 times via different Q-GCN (Q37) 97.31 95.08 90.14 91.75
random seeds influencing weight Q-GCN (Q*1%) 82.57  94.20 88.67 83.81

initialization and data batching.

Results. Table[Tlshows the mean av-

erage precision (mAP) [20] results of graph reconstruction on four datasets. It shows that Q-GCN
achieves the best performance across all benchmarks compared with both Riemannian space and
product manifolds. We observe that by setting proper signatures, the product spaces perform bet-
ter than a single geometry. It is consistent with our statement that the expression power of a single
view geometry is limited. Specifically, all the top three results are achieved by Q-GCN, with one
exception on Power where H® x S achieved the third-best performance. More precisely, for datasets
that have smaller graph sectional curvature like Web-Edu, Power and Bio-Worm, Q7% perform the
best, while Q%7 perform the best on Facebook with positive sectional curvature. We conjecture that
the number of time dimensions controls the geometry of the pseudo-hyperboloid. We find that the
graphs with more hierarchical structures are inclined to be embedded with fewer time dimensions.
By analyzing the sectional curvature in Fig. 4] we find that this makes sense as the mean sectional
curvature of Power, Bio-Wormnet and Web-Edu are negative while it is negative for Facebook. Such
results give us an intuition to determine the best time dimension based on the geometric properties
of graphs.

4.2 Node classification and link prediction

Datasets and baselines. We consider four benchmark datasets: Airport, Pubmed, Citeseer and
Cora, where Airport is airline networks, Pubmed, Citeseer and Cora are three citation networks. We
observe that the graph sectional curvatures of the four datasets are consistently negative without
significant differences in Fig. 4] hence we report the additional §-hyperbolicity for comparison in
Table GCN [2], GAT [3], SAGE [38]] and SGC [4]] are used as Euclidean GCN counterparts. For
non-Euclidean GCN baselines, we compare HGCN [32]] and x-GCN [33]] with its three variants as



Table 3: F1 score for node classification of MLP, HNN Table 4: The running time (sec) of graph re-

and Q-NN on Pubmed, Citeseer and Cora. construction on Web-Edu and Facebook.
Method Pubmed CiteSeer Cora Manifolds Web-Edu  Facebook

MLP 72.3020.30  60.22+0.42  55.80+0.08 GCN (E'?) 2284 5456

HNN 74.60£0.40 59.92+0.87  59.60+0.09 Prod-GCN (H® x S%) 4336 10338
O-NN (Q15:1y  74.31+£0.33 59.3320.35 60.38+0.56 O-GCN (Q%1) 2769 6981
O-NN (Q'2)  76.26+0.31 64.3320.35 62.77+0.30 O-GCN (Q7%) 3363 6303
O-NN (Q!33)  75.85+0.79 63.6520.57 59.04+0.45 Q-GCN (Q5%) 3620 7142
O-NN (Q>14) 74442068 60.48+0.29 63.85+0.22 O-GCN (937) 3685 7512
O-NN (QL15)  73.44+028 60.33£0.40 64.85+0.24 O-GCN (Q"?) 3532 7980
O-NN (Q%16)  7331+0.17 61.05+0.22 63.9620.41 Q-GCN (Q™'%) 2778 7037

explained before. For Q-GCN, we empirically set the time dimension as [1, 2, 3, 14, 15, 16] as six
variants since these settings best reflect the geometric properties of hyperbolic and spherical space,
respectively.

Experimental settings. For node classification, we use the same dataset split as [39]] for citation
datasets, where 20 nodes per class are used for training, and 500 nodes are used for validation and
1000 nodes are used for testing. For Airport, we split the dataset into 70/15/15. For link prediction,
the edges are split into 85/5/10 percent for training, validation and testing for all datasets. To ensure
a fair comparison, we set the same 16-dimension hidden embedding, 0.01 initial learning rate and
0.0001 learning rate for curvature. The optimal regularization with weight decay, dropout rate, the
number of layers and activation functions are obtained by grid search for each method. We report
the mean accuracy over 10 random seeds influencing weight initialization and batching sequence.

Results. Table[2|shows the averaged ROC AUC for link prediction, and F1 score for node classifi-
cation. As we can see from the §-hyperbolicity, Airport and Pubmed are more hierarchical than Cite-
Seer and Cora. For Airport and Pubmed with dominating hierarchical properties (lower 9), Q-GCNs
with fewer time dimensions achieve the results on par with hyperbolic space based methods such
as HGCN [32], x-GCN (H'6). While for CiteSeer and Cora with less tree-like properties (higher
0), Q-GCNs achieve the state-of-the-art results, showcasing the flexibility of our model to embed
complex graphs with different curvatures. More specifically, Q-GCN with more time dimensions
consistently performs best on Cora. While for CiteSeer, albeit Q-GCN achieves the best results, the
corresponding best variants are not consistent on both tasks.

4.3 Parameter sensitivity and analysis

Time dimension. We study the influence of time
dimension for graph reconstruction by setting vary-
ing number of time dimensions under the condition
of s +t = 10. Fig. 2] shows that the time dimension
t acts as a knob for controlling the geometric prop-
erties of Q‘;’t. The best performance are achieved
by neither hyperboloid (¢ = 1) nor sphere cases
(t = 10), showcasing the advantages of Qg’t onrep-
resenting graphs of mixed topologies. It shows that —— Facebook
on Web-Edu, Power and Bio-Worm with smaller 2 3 4 5 6 7 8 9 10
mean sectional curvature, after the optimal value is Time dimension (t)

reached at a lower ¢, the performance decrease as ¢
increases. While on Facebook with larger (positive)
mean sectional curvature, as ¢ rises, the effect grad-
ually increases until it reaches a peak at a higher ¢.
It is consistent with our hypothesis that graphs with
more hierarchical structure are inclined to be embedded in Q‘;’t with smaller ¢, while cyclical data
is aligned well with larger ¢. The results give us an intuition to determine the best time dimension
based on the geometric properties of graphs.
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Figure 2: The mAP of graph reconstruction
with varying number of time dimensions.



(a) Spherical projection (b) Hyperbolic projection (3D) (c) Hyperbolic projection (disk)

Figure 3: Visualization of the learned embeddings for link prediction on Pubmed (left) and Cora
(right), where the colors denote the class of nodes. We apply (a) spherical projection, (b) hyperbolic
projection (3D) and (c¢) hyperbolic projection (Poincaré disk) on the learned embeddings of @-GCN
to visualize various views of the learned embeddings.

O-NN VS O-GCN. We also introduce Q-NN, a generalization of MLP into pseudo-Riemannian
manifold, defined as multiple layers of f(x) = o® (W ®° x ®° b), where o® is the tangential
activation. Table [3] shows that Q-NN with appropriate time dimension outperforms MLP and HNN
on node classification, showcasing the expression power of pseudo-hyperboloid. Furthermore, com-
pared with the results of Q-GCN in Table 2] Q-GCN performs better than Q-NN, suggesting that
the benefits of the neighborhood aggregation equipped with the proposed GCN operations.

Computation efficiency. We compare the running time of @-GCN, GCN and Prod-GCN per epoch.
Table 4| shows that Q-GCN achieves higher efficiency than Prod-GCN (H® x S°). This is mainly
owing to that the component R in our diffeomorphic manifold (S x R) runs faster than non-Euclidean
components in H? x S°. The additional running time mainly comes from the mapping operations and
the projection from the time dimensions to S. The running time grows when increasing the number
of time dimensions. Overall, albeit slower than Euclidean GCN, the running time of all variants of
O-GCN is smaller than the twice of time in Euclidean GCN, which is within the acceptable limits.

Visualization. To visualize the embeddings learned by Q-GCN, we use UMAP toolto project the
learned embeddings for Link Prediction on Pubmed and Cora into low-dimensional spherical and
hyperbolic spaces. The projections include spherical projection into 3D sphere, hyperbolic projec-
tion into 3D plane, and 2D Poincaré disk. As shown in Fig.[3|(a,b), for Pubmed with more hyperbolic
structures, the class separability is more significant in hyperbolic projection than that is in spherical
projection. While the corresponding result is opposite for less tree-like Cora. Furthermore, Fig. [3|(c)
provides a more clear insight of the hierarchy. It shows that there are more hub nodes near the origin
of Poincaré disk in Pubmed than in Cora, showcasing the dominating tree-likeness of Pubmed.

5 Conclusion

In this paper, we generalize GCNs to pseudo-Riemannian manifolds of constant nonzero curvature
with elegant theories of diffeomorphic geometry tools. The proposed Q-GCN have the flexibility to
fit complex graphs with mixed curvatures and have shown promising results on graph reconstruction,
node classification and link prediction. One limitation might be the choice of time dimension, we
provide some insights to decide the best time dimension but this could still be improved, which
we left for our future work. The developed geodesic tools are application-agnostic and could be
extended to more deep learning methods. We foresee our work would shed light on the direction of
non-Euclidean geometric deep learning.
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