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Abstract001

Rotary Position Embedding (RoPE) has shown002
strong performance in text-based Large Lan-003
guage Models (LLMs), but extending it to004
video remains a challenge due to the intricate005
spatiotemporal structure of video frames. Ex-006
isting adaptations, such as RoPE-3D, attempt007
to encode spatial and temporal dimensions sep-008
arately but suffer from two major limitations:009
positional bias in attention distribution and dis-010
ruptions in video-text transitions. To overcome011
these issues, we propose Video Rotary Position012
Embedding (VRoPE), a novel positional encod-013
ing method tailored for Video-LLMs. Specifi-014
cally, we introduce a more balanced encoding015
strategy that mitigates attention biases, ensur-016
ing a more uniform distribution of spatial fo-017
cus. Additionally, our approach restructures018
positional indices to ensure a smooth transi-019
tion between video and text tokens. Extensive020
experiments on different models demonstrate021
that VRoPE consistently outperforms previous022
RoPE variants, achieving significant improve-023
ments in video understanding, temporal reason-024
ing, and retrieval tasks. Code will be available.025

1 Introduction026

In recent years, Large Language Models (LLMs)027

have achieved remarkable progress (Touvron et al.,028

2023; Bai et al., 2023). Building on the success029

of LLMs, Video Large Language Models (Video-030

LLMs) (Maaz et al., 2023; Li et al., 2024d; Jin031

et al., 2024) have emerged as a powerful paradigm032

for video-language understanding. These models033

typically integrate LLMs with pre-trained vision034

encoders, enabling the joint modeling of video and035

textual information. However, a fundamental chal-036

lenge in Video-LLMs lies in effectively modeling037

positional relationships within video sequences.038

In LLMs, positional encoding plays a crucial039

role in enabling models to capture order-dependent040

patterns, as self-attention mechanisms themselves041
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Figure 1: Comparison of RoPE, RoPE-3D, and our
VRoPE in video positional encoding. (a) Positional Un-
biasedness: RoPE and RoPE-3D exhibit spatial biased
attention, particularly towards later tokens or specific
frame regions, while VRoPE ensures more uniform at-
tention. (b) Seamless Video-Text Transition: RoPE-3D
causes a discontinuity when transitioning from video
to text tokens, which VRoPE smooths for better cross-
modal dependency modeling.

are inherently permutation-invariant. Among vari- 042

ous positional encoding schemes, Rotary Position 043

Embedding (RoPE) (Su et al., 2024) has gained 044

widespread adoption due to its ability to encode 045

relative position relationships. RoPE enables ef- 046

ficient long-range dependencies, making it highly 047

effective in text-based models. However, when ap- 048

plied directly to video data, vanilla RoPE—where 049

video tokens are treated as a simple sequence akin 050

to text—fails to account for the complex spatiotem- 051

poral structure inherent in video frames, leading 052

to suboptimal representations. Despite its critical 053

role, an effective video-specific positional encoding 054

strategy remains an open challenge. 055
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To optimally encode positional relationships in056

Video-LLMs, we identify three key properties that057

an ideal video positional encoding should satisfy:058

(1) Spatiotemporal Structure Modeling. Un-059

like text, where positional relationships are strictly060

one-dimensional, video frames exhibit both spatial061

(width, height) and temporal (frame index) dimen-062

sions. An effective encoding must reflect this in-063

herent structure to facilitate accurate modeling of064

spatiotemporal dependencies. Recent approaches065

(Wang et al., 2024; Bai et al., 2025), referred to066

as RoPE-3D, extend RoPE for video structure by067

splitting the feature channels into three parts to sep-068

arately encode frame, width, and height positions.069

(2) Positional Unbiasedness. A critical yet of-070

ten overlooked aspect of positional encoding is its071

impact on attention distribution. As illustrated in072

Figure 1 (a), RoPE, by design, applies a long-term073

decay over increasing positional indices, inadver-074

tently introducing a bias that amplifies attention075

toward later tokens. This issue persists in RoPE-076

3D, where spatial positions within video frames are077

unevenly weighted, causing attention to be dispro-078

portionately focused on certain areas—typically the079

bottom-right regions of frames—while suppressing080

others, which is shown in Figure 1 (a). Such biases081

distort spatial contextual modeling, leading to sub-082

optimal video comprehension. An effective video083

positional encoding should mitigate these biases to084

ensure uniform attention across the entire frame.085

(3) Seamless Video-Text Transition. For effec-086

tive multimodal understanding, an ideal positional087

encoding should ensure a seamless transition be-088

tween video and text tokens. However, as demon-089

strated in Figure 1 (b), RoPE-3D introduces a dis-090

continuity when transitioning from video to text091

tokens, as the positional indices of text tokens are092

arbitrarily offset by the maximum position index093

of the video sequence (determined by the largest094

of frame count, width, and height, which often095

vary significantly). This artificial “jump” in the096

positional encoding space disrupts the smooth flow097

of information between modalities, hindering the098

model to establish meaningful cross-modal depen-099

dencies.100

Based on the above principles, we propose Video101

Rotary Position Embedding (VRoPE), a novel po-102

sitional encoding method specifically designed for103

Video-LLMs. Our approach consists of two key104

components to satisfy those principles. (1) Sym-105

metric Bias Mitigation: To counteract the attention106

bias present in RoPE-based encodings, we design107

a symmetric positional representation that encodes 108

each spatial coordinate from vertices to the center. 109

By distributing attention more uniformly across 110

spatial locations, this method prevents positional 111

distortions and improves overall video understand- 112

ing. (2) Temporal Centered Arrangement: We pro- 113

pose a center-aligned design that spatially aligns 114

the geometric centers of video frames with the tex- 115

tual arrangement axis, and arranges video frames 116

in temporally ordered progression along the tex- 117

tual positional axis. This transformation not only 118

maintains spatial coherence within video frames 119

but also ensures a smooth transition between video 120

and text tokens, mitigating discontinuities in the 121

positional encoding space. 122

Overall, VRoPE effectively enhances Video- 123

LLMs by preserving spatiotemporal structure, miti- 124

gating attention bias, and ensuring smooth video- 125

text transitions. We conduct extensive experiments 126

on different models and training datasets. Our re- 127

sults demonstrate significant performance improve- 128

ments over RoPE and RoPE-3D on multiple video 129

benchmarks, covering general video understand- 130

ing, temporal reasoning, long video comprehen- 131

sion, and video retrieval. These findings establish 132

VRoPE as a robust and efficient positional encod- 133

ing method tailored for Video-LLMs. We hope 134

this work inspires further research on Video-LLM 135

positional encoding and provides valuable insights 136

for future Video-LLM designs. 137

2 Related Work 138

2.1 Video Large Language Models 139

Recent advancements in Video-LLMs (Maaz et al., 140

2023; Li et al., 2023, 2024b; Jin et al., 2024; 141

Li et al., 2024d; Xu et al., 2024) have signif- 142

icantly enhanced video processing by integrat- 143

ing multiple modalities and employing instruction 144

fine-tuning. Notable innovations include Video- 145

ChatGPT (Maaz et al., 2023), which introduced 146

video instruction tuning for text generation, and 147

VideoChat (Li et al., 2023) and VideoChat2 (Li 148

et al., 2024b), which improved modality alignment 149

via cross-attention and multi-stage bootstrapping 150

etc. Other models, such as Chat-UniVi (Jin et al., 151

2024) and LLaMA-VID (Li et al., 2024d), focus on 152

efficient video representations through techniques 153

like token compression and dual-token methods 154

that separate context and content. Additionally, 155

PLLaVA (Xu et al., 2024) explores the use of 156

image-pretrained LLaVA models for video tasks, 157
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utilizing simple spatial pooling techniques.158

2.2 Multimodal Position Embedding159

Most Video-LLMs inherit the default design from160

LLMs by using Rotary Position Embedding (RoPE)161

(Su et al., 2024) for positional encoding. RoPE162

encodes relative distance information as absolute163

position embeddings, offering key advantages like164

no additional training parameters and improved165

performance in various tasks (Su et al., 2024). It166

is widely used in modern LLMs due to its ability167

to extrapolate context length, extending a model’s168

window size without the need for expensive re-169

training. However, RoPE’s 1D design, effective170

for text, overlooks the spatiotemporal structure of171

video data, limiting its suitability for Video-LLMs.172

To address this, several approaches have adapted173

RoPE for video. For instance, RoPE-2D (Agrawal174

et al., 2024; Wang et al., 2024) extends the encod-175

ing to capture spatial relationships in video frames,176

while RoPE-3D (Wang et al., 2024; Bai et al., 2025)177

divides the channel dimension into three groups to178

better represent the spatiotemporal dimensions.179

However, these approaches still face issues like180

Positional Attention Bias and Cross-Modal Posi-181

tional Discontinuity, which are discussed in Section182

3. Our VRoPE method addresses these limitations,183

offering more accurate and robust positional encod-184

ing tailored for Video-LLMs.185

3 Motivation186

3.1 Preliminary: Rotary Position Embedding187

Rotary Positional Embedding (RoPE) is a widely188

adopted method in LLMs that encodes absolute189

positional information while preserving relative po-190

sitional relationships. This property makes RoPE191

particularly effective for self-attention mechanisms,192

as it allows models to capture the relative distance193

between tokens in a computationally efficient man-194

ner. Given a token embedding x at position index195

m, RoPE applies a complex-valued rotation opera-196

tion, formulated as:197

RoPE(x,m) = xeimθ (1)198

where i is the imaginary unit, and the frequency199

encoding vector θ is defined as:200

θj = base
−2j
d (2)201

where base is a hyperparameter, d is the feature202

dimension, and j = [0, 1, ..., d/2− 1] denotes the203

index of each feature channel.204

In the self-attention mechanism, RoPE trans- 205

forms absolute position embeddings into relative 206

ones. The attention score between m-th query qm 207

and n-th key kn is 208

A(m,n) = ℜ
[
qm · k∗

ne
i(m−n)θ

]
(3) 209

where ℜ[·] denotes the real part, and ∗ represents 210

the complex conjugate. 211

While RoPE excels in sequential text modeling, 212

its direct application to video-text interleaved se- 213

quences poses challenges due to the complex spa- 214

tiotemporal relationships inherent in video frames. 215

3.2 RoPE for Video-LLMs 216

In Video-LLMs, video frames are typically pro- 217

cessed by vision encoders (e.g., ViTs (Alexey, 218

2020) or CNNs (He et al., 2016)) and transformed 219

into a sequence of visual tokens. These visual to- 220

kens are then concatenated with text tokens and fed 221

into an LLM backbone. 222

In most existing approaches, video tokens are 223

treated as a simple 1D sequence, with position in- 224

dices assigned in an increasing order, similar to 225

text. However, this naive approach, referred to as 226

RoPE, overlooks the inherent spatiotemporal struc- 227

ture of video data. Flattening video frames this way 228

disrupts spatiotemporal structure and leads to in- 229

efficient position usage. Unlike text, video tokens 230

carry less dense semantic information, and their 231

excessive sequence length can weaken contextual 232

dependencies, making long-range understanding 233

harder. 234

3.3 RoPE-3D for Video-LLMs 235

Recent approaches, such as M-RoPE in Qwen2- 236

VL(Wang et al., 2024), have proposed RoPE- 237

3D as an extension of RoPE for video structure 238

preserving. RoPE-3D intuitively partitions the 239

feature dimensions to separately encode spatial 240

(width, height) and temporal (frame index) po- 241

sitions. Given a video token with coordinates 242

(w, h, t), RoPE-3D computes: 243

RoPE-3Dj(x, w, h, t) =


RoPEj(x, w), j ∈ Dw

RoPEj(x, h), j ∈ Dh

RoPEj(x, t), j ∈ Dt

(4) 244

where where Dw, Dh, Dt denote feature partitions 245

assigned to width, height, and temporal axes, re- 246

spectively. For text tokens, the encoding remains 247
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Figure 2: Attention weight visualization of RoPE, RoPE-3D, and VRoPE. We compute average text-to-video frame
attention weights on VideoMME (Fu et al., 2024) benchmark (lighter color indicates higher attention). (a) RoPE
exhibits row-wise attention decay within frames. (b) RoPE-3D shows a similar decay from the bottom-right to the
top-left, introducing positional bias that skews attention toward spatially closer frame tokens. (c) VRoPE mitigates
this bias, leading to a more balanced attention distribution.

Table 1: Average attention weights at the video-text
boundary on Video-MME. We use the subsequent text
instruction as the query and video/text tokens as keys.
Note that text-to-video attention weights of RoPE-3D
are an order of magnitude lower than other methods,
indicating its positional discontinuity between video
and text.

Method Text-to-Text Text-to-Video

RoPE 1.41e-2 2.08e-4
RoPE-3D 1.27e-2 5.12e-5
VRoPE (Ours) 1.32e-2 3.70e-4

consistent with the original RoPE by setting w =248

h = t = m, ensuring that:249

RoPE-3Dj(x,m,m,m) ≡ RoPEj(x,m) (5)250

This design explicitly models spatial and tempo-251

ral positions while preserving text token behavior.252

However, RoPE-3D still exhibits two key limita-253

tions, which we elaborate on below.254

3.4 Problem Analysis255

While RoPE-3D introduces a promising design by256

partitioning the feature dimensions to encode spa-257

tial (width, height) and temporal (frame index) po-258

sitions separately, two critical issues persist when259

handling video–text data.260

(1) Positional Attention Bias. As is demon-261

strated in Figure 2 (a), RoPE naturally applies a262

long-term decay over increasing positional indices,263

which amplify attention toward later positions. Un-264

fortunately, we find that this issue persists in RoPE-265

3D, where the decay leads to an uneven distribution266

of focus across spatial positions in video frames.267

As is shown in Figure 2 (b), notably, tokens in the 268

bottom-right of each frame receive disproportion- 269

ately higher attention, while those in the top-left 270

are increasingly suppressed. This imbalance can 271

distort spatial contextual modeling by weakening 272

dependencies on earlier tokens, which in turn af- 273

fects the model’s understanding of the video. 274

(2) Cross-Modal Positional Discontinuity. 275

RoPE-3D introduces separate positional encodings 276

for spatial (width, height) and temporal (frame 277

index) dimensions. However, when video tokens 278

are concatenated with subsequent text tokens, 279

their positional indices do not follow a smooth 280

transition. Instead, text tokens inherit positional 281

indices that are arbitrarily offset by the maximum 282

position value across spatial (W,H) and temporal 283

dimensions T , i.e., max(W,H, T ). This results 284

in an artificial “jump” in the positional encoding 285

space when transitioning from video to text 286

tokens. The discontinuity creates an abrupt and 287

non-uniform gap between the final video token and 288

the subsequent text token. As is shown in Table 289

1, text-to-video attention weights of RoPE-3D at 290

the video-text boundary are an order of magnitude 291

lower than RoPE and VRoPE, which demonstrates 292

that the discontinuity in position embedding will 293

affect the attention weights. Further, the magnitude 294

of this gap depends on video dimensions rather 295

than being a fixed offset, making it inconsistent 296

across different video-text samples. Such a 297

discrepancy can degrade the model’s ability to 298

establish seamless contextual dependencies across 299

modalities. This issue is particularly problematic 300

in long videos, as the increasing frame count T 301

exacerbates the positional gap, which will be 302
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Figure 3: Left: the overall architecture of a typical Video-LLM. In this work, our improvements primarily target
the positional embedding component of the LLM to enhance its video understanding capability. Right: method
illustration of VRoPE. (a) We first apply symmetric arrangement to mitigate positional bias in video frames.
The RoPE frequencies are uniformly allocated to the four dimensions. (b) We propose to use temporal centered
arrangement in video frames to form a seamless video-text transition, which enables video input of arbitrary length
without causing discontinuity.

further discussed in Section 5.3.303

4 Method: VRoPE304

In this section, we introduce Video Rotary Position305

Embedding (VRoPE), a novel positional encoding306

method tailored for Video-LLMs. Our approach307

addresses the inherent limitations of RoPE-3D, in-308

cluding positional attention bias and cross-modal309

positional discontinuity, by leveraging a combina-310

tion of Symmetric Bias Mitigation and Temporal311

Centered Arrangement. The overall framework of312

VRoPE is illustrated in Figure 3.313

4.1 Symmetric Bias Mitigation314

As discussed in Section 3.4, both RoPE and RoPE-315

3D employ a single positional arrangement direc-316

tion when encoding features within video frames317

(e.g., row-major scanning for RoPE and top-left to318

bottom-right ordering for RoPE-3D), inevitably in-319

troducing positional attention bias. To address this320

limitation, we propose Symmetric Bias Mitigation321

as illustrated in Figure 3 (a).322

Specifically, we design a unified symmetric po-323

sitional arrangement paradigm applicable to arbi-324

trary dimensions. For textual tokens represented325

as points, their inherent symmetry is preserved.326

For one-dimensional sequences, we adopt bidirec-327

tional positional indexing starting from both end-328

points (similar to bidirectional modeling in lan-329

guage models). For two-dimensional planes (i.e.,330

video frames), we implement a four-directional331

symmetric arrangement extending from frame ver-332

tices toward the center. This scheme naturally ex-333

tends to three-dimensional space with eight-vertex 334

symmetry, etc. Given an input video frame of size 335

(W,H), we compute four symmetric directional 336

positional arrangements as follows: 337


u1
u2
u3
u4

 =


w + h
w − h
−w − h
−w + h

 . (6) 338

Considering that RoPE employs different fre- 339

quencies across channels, we strategically allocate 340

frequencies to these four symmetric positional in- 341

dices in a uniform manner. This design enables 342

distinct positional arrangement directions to model 343

features through different RoPE frequencies (high, 344

medium and low). 345

4.2 Temporal Centered Arrangement 346

While Symmetric Bias Mitigation effectively al- 347

leviates positional bias, the inherent discontinu- 348

ity between video and textual modalities persists. 349

To address this challenge, we propose the Tempo- 350

ral Centered Arrangement for positioning video 351

frames. Given that textual positions inherently sat- 352

isfy u1 = u2 = u3 = u4 (demonstrating isotropic 353

symmetry), we first align the geometric center of 354

each video frame with the textual arrangement axis 355

through coordinate transformation. Specifically, 356

for a video of size (W,H, T ) with an initial posi- 357

tion index pstart (i.e., the last position id + 1 of the 358

previous text), this process can be denoted as: 359
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
v1
v2
v3
v4

 =


u1

u2 +H − 1
u3 +H +W − 2

u4 +W − 1

+ pstart. (7)360

Subsequently, we systematically arrange frame361

positions along the temporal dimension using the362

following formulation:363

vtj = vj + t(H +W − 1), (8)364

where t is the frame index. This configuration en-365

sures that: (1) The central position of each video366

frame coincides with the textual arrangement axis,367

and (2) Sequential frames naturally extend along368

the textual positional progression direction through369

temporal ordering. Consequently, the temporal ex-370

pansion axis of video sequences becomes intrinsi-371

cally aligned with the positional growth direction372

of text tokens, which means that arbitrary length of373

video input does not affect the continuity between374

video and text.375

Finally, our VRoPE computes the positional en-376

coding as:377

VRoPEj(x, v
t
1, v

t
2, v

t
3, v

t
4)

=


RoPEj(x, v

t
1)j=4k

RoPEj(x, v
t
2)j=4k+1

RoPEj(x, v
t
3)j=4k+2

RoPEj(x, v
t
4)j=4k+3

(9)378

where k ∈ {0, 1, 2, ...}. For text tokens, we retain379

the original RoPE encoding structure (Eq. 5) to en-380

sure compatibility with LLMs. Further discussions381

can be found in Appendix A.382

5 Experiments383

5.1 Experimental Setup384

Implementation Details. We apply our proposed385

VRoPE to Video-LLM architectures with three386

widely used LLM backbones: Vicuna-7B, Qwen2-387

1.5B, and Qwen2-7B, the resulting models are388

denoted as Video-Vicuna-7B, Video-Qwen2-1.5B,389

and Video-Qwen2-7B. For the vision encoder, we390

leverage Eva-CLIP (Sun et al., 2023), and connect391

the Vision Encoder to the LLM using a Multi-Layer392

Perceptron (MLP) (Tolstikhin et al., 2021). We use393

a 224×224 resolution for both image and video in-394

puts. For video input, the number of input frames is395

16 and the frames are tokenized using a 2× 2 pool-396

ing kernel with a stride of 2, i.e., each frame has397

64 tokens as input. Training follows a two-stage 398

paradigm: in the pre-training stage, only the MLP 399

connector is trained, while in the instruction-tuning 400

stage, both the MLP and LLM backbones are fine- 401

tuned, with the Vision Encoder frozen throughout. 402

During pre-training, we use a batch size of 256 and 403

a learning rate of 1e-3, while for instruction-tuning, 404

we reduce the batch size to 128 and set the learning 405

rate to 2e-5. A warm-up ratio of 0.03 is used, fol- 406

lowed by cosine learning rate decay after the linear 407

warm-up phase. The training was conducted on 8 408

Nvidia A800 GPUs. 409

Training Data. For Vicuna-7B, we pre-train the 410

model on the LLaVA-558K dataset (Liu et al., 411

2024a) with WebVid samples (Bain et al., 2021) 412

and fine-tune it on the LLaVA-mix665K (Liu et al., 413

2024a) dataset augmented with VideoChatGPT 414

data (Maaz et al., 2023). For the Qwen2 LLM 415

series, we pre-train the models on a randomly sam- 416

pled 1M caption dataset, which includes LLaVA- 417

558K, WebVid, DenseFusion-1M (Li et al., 2024c), 418

VALOR (Liu et al., 2024b), and CC3M (Chang- 419

pinyo et al., 2021). The models are then fine-tuned 420

on a combination of LLaVA-mix665K, VideoChat- 421

GPT, and LLaVA-Video-178K (Zhang et al., 2024). 422

Evaluation Benchmarks. We evaluated VRoPE 423

across diverse video benchmarks, covering gen- 424

eral video understanding (Video-MME (Fu et al., 425

2024)), video temporal understanding (MVBench 426

(Li et al., 2024b), TempCompass (Liu et al., 427

2024c)), long video understanding (MLVU (Zhou 428

et al., 2024), LongVideoBench (Wu et al., 2025), 429

EgoSchema (Mangalam et al., 2024)), and long 430

video retrieval (Video-NIAH (Zhao et al., 2024)) 431

to validate its effectiveness. The evaluation is con- 432

ducted using the official code provided by each 433

benchmark. 434

5.2 Main Results 435

We evaluate the performance of RoPE, RoPE-3D, 436

and our proposed VRoPE across six video un- 437

derstanding benchmarks. As shown in Table 2, 438

VRoPE consistently outperforms both RoPE and 439

RoPE-3D, achieving the highest average scores 440

across all tasks and backbones. 441

For instance, in the Video-Vicuna-7B row, 442

VRoPE achieves an average score of 44.48, sur- 443

passing RoPE by 1.13 points. Similarly, when eval- 444

uated with Qwen2-1.5B and Qwen2-7B, VRoPE 445

demonstrates consistent improvements across all 446

benchmarks. Notably, it outperforms RoPE and 447
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Table 2: Performance comparison of RoPE variants on video benchmarks across different LLM backbones. Results
across tasks, including general video understanding (Video-MME), video temporal understanding (MVBench,
TempCompass), and long video understanding (MLVU, LongVideoBench, EgoSchema).

Method
Video-MME MLVU

MVBench
LongVideoBench TempCompass EgoSchema

Avg.
(w/o subs) @M-Avg @Val @Multi-Choice @Test

Video-Vicuna-7B
w/ RoPE 38.5 47.00 43.90 41.66 53.10 35.92 43.35
w/ RoPE-3D 38.0 (↓0.5) 46.30 (↓0.7) 44.55 (↑0.65) 40.16 (↓1.5) 54.94 (↑1.84) 39.79 (↑3.87) 43.96 (↑0.61)
w/ VRoPE 38.9 (↑0.4) 47.37 (↑0.37) 45.18 (↑1.28) 40.69 (↓0.97) 54.05 (↑0.95) 40.71 (↑4.79) 44.48 (↑1.13)

Video-Qwen2-1.5B
w/ RoPE 39.0 51.15 51.15 46.63 56.96 48.50 48.90
w/ RoPE-3D 39.3 (↑0.3) 51.19 (↑0.04) 50.45 (↓0.70) 48.01 (↑1.38) 57.97 (↑1.01) 49.00 (↑0.50) 49.32 (↑0.42)
w/ VRoPE 42.4 (↑3.4) 51.76 (↑0.61) 50.78 (↓0.37) 47.79 (↑1.16) 57.15 (↑0.19) 49.90 (↑1.40) 49.96 (↑1.06)

Video-Qwen2-7B
w/ RoPE 50.1 54.87 54.33 49.36 63.73 57.14 54.92
w/ RoPE-3D 49.5 (↓0.6) 56.06 (↑1.19) 54.23 (↓0.1) 49.55 (↑0.19) 64.49 (↑0.76) 58.80 (↑1.66) 55.44 (↑0.52)
w/ VRoPE 50.6 (↑0.5) 57.81 (↑2.94) 54.70 (↑0.37) 50.48 (↑1.12) 65.88 (↑2.15) 58.60 (↑1.46) 56.35 (↑1.43)
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(b) RoPE-3D
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Figure 4: Visualization of long video retrieval results on Video-NIAH (Zhao et al., 2024). Our VRoPE consistently
achieves high accuracy across varying background lengths and needle depths, showing strong retrieval capability in
long videos.

RoPE-3D by significant margins on tasks such as448

Video-MME (a 3.4-point increase for Qwen2-1.5B)449

and MLVU (a 2.94-point increase for Qwen2-7B).450

These results highlight the superior adaptabil-451

ity of VRoPE across different LLM types and pa-452

rameter sizes. Importantly, VRoPE introduces no453

new learnable parameters and does not increase454

computational complexity, making it a cost-free455

performance enhancement for Video-LLMs. More456

results and visualization examples can be found in457

Appendix B and Appendix C.458

5.3 Results on Long Video Retrieval459

We compare our method with RoPE (Su et al.,460

2024) and RoPE-3D (Wang et al., 2024) on the long461

video retrieval task to evaluate the model’s general-462

ization ability with longer video inputs. Following463

the setup in Video-NIAH (Zhao et al., 2024), we464

conduct Video Needle-In-A-Haystack (V-NIAH)465

experiments, where a target "needle" frame is in-466

serted into a sequence of background frames, with467

the total frame count varying between 256 and468

1216.469

As shown in Figure 4, the retrieval accuracy of470

RoPE drops significantly when the number of in- 471

put frames exceeds 832, while VRoPE outperforms 472

other approaches by a considerable margin. The 473

quantitative results, presented in Table 4, further ev- 474

idence this finding. Specifically, VRoPE achieves 475

an accuracy that is 32.19 points higher than RoPE 476

and 14.22 points higher than RoPE-3D when the 477

number of input frames increases to 1024-1216. 478

Notably, these results are obtained even though 479

the input frame count in this range is dozens of 480

times greater than the maximum number seen dur- 481

ing training. This demonstrates the exceptional 482

extrapolation ability of VRoPE. Moreover, RoPE- 483

3D underperforms the RoPE baseline for inputs of 484

256-512, 512-768, and 768-1024 frames, which 485

further proves that the cross-modal positional dis- 486

continuity affects the model’s ability to understand 487

videos of different lengths. 488

5.4 Ablation Studies 489

Comparison of RoPE Variants. We conduct ex- 490

periments to assess the impact of three key proper- 491

ties: Spatiotemporal Structure Modeling (S.S.M.), 492

Positional Unbiasedness (P.U.), and Seamless 493

7



Table 3: We assess various RoPE designs to validate the necessity of the three desired properties: Spatiotemporal
Structure Modeling (S.S.M), Positional Unbiasedness (P.U.), and Seamless Video-Text Transition (S.V.T.). The
results indicate that the model attains optimal performance when all properties are fully incorporated.

Method S.S.M. P.U. S.V.T. Video-MME EgoSchema LongVideoBench Avg.

RoPE ✘ ✘ ✔ 39.0 48.50 46.63 44.71
RoPE-2D ✔ ✘ ✔ 43.2 (↑4.2) 47.60 (↓0.90) 46.33 (↓0.30) 45.71 (↑1.00)
RoPE-3D ✔ ✘ ✘ 39.3 (↑0.3) 49.00 (↑0.50) 48.01 (↑1.38) 45.44 (↑0.73)
RoPE-Share ✘ ✔ ✔ 39.7 (↑0.7) 48.66 (↑0.16) 45.10 (↓1.53) 44.49 (↓0.22)
RoPE-Compact ✔ ✘ ✔ 38.1 (↓0.9) 50.77 (↑2.27) 45.96 (↓0.67) 44.94 (↑0.23)
VRoPE ✔ ✔ ✔ 42.4 (↑3.4) 49.90 (↑1.40) 47.79 (↑1.16) 46.70 (↑1.99)

Table 4: Average retrieval accuracy across different
input frame length intervals on Video-NIAH (Zhao et al.,
2024). Compared to RoPE, the performance advantage
of VRoPE becomes more pronounced at longer video
lengths.

Method 256-512 512-768 768-1024 1024-1216

RoPE 94.84 87.03 73.28 54.84
RoPE-3D 88.90 80.94 69.69 72.81
VRoPE 98.28 95.16 90.31 87.03

Video-Text Transition (S.V.T.), as discussed in Sec-494

tion 1. The results, summarized in Table 3, high-495

light the importance of these properties.496

We first compare RoPE-2D (Agrawal et al.,497

2024) and RoPE-3D (Wang et al., 2024) with the498

baseline RoPE (Su et al., 2024) method. RoPE-499

2D encodes only the spatial coordinates (w, h) of500

each frame. While it resolves the cross-modal posi-501

tional discontinuity, it still suffers from positional502

bias. Both RoPE-2D and RoPE-3D show improve-503

ments over RoPE, demonstrating the benefits of504

spatiotemporal structure modeling.505

Next, we evaluate two additional variants, RoPE-506

Share and RoPE-Compact, to further ablate the507

impact of S.S.M. and P.U. RoPE-Share uses iden-508

tical positional embeddings within each frame, ar-509

ranged sequentially. While it resolves positional510

bias and ensures continuity, it neglects the spatial511

structure of the frames, leading to a performance512

drop compared to RoPE. RoPE-Compact is an ex-513

tention of RoPE-3D that addresses positional dis-514

continuity by encoding subsequent text tokens with515

(W + 1, H + 1, T + 1)T , but it deviates from text516

compatibility requirements, which slightly limits517

its performance. In contrast, our proposed method518

(VRoPE) incorporates all three properties, achiev-519

ing a 1.99-point improvement over the RoPE base-520

line, surpassing all other variants. More detailed521

illustration of RoPE-Share and RoPE-Compact can522

Table 5: Ablation study on VRoPE components. We
evaluate the impact of Symmetric Bias Mitigation (Sym-
metric) and Temporal Centered Arrangement (Continu-
ity). The model achieves the best performance when
both components are applied together.

Continuity Symmetric Video-MME LongVideoBench

✘ ✘ 39.0 46.63
✔ ✘ 42.3 46.30
✘ ✔ 41.3 47.27
✔ ✔ 42.4 47.79

be found in Appendix D. 523

Ablation on VRoPE Components. We conduct 524

ablation experiments to evaluate the individual con- 525

tributions of the Symmetric Bias Mitigation and 526

Temporal Centered Arrangement components. The 527

results, presented in Table 5, reveal that when ap- 528

plied separately, each method produces mixed ef- 529

fects. Specifically, Temporal Centered Arrange- 530

ment improves performance on Video-MME, indi- 531

cating its effectiveness in enhancing smooth trans- 532

lation for general video understanding. Symmet- 533

ric Bias Mitigation shows a significant gain on 534

LongVideoBench, indicating its effectiveness in 535

reducing bias in long video tasks. When combined 536

in VRoPE, the two components work synergisti- 537

cally, resulting in more consistent performance. 538

6 Conclusion 539

In conclusion, we propose VRoPE, a dedicated 540

positional encoding strategy for Video-LLMs that 541

balances spatiotemporal structure, mitigates atten- 542

tion bias, and ensures a smooth transition between 543

video and text tokens. Extensive experiments on 544

different model scales validate its superior perfor- 545

mance in video understanding, temporal reasoning, 546

and retrieval tasks. We believe VRoPE can serve 547

as a useful building block for future Video-LLMs, 548

enabling better video-language understanding. 549
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7 Limitations550

While VRoPE demonstrates strong performance,551

there are some limitations. Due to computational552

resource constraints, our experiments were limited553

to models with 1.5B, 7B and 8B (shown in Ap-554

pendix B) parameters. Larger-scale models could555

potentially yield further performance gains. Addi-556

tionally, although VRoPE is adaptable across dif-557

ferent dimensions, its extension to other modalities558

(e.g., audio, 3D point clouds, Electroencephalogra-559

phy (EEG)) and higher-dimensional data (e.g., 4D560

spatiotemporal or medical imaging data) remains561

an area for future research and validation.562
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Table 6: Performance comparison of RoPE variants on
event-based EventBench (Du et al., 2024).

Method EventBench

Video-Vicuna-7B
w/ RoPE 38.97
w/ RoPE-3D 39.33 (↑0.36)
w/ VRoPE 40.38 (↑1.41)

Video-Qwen2-1.5B
w/ RoPE 53.31
w/ RoPE-3D 52.76 (↓0.55)
w/ VRoPE 54.23 (↑0.92)

Video-Qwen2-7B
w/ RoPE 59.25
w/ RoPE-3D 58.61 (↓0.64)
w/ VRoPE 60.35 (↑1.1)

A Discussion728

Dimensional Adaptability. A key advantage of729

VRoPE is its ability to degenerate into lower-730

dimensional embeddings without altering its funda-731

mental structure. Unlike methods that assign sepa-732

rate feature channels for each coordinate, VRoPE733

employs linear combinations of the original coor-734

dinates, allowing any dimension set to 1 to seam-735

lessly adapt into lower-dimension form. For in-736

stance, when H = 1, the encoded positions sim-737

plify to (w,w,−w,−w), effectively reducing to738

a 1D form—unlike previous methods that rely on739

separate encodings, such as (w, 0). This property740

is particularly beneficial for adapting pre-trained741

model’s positional encodings from images (2D) or742

videos (3D) to data of varying dimensions with-743

out disrupting the original encoding scheme. Con-744

sequently, models can transfer more effectively745

across modalities while preserving consistent posi-746

tional behavior.747

B More Results748

B.1 Results on EventBench749

The benchmark evaluated in Section 5.2 already750

encompasses comprehensive capabilities required751

for video understanding tasks. To further validate752

temporal reasoning performance, we conduct addi-753

tional evaluations focusing on event-based tasks754

involving complex temporal dependencies. As755

shown in Table 6, our VRoPE demonstrates con-756

sistent improvements across all models compared757

to existing methods. These results confirm that our758

Table 7: Detailed performance comparison of RoPE
variants on Video-MME (Fu et al., 2024).

Method Short Medium Long

Video-Vicuna-7B
w/ RoPE 46.4 38.0 31.0
w/ RoPE-3D 46.0 (↓0.4) 37.5 (↓0.5) 30.6 (↓0.4)
w/ VRoPE 46.4 (-) 38.3 (↑0.3) 31.8 (↑0.8)

Video-Qwen2-1.5B
w/ RoPE 47.4 37.6 32.2
w/ RoPE-3D 47.1 (↓0.3) 37.0 (↓0.6) 33.8 (↑1.6)
w/ VRoPE 50.1 (↑2.7) 39.3 (↑1.7) 37.8 (↑5.6)

Video-Qwen2-7B
w/ RoPE 60.2 47.6 42.5
w/ RoPE-3D 60.0 (↓0.2) 46.7 (↓0.9) 41.7 (↓0.8)
w/ VRoPE 60.4 (↑0.2) 47.6 (-) 43.9 (↑1.4)

Table 8: Results on Video-MME (Du et al., 2024) under
lower frame rates (8 frames).

Method Acc.

Video-Qwen2-1.5B
w/ RoPE 38.9
w/ RoPE-3D 37.2 (↓1.7)
w/ VRoPE 40.9 (↑2.0)

approach maintains superior comprehension capa- 759

bilities when processing videos containing intricate 760

event sequences. 761

B.2 Results on Video-MME with varying 762

lengths 763

In this section, we analyze the performance of 764

RoPE, RoPE-3D, and our VRoPE across varying 765

input video lengths on the Video-MME dataset, 766

as summarized in Table 7. The results indicate 767

that VRoPE demonstrates marked superiority in 768

processing long-form videos, while also achiev- 769

ing moderate advantages for medium and short 770

videos, maintaining comparable performance to 771

baselines at minimum. This further validates the 772

effectiveness of our approach in enhancing model 773

comprehension capabilities across varying video 774

durations. The consistent improvements under- 775

score our method’s robustness in understanding 776

tasks under various video context lengths. 777

B.3 Results under Challenging Conditions 778

In this section, we evaluate the performance of 779

RoPE, RoPE-3D, and VRoPE on Video-MME 780

under low frame-rate inputs (8 frames), as re- 781

ported in Table 8. Notably, VRoPE maintains 782

enhanced performance even in these challenging 783
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… … …

Question: What is the object that appears after the red door opens in the video?

Video

Options: (A) A bird.    (B) A large building.    (C) A helicopter. (D) An oil drum.

RoPE RoPE-3D VRoPE (Ours)

Predict: (D) An oil drum Predict: (D) An oil drum Predict: (C) A helicopter

Figure 5: Attention weight visualization of RoPE, RoPE-3D, and VRoPE. The visualization reveals that VRoPE
exhibits stronger attention activation within critical frames (highlighted by red boxes), demonstrating its accurate
focus on pivotal spatiotemporal regions. In contrast, RoPE and RoPE-3D display attenuated attention responses in
these corresponding areas, indicating insufficient awareness of key events. This attention misalignment consequently
leads to erroneous predictions, as evidenced by their incorrect interpretations of the visual content.

sparse-sampling scenarios, empirically confirming784

the robustness of our approach. This empirical785

evidence highlights our method’s capability to pre-786

serve spatiotemporal coherence under severe input787

degradation.788

B.4 Results of Larger Models and Datasets789

In this section, we validate the superiority of our790

approach through scaled-up model architectures791

and expanded training datasets. Specifically, we792

conduct experiments using SigLIP-2 (Tschannen793

et al., 2025) and Qwen3-8B (Yang et al., 2025)794

as backbone architectures. We expand the num-795

ber of input frames to 32 and the resolution is set796

to 384 × 384. During the pre-training stage, we797

utilize LLaVA-558K (Liu et al., 2024a) combined798

with 500K randomly sampled video-text pairs from799

OpenVid-1M (Nan et al., 2024). For instruction800

tuning, we integrate LLaVA-NeXT-790K (Li et al.,801

2024a), LLaVA-Video-178K (Zhang et al., 2024),802

and the full OpenVid-1M dataset. This configura-803

tion results in approximately 1 million samples for804

pre-training and 3 million samples for instruction805

tuning. As demonstrated in Table 9, VRoPE main-806

tains performance advantages even under these807

enhanced baseline conditions (larger models, ex-808

panded datasets, and stronger baselines). These809

results further substantiate the generalizability and 810

robustness of our method across diverse architec- 811

tural scales and data regimes. 812

C Visualization Analysis 813

In Section 3.4, we analyze the positional attention 814

bias and cross-modal positional discontinuity inher- 815

ent to RoPE and RoPE-3D. To further substantiate 816

these observations, we provide concrete attention 817

visualization examples in this section. As illus- 818

trated in Figure 5, for an input video sequence, our 819

VRoPE effectively focuses on the video frames 820

most relevant to the query (the red door and the 821

helicopter), whereas RoPE and RoPE-3D exhibit 822

insufficient attention to critical frames. This defi- 823

ciency leads to localization errors and subsequent 824

incorrect responses – for instance, misidentifying 825

the opening of a black door as the opening of a red 826

door in this example. The comparative visualiza- 827

tion demonstrates our method’s enhanced capabil- 828

ity in spatiotemporal feature localization and event 829

understanding. 830

D Detailed Illustration of Other RoPE 831

Variants 832

RoPE-Share. RoPE-Share is a 1D positional en- 833

coding where all spatial tokens within a video 834
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Table 9: Performance comparison of RoPE variants on larger models and datasets. Results across tasks, including
general video understanding (Video-MME), video temporal understanding (MVBench, TempCompass), and long
video understanding (MLVU, LongVideoBench, EgoSchema).

Method
Video-MME MLVU

MVBench
LongVideoBench TempCompass EgoSchema

Avg.
(w/o subs) @M-Avg @Val @Multi-Choice @Test

Video-Qwen3-8B
w/ RoPE 61.00 64.96 59.68 60.81 68.67 56.41 61.92
w/ RoPE-3D 61.44 (↑0.44) 64.50 (↓0.46) 59.34 (↓0.34) 61.00 (↑0.19) 69.11 (↑0.44) 56.03 (↓0.38) 61.90 (↓0.02)
w/ VRoPE 62.56 (↑1.56) 65.36 (↑0.40) 59.23 (↓0.45) 61.48 (↑0.67) 68.67 (-) 57.07 (↑0.66) 62.40 (↑0.48)

frame share the same positional ID, i.e., the po-835

sitional IDs of all frame tokens in the tth frame836

are n + t. Text tokens follow the original encod-837

ing: n+ T + 1, n+ T + 2, .... While this design838

eliminates spatial attention bias and ensures cross-839

modal continuity, it fails to model spatial positional840

relationships within frames, leading to suboptimal841

performance (as is shown in Section 5.4).842

RoPE-Compact. RoPE-Compact is a variant843

of RoPE-3D. The key difference lies in han-844

dling cross-modal boundaries: (1) RoPE-3D845

assigns the next text token a positional ID of846

(max(W,H, T ),max(W,H, T ),max(W,H, T ))T .847

For example, if T > W,H , the last video token848

is (W,H, T )T , and the next text token becomes849

(T, T, T )T , causing discontinuity in the w and h di-850

mensions (as shown in Section 5.3). (2) To address851

the above issue, RoPE-Compact increments each852

dimension by 1, and uses it as the positional ID853

for the next text token: (W + 1, H + 1, T + 1)T .854

While this resolves cross-modal discontinuity,855

it disrupts the pre-trained RoPE’s positional856

frequency patterns of text, degrading performance.857

E License Statement858

The scientific artifacts used in this work are all859

publicly available and this work only uses them860

for research purposes, thus not violating any of the861

artifacts’ licenses. The new models released in this862

work is also licensed for research purposes only,863

prohibiting any other misuse.864
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